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Abstract—The ongoing decarbonisation of modern electricity
systems has led to a substantial increase of operational uncer-
tainty, particularly due to the large-scale integration of renewable
energy generation. However, the expanding space of possible
operating points renders necessary the development of novel se-
curity assessment approaches. In this paper we focus on the use of
security rules, where classifiers are trained offline to characterize
previously unseen points as safe or unsafe. This paper proposes
a novel deep learning-based feature extraction framework for
building security rules. We show how deep autoencoders can
be used to transform the space of conventional state variables
(e.g. power flows) to a small number of dimensions where we
can optimally distinguish between safe and unsafe operation.
The proposed framework is data-driven and can be useful in
multiple applications within the context of security assessment.
To achieve high accuracy, a novel objective-based loss function is
proposed to address the issue of imbalanced safe/unsafe classes
that characterizes electricity system operation. Furthermore, an
R-vine copula-based model is proposed to sample historical data
and generate large populations of anticipated system states for
training. The superior performance of the proposed framework
is demonstrated through a series of case studies and comparisons
using the load and wind generation data from the French
transmission system, which have been mapped to the IEEE 118-
bus system.

Index Terms—Deep learning, feature extraction, Monte Carlo
simulation, R-vine copulas, security assessment.

I. INTRODUCTION

IN modern electricity systems, the large-scale integration of
intermittent energy sources and the potential electrification

of the transport and heat sectors [1] are significantly expanding
the operating state-space of electricity systems [2]. At the same
time, electricity market liberalization has largely unbundled
the distribution and supply services in many jurisdictions,
reducing the system controllability for system operators. Con-
sequently, the afore-mentioned aspects bring about unprece-
dented challenges in enabling the stable and reliable operation
of electricity systems. For Transmission System Operators
(TSOs), the power system security assessment is of paramount
importance for determining safe system operating boundaries
[3]. There are many different criteria to define power grid
security; static insecurity could refer to line overloading,
voltage exceeding limits whereas dynamic insecurity could be
generator rotor angle instability or voltage instability. In this
paper, although we focus on the criterion of load curtailment,
the proposed deep learning-based framework could be readily
extended to dynamic security assessment of power systems.
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In the literature, system security assessment methods can be
categorized into analytical physics approaches and data-driven
approaches. Specifically, the time-domain simulation of the
nonlinear differential equations that model the power system
is the most straightforward analytical approach [4]. However,
detailed information on network configuration during and after
a fault are required, which entails a massive computational
load [5]. Moreover, an alternative analytical physics approach,
transient-energy-function method, is conducted based on Lya-
punov stability or Energy Function principle [6] with the
difficulties in determining the levels of kinetic and potential
energy under a given set of faults in the context of practical
power systems. According to these aforementioned limitations,
dynamic stability assessment across a host of operating points
and against a large set of potential contingencies is intractable
for a large-scale power system. To this end, data-driven
approaches including curve fitting techniques (e.g.,[7]) were
proposed so that the network configuration information and
power system parameters are not required to predict transient
instabilities. Nevertheless, the curve-fitting methods exhibit
a low prediction accuracy caused by their characteristics of
being sensitive to the start-up time of prediction and the
sampling period [5].

In recent years, with the widespread adoption of Phasor
Measurement Units (PMUs), an influx of real data from sys-
tem’s past history provides valuable opportunities to construct
more reliable system security rules via artificial intelligence
methods instead of using conventional heuristic rules. In the
literature, machine learning techniques such as Support Vector
Machines (SVMs) [8], artificial neural networks (ANN)[9], de-
cision trees (DTs) [10], and long short-term memory (LSTM)
networks [11], have been widely employed to build security
rules for transient stability. Although different varieties of
advanced classifiers have been proposed to improve prediction
accuracy, the derived security rules have sometimes been
counter-intuitive, based on classifying features that appear to
be largely unrelated to the fault analyze. These variables may
be chosen due to spurious correlations observed in the data.
In other cases, rules may correctly relate the natural relations
between variables, but produce incorrect results when used
to design preventive or corrective control actions. To this
end, feature selection can be conducted to prevent spurious
correlations and identify the key discriminating variables.

Feature selection is defined as the process of identifying the
features that contribute most to the discrimination ability of a
classifier [12]. In general, two approaches can be considered
for improving feature selection. The first approach is data-
driven: the application of sparse feature selection methods
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such as random feature selection random forests, LASSO, etc.
as part of the machine learning training phase. The second
approach takes into account the underlying physics of the
problem, for instance by considering only classifying variables
that pertain to physical assets in the geographic area of the
contingency. Hybrid approaches that combine data-driven and
heuristic knowledge of the system can also be developed.
Beyond the feature selection approaches, which need extensive
domain expertise and careful engineering, feature extraction
can be considered as an alternative way to extract represen-
tative features from the input data in an automatic or nearly
automatic fashion. Unlike feature selection, feature extraction
aims to map raw input features into a lower-dimensional space
that is more discriminative for classifiers. Conventional linear
feature extractors (e.g., principal component analysis (PCA),
linear discriminant analysis (LDA) have been demonstrated as
useful methods but with limited performance due to the linear
transformation procedure. To this end, a series of nonlinear
feature extraction methods have been proposed in the literature
such as kernel PCA [13] and GPLVM [14].

As one of the cutting-edge approaches, deep learning aims
to learn representations of data with multiple levels of abstrac-
tions by using multiple layers of computational models [15].
Although the concept of deep learning has been proposed for
decades, the performance of deep learning was limited by the
training approach, the insufficient data, and the computational
power. Nowadays, the aforementioned challenges are being
gradually addressed with the introduction of new techniques,
the influx of high-resolution and high-quality data, and the
development of high-performance computing [16]. Although
the superior performance of deep learning approaches has
been demonstrated in a wide range of areas (e.g., speech
recognition, objective detection, pattern recognition, image
processing, etc.), very limited work have been done to solve
power system problems, especially for extracting features for
system security assessment. Most of the the state-of-the-art
work focus on exploiting deep learning techniques to improve
the performance of short-term household load forecasting[16],
RES output forecasting [17], socio-demographic information
identification[18] and real-time detection of false data injection
attacks in smart grid [19]. The success of the afore-mentioned
applications can be attributed to its powerful capability of
learning high-level representations of raw input data. To this
end, it is important and imperative to exploit such power tech-
nique to address the challenges of system security assessment
from the aspect of extracting effective features.

