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Abstract: Alarm systems based on engineering and safety considerations are the prime source
of information for operators when it comes to abnormal situations. Conversely, the presence
of fault detection and diagnosis algorithms in process plants is still limited, in comparison
with other process control technologies. This work presents a simple way to integrate the
information contained in the alarm systems into the fault detection and diagnosis algorithm. A
normalisation of the process measurements based on the alarm thresholds is proposed, improving
the robustness of the algorithm with regard to the variability of the measurements across fault
occurrences in industrial systems.
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1. INTRODUCTION

Alarm management and Fault Detection and Diagnosis
(FDD) are two disciplines that are closely related but still
separated in the industry. Alarm management corresponds
to a collection of processes and practices for determin-
ing, documenting, designing, operating, monitoring, and
maintaining alarm systems (IEC, 2014). It belongs to the
sphere of process safety with established practices and
standards (IEC, 2014). By contrast, FDD has emerged
from the process control community as a support tool
for abnormal situation management but it has a limited
application in the industry compared to other process
control technologies (Shu et al., 2016). Fault detection
consists in determining whether a fault happened and fault
diagnosis consists in determining which fault happened
through fault isolation (i.e. finding the variables affected
by the fault) or fault identification (i.e. identifying the
type of fault that occurred). Numerous classification ap-
proaches to fault detection and fault identification have
been proposed but Ming and Zhao (2017) have highlighted
that applications in industrial systems are still scarce in
the literature because historical data requirements and
variability of real processes make it hard to make the
leap from a simulated system to an industrial case. The
integration of alarm management and FDD can help in
that regard.

Researchers have proposed multiple ways to integrate the
two paradigms. Most works have been focussed on improv-
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ing alarm management using statistical process control
tools on process measurements (Wang et al., 2016). Alarm
design based on process measurements is an active area
of research. Several methods have been proposed to de-
sign the best alarm thresholds based on process measure-
ments using univariate considerations (Xu et al., 2012) or
multivariate considerations (Yang and Guo, 2017). Alarm
chattering, alarm configuration and alarms triggered by
abnormality propagation are other problems for which
solutions based on the analysis of process measurements
have been proposed (Wang et al., 2016).

Some works have proposed FDD approaches solely based
on alarm data. Pattern matching of alarm floods is one of
those approaches (Yang and Guo, 2017). Initially designed
for alarm reduction by offline analysis of alarm sequences
(Cheng et al., 2013), the algorithms have been extended
online to provide support to the operators through identi-
fication of the ongoing alarm floods (Lai et al., 2017; Lucke
et al., 2018). Alarm prediction (Zhu et al., 2016) and root
cause diagnosis based on alarms (Yu et al., 2015) have also
been proposed.

However, very few works have investigated the opportuni-
ties to improve FDD by combining process measurements
with information from the alarm system. Rodrigo et al.
(2016) and Hu et al. (2017) demonstrate the benefits of a
preliminary alarm data analysis for root cause diagnosis.
Online fault detection and identification combining process
measurements with alarms is still an open question.

The present work suggests a way to take into account infor-
mation from the alarm system in the preprocessing of the
process measurements used for FDD in order to make the
algorithms more robust, and thus more applicable to the
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industry. It is common practice to use statistical normali-
sation for fault detection and identification in industrial
processes (Russell et al., 2000). This paper proposes a
normalisation based on the alarm thresholds as an alter-
native and demonstrates the advantages of that approach.
The aim of the new normalisation method is to place the
variations of the process measurements in the context of
the safe operational range defined during the alarm design
stage based on engineering and safety considerations. The
weight (as defined in Section 2.3) of the noisy variations
in the classification algorithm is reduced compared to the
weight of the variations that are significant with regard to
the alarm thresholds. The new normalisation approach is
tested on an industrial case study and compared to the
traditional normalisation approaches using a benchmark
algorithm for fault detection and fault identification.

Section 2 develops the concept of integrating the alarm
thresholds in the FDD approach and details the experi-
ment chosen to validate the concept. Section 3 presents
the results of the normalisation approaches chosen for
fault detection and fault identification on a gas separation
plant. Section 4 contains interpretations of the results and
Section 5 provides concluding remarks.

