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ABSTRACT 

In this contribution, we provide an analytical solution to the one-dimensional transient diffusion 

equation to estimate oxygen self diffusion and effective surface exchange coefficients of fast 

oxygen ion conducting materials exposed to multi-step 18O isotope exchange procedures. The 

isotope exchange procedure and subsequent analytical techniques such as the Time-of-Flight 

Secondary Ion Mass Spectrometry (ToF-SIMS) provide an effective means to analyse diffusion 

characteristics of labeled isotopic species in such materials. Although an analytical solution exists 

for representing the diffusion profiles of labeled species obtained from a single-step exchange 

procedure, it is not applicable to the diffusion profiles resulted from consecutive procedures with 

dynamically altered initial and surface boundary conditions. Hence, a new analytical solution 

composed of integral transform equations is found for the transient diffusion problem representing 

the isotope back-exchange procedure in a semi-infinite spatial domain. The analytical solution is 

then used to determine the self-diffusion and surface exchange coefficients as fitting parameters 

for tracer gas diffusion profiles obtained from multi-step isotope exchange experiments. It is 

demonstrated that our solution provides a flexible means to analyse the effects of ambient gas 

compositions on transport properties of oxygen ion conducting materials. 

 

Keywords 

Isotope exchange, mixed ionic electronic conductors, Laplace transform, diffusion in semi-

infinite media. 

 

1. INTRODUCTION 

Understanding the effect of in situ gas composition on the transport properties of fast oxygen ion 

conducting materials has a paramount importance in successfully designing robust and efficient 

electrochemical conversion devices such as solid oxide fuel cells (SOFCs), solid oxide electrolyser 

cells (SOECs) and gas sensors. Often those properties, namely the oxygen self-diffusion 

coefficient ( 𝐷∗ ) and the effective surface exchange coefficient ( 𝑘∗ ), are determined from 

experiments conducted in controlled atmospheres which may not be representative of the actual 

device operating conditions. 

The isotope exchange depth profiling method, initially developed by Kilner, provides a means to 

extract 𝐷∗ and 𝑘∗values by analysing the tracer gas diffusion profiles in samples annealed under 

high purity isotope enriched oxygen [1,2]. While it is widely accepted and used, the method 
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inherently requires the use of high concentration of labeled oxygen species in the ambient gas 

which could be costly and restrictive for investigating the effects of multicomponent gas mixtures 

of typical operating environments on the transport properties. 

Recently, Cooper et.al. [3] have developed the back-exchange technique to remedy this and to 

investigate the influence of oxygen containing species on the surface and bulk transport properties 

of mixed electronic and ionic conducting ceramics. The technique involves a two-stage procedure 

starting with a standard isotope exchange in 18O enriched environment followed by a back-

exchange in isotope unenriched environment. In addition to the novel experimental technique, 

Cooper et.al. [3] provided an analytical solution for the back-exchange diffusion problem for a 

special case where 𝐷∗ and 𝑘∗values were assumed to be constant for all stages of the isotope 

exchange procedure. Acknowledging the limited applicability of the analytical solution, a finite 

difference method was used by Cooper et.al. [3] to numerically solve the diffusion problem for 

fitting the experimental back-exchange depth profile data with multiple 𝐷∗and 𝑘∗ values. In this 

contribution, however, the authors provide an analytical solution that can be used to extract 

multiple 𝐷∗ and 𝑘∗ values for the isotope back-exchange procedure. 

2. ANALYTICAL SOLUTION 

The two step isotope exchange procedure involves a protocol of utilising separate gas 

compositions for each step while keeping the rest of the thermodynamic variants, such as the 

annealing temperature and the oxygen partial pressure, constant. During the first step of the 

procedure, the isotope exchange is carried out in a gas composition of high isotopic 18O 

concentration. In the consequent step of the procedure, the isotope back-exchange is carried out 

under a gas composition of lower or no labeled isotopic species. Comparing the physical 

dimensions of the substrate exposed to the exchange procedure and the characteristic diffusion 

length of the isotopic tracer species from the exchange surface, the problem can be described as a 

transient one-dimensional diffusion in a semi-infinite medium. Here, the authors will construct a 

model for each step by introducing appropriate boundary and initial conditions describing the 

corresponding step of the exchange procedure. The aim is to obtain an analytical solution to the 

diffusion problem for each step and utilise those solutions to extract 𝐷∗  and 𝑘∗ values from 

experimentally measured data for isotopic 18O diffusion depth profiles. 