After determining a powerful feature extractor, another
crucial topic is: How to provide sufficient and effective training
data for deep learning to enable a accurate and reliable
result? This question is raised due to the fact that the perfor-
mance of deep learning is highly dependent on the quantity
and quality of training data. In other words, deep Learning
algorithms are quite beneficial when dealing with learning
from large amounts of data [20], [21]. As illustrated in [22],
[23], a parametric model is capable of generating training
databases of arbitrarily large size that are similar but not
identical to what has already been encountered, effectively in-
terpolating and extrapolating the historical datasets. In general,

modeling and sampling high-dimensional stochastic variables
suffer from four key challenges: 1) high-dimensionality; 2)
the large number of observations; 3) non-Gaussian marginal
probability distribution of each variable; and 4) the non-linear
complex dependency structure. To deal with these issues, a
novel composite approach is proposed in [23] to model and
sample high-dimensional stochastic variables in power systems
based on the stages of clustering, dimensionality reduction,
and vine-copulas modeling. In particular, their considered C-
vine and D-vine copulas exhibited superior performance in
capturing sophisticated dependency structure among the vast
number of stochastic variables.

When training a deep learning-based feature extractor, su-
pervised fine-tunning with backpropagation is performed to
maximize the separability of the extracted features while
minimizing the classification error. It is imperative to note that
the security classification problem is actually an imbalanced
data classification problem because unsafe states only account
for a very small proportion of the whole training dataset.
Without explicitly considering this fact, the illusion of high
accuracy may neglect rare but severe cases and misleads the
feature extraction with a counterproductive loss function in
the fine-tuning procedure. Many conventional methods have
been proposed to address this issue, which can be typically
categorized into sampling methods, cost-sensitive methods,
and an ensemble of classifiers [24].

In this paper, we first propose a novel deep learning-based
feature extraction framework for system security assessment.
R-vine copula-based sampling strategy is employed to en-
rich the training database for deep learning while capturing
the complex non-linear dependency structure among high-
dimensional stochastic variables of loads and wind power
injections. An objective-based loss function is proposed to deal
with the issue of imbalanced data. A comprehensive compar-
ison is conducted between different methods to illustrate the
benefits of the proposed approach. It is important to highlight
that this work focuses on proposing a novel feature extractor,
rather than a new classifier, which can construct effective
features for more potential applications such as stochastic
variables sampling, scenario reduction, key features detection,
data compression, etc. The key contributions of this paper can
be summarized as follows:

1) A novel deep learning-based feature extraction frame-
work for system security assessment is proposed, for the first
time, to automatically extract effective training features that
can be readily categorized by classifiers. Additionally, the
proposed model is further developed to predict the security
status for multiple contingencies;

2) An objective-based loss function is presented, specifically
aimed at addressing the issue of imbalanced classes that arises
in the context of security assessment.

3) An R-vine copula-based modeling and sampling frame-
work is implemented to enrich the population of anticipated
system states and improve the effectiveness of the proposed
deep neural network.

The remainder of this paper is organized as follows. Section
II introduces the framework and provides the technical details.
Section III illustrates the sampling method based on R-vine
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copulas. Section IV introduces the proposed deep autoencoder
networks. Section V illustrates the considered evaluation met-
rics. Section VI conducts numerical experiments on the IEEE
118-bus system. Finally, the conclusion is presented in Section
VII.

II. PROPOSED DEEP LEARNING-BASED FEATURE
EXTRACTION FRAMEWORK

The deep learning-based feature extraction framework pro-
posed in this paper is illustrated in Fig. 1. First, the composite
modeling approach proposed in [23] is further developed by
using a more flexible graphical model, regular vine (R-vine),
which can capture more complex dependence structure among
stochastic variables. After running the pre-fault and post-fault
simulations given a set of contingencies, deep autoencoder
network with the proposed objective-based loss function is
employed to extract important features that can effectively
reduce the difficulty in classifying the stable and unstable
operating points. Note that in this case “simulation” refers
to solving an OPF problem to achieve the indicators for
supervised learning. Specifically, the framework includes the
following four main stages:

1) Sampling Operating Points: This stage aims to enrich
the training database for the deep learning-based feature
extractor via constructing a R-vine copula model and then
generating a sufficient number of samples. Given the historical
stochastic variables X ∈ RT×M , where T and M denote
the numbers of measurements and variables, respectively, the
first step is to partition the observations into training set
Xtrain ∈ RTtrain×M and test set Xtest ∈ RTtest×M , where

Ttrain ≈ 80%× T, (1)

Ttest = T − Ttrain. (2)

Then clustering is first performed to partition the observations
of Xtrain into K clusters where Xk ⊂ Xtrain for k = 1, ...,K.
For each cluster, empirical cumulative distribution functions
(ECDFs) are used to transform the data from original domain
to the rank-uniform domain Uk. Then dimensionality reduction
is performed on each Uk ∈ RTk×M to get the low-dimensional
data Lk ∈ RTk×qk where qk < M .

In order to build the R-vine copulas model, the uniform
transformation is performed again for each Lk to obtain ULk
in the [0, 1]qk domain. Based on ULk , the sequential method
is performed to determine the optimal R-vine specification
matrix Sk ∈ Rqk×qk , the best-fit bivariate copula families
Bk ∈ R(qk−1)×(qk−1), and the estimated parameters Θk ∈
R(qk−1)×(qk−1). Given the total number of samples T s, the
number of samples T sk for each cluster can be calculated by

T sk = T s ×Wk, (3)

where Wk = |Xk| / |Xtrain|. Simulating the K constructed
R-vine models individually and generate the samples X̂K ∈
RT s

k×qk . Finally, after a series of back-projection procedures
as described in [23], the output of this stage is

X̂ = [X̂1, ..., X̂K ] = {~̂xt, t = 1, ..., Ts} ∈ RTs×M . (4)

Fig. 1. The proposed deep learning based feature extraction and system
security assessment framework.

