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A variational framework is defined for vertical slice

models with three dimensional velocity depending

only on x and z. The models that result from this

framework are Hamiltonian, and have a Kelvin-

Noether circulation theorem that results in a conserved

potential vorticity in the slice geometry. These results

are demonstrated for the incompressible Euler–

Boussinesq equations with a constant temperature

gradient in the y-direction (the Eady–Boussinesq

model), which is an idealised problem used to

study the formation and subsequent evolution of

weather fronts. We then introduce a new compressible

extension of this model. Unlike the incompressible

model, the compressible model does not produce

solutions that are also solutions of the three-

dimensional equations, but it does reduce to the

Eady–Boussinesq model in the low Mach number

limit. Hence, the new model could be used in

asymptotic limit error testing for compressible weather

models running in a vertical slice configuration.
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1. Introduction
This paper introduces a variational framework for deriving geophysical fluid dynamics models

in a vertical slice geometry (i.e. the x-z plane). The work is motivated by the asymptotic

limit solutions framework advocated in [Cul07], in which model error in dynamical cores

for numerical weather prediction models can be quantified by comparing limits of numerical

solutions with solutions from semigeostrophic (SG) models. In particular, the SG solutions

of the Eady frontogenesis problem specified in a vertical slice geometry prove very useful

since they can be solved in a two-dimensional domain, which means that they can be run

quickly on a single workstation. In the incompressible hydrostatic and nonhydrostatic cases

these solutions are equivalent to exact solutions of the full three dimensional equations. As

described in [Cul07], this proves to be a challenging test problem. Using a Lagrangian numerical

discretisation that utilises the optimal transport formulation, converged numerical integrations

of the SG model indicate an almost periodic cycle in which fronts form, change shape, and then

relax again to a smooth solution. However, primitive equation solutions obtained by [GNH92]

are rather dissipative due to the need for eddy viscosity to stabilise the numerics, and the

periodic behaviour is not observed; this leads to a loss of predictability after the formation of

the front. In [Cul07], it is suggested that greater predictability in this limit might be possible if the

numerical solution exhibits energy and potential vorticity conservation over long time periods;

it is also suggested that a form of Lagrangian averaging may be required to obtain accurate

predictions of the subsequent front evolution. Since energy conservation can be derived from

a variational framework and potential vorticity arises from the particle relabelling symmetry, this

has motivated us to develop such a framework in the case of “slice geometries” in which there

are three components of velocity, but they are functions of x and z only.

Another motivation for our work is that efforts to compare compressible models with the two

dimensional SG solutions have been thwarted by the fact that it is not possible to construct a
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compressible vertical slice model with solutions that are consistent with the full three dimensional

model, with conserved energy and potential vorticity. This is because of the nonlinear dependence

in the equation of state on the y-dependent component of the temperature. Hence, so far

asymptotic limit studies of compressible models have only been performed over short time

intervals corresponding to the initial stages of front formation [Cul08]. In this paper we introduce

a new compressible slice model that can be used in asymptotic limit studies, since it has a

conserved energy and potential vorticity. The price to pay is that the solutions are not consistent

with the full three dimensional equations. However, the model should still be very useful

in studying the behaviour of discretisation methods and averaging procedures for numerical

weather prediction in the presence of fronts.

Our approach is to derive models in the Euler-Poincaré framework [HMR98]. This framework

is a way of obtaining variational models without resorting to Lagrangian coordinates, by

providing formulas that express how infinitesimal variations in the Lagrangian flow map

correspond to variations in the Eulerian prognostic variables. The present paper specialises to

the case where all the Eulerian fields are independent of y. This corresponds to a subgroup

of the group of diffeomorphisms in three dimensions, which can be expressed as a semi-direct

product of two dimensional diffeomorphisms in the vertical slice and rigid displacements in the

y-direction. Having selected this group, the Euler-Poincaré theory immediately tells us how to

performHamilton’s principle. In this framework, the problem of developing slice models reduces

to the problem of choosing which Lagrangian to substitute into the action.

The structure of this paper is as follows. In Section (a), we identify the slice subgroup,

and set up the geometric framework. In Section (b), we then obtain the general equations of

motion corresponding to the Euler-Poincaré equation with advected density and tracer variables

(temperature). In Section (c) we reformulate the equations in amore geometric notation, and show

that the equations conserve energy in the case of Lagrangians without explicit time-dependence;

this is shown by recasting the equations in Lie-Poisson form.We also show that the equations have

a Kelvin-Noether circulation theorem. This circulation theorem differs from the usual circulation

theorem for baroclinic fluids which have a baroclinic circulation production term on the right-

hand side that only vanishes if the circulation loop lies on an isentropic surface. In the slice

geometry, this baroclinic term can be rewritten as the time-derivative of another circulation

term, and we obtain conservation of the total circulation on arbitrary curves within the slice.

This circulation theorem leads to a conserved potential vorticity that turns out to correspond to

the usual three-dimensional Ertel potential vorticity. We then use this framework to present a

number of models in the slice geometry. In Section 3 we show how to obtain the Euler-Boussinesq

Eady model. We present the corresponding Lagrangian-averaged Eady model in Section 4 and

introduce our new compressible slice model in Section 5, comparing it with the model used in

[Cul08]. Finally we provide a summary and outlook in Section 6. The appendices provide proofs

and show how this framework relates to known Lie-Poisson formulations of superfluid models.

This relationship is significant since it shows how to build conservative numerical schemes in the

slice geometry. This last point is also discussed in Section 6.

2. Vertical slice models

(a) Definition

Physically, slice models are used to describe the formation of fronts in the atmosphere and ocean.

These fronts arise when there is a strong North-South temperature gradient (maintained by

heating at the Equator and cooling at the Pole), which maintains a vertical shear flow in the

East-West direction through geostrophic balance. In an idealised situation, neglecting the Earth’s

curvature and assuming a constant Coriolis parameter f , this basic steady state can be modelled

with a three-dimensional flow inwhich there is a constant temperature gradient in the y-direction,

and the velocity points in the x-direction with a linear shear in the z-direction. This basic flow

is unstable to y-independent perturbations in all three components of velocity and temperature
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which rapidly lead to the formation of fronts that vary sharply in the x direction but do not

vary in structure in the y direction. The presence of the constant gradient of the temperature in

the y direction means that the y-component of velocity is coupled to other variables since it can

lead to a source or sink of temperature in each vertical slice. Since all of the perturbations are

y-independent, we can consider the dynamics in a single vertical slice without loss of generality.