2. FAULT DETECTION AND DIAGNOSIS USING
ALARM-RANGE NORMALISATION

2.1 Alarm systems and fault detection and diagnosis

An alarm is an audible or visible means of indicating to
the operator an equipment malfunction, process deviation,
or abnormal condition requiring a timely response (IEC,
2014). Several types of alarms and events exist on a
plant but this work considers only absolute alarms, i.e.
alarm generated when an alarm threshold is exceeded
(IEC, 2014). The alarm thresholds are designed during the
engineering stage of the plant based on safety and technical
considerations according to the alarm response timeline
in Figure 1. The consequence threshold is first defined as
the limit after which a consequence begins to occur (e.g.
for the level of a tank, it could be the maximum level
the tank can admit before overflow). The alarm threshold
is defined from the consequence threshold taking into

Fig. 1. Alarm response timeline reproduced from IEC
(2014).

account the process deadtime, the operator response delay
and the acknowledgement delay for the corresponding
process measurement. A high and a low alarm threshold
are usually defined for each process variable.

Alarms are the foremost indicators for operators when
it comes to detecting and identifying ongoing abnormal
situations on the plant, as the information is condensed
according to ergonomic considerations. In some cases, e.g.
alarm floods (condition during which the alarm rate is
greater than the operator can effectively manage (IEC,
2014)), additional processing of the alarm sequences is
useful to identify the ongoing faults as proposed by Lai
et al. (2017) and Lucke et al. (2018). However, the case
study presented by Lucke et al. (2018) highlights the
limitations of a fault identification system based on alarms
only. Firstly, different types of abnormal situations can
be difficult to distinguish based on the limited number
of alarms triggered. Secondly, reliable identification of the
ongoing situation can generally be provided only after two
thirds of the alarm sequence has been triggered, which can
be several minutes after the first symptoms appear in the
process measurements.

Therefore, taking process measurements into account for
FDD systems is recommended to improve the accuracy
and reduce the time delay required for the identification.
Nevertheless, the integration of alarm systems in the FDD
framework is beneficial in two ways. Firstly, alarm logs
can help isolating and labelling abnormal situations from
historical data during the data preparation stage (using
e.g. alarm floods or trip events to detect partial or total
plant shutdowns). Additionally, as will be shown in the
next section, alarm thresholds can be used to normalise
the process measurements to improve the robustness of
the algorithm with regard to the variability of those
measurements.

2.2 Normalisation of process measurements

The preprocessing of the process measurements has a
great influence on the results of the FDD algorithms,
and normalisation is the first step. The most common
normalisation approaches in the FDD literature are mean-
centering and standardisation.

Mean-centering Nearly all approaches used in FDD as-
sume the data samples have zero means. Mean-centering
is usually straightforward, except in the case of multimode
and time-varying process monitoring, which is out of the
scope of this paper.

Standardisation The common practice in FDD is to auto-
scale the variables to zero mean and unit variance, es-
pecially since it involves heterogeneous quantities. For
a time series X defined as a sequence of measurements
{x1, x2, ..., xn}, the standardised measurements can be ex-
pressed as:

x̃i =
xi − µ
σ

(1)

where x̃i is the standardised process measurement, xi the
raw process measurement, µ the mean and σ the standard
deviation of the time series X. The computation of the
statistical indicators µ and σ depends on the application.
The most common approach is to compute µ and σ on



Table 1. Normalisation approaches selected.

Mean-centering x̃i = xi − µ

N standardisation x̃i = xi−µ
σn

NF standardisation x̃i = xi−µ
σnf

AR normalisation x̃i = xi−µ
aH−aL

the normal operation data used for training the model.
Those values can be used to standardise both the faulty
data used for training (if needed in the model) and the test
data. In order to obtain a better weighting of the variables
for the fault identification, an alternative is to compute the
standard deviation on the whole training data used for the
model, that is both normal and faulty data.

Alarm-range normalisation The thesis of this work is to
use the absolute alarm thresholds of the selected pro-
cess measurements as a reference for the normalisation.
The distance between the high threshold aH and the low
threshold aH can be used as an alternative to the standard
deviation to characterise the variability of the process
measurements.