2) Pre-fault and Post-fault Simulations: In this stage,
pre-fault and post-fault simulations are performed based on
the generated samples to construct the features and labels
of the training and test datasets, respectively. Let N , L, G
denote the sets of network buses, transmission lines, and
generators, receptively. For each sampled operating point ~̂xt
in X̂ the DC Optimal Power Flow problem is solved for
the optimal dispatch schedule odst. Based on the sampled
training set X̂ , the output of the pre-fault simulation is a set
of original training features Ftrain ∈ RTs×d, where d is the
total number of original training features, consisting of loads
XD ∈ RTs×|N |, power injections IP ∈ RTs×|N |, power flows
FL ∈ RTs×|L|, phase angles θ ∈ RTs×|N |, and generation
outputs P ∈ RTs×|G|, expressed as follows:

Ftrain = [XD, IP , FL, θ, P ]. (5)

Subsequently, post-fault simulation is carried out for each
schedule under each contingency ci in C = [c1, ..., cl]. As
such, the safe/unsafe labels

ytrain = [yc1train, ..., y
cl
train] ∈ R(l×Ts)×1 (6)

are assigned to the system post-fault states. Note that safe
represents that post-fault load does not have curtailment,
whereas unsafe indicates the existence of load curtailment
under contingency c. In addition, one-hot encoding is used
to construct the labels of contingencies

LC ∈ R(l×Ts)×l (7)

which are considered as additional training features.
Therefore, the final original training features Ftrain =
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[XD, IP , FL, θ, P, LC ] ∈ R(l×Ts)×(d+l). Following the above
procedure, we can also obtain the original test features
Ftest ∈ R(l×Ttest)×(d+l) and their corresponding labels ytest ∈
R(l×Ttest)×1.

3) Deep Autoencoder Based Feature Extraction: As the key
stage of the proposed framework, deep autoencoder network
is constructed by performing pretraining, unrolling, and super-
vised fine-tuning. Detailed information are provided in Section
III. Let q denote the number of neurons of the last hidden
layer, the output of this stage is the constructed deep au-
toencoder neural network. Given the original training and test
features, the extracted training features F̂train ∈ R(l×Ts)×q

and the extracted test features F̂test ∈ R(l×Ttest)×q can be
obtained through the constructed network. Note that the hyper-
parameters such as learning rate, number of layers, size of each
layer (i.e., include the dimension q of the output extracted
features), class weights, are determined via grid search and
cross validation [18].

4) Security Rules Construction: Finally, security rules are
constructed in this stage. Based on the extracted features
F̂train, a ten-fold validation scheme is employed to construct
the system’s security rules by using a tested classifier. After-
wards, the performance of the built rules can be assessed by
calculating the evaluation metrics on the basis of the predicted
security status ŷtest of F̂test and the actual security status ytest.

To summarize, the proposed deep learning based feature
extraction framework is outlined in Algorithm 1.

III. SAMPLING USING R-VINE COPULAS

In this paper, the probability density function and the cumu-
lative distributions function as well as their copula versions are
defined as f , F , c and C, respectively. Given M random vari-
ables X = [X1, ..., XM ] ∈ RT×M , based on Sklar’s theorem
[25], the joint probability density function f(X1, ..., XM ) can
be expressed as (

∏M
i=1 fi(Xi))×c1...M (F1(X1), ...FM (XM )),

where the copula density function c1...M : [0, 1]M describes
the dependence structure among uniform random variables
{U1, ..., UM} = {F1(X1), ..., FM (XM )}. Note that we use
the empirical cumulative distribution function (ECDF) and its
inverse version ECDF−1 to model the non-Gaussian marginal
distributions of X . In general, there are various types of copula
families that can be employed to model different complex
dependence structures. However, most of them are limited to a
bivariate version and it becomes more effective to decompose
a multivariate copula into the product of a cascade of bivariate
copulas, denoted the pair-copula construction (PCC) [26]. As
such, PCC can introduce flexibility in capturing more com-
plex dependence structure among loads and wind generation
outputs.

As one of the most flexible graphical vine copula models,
regular vine (R-vine), it is composed of a nested set of M −1
trees Υ = (T1, ..., TM−1) such that the edges Ej of tree Tj
become the nodes Nj+1 of tree Tj+1, for j = 1, ...,M − 1.
As defined in [27], Υ of an R-vine on M random variables is
required to satisfy the following conditions: i) the first tree T1

contains a set of edges E1 and nodes N1 = 1, ...,M ; ii) for
i = 2, ...,M , Ti consists of edges Ei and nodes Ni = Ei−1;

Algorithm 1 Deep Learning Based Feature Extraction and
Security Assessment Framework
Input: Historical load and wind generation data: X , Num-

ber of clusters: K, Information retainment threshold: IR,
Number of samples: Ts, Contingency set: C, Total number
of layers: L, Size of each layer: NL .

Output: Sampled load and wind data: X̂ , Deep Autoencoder
Network: DANf , Security Assessment Model: DTs, Eval-
uation Metrics: E
Step 1: Partition the observations of X into training set
Xtrain and test set Xtest. Construct the proposed R-vine
copulas model based on Xtrain and then generate Ts
samples X̂ .

1: X̂ = RV ine(Xtrain,K, IR, Ts).
Step 2: Run the pre-fault simulation and post-fault simula-
tion with contingency set C to obtain the original features
and the corresponding labels.

2: [Ftrain, Ftest] = Pre-fault(X̂,Xtest).
3: [ytrain, ytest] = Post-fault(X̂,Xtest, C).

Step 3: Given the number of layers L and sizes of layers
NL, construct the deep learning based feature extractor
model DANf based on Ftrain and ytrain. In addition, the
extracted features F̂train can be obtained in this step.

4: [F̂train, DANf ] = DAN(Ftrain, ytrain, L,NL).
Step 4: Train the classier DT based on F̂train and
ytrain and then output the constructed security assessment
model. Obtain the extracted test features F̂test and then
predict the corresponding label ŷtest. Finally, assess the
performance of the proposed framework by calculating the
evaluation metrics E.