2.1 Isotope Exchange: 

Although a well known analytical solution [4,5] exists for the transient one-dimensional diffusion 

problem in semi-infinite domain describing the tracer gas diffusion depth profiles that result in 
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from the isotope exchange procedure, we will revisit the solution procedure and reconstruct the 

solution using integral transform methods. The solution will then be employed not only for 

extracting 𝐷∗ and 𝑘∗values from experimentally measured data but also for expressing the initial 

condition for the diffusion problem arising from the subsequent stage (i.e. the back-exchange step) 

of the isotope exchange procedure. 

The time dependent diffusion problem in semi-infinite spatial dimension with a surface exchange 

type boundary condition and a uniform initial isotopic tracer gas concentration can be described 

as 

𝜕𝐶1
′

𝜕𝑡
= 𝐷1

∗
𝜕2𝐶1

′

𝜕𝑥2
 , ∀(𝑥, 𝑡) ∈ [0, ∞), (0, ∞),  

   

𝐶1
′|𝑡=0 = 0 , ∀𝑥 ≥ 0 ,  

  (1) 

𝐶1
′|𝑥=0 = 1 +

𝐷1
∗

𝑘1
∗

𝜕𝐶1
′

𝜕𝑥
|

𝑥=0

 , ∀𝑡 > 0 ,  

   

𝐶1
′|𝑥→∞ = 0 , ∀𝑡 > 0.  

   

where 𝐶1
′ is the normalised isotopic tracer gas fraction defined by 

𝐶1
′ =

𝐶1(𝑥, 𝑡) − 𝐶bg

𝐶gas −  𝐶bg
 , ∀(𝑥, 𝑡) ∈ [0, ∞), (0, ∞) (2) 

   

𝐶1(𝑥, 𝑡) is the isotope gas concentration, 𝐶bg and 𝐶gas are the background isotope and the enriched 

gas concentrations for the isotope exchange procedure. 𝐷1
∗ and 𝑘1

∗ are the self-diffusion coefficient 

and the effective surface exchange coefficient respectively. By defining the following 

dimensionless spatial and temporal coordinates 

𝑥1 =
𝑘1

∗

𝐷1
∗ 𝑥 , ∀𝑥 ≥ 0 , (3) 

and   

𝑡1 =
𝑘1

∗2

𝐷1
∗ 𝑡 , ∀𝑡 ≥ 0. (4) 

   

the equation set (1) can be rewritten in the new coordinate system as 

𝜕𝐶1
′

𝜕𝑡1
=

𝜕2𝐶1
′

𝜕𝑥1
2  , ∀(𝑥1, 𝑡1) ∈ [0, ∞), (0, ∞),  

   

𝐶1
′|𝑡1=0 = 0 , ∀𝑥1 ≥ 0 ,  

  (5) 
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𝐶1
′|𝑥1=0 = 1 +

𝜕𝐶1
′

𝜕𝑥1
|

𝑥1=0

 , ∀𝑡1 > 0 ,  

   

𝐶1
′|𝑥1→∞ = 0 , ∀𝑡1 > 0.  

   

Now the solution of the initial value problem defined in (5) can be constructed by using the 

Laplace transforms. With this, the scaled time dependent diffusion equation (5)1 will be 

transformed to an ordinary differential equation with corresponding boundary conditions given by 

𝑑2𝐶1̅
′

𝑑𝑥1
2 − 𝑝1𝐶1̅

′ = 0 , ∀𝑥1 ∈ [0, ∞),  𝑝1 ∈  ℂ ,  

   

𝐶1̅
′|𝑥1=0 =

1

𝑝1
+

𝑑𝐶1̅
′

𝑑𝑥1
|

𝑥1=0

,  (6) 

   

𝐶1̅
′|𝑥1→∞ = 0.   