The four normalisation approaches considered in the fol-
lowing are summarized in Table 1. The mean-centering
approach keeps the amplitude of the original process mea-
surements. The alarm range (AR) normalisation uses the
difference between the high alarm threshold aH and the
low alarm threshold aL. The Normal (N) standardisation
uses the standard deviation computed on a normal histori-
cal data σn while the Normal Faulty (NF) standardisation
uses the standard deviation computed on normal and
faulty historical data σnf . All four normalisations use the
mean µ computed on normal data.

2.3 Benchmark algorithm

The proposed AR normalisation and the three other nor-
malisations listed in Table 1 are tested on a fault detection
and fault identification problem using a popular method
for FDD in the industry (Vargas et al., 2017), the 1-nearest
neighbour (1NN) classification algorithm which associates
each point with the closest point in the feature space (Fix
and Hodges, 1951). Each feature vector Yi at a sample
time i corresponds to a plant profile, i.e. to the values of
the M selected normalised process measurements at the
sample time i:

Yi = [x̃i,1 x̃i,2 .. x̃i,M ]′ (2)

Fig. 2. Process overview of the separation plant.

Fig. 3. Process diagram of the PWRI section. Blue indi-
cates the water system, brown the oil system, and
yellow the gas system.

Several occurrences of the same type of abnormal situation
can be grouped together as a class, where each occurrence
O is defined as a set of consecutive feature vectors between
the start time ts and the end time te of the abnormal
situation:

O = {Yts , Yts+1, .. , Yte} (3)

The training set T of the algorithm of Vargas et al. (2017)
contains the feature vectors of one occurrence of each
class of abnormal situation and of one occurrence of the
normal class (corresponding to a normal operation period).
During the online fault detection and identification, each
new feature vector Yt is compared to all the feature vectors
Y in the training set T using a Euclidian distance, and the
nearest neighbour YNN is chosen such as:

d(Yt, YNN ) = min
Y ∈T

d(Yt, Y ) (4)

where the distance d between two feature vectors Y1 and
Y2 is defined as:

d(Y1, Y2) =

√√√√ M∑
i=1

(x̃1,i − x̃2,i)2 (5)

A fault is detected if the nearest neighbour does not belong
to the normal class, and the identified fault corresponds to
the class of the nearest neighbour. The weight of a process
measurement k in the classification outcome is defined by
the distance (x̃1,k−x̃2,k)2, which depends on the amplitude
of the variations in the process measurement k.

An alternative implementation of the algorithm is also
tested in the case study, where each feature vector Yi at
a sample time i corresponds to stacked consecutive plant
profiles of the last K sample times (Vargas et al., 2017) in
order to introduce information about the development of
the fault in the classifier:

Yi = [x̃i−K+1,1 .. x̃i−K+1,M .. x̃i−1,1 .. x̃i−1,M x̃i,1 .. x̃i,M ]′

(6)

Table 2. Abnormal situation classes.

Class
Description

Number of
occurrences

1 Low suction pressure without pump trip 2
2 Low suction pressure with pump trip 3
3 Pump trip due to fuel change 8
4 Pump trip due to vibrations 2
5 Pump trip due to burner temperature 3



Table 3. False detection rate.

False detection rate (%)
One plant

profile
Two plant

profiles

Mean-centering 18.8 0.0
N standardisation 3.4 0.0

NF standardisation 2.3 0.0
AR normalisation 1.6 0.0

3. INDUSTRIAL CASE STUDY

3.1 Description of the industrial case study

The industrial case study is an offshore gas oil separation
plant, designed to separate crude oil, gas and condensates
next to the well before export. An overview of the process
is given in Figure 2. The study focusses on the Produced
Water Reinjection (PRWI) section represented in Figure
2. Recurrent abnormal situations have been detected in
this section over a period of four months. Five different
types of abnormal situations have been identified based on
analysis of the alarm logs. Each type of abnormal event is
associated with different root causes (see Table 2):

• Classes 1 and 2 corresponds to abnormal situations
that are triggered by a low suction pressure (or
suction flow) in the water system. The deviations
in pressure and flow lead to an alarm flood. While
the situation can be automatically handled and goes
back to normal after a few samples in class 1, the low
values trigger a trip of pump P21 in events of class
2 eventually leading to an overflow of the degassing
drum.
• Abnormal situations of class 3 correspond to a fuel

change in the PWRI section from diesel to gas (or vice
versa), making P11 or P21 (or both) trip, possibly
repeatedly, and leading the pressure and flow to go
low in the system, triggering an alarm flood.
• Abnormal situations of class 4 correspond to trips of

P21 due to high vibrations as the HH alarm in the
vibration probe of the pump motor triggers.
• Abnormal situations of class 5 correspond to a trip

of P22 due to a deviation in the exhaust burner
temperature.