To build a variational vertical slice model of this type, it is assumed that the forward

Lagrangian map takes the form

φ(X,Y, Z, t) = (x(X,Z, t), y(X,Z, t) + Y, z(X,Z, t)) , (2.1)

where (X,Y, Z) are Lagrangian labels, (x, y, z) are particle locations and t is time, i.e.

∂φ

∂Y
=







0

1

0






.

Such maps form a subgroup of the diffeomorphisms1 Diff(Ω × R) (where Ω ∈R
2 is the domain

in the x-z plane, and R represents an infinite line in the y-direction). This subgroup is isomorphic

to Diff(Ω)sF(Ω) where s denotes the semidirect product, and F(Ω) denotes an appropriate

space of smooth functions on Ω that specify the displacement of Lagrangian particles in the y-

direction at each point inΩ. Multiplication in the semidirect product group is given by a standard

formula [HMR98],

(φ1, f1) · (φ2, f2) = (φ1 ◦ φ2, φ1 ◦ f2 + f1). (2.2)

The corresponding Lie algebra is isomorphic to X(Ω)sF(Ω) where X(Ω) denotes the vector

fields on Ω, representing the two components of the velocity uS ∈X(Ω) in the x-z plane, and

the smooth function uT ∈F(Ω) represents the y-component of the velocity. We write elements

of X(Ω)sF(Ω) as (uS , uT ) where uS is the “slice” component in the x-z plane, and uT is the

“transverse” component in the y direction. In component notation, the Lie bracket for the Lie

algebra X(Ω)sF(Ω) of the semidirect product group Diff(Ω)sF(Ω) takes the form

[(uS , uT ), (wS , wT )] = ([uS , wS ], uS · ∇wT − wS · ∇uT ) , (2.3)

where [uS , wS ] = uS · ∇wS − wS · ∇uS is the Lie bracket for the time-dependent vector fields

(uS , wS)∈X(Ω), and∇ denotes the gradient in the x-z plane.

We introduce two types of advected quantities in this framework.

First, mass is conserved locally, so the mass element D d3x is advected in three-dimensional

space. That is, the mass densityD(x, y, z, t) satisfies

(∂t + L(uS ,uT ))(D d3x) =
(

∂tD +∇ · (uSD) + ∂y(uTD)
)

d3x= 0 ,

with partial time derivative ∂t = ∂/∂t and partial space derivative ∂y = ∂/∂y in the y-direction

normal to the x-z plane. If uT andD are specified to be y-independent consistently with the slice

motion assumption, then the last term vanishes and the equation for conservation of mass reduces

to advection of an areal densityD dS ∈Λ2(Ω), in whichD(x, z, t) satisfies the continuity equation,

∂tD +∇ · (uSD) = 0 . (2.4)

Second, in order to represent potential temperature that has a constant gradient in the y-direction,

s= ∂θ̄/∂y= constant, we shall require advected scalars θ(x, y, z, t) that may be decomposed into

1Diffeomorphisms are smooth invertible maps with smooth inverses.
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dynamic and static parts, as

θ(x, y, z, t) = θS(x, z, t) + (y − y0)s. (2.5)

Consequently, the three-dimensional scalar tracer equation

∂tθS + uS · ∇θS + uT ∂yθ= 0

becomes a dynamic equation for θS(x, z, t)∈F(Ω), which satisfies,

∂tθS + uS · ∇θS + uT s= 0 , (2.6)

in which we keep in mind that s is a constant and uT (x, z, t) has been specified to be y-

independent. The space of advected scalars of this type is isomorphic to F(Ω)× R, represented

as pairs (θS , s), with infinitesimal Lie algebra action

L(uS ,uT )(θS , s) = (uS · ∇θS + uT s, 0) .

(b) Variational formulation via Hamilton’s principle

In this section we show how to perform variational calculus in the slice geometry. Vector fields of

infinitesimal variations (wS , wT ) in the Lie algebra X(Ω)sF(Ω) of the semidirect product group

Diff(Ω)sF(Ω) induce infinitesimal variations in (uS , uT ),D, and (θS , s) as follows:2

δ (uS , uT ) = (∂twS + [uS , wS ], ∂twT + uS · ∇wT − wS · ∇uT ) ,

δD=−∇ · (wSD) ,

δ (θS , s) = (−wS · ∇θS − wT s, 0) .

(2.7)

For a Lagrangian functional l[(uS , uT ), (θS , s), D] : (XsF(Ω))s((F(Ω)× R)× Λ2(Ω))→R, we

apply Hamilton’s principle and obtain

0 = δS

= δ

∫T
0
l
[

(uS , uT ), (θS , s), D
]

dt

=

∫T
0

〈

δl

δ(uS , uT )
, δ(uS , uT )

〉

+

〈

δl

δ(θS , s)
, δ(θS , s)

〉

+

〈

δl

δD
, δD

〉

dt

=

∫T
0

〈

δl

δuS
, ∂twS + (uS · ∇)wS − (wS · ∇)uS

〉

+

〈

δl

δuT
, ∂twT + uS · ∇wT − wS · ∇uT

〉

+

〈

δl

δD
, −∇ · (wSD)

〉

+

〈

δl

δθS
, −(wS · ∇)θS − wT s

〉

dt

=

∫T
0

〈

−
∂

∂t

δl

δuS
−∇ ·

(

uS ⊗
δl

δuS

)

− (∇uS)
T δl

δuS
−

δl

δuT
∇uT +D∇

δl

δD
−

δl

δθS
∇θS , wS

〉

+

〈

−
∂

∂t

δl

δuT
−∇ ·

(

us
δl

δuT

)

−
δl

δθS
s, wT

〉

dt

+

[〈

δl

δuS
, wS

〉

+

〈

δl

δuT
, wT

〉]T

0

,

(2.8)

where the angle brackets indicateL2 inner products with integration overR2. The last termmakes

no contribution for velocity variations (wS , wT ) that vanish at the endpoints in time.

2These are standard formulas for defining the variations in Hamilton’s principle. See [HMR98] and Appendix A for details.
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Hence, we obtain the Euler-Poincaré equations on the slice semidirect product with advected

densityD and scalar θ:

∂

∂t

δl

δuS
+∇ ·

(

uS ⊗
δl

δuS

)

+ (∇uS)
T ·

δl

δuS
+

δl

δuT
∇uT =D∇

δl

δD
−

δl

δθS
∇θS ,

∂

∂t

δl

δuT
+∇ ·

(

uS
δl

δuT

)

=−
δl

δθS
s .