5: DTs=DecisionTree(F̂train, ytrain).
6: ŷtest=DTs(F̂test).
7: E = ConfusionMatrix(ŷtest, ytest).

and iii) for i = 2, ...,M − 1, {j, k} ∈ Ei must hold that
#(j ∩ k) = 1, where j = {j1, j2} and k = {k1, k2}.

For a regular vine Υ, let Se = {ν ∈ N1|∃ei ∈ Ei, i =
1, ...,mg − 1,with ν ∈ e1 ∈ ... ∈ emg−1 ∈ e} denoting the
complete union of an edge e = {j, k} ∈ Eq in tree Tq . The
conditioning set and the conditioned sets associated with edge
e = {j, k} are defined as Ψe := Sj ∩Sk and {Ωe,j = Sj\Ψe,
Ωe,k = Sk\Ψe}, respectively, where (−)\(∗) := (−) ∩ (∗)C
and (∗)C is the complement of (∗). Following the above-
mentioned definitions, the density function f(X1, ..., XM ) can
be decomposed as follows:
M∏
i=1

fi(Xi)×
M−1∏
i=1

∏
e∈Ei

cΩe,j ,Ωe,k|Ψe
(FΩe,j |Ψe

(.), FΩe,k|Ψe
(.))

(8)
where e = {j, k} and FΩe,j |Ψe

(.) = FΩe,j |Ψe
(XΩe,j

|XΨe
)

which is denoted as an h-function. The detailed formulation
of h-function for R-vine is presented in [27]. In addition, to
select the most appropriate nodes-edges-trees combination for
R-vine, the sequential method was proposed in [28] as an
automated strategy to select the R-vine tree that maximizes
the sum of absolute empirical Kendall’s τ . Regarding the
computational complexity, the number of possible R-vines
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rapidly increases with M , thus leading to an impractical issue
for very high-dimensional cases. To this end, as proposed in
[23], hierarchical clustering with average linkage and locality
preserving projections (LPP) can be employed to accelerate
the modeling procedure via a series of domain transformations
and reconstructions. Note that in this paper the candidate pair
copula families include Gumbel, Frank, Clayton, Gaussian,
Student-t, BB1, BB6, BB7, and BB8 as well as their 90◦,
180◦, and 270◦ rotated versions. The dependence structure of
historical load and wind generation data can be well-captured
by employing such varieties of copula families.

Regarding the number of samples, in general, higher-
resolution data (e.g., 5 minutes time interval) with a larger
number of samples may help to train a more effective classifier
for system security assessment. However, the massive amount
of data may lead to computational load issues. To this end,
a trade-off between prediction accuracy and computing time
need to be made when determining the number of generated
samples. Moreover, the appropriate size and type of data need
to be determined according to the complexity of the system
studied and the number of stochastic variables that need to
be modeled. For high-dimensional stochastic variables, more
data need to be sampled from the constructed statistical model
to accurately represent the complex dependence structure and
include more unseen but possible system states for the classi-
fier to train. It is imperative to note that classifier training is
actually an offline process and therefore, training an effective
classifier with high accuracy is the primary task. On the other
hand, the computational issue could be alleviated by using high
performance cloud computing, which has been increasingly
employed in industry to handle the big data problem.

IV. THE PROPOSED DEEP AUTOENCODER NETWORKS

A. Autoencoder

Traditional autoencoder is an unsupervised artificial neural
network including a visible layer, a hidden layer, and a
reconstruction layer that is trained to learn a representation
for the input data set while minimizing the difference between
the input original and output reconstructed data sets [29]. Let

Fig. 2. Traditional unsupervised autoencoder.

X = [~x1, ..., ~xm]T ∈ Rm×n denote the input data where X
refers to Ftrain, m = l×Ts and n = d+l, as defined in Section
II, an autoenocder network consists of an encoder function
C = f(X) and a decoder that produces a reconstruction
X̃ = g(C), where C = [~c1, ...,~cm]T ∈ Rm×q and X̃ =
[x̃1, ..., x̃m]T ∈ Rm×n. Then the objective of conventional
autoencoder can be described as extracting effective features
representations C of X and minimizing the reconstructed error
between X and X̃ , as illustrated in Fig. 2. In particular, for

each input vector ~xi ∈ Rn, a hidden representation ~ci ∈ Rq
can be obtained through its hidden layer activation function:

~ci = s(W~xi + b) (9)

where s is the nonlinear sigmoid activation function s(z) =
1

1+exp(−z) , b ∈ Rn is a bias vector for visible layer, and W ∈
Rq×n is a weight matrix that associates the visible layer and
hidden layer. Then the reconstruction x̃i can be calculated as

x̃i = s(WT~ci + bT ) (10)

where WT is the reconstruction weight matrix and bT is the
reconstruction bias vector. The reconstruction error between X
and X̃ is then calculated and considered in the cost function
J , defined as follows:

J =
1

2m

m∑
i=1

‖x̃i − ~xi‖2 +
λ

2

nl∑
j=1

‖Wj‖2 (11)

where the first term represents the total reconstruction error
across all the m samples and the weight decay term is consid-
ered to control the magnitude of the weights for addressing the
issue of overfitting. Note that nl = 2 is the number of layers
for the traditional shallow autoencoder. The training process
of a traditional autoencoder is carried out through iteratively
minimizing the cost function J with respect to W and b via
back-propagation method [30]. Finally, the training procedure
terminates when J converges to a small value.