   

where 𝐶1̅
′ is the Laplace transform of the normalised isotopic tracer gas fraction. The coefficients 

of the general solution to the ordinary differential equation (6)1 can be determined by applying the 

surface and far-end boundary conditions (6)2 and (6)3 respectively. Hence, the Laplace transform 

of the isotopic tracer gas fraction, as the solution of the system (6), can be obtained as 

𝐶1̅
′ =

𝑒−√𝑝1 𝑥1

 𝑝1(1 + √𝑝1)
 , ∀𝑥1 ∈ [0, ∞),  𝑝1 ∈  ℂ. (7) 

   

The inverse Laplace transform of the equation (7) will involve evaluating the following complex 

valued line integral; 

ℒ−1{𝐶1̅
′} = 𝐶1

′ =
1

2𝜋𝑖
∫ 𝐶1̅

′
𝛾+𝑖∞

𝛾−𝑖∞

 𝑒𝑝1𝑡1  𝑑𝑝1  (8) 

   

The Cauchy integral theorem can be applied to evaluate the above integral by constructing a 

contour path that closes in the left hand of the complex plane. Since the integrand is multivalued 

along the negative real axis and has a pole at the origin, a branch cut, as shown in figure 1, is 

required to exclude those singularities. 
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Fig. 1. The branch cut and contour paths, parametrised by 𝑝1 = 𝑟𝑒𝑖𝜃, to close in the left half of 

the complex plane (Re{𝑝1}, Im{𝑝1}) = (𝑟 cos(𝜃), 𝑟 sin(𝜃)) , 0 < 𝑟 < ∞, −𝜋 < 𝜃 ≤ 𝜋. The 

radius of the pole is 𝜀. 

As the singularities are now excluded by the branch cut and the integrand is analytic everywhere 

inside the enclosed domain, the sum of the integrals over the labelled paths of the closed contour 

will become zero. Therefore, the integral defining the isotopic tracer gas concentration can be 

evaluated by using the following sum of the path integrals. 

𝐶1
′ = −(Γ1 + 𝑅1 + Γ𝜀 + 𝑅2 + Γ2)  (9) 

   

Issuing the appropriate parametrisation over the individual paths and taking limits as 𝑟 → ∞ and 

𝜀 → 0, the inverse Laplace transform of the isotopic tracer gas fraction can be evaluated as 

𝐶1
′ = 1 −

1

𝜋
∫

𝑒−𝑟𝑡1

(1 + 𝑟)
{

sin(√𝑟𝑥1)

𝑟
+

cos(√𝑟𝑥1)

√𝑟
} 𝑑𝑟

∞

0

  (10) 

   

Substituting 𝑟 = 𝑢2 into the equation (10), the solution can be written in the following form 

𝐶1
′ = 1 −

2

𝜋
∫

𝑒−𝑢2𝑡1

(1 + 𝑢2)

∞

0

{
sin(𝑢𝑥1)

𝑢
+ cos(𝑢𝑥1)} 𝑑𝑢.  (11) 

   

Note that the equation (11) is identical to Crank’s solution [5] in our new coordinate system 

defined by 𝑥1 and 𝑡1. The solution can be plugged in to the equation system (5) to verify that the 

differential equation together with its initial and boundary conditions are satisfied. 
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2.2 Isotope Back-exchange: 

The initial value problem to describe the diffusion process of the isotopic tracer gas during the 

back-exchange procedure can be described as 

𝜕𝐶2
′

𝜕𝑡
= 𝐷2

∗
𝜕2𝐶2

′

𝜕𝑥2
 , ∀(𝑥, 𝑡) ∈ [0, ∞), (𝜙, ∞),  

   

𝐶2
′|𝑡=𝜙 = 𝐶1

′(𝑥, 𝜙) , ∀𝑥 ≥ 0 ,  

  (12) 

𝐶2
′|𝑥=0 =

𝐷2
∗

𝑘2
∗

𝜕𝐶2
′

𝜕𝑥
|

𝑥=0

 , ∀𝑡 > 𝜙 ,  

   

𝐶2
′|𝑥→∞ = 0 , ∀𝑡 > 𝜙.  