(2.9)

The system (2.9) is completed by including the advection equations (2.4) and (2.6) for D and θS ,

respectively.

(c) Geometric reformulation and Kelvin-Noether circulation theorem

Theorem 2.1 (Energy conservation). If the Lagrangian l has no explicit time-dependence, the energy

functional defined by the Legendre transformation

h[(mS , mT ), (θS , s), D] = 〈(mS , mT ), (uS , uT )〉 − l[(uS , uT ), (θS , s), D] . (2.10)

is conserved for solutions of Equations (2.4), (2.6) and (2.9).

Proof. In Appendix B, we show that Equations (2.4), (2.6) and (2.9) are Hamiltonian, with

Hamiltonian given by h in Equation (2.10). If l has no explicit time-dependence, then h has no

explicit time-dependence and is therefore an invariant of the Hamiltonian system.

Theorem 2.2 (Kelvin-Noether circulation theorem). Equations (2.4), (2.6) and (2.9) imply a

conservation law for circulation,

d

dt

∮
c(uS)

(

s

(

1

D

δl

δuS

)

−

(

1

D

δl

δuT

)

∇θS

)

· dx= 0 , (2.11)

in which c(uS) is a circuit in the vertical slice moving with velocity uS and s= s is a constant parameter.

Proof. The proof of the theorem is facilitated by rewriting the system of equations (2.4), (2.6) and

(2.9) equivalently in the following geometric form,
(

∂

∂t
+ LuS

)(

1

D

δl

δuS
· dx

)

+

(

1

D

δl

δuT

)

duT =d

(

δl

δD

)

−

(

1

D

δl

δθS

)

dθS ,

(

∂

∂t
+ LuS

)(

1

D

δl

δuT

)

=−

(

1

D

δl

δθS

)

s ,

(

∂

∂t
+ LuS

)

θS + uT s= 0 ,

(

∂

∂t
+ LuS

)

(D dS) = 0 ,

(2.12)

where LuS denotes Lie derivative along the vector field uS . One may then verify the circulation

theorem (2.11) for slice models by applying the relation

d

dt

∮
c(uS)

v(x, t) · dx=

∮
c(uS)

(

∂

∂t
+ LuS

)

(v(x, t) · dx) ,

for any vector v(x, t) in the slice.

Corollary 1. The system of equations (2.12) implies that the following potential vorticity (PV, denoted as

q) is conserved along flow lines of the fluid velocity uS ,

∂tq + uS · ∇q= 0 for potential vorticity q :=
1

D

(

curl

(

s
1

D

δl

δuS

)

+∇θS ×∇

(

1

D

δl

δuT

))

· ŷ .

(2.13)
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Proof. Applying the differential operation d to the first equation in the system (2.12) yields

(∂t + LuS )

((

curl

(

1

D

δl

δuS

)

+ s−1∇θS ×∇

(

1

D

δl

δuT

))

· ŷ dS

)

= 0 , (2.14)

where dS is the surface element in the vertical slice, whose normal vector is ŷ. Applying the

Lie derivative and using the continuity equation for D then yields the local conservation law

(2.13).

Upon introducing the new notation,

vS :=
1

D

δl

δuS
, vT :=

1

D

δl

δuT
, π :=

δl

δD
, γS :=

1

D

δl

δθS
, (2.15)

the system (2.12) takes a slightly more transparent form

(∂t + LuS ) (vS · dx) = dπ − vT duT − γS dθS ,

(∂t + LuS ) vT =− s γS ,

(∂t + LuS ) dθS =− s duT ,

(∂t + LuS ) (D dS) = 0 ,

(2.16)

in which the differential of the third equation has also been taken. Hence, combining the middle

two equations in (2.16) results in

(∂t + LuS ) (vT dθS) =−s(vT duT + γS dθS) . (2.17)

Inserting this formula into the first equation in (2.16) implies that

(∂t + LuS ) (svS · dx−vT dθS) = dπ . (2.18)

This relation then yields the Kelvin-Noether circulation theorem as stated above in (2.11),

d

dt

∮
c(uS)

(svS − vT∇θS) · dx=

∮
c(uS)

(∂t + LuS ) (svS · dx−vT dθS) =

∮
c(uS)

dπ= 0 , (2.19)

and potential vorticity conservation as in (2.13),

∂tq + uS · ∇q= 0 for potential vorticity q :=
1

D
(s curl vS +∇θS ×∇vT ) · ŷ . (2.20)

Condition 2.1. Note that this circulation theorem is different from the case of general 3D motions, in

which the circulation is only preserved if the loop integral is restricted to lie on a temperature isosurface. In

the special case of slice motions, the baroclinic generation term can itself be written as the total derivative

of a loop integral. The physical interpretation is that q is in fact the usual three-dimensional potential

vorticity. Due to the existence of the linear y-variation in θ, it is always possible to find an equivalent

three-dimensional loop on a temperature isosurface that projects onto any given two-dimensional loop in

the vertical slice plane.

Condition 2.2. In Appendix (c) we will discuss the geometric meaning of the Kelvin-Noether circulation

theorem (2.11) and the potential vorticity conservation law (2.13) from the viewpoint of the Lie-Poisson

brackets in the Hamiltonian formulation of these equations.

3. The Euler–Boussinesq Eady model
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(a) Specialising the Euler–Poincaré equations to deal with the Eady model

The Euler–Boussinesq Eadymodel in a periodic channel of widthL and heightH , has Lagrangian

l[uS , uT , D, θ, p] =

∫
Ω

D

2

(

|uS |
2 + u2T

)

+DfuT x+
g

θ0
D

(

z −
H

2

)

θS + p(1−D) dV, (3.1)

where g is the acceleration due to gravity, θ0 is the reference temperature, f is the Coriolis

parameter, and we have introduced the Lagrange multiplier p to enforce constant density. We

obtain the following variational derivatives of this Lagrangian,

vS =
1

D

δl

δuS
= uS , vT =

1

D

δl

δuT
= uT + fx ,

π=
δl

δD
=

1

2

(

|uS |
2 + u2T

)

+ fuT x− p+
g

θ0
θS

(

z −
H

2

)

,

γS =
1

D

δl

δθS
=

g

θ0

(

z −
H

2

)

,
δl

δp
= 1−D .