B. Shallow autoencoder network for classification

As illustrated above, traditional autoencoder aims to min-
imize the reconstruction error between the visible layer and
the reconstruction layer. However, in this case, the main
target of using autoencoder is to automatically extract efficient
representative features that can be well classified by a simple
classifier. The conventional shallow autoencoder network with
supervised fine-tuning is presented in Fig. 3. It involves an
additional binary logistic regression classifier connected to
the hidden layer. Binary logistic regression aims to estimate
the probability that the operating point is unsafe given the
extracted features including label of contingencies. Let y =
[y1, ..., ym] denote the target class vector, we have:

yi =

{
0, safe

1, unsafe
(12)

for i = 1, ...,m. Given the extracted features C = [~c1, ...,~cm],
the probability p̂i of yi = 1 given ~ci can be estimated as

p̂i = Pr(yi = 1|~ci) =
1

1 + exp(−β · ~ci)
(13)

where the vector of parameter β is typically optimized via
some appropriate method (e.g., gradient descent) that aims to
find the optimal parameters that a hyper plane can partition the
data points into its respective classes with maximum accuracy
[31]. In this way, the probability qi of yi = 0 given ~ci can be
expressed as q̂i = Pr(yi = 0|~ci) = 1− p̂i. During the training
process, instead of minimizing the cost function J defined
in equation (11), the performance of the classification model
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with extracted features is measured based on the average of
all cross-entropies across m samples, calculated as:

L = − 1

m

m∑
i=1

[pi log p̂i + (1− pi) log(1− p̂i)] (14)

where pi represents the true probability of yi = 1. Then back-
propagation is employed through the autoencoder network to
fine-tune the weights and bias for minimizing L. In particular,
gradient decent [32] and stochastic gradient decent [33] are
two effective methods that can be used for fine-tuning.

Fig. 3. Shallow autoencoder network with supervised fine-tuning.

C. The proposed deep autoencoder feature extractor

Based on the plenty of advantages of deep learning illus-
trated in Section I, the proposed deep autoencoder feature
extraction framework can be illustrated with the following
contributions and benefits.

i) For system security assessment, traditional feature extrac-
tion method (e.g, shallow autoencoder network) has limited
performance in processing raw data. Extensive domain exper-
tise and careful engineering are required to design a feature
extractor that can transform the raw data into a effective feature
space which the classifier could easily classify the security
status of the input operating points [16]. As one of the most
powerful representation learning techniques, deep learning
enables it possible to automatically identify the representative
features for classification based on raw data. In this paper,
given the original features X , each nonlinear module of the
deep neural network aims to transform the representation from
one level into a higher level with more abstract features.
As such, very complex nonlinear relationship between the
operating points and their corresponding security status can
be learned by carrying out sufficient number of nonlinear
transformations through multiple processing layers in a deep
neural network. Higher layers of extracted feature make efforts
to minimize the uncorrelated variations for classification and
strengthen the information of original features that are im-
portant for discrimination. The main advantage of using deep
network structure is to automatically extract effective features
for different tasks rather than manually selected or designed
by experts with domain knowledges.

ii) Typically, the class of safe states accounts for an ex-
tremely larger proportion than the class of unsafe states, thus
introducing the problem of imbalanced data classification.
In addition, it is more critical to classify unstable operating
points as stable for system operation. For example, if we
use “accuracy” to represent the classification error during the
training procedure, a 98% accuracy can be easily achieved
by misclassifying 2% of unsafe operating points, however, it

will result in significant operational issues if 2% points (actual
unsafe) are incorrectly predicted as safe. Consequently, a novel
objective-based loss function is proposed in this paper to deal
with both of the above-mentioned issues.

Fig. 4 illustrates the overall framework for the proposed
features extraction method that consists of three main stages:
unsupervised pre-training, training, and supervised fine-tuning.
As one of the key breakthroughs in deep learning, the authors
in [32] have demonstrated that greedy layer-wise pre-training
based on restricted Boltzmann machine (RBM) can effectively
initialize the weights for deep neural network to ensure the
performance of supervised fine-tuning. As illustrated in [34],
the success of the layer-wise pre-training strategy is because
better initial weights of all layers can mitigate the complex
optimization problem of deep networks. In addition, authors
in [34] verified that, instead of using RBM, an autoencoder can
also be used as a layer construction block when performing
the layer-wise greedy unsupervised pre-training.

Let L and NL = [n1, ..., nL] ∈ RL denote the total number
of layers and the number of neurons in each layer, then we
have n1 = n and nL = q where n and q are defined in Section
II. Given the raw input features X = [~x1, ..., ~xm]T ∈ Rm×n,
as shown in Fig. 4, the layer-wise pre-training procedure is
composed of training L blocks of autoencoders whose output
layer of one block is used as the input layer of the next one.
For the lth block, the input and output layers are actually the
lth layer Hl and the (l + 1)th layer Hl+1 = s(WlHl + bl)
of the constructed deep neural network, respectively. As such,
important and high-order correlations between the activities
of neurons in Hl are captured by Hl+1 for l = 1, ..., L − 1.
Note that we have H1 = X , HL = C, and the training
procedure of each autoencoder is illustrated in Fig.2. After pre-
training multiple layers of the proposed feature extractor, the
deep encoder and decoder network is unfolded and initialized
with the same weights and bias. Subsequently, the global fine-
tuning stage updates the initialized weights and bias with
backpropagation. As illustrated in the shallow autoencoder
part, binary logistic regression classifier is also employed in
the proposed deep feature extractor. However, in order to
deal with the challenges of imbalanced data and highlight the
importance of misclassified unstable states, an objective-based
loss function is proposed based on weighted cross-entropies,
estimated F1-score, and estimated precision. Concretely, the
proposed loss function can be express as follows:

LOBJ = LW (Π1)− α1F̂1− α2
ˆPre+

λ

2

nl∑
j=1

‖Wj‖2 (15)

where λ
2

∑nl

j=1 ‖Wj‖2 is the weight decay term, LW (Π1) =

− 1
m

∑m
i=1[Π1pi log p̂i+(1−pi) log(1− p̂i)] represents a sum

of weighted cross entropy that allows to trade off precision
and recall by defining the cost Π1 = β · Ny=0

Ny=1
. Further-

more, F̂1 and ˆPre present the approximate F1-score and
Precision, respectively, based on the estimated probability
P̂ = [p̂1, ..., p̂m] obtained using equation (13). Concretely,
we set ŷi = 1 if p̂i > 0.5 and ŷi = 0 if p̂i ≤ 0.5 for
i = 1, ...,m. Then the classification error between y and ŷ
can be illustrated using a confusion matrix. The definitions
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Fig. 4. The proposed deep autoencoder feature extraction framework.

of confusion matrix, F1 − score, and Precision will be
introduced in Section V. Also, α1 and α2 are the user-
defined weights for F̂1 and ˆPre. By using this proposed loss
function, the overall classification accuracy can be guaranteed
by minimizing the weighted cross entropy term. Meanwhile,
the issue of imbalanced data and the importance of incorrectly
predicted unsafe states further considered by integrating the
estimated F1-score and Precsion in the new loss function.