   

where 𝐷2
∗ and 𝑘2

∗ are the self-diffusion coefficient and the effective surface exchange coefficient 

respectively. 𝜙 is the duration of the isotope exchange procedure. 𝐶1
′(𝑥, 𝜙) is the initial isotope 

fraction distribution given by the solution of the isotope exchange problem at time 𝑡 = 𝜙. As in 

the previous case, 𝐶2
′  is defined as the normalised isotopic tracer gas fraction by using 

𝐶2
′ =

𝐶2(𝑥, 𝑡) − 𝐶bg

𝐶gas −  𝐶bg
 , ∀(𝑥, 𝑡) ∈ [0, ∞), (0, ∞) (13) 

   

By defining a new dimensionless temporal coordinate as 

𝑡2 =
𝐷2

∗𝑘1
∗2

𝐷1
∗2 (𝑡 − 𝜙) , ∀𝑡 ≥ 0. (14) 

   

and recalling the dimensionless spatial coordinate defined earlier, we can then rewrite the 

equation system (12) as 

𝜕𝐶2
′

𝜕𝑡2
=

𝜕2𝐶2
′

𝜕𝑥1
2  , ∀(𝑥1, 𝑡2) ∈ [0, ∞), (𝜙1, ∞),  

   

𝐶2
′|𝑡2=𝜙1

=  𝐶1
′(𝑥1, 𝜙1) , ∀𝑥1 ≥ 0 ,  

  (15) 

𝐶2
′|𝑥1=0 = 𝑘∗

𝜕𝐶2
′

𝜕𝑥1
|

𝑥1=0

, ∀𝑡1 > 𝜙1 ,  

   

𝐶2
′|𝑥1→∞ = 0 , ∀𝑡1 > 𝜙1.  
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where 𝜙1  is the duration of the previous isotope exchange procedure in the dimensionless 

temporal coordinates given by the equation (4) and 𝑘∗  is the dimensionless surface exchange 

coefficient defined by 

𝑘∗ =
𝐷2

∗𝑘1
∗

𝑘2
∗𝐷1

∗  (16) 

   

Once again, we will construct the solution of the initial value problem given in system (15) by 

using Laplace transforms to obtain the following ordinary differential equation and its boundary 

conditions. 

𝑑2𝐶2̅
′

𝑑𝑥1
2 − 𝑝2𝐶2̅

′ + 𝐶1
′(𝑥1) = 0 , ∀𝑥1 ∈ [0, ∞),  𝑝2 ∈  ℂ ,  

   

𝐶2̅
′|𝑥1=0 = 𝑘∗

𝑑𝐶2̅
′

𝑑𝑥1
|

𝑥1=0

 ,  (17) 

   

𝐶2̅
′|𝑥1→∞ = 0.   

   

After determining the coefficients of the general solution of the differential equation (17)1 by using 

the surface and far-end boundary conditions, the Laplace transform of the isotopic tracer gas 

fraction for the back-exchange problem can be written as 

𝐶2̅
′ = −

𝑒−√𝑝2𝑥1

𝑝2(1 + 𝑘∗√𝑝2)
 +

2

𝜋

(1 − 𝑘∗) 

(1 + 𝑘∗√𝑝2)
∫

𝑒−𝑢2𝜙1 𝑒−√𝑝2𝑥1

(1 + 𝑢2)(𝑢2 + 𝑝2)

∞

0

𝑑𝑢  

 

 +
1

𝑝2
−

2

𝜋
∫

𝑒−𝑢2𝜙1

(1 + 𝑢2)(𝑢2 + 𝑝2)

∞

0

{
sin(𝑢𝑥1)

𝑢
+ cos(𝑢𝑥1)} 𝑑𝑢. (18) 

   