(3.2)

Substitution of these variational derivatives into the Euler-Poincaré equations in (2.9) gives

∂tuS + uS · ∇uS + (∇uS)
T · uS + (uT + fx)∇uT

=∇

(

1

2

(

|uS |
2 + u2T

)

+ uT fx− p+
g

θ0
θS

(

z −
H

2

))

−
g

θ0

(

z −
H

2

)

∇θS ,

∂tuT + uS · ∇(uT + fx) =−
g

θ0

(

z −
H

2

)

s.

(3.3)

Upon substitutingD= 1,∇ · uS = 0 and combiningwith equations (2.4) and (2.6) for the advected

quantitiesD and θ, the system of equations (3.3) becomes

∂tuS + uS · ∇uS − fuT x̂=−∇p+
g

θ0
θS ẑ,

∂tuT + uS · ∇uT + fuS · x̂=−
g

θ0

(

z −
H

2

)

s,

∇ · uS = 0,

∂tθS + uS · ∇θS + uT s= 0,

(3.4)

where x̂ is the unit normal in the x-direction.

Condition 3.1. The system (3.4) is the standard Euler-Boussinesq Eady slice model.

(b) Geometric reformulation and circulation theorem for the Eady model

Substitution of the variational derivatives in (3.2) into the geometric form of the system of Euler-

Poincaré equations in (2.16) gives the following equivalent form of this system,

(∂t + LuS ) (uS · dx) =− dp− (uT + fx)duT − θS dγS ,

(∂t + LuS ) (uT + fx) =− s γS ,

D= 1 =⇒ ∇ · uS = 0 ,

(∂t + LuS ) dθS =− s duT .

(3.5)

Consequently, we recover the Kelvin circulation conservation law (2.19) for the Eady model in

the form

d

dt

∮
c(uS)

(suS − (uT + fx)∇θS) · dx=

∮
c(uS)

d

(

1

2
|uS |

2 − p+ γSθS

)

= 0 . (3.6)
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Corollary 2. Equation (3.6) and incompressibility imply that potential vorticity (PV, denoted as q) is

conserved along flow lines of the fluid velocity uS in the Eady model,

∂tq + uS · ∇q= 0 for potential vorticity q := (scurluS +∇θS ×∇(uT + fx)) · ŷ . (3.7)

On denoting uS = (u,w), uT = v, this potential vorticity may be written as

q=−
∂θ̄

∂y

(

∂w

∂x
+

∂u

∂z

)

+
∂(v + fx, θ′)

∂(x, z)
.

Applying the Legendre transform to the Lagrangian (3.1) yields the energy

h[uS , uT , D, θ, p] =

∫
Ω

D

2

(

|uS |
2 + u2T

)

−
g

θ0
D

(

z −
H

2

)

θS dV. (3.8)

Corollary 3. The energy (3.8) is conserved for the Eady Boussinesq slice model.

4. Lagrangian-averaged Boussinesq model
Numerical forecast models are restricted in grid resolution due to the stringent time requirements

of operational forecasting, and hence it is necessary to perform some form of averaging on the

equations in order to prevent energy and enstrophy accumulating at the gridscale, either explicitly

by introducing extra terms (i.e. eddy viscosities, or Large Eddy Simulation), or implicitly by

numerical stabilisation in advection schemes. All of these examples amount to some form of

Eulerian averaging that leads to dissipation, which is thought to be detrimental to evolution

of fronts. To avoid this, [Cul07] suggested that some form of Lagrangian averaging may be

required, also suggesting that it is important for averaging to retain energy and potential vorticity

conservation if agreement with the SG limiting solution is to be obtained.

In this sectionwe obtain a Lagrangian averaged Boussinesqmodel from a variational principle,

and so energy and potential vorticity conservation will follow immediately. Here, we shall

interpret Lagrangian averaging as a regularisation of the equations that is consistent with the

Lagrangian flow map for slice models in Equation (2.1). This regularisation is obtained by

replacing Equation (3.1) with

l[uS , uT , D, θ, p] =

∫
Ω

[

D

2

(

|uS |
2 + α2|∇us|

2 + u2T + α2|∇uT |
2
)

+DfuT x

+
g

θ0
D

(

z −
H

2

)

θS + p(1−D)

]

dV,

(4.1)

where α is a regularisation lengthscale. We obtain the following variational derivatives of this

Lagrangian,

ũS =
1

D

δl

δuS
= (1− α2∇2

D)uS , ũT =
1

D

δl

δuT
= (1− α2∇2

D)uT + fx ,

π=
δl

δD
=

1

2

(

|uS |
2 + u2T

)

+ fuT x− p+
g

θ0
θS

(

z −
H

2

)

,

γS =
1

D

δl

δθS
=

g

θ0

(

z −
H

2

)

,
δl

δp
= 1−D ,

(4.2)

where

∇2
D =

1

D
∇ ·D∇.
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Substitution into the Euler-Poincaré equations and applying D= 1 gives

∂tũS + uS · ∇ũS +∇uTS ũS − fuT x̂=−∇p+
g

θ0
θS ẑ,

∂tũT + uS · ∇ũT + fuS · x̂=−
g

θ0

(

z −
H

2

)

s,

∇ · uS = 0,

∂tθS + uS · ∇θS + uT s= 0,

ũS = (1− α2∇2)uS ,

ũT = (1− α2∇2)uT .

(4.3)

This is the Lagrangian averaged Boussinesq Eady slice model.

Corollary 4. Equations (4.3) have conserved energy

h=

∫
Ω

D

2

(

|uS |
2 + α2|∇us|

2 + u2T + α2|∇uT |
2
)

−
g

θ0
D

(

z −
H

2

)

θS dV.

Corollary 5. Equations (4.3) have Lagrangian potential vorticity conservation

∂tq + uS · ∇q= 0 for potential vorticity q :=
1

D
(s curl ũS +∇θS ×∇ũT ) · ŷ . (4.4)

5. Sliced Compressible Model (SCM)
In this section we present a model that is a compressible extension of the Boussinesq Eady

model described in the previous section. The aim of the model is to provide a framework where

nonhydrostatic compressible dynamical cores can be benchmarked in a slice geometry. Due to

the nonlinear equation of state, it is not possible to write down a compressible slice model with

solutions that correspond to solutions of the full three dimensional equations, and we need to

proceed by replacing the full potential temperature θ in the internal energy by the slice component

θS . This approximation would be valid if the potential temperature were slowly varying in

the y-direction. We derive a model that has conserved energy, potential vorticity, and supports

baroclinic instability leading to front formation, so that dynamical cores in this configuration can

be compared with the corresponding model in the SG limit.