V. EVALUATION METRICS

In this section, four evaluation metrics are proposed to quan-
titatively evaluate the performance of the proposed method
from the perspective of system states classification. Given
a machine learning-based classifier (e.g. DT) and a set of
training features, the classification quality for a set of test
data can be first represented by a confusion matrix, presented
in Table I, where TP, TN, FP, and FN denote the numbers
of unsafe operating points correctly predicted as unsafe, safe
operating points correctly predicted as safe, unsafe operating
points incorrectly predicted as safe, and safe operating points
incorrectly predicted as unsafe, respectively. In general, there

TABLE I
CONFUSION MATRIX

Predicted Unsafe Predicted Safe
Actual Unsafe TP FP
Actual Safe FN TN

are varieties of criteria that can be calculated based on these
four numbers (e.g. Accuracy = (TP + TN)/(TP + FP +
FN + TN)). However, for this specific problem, it is more
important to focus on the criteria considering the number of
operating points which are actually unsafe but predicted as safe
(i.e. FP) because this type of classification error may result in
significant system security problem. To this end, according to

the literature (e.g., [35]), in this paper we employ precision,
specificity, and F1-score, defined as follows.

1) In the case of binary security states classification, the
precision, also called positive predictive value (PPV), is de-
fined as the proportion of the correctly predicted unsafe states
in all the actual unsafe states.

precision = TP/(TP + FP ). (16)

2) The specificity, also known as true positive rate (FPR),
represents the proportion of the correctly predicted safe states
in all the predicted safe states.

specificity = TN/(TN + FP ). (17)

3) The F1-score is defined as the harmonic mean of the pre-
cision and the recall (i.e. recall(REC) = TP/(TP + FN)).
This metric conveys the balance between the the precision and
the recall and reaches its best value at 1 and worst at 0.

F1− score = 2× PRE ·REC/(PRE +REC). (18)

4) Accuracy is denoted by the proportion of correct classi-
fications, which can be expressed as follow:

accuracy = (TP + TN)/(TP + FP + FN + TN). (19)

VI. CASE STUDY

A. Test System and Data Description

A modified IEEE 118-bus system [23] consisting of 186
transmission lines, 54 conventional generators, and 10 wind
farms of size 100MW each is employed to investigate the
proposed framework. The historical dataset, provided by RTE,
the French system operator, includes 14250 observations span-
ning over 7000 nodes containing high-voltage load and wind
generation measurements recorded at 5-minute time intervals
from January to March 2012. To construct the historical
operating points for the test system, 118 load buses and 10
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wind generators were randomly selected from the French
system and scaled according to the maximum demand values
in [36]. The post-fault states are evaluated using DC OPF
considering electricity balance constraints, generation opera-
tion constraints, and power flow constraints. To evaluate the
performance of the proposed method, two case studies were
conducted; one with a single outage Csingle = [l54] and one
with four outages Cmultiple = [l54, l71, l148, l154], where li
indicates that line #i is in outage.

B. Methods for Comparison

To evaluate the proposed feature extraction framework com-
pares against other approaches, six methods were tested in
total. These methods differ in terms of data and features used
when training the final classifier, which in all cases was a
DT. In addition, for all methods except M1, which relies on
purely historical data, a 10-fold validation scheme was used.
The historical database was randomly partitioned in 10 training
sets {Xk

train}10
k=1 and 10 test sets {Xk

test}10
k=1. All methods

were implemented using MATLAB and Tensorflow [37] and
run on an Intel Xeon PC with 8 cores.

1) M1-Historical data: The original training features
Ftrain ∈ RT×M are directly obtained based on the historical
data Xtrain.

2) M2-Sampled data: Instead of using just the historical
data, a larger number of samples X̂ ∈ RTs×M are generated
via the proposed R-vine copulas model. As such, the size of
training features Ftrain is increased from T to Ts.

3) M3-Sampled data and PCA: As one of most broadly
used linear feature extraction methods, PCA uses an orthogo-
nal transformation to convert the original features Ftrain into
a set of independent principal components (PCs). Let q define
the target dimension of the extracted feature, then we can
obtain F̂train = [PC1, ..., PCq] where q ≤M .

4) M4-Sampled data and SAE: M4 uses a single layer
shallow autoencoder as the feature extractor to obtain F̂train ∈
RTs×q for training the security rules.

5) M5-Sampled data and DAE: A deep autoencoder net-
work with conventional cross entropy loss function.

6) M6-Sampled data and DAE+New Loss Function: The
proposed framework that includes the R-vine copulas sampling
strategy, deep autoencoder network, and the objective-based
loss function.

C. Original and Extracted Features

In order to showcase the benefits of the R-vine copulas
based sampling strategy and the proposed deep autoencoder
based feature extractor, an example of X1

train under the
contingency of Line #54 is given in Fig. 5, which presents the
extracted features F̂ 1

train in a two-dimensional space (i.e., q =
2) that obtained via different methods. Note that, for Fig. 5 (a)
and Fig. 5 (b)-(d), original features F 1

train of size Ttrain×d =
12, 826×604 and of size Ts×d = 100, 000×604 are obtained
by carrying out the pre-fault and post-fault simulations based
on the historical training dataset X1

train ∈ R12,826×128 and
the sampled dataset X̂ ∈ R100,000×128, respectively, where
M = 128 is the dimension of historical stochastic variables.

In addition, PCA is performed based on the historical and
sampled datasets and then the first two PCs are retained and
considered as the extracted features F̂ 1

train as shown in Fig.
5(a) and Fig. 5(b).