The inverse Laplace transform of the equation (18) can then be obtained by evaluating the 

following complex valued integral 

ℒ−1{𝐶2̅
′} = 𝐶2

′ =
1

2𝜋𝑖
∫ 𝐶2̅

′
𝛾+𝑖∞

𝛾−𝑖∞

 𝑒𝑝2𝑡2  𝑑𝑝2  (19) 

   

Similar to the previous case, in order to evaluate the above integral, we will construct a closed 

contour as depicted in figure 2. 
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Fig. 2. The branch cut and contour paths, parametrised by 𝑝2 = 𝑟𝑒𝑖𝜃 , to close in the left half of 

the complex plane (Re{𝑝2}, Im{𝑝2}) = (𝑟 cos(𝜃), 𝑟 sin(𝜃)) , 0 < 𝑟 < ∞, −𝜋 < 𝜃 ≤ 𝜋. The radii 

of both poles are 𝜀. 

This time, in addition to the pole at 𝑝2 = 0, we have an additional pole at values of 𝑝2 = −𝑢2 =

−𝑟. Since the integrand is multivalued over the negative real axis, we should exclude that portion 

of the domain by introducing a branch cut similar to the previous case. Therefore, the complex 

valued line integral given by the equation (19) can be evaluated by using the Cauchy integral 

theorem over the closed contour shown in figure 2. Hence, we have the following expression to 

evaluate the inverse Laplace transform of the normalised isotopic tracer gas fraction during the 

back-exchange procedure. 

𝐶2
′ = −(Γ1 + Γ𝜉1

+ 𝑅1 + Γ𝜀 + 𝑅2 + Γ𝜉2
+ Γ2)  (20) 

   

 

Utilising the appropriate parametrisation over the individual paths and taking the limits when 𝑟 →

∞, and 𝜀 → 0, the solution to the equation set (15) can be found as 

𝐶2
′ = −

2

𝜋
∫

𝑒−𝑢2(𝜙1+𝑡2) 

(1 + 𝑢2)
{

sin(𝑢𝑥1)

𝑢
+ cos(𝑢𝑥1)} 𝑑𝑢

∞

0

  

 

 +
2

𝜋
∫

𝑒−𝑢2 𝑡2  

(1 + 𝑘∗2𝑢2)
{

sin(𝑢𝑥1)

𝑢
+ 𝑘∗cos(𝑢𝑥1)} 𝑑𝑢

∞

0
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 +
2

𝜋
(1 − 𝑘∗) ∫

𝑒−𝑢2 (𝜙1+𝑡2) {cos(𝑢𝑥1) − 𝑘∗𝑢 sin(𝑢𝑥1)}

(1 + 𝑢2)(1 + 𝑘∗2𝑢2)
𝑑𝑢

∞

0

  

 

 −
2

𝜋
(1 − 𝑘∗) 𝑒𝜙1 erfc(√𝜙1) ∫

𝑒−𝑢2 𝑡2  𝑢 {sin(𝑢𝑥1) + 𝑘∗𝑢 cos(𝑢𝑥1)}

(1 + 𝑢2)(1 + 𝑘∗2𝑢2)
𝑑𝑢

∞

0

  

 

 −
4

𝜋2
(1 − 𝑘∗) ∫

𝑒−𝑢2 𝑡2   {sin(𝑢𝑥1) + 𝑘∗𝑢 cos(𝑢𝑥1)}

(1 + 𝑢2)(1 + 𝑘∗2𝑢2)
{√𝜋 D−(𝑢 √𝜙1)} 𝑑𝑢

∞

0

. (21) 

   

where D_(𝑥) is the Dawson function given by 

D_(𝑥) =  𝑒−𝑥2
∫ 𝑒𝑡2

 𝑑𝑡
𝑥

0

  (22) 

   

Note that when 𝑡2 = 0, the equation (21) collapses to the solution provided in the previous section 

as the initial condition for the back-exchange problem. On the other hand, our solution satisfies 

the surface and far-end boundary conditions. Hence, we have a unique solution to the back-

exchange problem formulated in system (15). 