In the present notation, the Lagrangian for the Sliced Compressible Model (SCM) in Eulerian

(x, y, z) coordinates is,

l
[

uS , uT , D, θS
]

=

∫
Ω

D

2

(

|uS |
2 + u2T

)

+ fDuT x+ gDz −DcvθSΠ dV, (5.1)

whereΠ is the Exner function given by

Π =

(

p

p0

)R/cp

,

where p0 is a reference pressure level and cp and R are gas constants. The equation for an ideal

gas becomes

p0Π
cp/R =DRθSΠ,
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and differentiating with respect to θS and D gives

∂Π

∂θS
=

∂

∂θS

(

DRθS
p0

)γ−1

,

= (γ − 1)
DRθS
p0

(

DRθS
p0

)γ−2

,

=
γ − 1

θS
Π =

cP − cv
cvθS

Π =
R

cvθS
Π.

Similarly we obtain

∂Π

∂D
=

R

cvD
Π.

Note that we use θS in both the internal energy term in the Lagrangian, and in the equation of

state. This removes all y-dependence from the Lagrangian, making a slice model possible.

We obtain the following variational derivatives of this Lagrangian,

vS =
1

D

δl

δuS
= uS , vT =

1

D

δl

δuT
= uT + fx ,

δl

δD
=

1

2

(

|uS |
2 + u2T

)

+ fuT x+ gz − cpΠθS ,

γS =
1

D

δl

δθS
=

1

D

δl

δθS
=− cpΠ ,

(5.2)

where we have used the decomposition (2.5) in the last line.

Substitution of the variational derivatives (5.2) of the SCM Lagrangian (5.1) into the Euler-

Poincaré equations in (2.9) gives the system

(∂t + LuS ) (uS · dx) =−cpθS dΠ + d

(

1

2
|uS |

2 − gz

)

+ fuT dx ,

(∂t + LuS ) (uT + fx) = scpΠ ,

(∂t + LuS ) θS =− suT ,

(∂t + LuS )(D dS) = 0 .

(5.3)

Consequently, we recover the expected Kelvin circulation conservation law (2.19) for the SCM in

the form

d

dt

∮
c(uS)

(

uS − s−1(uT + fx)∇θS

)

· dx= 0 . (5.4)

Corollary 6. The system of SCM equations in (5.3) implies that potential vorticity q is conserved along

flow lines of the fluid velocity uS ,

∂tq + uS · ∇q= 0 with potential vorticity q :=
1

D
(s curluS +∇θ ×∇(uT + fx)) · ŷ . (5.5)

Corollary 7. These equations are Hamiltonian, with conserved energy

E =

∫
Ω

D

2

(

|uS |
2 + u2T

)

− gDz + cvDΠθ′ dV.
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Condition 5.1. The system of SCM equations in (2.18) may also be written equivalently in standard

fluid dynamics notation as

∂tuS + uS · ∇uS − fuT x̂=− cpθ∇Π − gẑ,

∂tuT + uS · ∇uT + fuS · x̂= scpΠ,

∂tθS + uS · ∇θS =− s uT ,

∂D

∂t
+∇ · (DuS) = 0 .

(5.6)

Next we check that the basic state of these equations supports a shear profile (and hence allows

baroclinic instability and frontogenesis). Reverting to more standard notation us = (u,w), uT = v,

the balance equations are

− fv = −cpθ
′ ∂π

∂x
, (5.7)

fu =
∂θ̄

∂y
cpΠ, (5.8)

0 = −cpθ
∂π

∂z
− g. (5.9)

Assuming a x-independent temperature field, then Equation (5.7) implies that v= 0. For positive

θ, equation (5.9) implies that Π will increase with height, and equation (5.8) then implies that u

decreases with height, leading to a shear profile in the basic state.

We now compare our SCM with the slice compressible model in [Cul08] and identify the

differences. On defining velocity u= (uS , uT ) with uS in the vertical slice, and uT transverse

to it, the model in [Cul08] in Eulerian (x, y, z) coordinates becomes, in the present notation,

∂tuS + uS · ∇uS − fuT x̂=− cpθ∇Π − gẑ ,

∂tuT + uS · ∇uT + fuS · x̂=− cpθΠ
′
0 ,

∂tθS + uS · ∇θS =− s uT ,

∂D

∂t
+∇ · (DuS) = 0 .

(5.10)

Writing the [Cul08] equations in Lie-derivative form yields, cf. equation (2.18),

(∂t + LuS )(uS · dx) =− cpθ dΠ + d

(

1

2
|uS |

2 − gz

)

+ fuT dx ,

(∂t + LuS )(uT + fx) =− cpθΠ
′
0 ,

(∂t + LuS )θ=− s uT ,

(∂t + LuS )(D dS) = 0 .

(5.11)

These equations differ from the SCM equations in (2.18), by only one term. Namely, the right hand

sides of the second equation in each set differ, with (−cpΠ
′
0 θ) in these equations and (scpΠ)

in (2.18). It turns out that this single difference has important consequences for their respective

circulation laws.

The circulation law for the compressible slice models in [Cul08] is similar to that for the SCM

in the previous section, but with one important difference. Namely,

Theorem 5.1. Circulation for the compressible slice models in [Cul08] is not conserved. Instead,

we find

d

dt

∮
c(uS)

(

uS − s−1(uT + fx)∇θ
)

· dx=−

∮
c(uS)

cpθ∇Π · dx . (5.12)
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Proof. The proof uses the first three equations in the system (5.11). Themiddle two equations yield

(∂t + LuS )(−s−1(uT + fx) dθ) =
1

2
d
(

s−1cpΠ
′
0θ

2 + u2T
)

+ fx duT .

Combining this formula with the first equation in the system (5.11) then yields the circulation law,

(5.12).

Corollary 8. Equation (5.12) implies that potential vorticity (PV, still denoted as q) is created along

flow lines of the fluid velocity uS , as

∂tq + uS · ∇q= cpD
−1∇Π ×∇θ · ŷ with PV given by q :=D−1 (s curluS +∇θ ×∇(uT + fx)) · ŷ .