As can be seen, the sampled operating points can success-
fully enriching the training space with more possible unsafe
states, which can potentially enhance the effectiveness of
the classification procedure. Nevertheless, the enhanced safe
and unsafe spaces are still extremely indistinguishable, which
need to be classified by using a very complex non-linear
classifier. Fig. 5(c) shows the two-dimensional representation
of sampled feature obtained by using a 604-2 shallow autoen-
coder with supervised fine-tuning. Comparing with Fig. 5(b),
a two-dimensional autoencoder exhibits a better visualization
regarding the separability of the safe and unsafe points than
that of the first two PCs. In particular, most of the unsafe points
are mapped to the upper-left space whereas the stable points
distributed in the lower-right space with smaller variations
than those of PCs. As illustrated in Section III, deep learning
can extract higher layers of abstract features that minimize
the uncorrelated variations for classification and strengthen
the information of original features that are important for
discrimination. As shown in Fig. 5(d), a 604-600-500-200-
100-2 deep autoencoder with the proposed objective-based loss
function clearly outperform the other methods with very sepa-
rate stable-unstable space and significantly reduced variations
when comparing with the other methods. It is also important
to note that there exists extremely imbalanced safe (blue)
and unsafe (red) states in all sub-figures (i.e., Fig. 5(a)-(d)),
thus highlighting the importance of considering the objective-
based loss function in the proposed approach. In addition,
the extracted features of M6 during the training process for
different epochs are shown in Fig. 6. It can be observed that
with the increasing number epochs, the distinguishability and
variability of the extracted features are gradually improved
from epoch = 1 to 10, 50 and 100, as shown in Fig. 6.(a),
6.(b), 6.(c), and 6.(d), respectively.

D. Results for a single transmission line in outage

In this section we demonstrate the effectiveness of the
features extracted via different tested methods (i.e., M1-6) for
training a system’s security rules in the context of a single
contingency: line #54. According to a series of tests, M3 has a
relatively considerable performance when retaining 100 rather
than other numbers of PCs. In order to investigate the effects
of the proposed deep structure, the network structure of M4,
which is the shallow autoencoder, is set to 604-2, whereas
the deep one is set to 604-600-500-200-100-2. Finally, the
impact of the proposed objective-based loss function can be
investigated by setting the same network configuration param-
eters for both M5 and M6. For each method the precision, the
specificity, and the F1-score of the constructed DTs, averaged
across the 10 folds, are given in Table III. Moreover, Fig. 7
presents box plots of the 10 DTs’ precision, F1-score, and
specificity values for all the tested methods. Also, an example
of the number of safe and unsafe states in training and test
data for Partition #1 is shown in Table II. It can be observed
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Fig. 5. Scatter plots of two-dimensional representation F̂ 1
train of 604-dimensional original features F 1

train obtained via using the first two PCs of the
historical training data (a), using the first two PCs of the sampled training data (b), using a 604-2 shallow autoencoder based on the sampled training data
(c), and using a 604-600-500-200-100-2 deep autoencoder based on the sampled training data (d). Red and blue points represent the unsafe and safe states,
respectively.

Fig. 6. Scatter plots of two-dimensional representation F̂ 1
train of 604-

dimensional original features F 1
train obtained via using a 604-600-500-

200-100-2 deep autoencoder (M6) based on the sampled training data: (a)
epoch = 1; (b) epoch = 10; (c) epoch = 50; (d) epoch = 100.

that the number of the unsafe states is significantly less than
that of the safe states for both training and test datasets,
thus demonstrating the issue of imbalanced classes in system
security assessment.

TABLE II
AN EXAMPLE OF NUMBER OF SAFE AND UNSAFE STATES (PARTITION #1)

Safe Unsafe
Train (M1: Historical) 12,516 310
Train (M2-M6: Sample) 97,044 2,956
Test 1,392 33

1) Historical data vs. Sampled data: First, the comparison
is conducted between M1 and M2 to investigate the benefits of
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Fig. 7. Precision(a), F1-score(b), and specificity(c) box plots for all the tested
methods M1-6. Note that each value corresponds to a partition that constructed
for 10-fold validation.

using the enriched training set, as shown in Fig. 5. From Table
III, it can be clearly observed that training the decision trees
based on the enriched original features can indeed enhance the
performance of the derived security rules, which is indicated
by the 7.97% increased precision and the 11.05% increased
F1-score. Note that the improvement is not significant regard-
ing the metric ’specificity’ because of the issue of imbalanced
data. As can be seen and Fig. 7, when using the proposed
R-vine sampling strategy, 75th percentile of the precision and
the F1-score can achieve about 80% and 85%, respectively,
which are about 8% and 5% higher than those of M1.

In order to highlight the performance of the proposed feature
extractor, the proposed DAE method with new loss function
(i.e. M6) is also directly performed based on the historical data
without sampling, denoted by M1*, as shown in Table IV. It
can be observed that the proposed feature extractor can also
significantly improve the classification performance although
it is performed based on the limited number of historical data.
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TABLE III
AVERAGE EVALUATION METRICS VALUES FOR DIFFERENT SETS OF EXTRACTED FEATURES: SINGLE CONTINGENCY

Precision Specificity F1-score Accuracy
M1-Hist 57.69% 98.97% 61.20% 95.07%
M2-Sampled 65.66% 99.18% 72.25% 97.35%
M3-Sampled+PCA 51.51% 98.85% 53.97% 92.94%
M4-Sampled+SAE 58.33% 98.96% 52.14% 92.93%
M5-Sampled+DAE 77.31% 99.45% 80.22% 98.52%
M6-Sampled+DAEnew 92.28% 99.81% 92.13% 99.56%

TABLE IV
AVERAGE EVALUATION METRICS VALUES FOR M1 AND M1*

Precision Specificity F1-score Accuracy
M1-Hist 57.63% 98.97% 61.20% 95.07%
M1*-Hist+DAEnew 87.04% 99.49% 88.68% 98.65%

2) Unsupervised feature extraction vs. Supervised feature
extraction: Based on the original features obtained using the
sampled data, M3 and M4 aim to extract important features in
an unsupervised and supervised fashion, respectively. Specif-
ically, M3 employs PCA which makes efforts to retain as
much of the variance as possible. However, the target of this
work is to extract discriminable features for classification. As
a result, comparing with M2, M3 exhibits worse performance
(100 PCs were retained) indicating that the rotation direction
of maximum information retainment is not coincident to the
direction of maximum discrimination. On the other hand, the
supervised shallow autoencoder (M4) has better performance
than PCA in terms of the approximately 7% improved average
precision value. Nevertheless, it is still lower than that of the
“no feature extraction” case (i.e, M2). These results highlight
the difficulty of the task at hand as well as the fact that feature
extraction can actually lead to worse-performing classifiers.