For a given concentration distribution data obtained from the isotope back-exchange procedure, 

our solution can be used to extract all four values of 𝐷1
∗, 𝑘1

∗, 𝐷2
∗, 𝑘2

∗ as fitting parameters regardless 

of any constraints (i.e. there is no requirement for any of the coefficients to be the same for 

consecutive exchange procedures). In the following section, we will demonstrate how the self 

diffusion and surface exchange coefficients can be extracted from the depth profiles obtained in 

multi-step isotope exchange procedures. 

3. RESULTS & DISCUSSION 

Experimentally measured isotope depth profile data can be modelled by using the solutions 

provided in this contribution. The 𝐷∗ and 𝑘∗values may be used as model fitting parameters to 

minimise the residuals between the measured and calculated profiles in, for instance, the non-

linear least-squares formalism. For example, a depth profile obtained from the isotope exchange 

procedure can be modelled by using 𝐷1
∗ and 𝑘1

∗ as a pair of fitting parameters of the equation (11). 

Similarly, the equation (21) can be fitted to a measured isotope back-exchange depth profile data 

(after normalisation) by using 𝐷1
∗, 𝑘1

∗, 𝐷2
∗, and 𝑘2

∗ as four independent fitting parameters. 

In addition to the standard mathematical verification, solutions found in this work were utilised to 

reproduce the experimentally measured isotope depth profiles for La0.6Sr0.4Co0.2Fe0.8O3-reported 

by Cooper et.al [3]. Although, the intended use of the solutions is to extract transport properties 

rather than regenerate data in an opposite fashion, the authors thought that the data regeneration 
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would be a good way to cross validate the solutions. Therefore, 𝐷∗  and 𝑘∗ values as best fit 

variables together with the accompanying experimental parameters listed in Table 1 were taken 

from the publication by Cooper et.al. [3] and employed in our solutions to reproduce the 

normalised isotope fraction depth profiles.  

Sample 𝐷1
∗, 𝐷2

∗  [cm2/s] 𝑘1
∗   [cm/s] 𝑘2

∗   [cm/s] 𝜙  [h] 

A 1.6e-08 1.1e-06 - 1.4 

B 1.7e-08 1.4e-06 1.6e-06 0.66 

C 1.7e-08 1.3e-06 3.3e-06 0.66 

Table 1. Parameters used in the solutions (11) and (21) to reproduce the isotope depth profile data 

measured by Cooper et.al. [3]. In addition, 𝐶bg , and 𝐶g  are taken as 0.2% and 99.999% 

respectively. 

Figure 3 depicts the reproduced normalised isotope fraction depth profiles for three different 

exchange experiments reported by Cooper et.al. [3]. The profile shown in red colour for the sample 

A was generated by using the equation (11), and the green as well as the blue coloured profiles for 

samples B, and C were generated by using the equation (21). For all evaluations, the spatial 

variable was varied up to the depth value of 450 m from the surface. 

 

Figure 3. Regenerated isotopic depth profile data reported by Cooper et.al. as experimental 

measurements of samples A, B, and C [3]. 
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Prior to proceeding with the estimation of 𝐷∗ and 𝑘∗ values, a small random noise with normal 

distribution (mean= 0, standard deviation=1%) was added to the regenerated data. With this 

small perturbation, it was aimed that the extracted transport properties would be slightly 

different than those used for regenerating data reported by Cooper et.al. [3]. As for the 

estimation procedure, the solutions provided here were utilised for calculating the residuals as 

objective functions of a non-linear optimisation method, as implemented in the LMFIT [6] 

module for Python and the Optimisation Toolbox for MATLAB (Release 2017b) [7]. In both 

implementations, the 𝐷∗and 𝑘∗ values were chosen as variable parameters for minimising the 

residuals between the regenerated data and the calculated profiles in the least-squares formalism. 

The fifth-order approximation [8] for the Dawson function as described in the Supporting 

Information was utilised in the MATLAB implementation to speed up the improper integral 

evaluations. A graphical user interface for the isotope depth profile curve fitting (DPFit) was 

developed by using MATLAB’s App Designer. The DPFit MATLAB package can be freely 

obtained from the authors. 