(5.13)

Proof. Applying Stokes theorem to the circulation equation in (5.12) yields

d

dt

∫∫
∂S(uS)

(

curluS + s−1∇θ ×∇(uT + fx)
)

· ŷ dS =

∫∫
∂S(uS)

cp∇Π ×∇θ · ŷ dS , (5.14)

where ŷ dS is the surface element in the vertical slice, whose normal vector is ŷ. Expanding the

time derivative in (5.14) and applying the Lie derivative relation for D in the last equation of the

system (5.11), which is the continuity equation forD, then yields the local PV evolution equation

in (5.13).

Condition 5.2. This is the main difference between the SCM here and in [Cul08]. According to

Corollary 6, the potential vorticity in the SCM is conserved and this conservation is a general

property of this class of Euler-Poincaré equations, as given by Corollary 1. In contrast, according

to Corollary 8, the potential vorticity in the model of [Cul08] (when viewed as a slice model)

is created whenever the gradients of θ and Π are not aligned. This, combined with the lack of

a conserved energy meant that it was not possible to obtain long time asymptotic convergence

results in a compressible model, because these quantities are conserved in the equivalent SG

model; [Cul08] restricted to looking at the asymptotic magnitude of the geostrophic imbalance

in the solution. Our new model addresses this problem, allowing asymptotic limit tests to be

performed with compressible models in a slice configuration.

6. Summary and Outlook
In this paper we have shown how to construct variational models for geophysical fluid dynamics

problems in a vertical slice configuration in which there is motion transverse to the slice, but

the velocity field is independent of the transverse coordinate. (The vertical slice configuration

may be taken as the x-z plane. Then the transverse coordinate is y.) Any model developed in

this framework has a conserved energy, and corresponding conserved potential vorticity. The

formulation has a number of interesting geometric features, arising from the semidirect product

structure of the slice subgroup of the group of three-dimensional diffeomorphisms. Firstly, the

formulation leads to a Kelvin-Noether circulation theorem in which circulation is preserved on

arbitrary loops in the slice, unlike the usual circulation theorem in which circulation is only

preserved on isentropic surfaces. Secondly, as shown in Appendix B, the equations can always

be rewritten in terms of a pair of two dimensional momenta, one comprising the x- and z-

components of linear momentum, and one formed from the temperature and the y-component of

linear momentum, plus the density. This formulation involving only two-dimensional momenta

and density means that potential vorticity conserving numerical schemes for the shallow-water

equations can be adapted for vertical slice problems. In the shallow-water case, the equations can
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be written in the form
(

∂

∂t
+ Lu

)

v · dx+ dπ= 0,

where u is the velocity, v is the total momentum divided by the layer thickness, and π is

a pressure. It is possible using mimetic/discrete exterior calculus methods [TC12] to use u

as a prognostic variable, but to also apply d to the above equation, use some chosen stable

conservative advection scheme for potential vorticity, and then to obtain a discrete form of

Luv · dx which is consistent with that scheme (so that potential vorticity advection is stabilised

even though it is a diagnostic variable). This programme cannot be easily extended to three

dimensions when advected temperature is present, since we gain an extra term of the form G dθ

(for some scalar functionG), and it is not currently clear how to obtain a discrete form of Luv that

is consistent with a stable advection scheme for the Ertel potential vorticity. However, for the slice

model equation set (2.12), it should be possible to use conservative advection schemes for the last

three equations, then apply dto equation (2.18), apply a stable conservative advection scheme for

potential vorticity, and obtain a discrete form of Lusvs · dx that is consistent with that scheme.

This becomes possible for slice models, the extra term can be moved inside the Lie derivative to

obtain equation (2.18).

This work has led to the development of new model equations: a Lagrangian-averaged form

of the Eady model of frontogenesis and a new compressible model. We plan to use both of these

models to investigate how to improve prediction of front evolution, following the programme

set out in [Cul07]. Whilst solutions of the slice compressible model do not recover solutions of

the full three dimensional equations, this model approximates the slice Boussinesq model in the

Boussinesq limit, and is easily obtained by very minor modifications to standard dynamical core

slice configurations, so will allow asymptotic limit analysis to be performed with compressible

codes, addressing a problem highlighted in [Cul08].

The authors are grateful to Mike Cullen and Abeed Visram for very useful and interesting discussions about

slice models. The work by DDH was partially supported by Advanced Grant 267382 from the European

Research Council and the Royal Society of London Wolfson Award Scheme. The work by CJC was partially
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Appendices

A. Euler–Poincaré semidirect-product formulation
The advection equations (2.4)–(2.6) for (θS , s) and D may be rewritten in Lie-derivative notation

as

∂t (θS , s) =−L(uS ,uT ) (θS , s) = (−uS · ∇θS − uT s, 0) ,

∂t(D dS) =−LuS (D dS) =− div(uSD) dS .
(A 1)

The corresponding infinitesimal variations in (θS , s) andD, in (2.7) induced by the Lie-derivative

actions of the Lie algebra of vector fields X(Ω)sF(Ω) are given by:

δ (θS , s) =−L(wS ,wT ) (θS , s) = (−wS · ∇θS − wT s, 0) ,

δD dS =−LwS (D dS) =− div(wSD) dS .
(A 2)

The infinitesimal variations in (uS , uT ) in (2.7) may be expressed in terms of the adjoint action in

the Lie algebra X(Ω)sF(Ω) of the semidirect-product group Diff(Ω)sF(Ω). Namely,

δ (uS , uT ) = (∂twS , ∂twT )− ad(uS ,uT ) (wS , wT )

= (∂twS + [uS , wS ], ∂twT + uS · ∇wT − wS · ∇uT ) .
(A 3)

For a Lagrangian functional l[(uS , uT ), (θS , s), D] : (XsF(Ω))s((Λ0(Ω)× R)× Λ2(Ω))→R,

one defines Hamilton’s principle using the L2 pairing, which is denoted as 〈 · , · 〉. Hence,

inserting the infinitesimal variational formulas in (2.7) for (uS , uT ), (θS , s) and D yields, in

semidirect-product notation,

0 = δS

= δ

∫T
0
l[(uS , uT ), (θS , s), D] dt

=

∫T
0

〈

δl

δ(uS , uT )
, δ(uS , uT )

〉

+

〈

δl

δ(θS , s)
, δ(θS , s)

〉

+

〈

δl

δD
, δD

〉

dt

=

∫T
0

〈

δl

δ(uS , uT )
,
∂

∂t
(wS , wT )− ad(uS ,uT )(wS , wT )

〉

+

〈

δl

δ(θS , s)
, −L(wS ,wT ) (θS , s)

〉

+

〈

δl

δD
, − div(wSD)

〉

dt

=

∫T
0

〈

−
∂

∂t

δl

δ(uS , uT )
− ad∗(uS ,uT )

δl

δ(uS , uT )
+

δl

δ(θS , s)
⋄ (θS , s) +

(

δl

δD
⋄D, 0

)

, (wS , wT )

〉

dt

+

[〈

δl

δ(uS , uT )
, (wS , wT )

〉]T

0

.