3.2 Detection and identification of the abnormal situations

The five classes of abnormal situations cover the same
area of the plant and have similar consequences, e.g.
drop in the pressures and flows of the water system and
possibly overflow of the degassing drum. For this reason,
they all trigger alarm floods. Focussing on classes 2 and
3 as the two of the most recurrent alarm floods on the
plant in the long run, Lucke et al. (2018) showed that
events from those classes were not perfectly distinguishable
using algorithms based on alarm sequences only. When
distinguishable, a reliable diagnosis could only be provided
late in the sequence, typically after two thirds of the alarm
flood sequence has appeared. Using process measurements
is a means to capture the information contained in the
process measurement prior to the alarm occurrence, and
therefore to focus on the causes of the abnormal situations
and not only on their consequences. In that regard, it
allows earlier identification and improves the accuracy of
the identification.

The study is carried out on the 33 process measurements
included in the two areas covering the PWRI section
(constantly null process measurements are removed be-
forehand). The sampling period is 9 seconds. Alarms and
events are extracted from the safety system, and abnormal
episodes are initially located from the analysis of the alarm
and event logs. The alarm thresholds are extracted from
the engineering files of the plant. The model is trained on
one occurrence of each class of abnormal episode, which
amounts to five to seven observations per class. One nor-
mal episode of the same length is also used for training
for the normal class. The other occurrences are kept for
testing.

The four types of normalisation listed in Table 1 are
studied. As several normal operation modes exist, the
mean value of the current normal operating regime is used
instead of a single mean value computed on a normal
operation period. The mean µ is computed as the mean
over a set of normal points a few minutes before the fault
occurs. Transition stages between operation regimes are
not in the scope of this work. In addition, a minimum cut-
off value of 1.0 is set for σn and σnf .

Fault detection The false detection rates of the algo-
rithms are tested on a normal operation period of the

Table 4. Confusion matrices with one plant profile per feature vector (top table) and two plant
profiles per feature vector (bottom table).

Class

1
2
3
4
5

Mean-centering
1 2 3 4 5 MD

6 0 0 0 1 0
0 12 0 2 0 0
0 3 38 1 0 1
0 0 0 6 0 1
0 0 0 1 10 0

N standardisation
1 2 3 4 5 MD

7 0 0 0 0 0
0 2 0 12 0 0
4 10 27 2 0 0
0 0 0 6 1 0
1 0 0 2 8 0

NF standardisation
1 2 3 4 5 MD

7 0 0 0 0 0
0 12 0 2 0 0
0 3 38 1 0 1
0 0 0 5 1 1
0 0 0 3 8 0

AR normalisation
1 2 3 4 5 MD

7 0 0 0 0 0
0 12 0 0 0 2
0 0 41 0 0 2
0 0 0 5 1 1
0 0 0 2 8 1

Class

1
2
3
4
5

Mean-centering
1 2 3 4 5 MD

6 0 0 0 1 0
0 11 0 1 0 2
0 4 32 0 0 7
0 0 0 5 0 2
0 0 0 0 10 1

N standardisation
1 2 3 4 5 MD

6 0 0 0 0 1
0 0 0 12 0 2
3 15 21 0 2 2
0 0 0 5 1 1
1 0 0 0 9 1

NF standardisation
1 2 3 4 5 MD

6 0 0 0 0 1
0 11 0 1 0 2
0 4 33 0 3 3
0 0 0 5 1 1
0 0 0 0 9 2

AR normalisation
1 2 3 4 5 MD

6 0 0 0 0 1
0 11 0 0 0 3
0 0 37 0 0 6
0 0 0 5 1 1
0 0 0 0 9 2



Fig. 4. Training plant profiles of class 2 (yellow points) and class 4 (blue points) and test plant profiles of abnormal
situation A of class 2. The green lines are the test plant profiles that are correctly classified. The red lines are the
test plant profiles that are misclassified as class 4. The classification uses one plant profile per feature vector.