Figure 4a shows the randomly perturbed data for the sample A together with the residuals and the 

best fit curve obtained by varying 𝐷1
∗ and 𝑘1

∗ as fitting parameters of the equation (11). As a result 

of the non-linear least squares minimisation procedure, the oxygen self-diffusion coefficient and 

the effective surface exchange coefficient were obtained as 1.60e-08 cm2/s and 1.10e-06 cm/s 

respectively. The corresponding uncertainty values were estimated as +/-0.20% and +/-0.09%. 

Figure 4b depicts the residual values plotted against the calculated isotope depth profile. The 

random pattern of residuals that form a uniform band around the mean value of zero indicates how 

well the regenerated data has been represented by the best-fit curve. 

  

(a) (b) 
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Figure 4.  a) Best fit (red line) obtained by using the equation (11) to model the normalised 

isotope fraction depth profile measurement data (gray squares) for sample A. Residuals (green 

line) of the non-linear least squares fit. b) Spread plot for the residuals vs. best fit. 

Figure 5a shows the perturbed data for the sample B and the best fit curve obtained by varying 

𝐷1
∗ , 𝑘1

∗ , 𝐷2
∗ , and 𝑘2

∗ as fitting parameters of the equation (21). For this case, the two pairs of the 

self diffusion and effective surface exchange coefficients were listed in Table 2. The uncertainty 

for all the coefficients were found to be less than +/-2.7%. 

  

(a) (b) 

Figure 5. a) Best fit (red line) obtained by using the equation (21) to model the isotope depth 

profile measurement data (gray squares) for sample B. Residuals (green line) of the non-linear 

least squares fit. b) Spread plot for the residuals vs. best fit. 

As for the sample C, the perturbed data and the best fit curve obtained by varying the two pairs 

of the fitting parameters are shown in figure 6a. The extracted values for the two pairs of the 

transport coefficients are listed in table 2 with a maximum uncertainty of +/-2.4%. The 

distribution of the residual is shown in figure 6b. 

  

(a) (b) 
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Figure 6. a) Best fit (red line) obtained by using the equation (21) to model the isotope depth 

profile measurement data (gray squares) for sample C. Residuals (green line) of the non-linear 

least squares fit. b) Spread plot for the residuals vs. best fit. 

Sample 𝐷1
∗  [cm2/s] 𝑘1

∗   [cm/s] 𝐷2
∗  [cm2/s] 𝑘2

∗   [cm/s] 

A 1.60e-08 1.10e-06 - - 

B 1.65e-08 1.42e-06 1.73e-08 1.62e-06 

C 1.65 -08 1.32e-06 1.73e-08 3.34e-06 

Table 2. Parameters extracted from the isotope depth profile data (with added random noise) 

reported by Cooper et.al. [3]. 

As listed in table 2, the self diffusion coefficients (𝐷1
∗ and 𝐷2

∗) extracted from the isotope back-

exchange depth profile data, for samples C and D, were calculated as slightly different from each 

other. Although those values may be considered as identical within the limits of experimental 

accuracy, the analytical solution provided in this work has no prior assumption to consider them 

identical. Therefore, our solution can be used to accurately extract those transport properties for 

cases where they might differ from each other due primarily to the effect of other oxygen 

containing species’ diffusion into to the sample (i.e. multi-component diffusion). 

4. CONCLUSION 

An analytical solution to the one-dimensional transient diffusion equation with a surface exchange 

type boundary condition and a specified initial diffusion profile was constructed. The solution 

composed of integral equations was then utilised to extract the self-diffusion (𝐷∗) and the effective 

surface exchange ( 𝑘∗) coefficients from a set of isotope back-exchange depth profile data obtained 

from literature. The non-linear least-squares method was utilised to solve the minimisation 

problem defined by the residual between data and our solution as an objective function 

parametrized by the 𝐷∗ and 𝑘∗values. It was shown that all 𝐷∗ and 𝑘∗ values (i.e. before and after 

the procedure) can be accurately extracted from a depth profile data obtained from the isotope 

back-exchange procedure. 
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