(A 4)

In comparison, see equation (2.8) for the same Hamilton’s principle in vector notation. As before,

the last term in the previous equation vanishes because (wS , wT ) vanishes at the endpoints. The
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ad∗ notation in (A 4) denotes the dual of the ad operation with respect to the L2 pairing 〈 · , · 〉

[HMR98]. Explicitly, the L2 dual of the ad operation is defined by

〈

ad∗(uS ,uT )
δl

δ(uS , uT )
, (wS , wT )

〉

=

〈

δl

δ(uS , uT )
, ad(uS ,uT ) (wS , wT )

〉

. (A 5)

Likewise, the diamond (⋄) operation is defined in the present notation by the L2 pairings,

〈

δl

δ(θS , s)
⋄ (θS , s), (wS , wT )

〉

:=

〈

δl

δ(θS , s)
, −L(wS ,wT ) (θS , s)

〉

,

〈(

δl

δD
⋄D, 0

)

, (wS , wT )

〉

:=

〈

δl

δD
, −LwSD

〉

=

〈

δl

δD
, − div(wSD)

〉

.

(A 6)

Hence, the last equality of (A 4) yields the Euler-Poincaré equations on the dual Lie algebra

(X(Ω)sF(Ω))∗ with the advected areal density D ∈Λ2 and advected scalars (θS , s)∈Λ0 × R

in semidirect-product form, as

∂

∂t

δl

δ(uS , uT )
+ ad∗(uS ,uT )

δl

δ(uS , uT )
=

δl

δ(θS , s)
⋄ (θS , s) +

(

δl

δD
⋄D, 0

)

. (A 7)

The system (A 7) is completed by including the advection equations (A 1) forD and (θS , s).

B. Lie-Poisson Hamiltonian formulation

(a) Equations on the dual of (XsF(Ω))s((Λ0(Ω)× R)× Λ
2(Ω))

The Legendre transformation to the Hamiltonian is defined by,

h[(mS , mT ), (θS , s), D] = 〈(mS , mT ), (uS , uT )〉 − l[(uS , uT ), (θS , s), D] . (A 1)

Therefore, we find the variational relations

(mS , mT ) =
δl

δ(uS , uT )
, (uS , uT ) =

δh

δ(mS ,mT )
,

δh

δ(θS , s)
=−

δl

δ(θS , s)
,

δh

δD
=−

δl

δD
.

(A 2)

Consequently, the system (A 7) may be written in terms of the Hamiltonian as

∂

∂t
(mS ,mT ) =− ad∗δh/δ(mS ,mT )(mS ,mT )−

δh

δ(θS , s)
⋄ (θS , s)− (

δh

δD
⋄D, 0) . (A 3)

The advection equations (A 1) for (θS , s) and D are then written as

∂

∂t
(θS , s) =−Lδh/δ(mS ,mT ) (θS , s) ,

∂

∂t
(D, 0) =−Lδh/δ(mS ,mT )(D, 0) .

(A 4)

Hence, the entire system (A 3)–(A 4) may be written in Hamiltonian form as

∂

∂t







(mS ,mT )

(θS , s)

(D, 0)






=−







ad∗
�
(mS ,mT ) � ⋄ (θS , s) � ⋄ (D, 0)

L�(θS , s) 0 0

L�(D, 0) 0 0













δh/δ(mS ,mT )

δh/δ(θS , s)

δh/δ(D, 0)






, (A 5)

in which the box � indicates the appropriate substitutions. The matrix operator in (A 5) defines

a Lie-Poisson bracket dual to the semidirect product action (XsF(Ω))s((Λ0(Ω)× R)× Λ2(Ω))

with coordinates (uS , uT )∈XsF(Ω), (θS , s)∈Λ0(Ω)× R and D ∈Λ2(Ω). This identification of

the Lie-Poisson bracket with the dual of a Lie algebra action guarantees that it satisfies the Jacobi
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identity. Explicitly, the Lie-Poisson bracket is the following

{

f, h
}

=−

〈







δf/δ(mS ,mT )

δf/δ(θS , s)

δf/δ(D, 0)







T

,







ad∗
�
(mS ,mT ) � ⋄ (θS , s) � ⋄ (D, 0)

L�(θS , s) 0 0

L�(D, 0) 0 0













δh/δ(mS ,mT )

δh/δ(θS , s)

δh/δ(D, 0)







〉

,

(A 6)

where 〈 · , · 〉 denotes the L2 pairing.

Expanding out the operations in (A 6) makes it clear that this Lie-Poisson bracket has the

required property of being antisymmetric under exchange of f and h. That is, {h, f}=−{f, h},

which is evident upon expanding out the operations to express the bracket in (A 6) equivalently

as

{

f, h
}

=−

〈

(mS ,mT ),

[

δf

δ(mS ,mT )
,

δh

δ(mS ,mT )

]〉

+

〈

(θS , s), L
+
δf/δ(mS ,mT )

δh

δ(θS , s)
− L+

δh/δ(mS ,mT )

δf

δ(θS , s)

〉

+

〈

(D, 0), L+
δf/δ(mS ,mT )

δh

δ(D, 0)
− L+

δh/δ(mS ,mT )

δf

δ(D, 0)

〉

.

(A 7)

Here, L+ denotes the L2 adjoint of the Lie derivative L. In particular, upon denoting

δf/δ(mS ,mT ) = (wS , wT ), we find the following relations among the operations L+, L and ⋄,

〈

(θS , s) , L
+
(wS ,wT )

δh

δ(θS , s)

〉

:=

〈

δh

δ(θS , s)
, L(wS ,wT ) (θS , s)

〉

=:

〈

−
δh

δ(θS , s)
⋄ (θS , s), (wS , wT )

〉

.