PWRI section of 17 consecutive days. The results are
presented in Table 3, with one plant profile per feature
vector and with two plant profiles per feature vector (see
Equation (6)).

Fault identification The confusion matrices for the fault
identification on the faulty points of the test occurrences
are presented in Table 4 with respectively one and two
plant profiles per feature vector. The algorithm is used
to classify the feature vectors included in the occurrences
of abnormal situation used for testing for each of the
five selected classes. The rows indicate the true class
of the feature vectors and the columns indicate their
predicted class. The MD column corresponds to the missed
detections, i.e. to the feature vectors identified as normal.

4. DISCUSSION

The fault detection results in Table 3 show the ability
of the AR normalisation to reduce the false detection
rate. The results with one plant profile per feature vector
validate the hypothesis that using the AR normalisation
makes the algorithm less sensitive to noisy variations.
Table 3 shows that false detections can be eliminated
regardless of the normalisation chosen using more than
one (e.g. two) plant profile per feature vectors to introduce
information about the development of the faults, which
reduces the impact of noisy variations in the detection.
Nevertheless, increasing the number of plant profiles per
feature vector has a drawback, since it increases the missed
detection rate as can be seen in the column headed as MD
in Table 4. The different faults are on average detected one
sample later by the algorithm, compared to a classification
with one plant profile per feature vector.

The impact of the normalisation on the fault identification
is more interesting. Unlike simulated models where vari-
ability across fault occurrences is usually modelled by an
additive white noise, occurrences of the same type of fault
can differ quite markedly in industrial systems. Figures
4 and 5 show examples where the same fault exhibits
different behaviours, with an impact on the fault signature
in the measurements. Figure 4 focusses on class 2 where a

low suction pressure in the water system triggers a trip of
P21. For some of the occurrences of class 2, this also leads
to a trip of P22 as a consequence. Therefore, occurrences
of the fault differ by the value of their P22 inlet flow
(A FZT 114 ) that drops in the training occurrence while
it stays constant in the test occurrence. Figure 5 focusses
on class 3 where fuel change triggers a trip of P11 or P21
(or both). The amplitudes of the drops in the inlet and
outlet flows of P22 (resp. A FZT 114 and A FZT 139 ) as
well as in the flow transmitter A FT 121 vary significantly
from one occurrence of the fault to another.

Figures 4 and 5 highlight how the variability in process
measurements across fault occurrences can lead to er-
roneous fault identification (Table 4). Plant profiles of
class 2 are misclassified as class 4 in Figure 4 and plant
profiles of class 3 are misclassified as class 2 in Figure 5.
The choice of the normalisation is of critical importance
because mean-centering, N and NF standardisations em-
phasize variations that are large in absolute values, or large
relatively to historical data available. Since historical data
of the faults are limited on industrial plant, a statistical
approach such a standardisation can fail to comprehend
the potential variability of some variables due to exter-
nal factors, and the importance given to those variations
introduces a bias in the classification. Conversely, alarm
thresholds constitute a reference that contains the range
of critical variation of each variable. In both cases depicted
by Figures 4 and 5, while conserving the variability in the
measurements across occurrences, the AR normalisation
weights the amplitude of this variability relatively to the
allowed operating range of the variables, limiting the im-
pact on the results of the classification.

Therefore, the AR normalisation approach leads to a
FDD system that is less sensitive to noisy variations
with a low false detection rate, and still able to perform
early detection. Once detected, the accuracy of the fault
identification with this approach is almost perfect even
with variability across fault occurrences, which constitutes
an improvement compared to the traditional normalisation
methods.



Fig. 5. Training plant profiles of class 2 (yellow points) and class 3 (black points) and test plant profiles of an abnormal
situation B of class 3. The green lines are the test plant profiles that are correctly classified. The red lines are the
test plant profiles that are misclassified as class 2. The classification uses one plant profile per feature vector.

5. CONCLUSION

Using the range between the upper and lower alarm thresh-
olds as reference for the normalisation lowers the false
detection rate and improves the accuracy of the identi-
fication. This is because the alarm-range normalisation
places the variations of the process measurements in the
context of safety criteria based on engineering considera-
tions, which provides a better scaling of the features for
the classification. On the contrary, statistical indicators
such as the standard deviation do not distinguish critical
variations from benign variations giving too much weight
on the latter in the classification.
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