(A 8)

Condition B.1. If desired, one may now substitute the expressions for Lie derivative (A 1), ad∗ (A

5) and diamond (⋄) (A 6) into the L2 pairings (A 6) or (A 7) to find the Lie-Poisson bracket {f, h}

as an integral over the slice domain, Ω, involving ordinary vector calculus operations. However,

the present forms (A 6) and (A 7) readily reveal its semidirect-product nature and suggest further

rearrangements, which we pursue next.

(b) Equations on the dual of Xs(Λ0 ⊕ Λ
2 ⊕ Λ

0)
To explore the particular case at hand further, one may rewrite the system of equations (2.4), (2.6)

and (2.9) equivalently as,

∂

∂t

δl

δuS
=− ad∗uS

δl

δuS
−

δl

δθS
∇θS −

δl

δuT
∇uT +D∇

δl

δD
,

∂

∂t

δl

δuT
=−LuS

δl

δuT
−

δl

δθS
s,

∂

∂t
θS =−LuSθS − uT s,

∂

∂t
D=−LuSD ,

(A 9)

where LuS denotes Lie derivative along the vector field uS and we have identified LuS and ad∗uS

when acting on the 1-form density δl/δuS in the first equation. For more details in this matter,

see [HMR98].

We define the Legendre transformation to the Hamiltonian in this case by

h[mS , mT , θS , D; s] = 〈mS , uS〉+ 〈mT , uT 〉 − l[uS , uT , θS , D; s] , (A 10)
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where the semicolon [ . . . ; s] denotes parametric dependence on the constant s∈R. The Legendre

transformation (A 10) yields the variational relations

mS =
δl

δuS
, uS =

δh

δmS
, mT =

δl

δuT
, uT =

δh

δmT
,

δh

δθS
=−

δl

δθS
,

δh

δD
=−

δl

δD
.

(A 11)

Consequently, the system (A 7) may be written in terms of the Hamiltonian as

∂

∂t
mS =− ad∗δh/δmS

mS −mT∇
δh

δmT
+

δh

δθS
∇θS −D∇

δh

δD
,

∂

∂t
mT =−Lδh/δmS

mT +
δh

δθS
s ,

∂

∂t
θS =−Lδh/δmS

θS −
δh

δmT
s ,

∂

∂t
D=−Lδh/δmS

D ,

(A 12)

The corresponding Hamiltonian matrix is

∂

∂t











mS

mT

θS
D











=−











ad∗
�
mS � ⋄mT � ⋄ θS � ⋄D

L�mT 0 − s 0

L�θS s 0 0

L�D 0 0 0





















δh/δmS

δh/δmT

δh/δθS
δh/δD











, (A 13)

in which the box � indicates the appropriate substitutions.

After this rearrangement, one recognises (A 13) as the Hamiltonian matrix for the Lie-Poisson

bracket on the dual of the semidirect-product Lie algebra Xs(Λ0 ⊕ Λ2 ⊕ Λ0) with a symplectic

two-cocycle between mT and θS . The Lie bracket for this semidirect-product algebra is
[

(X, f, ω, g), (X̃, f̃ , ω̃, g̃)
]

=
(

[X, X̃], X(f̃)− X̃(f), X(ω̃)− X̃(ω), X(g̃)− X̃(g)
)

, (A 14)

where, e.g., X(f̃) =LX f̃ denotes Lie derivative of f̃ by vector field X . The dual coordinates

are: mS dual to X ∈X; mT to f ∈Λ0; θS to ω ∈Λ2; and D to g ∈Λ0. The spaces in which the

coordinates themselves are defined are (mS ,mT , θS , D)∈ (Λ1 ⊗ Λ2, Λ2, Λ0, Λ2) and s∈R is a

parameter. The second part of the bracket (A 13) is the standard two-cocycle (symplectic form) on

Λ0 ⊕ Λ2 arising from the natural projection Xs(Λ0 ⊕ Λ2 ⊕ Λ0)→Λ0 ⊕ Λ2.

Condition B.2. The Hamiltonian matrix with the two-cocycle in (A 13) has been seen before.

Namely, it is the same as that for 4He superfluids [DV80,HK82] in the spatially two-dimensional

case. For 4He superfluids, the function θS here plays the role of the phase of the Bose-condensate

wave function, whose gradient ∇θS is the superfluid velocity. The other variables mS , mT and

D correspond respectively, to total momentum density, mass density and entropy density of the

superfluid.

(c) Equations on the dual of X1s(X2 ⊕ Λ
0)

[HK82] showed that the two-cycle in (A 13) may be removed by transforming to new variables

(mS ,mT , θS , D)→ (mS ,mR, D) where mR := (s)−1mT∇θS . (A 15)

The quantitymR is the momentummap for right action of the diffeomorphisms on the buoyancy

θS in two spatial dimensions, see [HM04] for more details. The resulting Lie-Poisson bracket has

the standard form dual to the Lie algebra X1s(X2 ⊕ Λ0), whose Lie bracket is
[

(X1, X2, f), (X̃1, X̃2, f̃)
]

=
(

[X1, X̃1], [X2, X̃2] + [X1, X̃2]− [X̃1, X2], X1(f̃)− X̃1(f)
)

.
(A 16)

Dual coordinates in this case are:mS dual toX1 ∈X1;mR toX2 ∈X2; andD to f ∈Λ0.
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Transformation of the Hamiltonian matrix (A 13) into these variables yields the following Lie-

Poisson Hamiltonian system

∂

∂t







mS

mR

D






=−







ad∗
�
mS ad∗

�
mR � ⋄D

ad∗
�
mR ad∗

�
mR 0

L�D 0 0













δh/δmS =: uS
δh/δmR =: uR
δh/δD=: p






. (A 17)

This system produces a system of equations for relativemomentum (mS −mR), momentummap

mR = (s)−1mT∇θS and mass densityD, given by

∂t(mS −mR) =− ad∗uS
(mS −mR)− p ⋄D ,

∂tmR =− ad∗(uS+uR)mR ,

∂tD=−LuSD .

(A 18)

Upon evaluating p ⋄D=D∇p, the first of these equations explains the geometric origin of the

Kelvin-Noether circulation theorem (2.11) that was found by direct manipulation in Section (c).

Together, the three equations in (A 18) show that the slice dynamics may be expressed in terms of

(mS ,mR, D) as a Lie-Poisson Hamiltonian system on the semidirect product

Diff1(Ω)s
(

Diff2(Ω)× Λ2(Ω)
)

,

in the slice domain Ω. When D= 1 is imposed, we have ∇ · uS = 0 and this simplifies to

SDiff1(Ω)sDiff2(Ω) .
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