3) Shallow autoencoder vs. deep autoencoder: In order
to investigate the impact of network depth on the classifi-
cation performance of the extracted features, a comparison
is conducted between the shallow autoencoder network (i.e.,
M4:604-2) and the deep autoencoder network (i.e., M5:604-
600-500-200-100-2). According to the results shown in Table
III and Fig. 7, significant improvements are achieved by the
6-layer autoencoder neural network. In particular, the average
precision is increased from 58.33% to 77.31% while F1-
score also exhibits an approximately 28% growth regarding
the mean value of all partitions. Although such significant
enhancement can be obtained with the increased network
depth, it is imperative to note that it could suffer from the
over-fitting problem if the constructed network is too deep.
To this end, the enriched training space obtained by using the
proposed R-vine sampling strategy may potentially deal with
the issue of over-fitting to some extent.

4) Conventional loss function vs. objective-based loss func-
tion: Finally, the superior performance of deep autoencoder
networks with the proposed objective-based loss function
can be illustrated by the significantly improved Precision,
Specificity, and F1-score as well as their decreased variation
across different partitions, as shown in Fig. 7. In particular, the
average precision and the average F1-score both approached
92%, which are about 15% and 12% higher than those of

M5. These results emphasize that explicitly considering the
imbalanced nature of the problem at hand and the severity
of the different fault types within the loss function can
significantly improve performance.

E. Results for all N-1 line outages

A comprehensive analysis of all 186 N-1 line faults is
presented in this part. The heatplots of precision, specificity,
F1-score and accuracy obtained via M1 and M6 for each
contingency are shown in Fig. 8 and Fig. 9, respectively.
Note that the contingencies with values in gray color are
cases where all post-fault states are safe (e.g. due to the
presence of large parallel lines). As can be seen, the dark
red areas indicating low performance metrics in Fig. 8 can be
significantly improved to much higher values as shown in Fig.
9, indicated by light color, when using the proposed feature
extractor M6. This improvement is particularly pronounced in
the contingencies that have poor performance under M1 (e.g.
lines 54, 138-145, 158-162 and 177).

Additionally, Table V shows average metric values across
all 186 faults for all six methods. As can be seen, all metrics
are improved under M6 by, on average, about 3%. Note that
since a large number of contingencies already perform well
under M1, the performance improvement for the problematic
contingencies is much more pronounced. Overall, the observa-
tions made when analyzing all N-1 contingencies are similar
to the ones obtained when looking at the Line 54 case which
was already analyzed in depth in the paper. In particular, M6
achieves the most accurate classification whereas M3 performs
the worst. Deep autoenconder (M5) has better performance
than the shallow autoenconder (M4), while the proposed
loss function modification offers substantial improvement (M6
vs. M5), especially in terms of precision. In addition, the
proposed sampling strategy (M2) can effectively enhance the
performance by enriching the training database.

In the literature, most of prior work were carried out either
based on a relatively small system (e.g., 39-bus system [5]),
or using a small set of simulation scenarios (e.g., [38]), or
considering “accuracy” as the evaluation metrics (e.g., [5],
[38], [39]), which can achieve high values such as over 99%.
However, as discussed in our paper, the Accuracy short of
full performance characterization in the case of data with
imbalanced classes. Therefore, we use other types of metrics
to evaluate the performance and it can be observed that the
proposed framework is capable of achieving high average
Precision and F1-score values over 99%, indicating high
quality performance.
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TABLE V
AVERAGE EVALUATION METRICS VALUES FOR DIFFERENT SETS OF EXTRACTED FEATURES ACROSS ALL 186 CONTINGENCIES

Precision Specificity F1-score Accuracy
M1-Hist 96.47% 99.65% 96.01% 99.54%
M2-Sampled 97.31% 99.72% 97.67% 99.69%
M3-Sampled+PCA 89.53% 99.51% 90.02% 98.73%
M4-Sampled+SAE 92.73% 99.58% 91.96% 99.12%
M5-Sampled+DAE 97.53% 99.75% 98.62% 99.71%
M6-Sampled+DAEnew 99.16% 99.84% 99.03% 99.78%

Fig. 8. Heatplots of average precision (a), specificity (b), F1-score (c), and accuracy (d) across ten partitions for all N-1 line faults (i.e., 186 lines) obtained
via using M1.

TABLE VI
AVERAGE EVALUATION METRICS VALUES FOR DIFFERENT SETS OF EXTRACTED FEATURES: DIFFERENT CONTINGENCIES (FOUR LINES)

Precision Specificity F1-score Accuracy
M1-Hist 81.71% 99.54% 82.32% 98.73%
M2-Sampled 90.13% 99.75% 91.88% 99.52%
M3-Sampled+PCA 70.56% 99.24% 69.51% 96.98%
M4-Sampled+SAE 76.46% 99.42% 76.61% 98.12%
M5-Sampled+DAE 91.48% 99.78% 91.95% 99.52%
M6-Sampled+DAEnew 92.93% 99.82% 91.98% 99.54%

F. Results for a multi-contingency autoencoder

In the previous section we analyzed a large number of
contingencies, where a different feature extractor has to be
constructed for each individual contingency. Training and
tuning multiple deep autoencoder networks can be a time-
consuming process. To this end, a more efficient way proposed
in this paper is constructing a single deep autoencoder network
capable of processing a set of contingencies. This can be
achieved by training the feature extractor based on the input
features including labels of contingencies obtained via one-
hot encoding, as illustrated in Section II. Note that for a given

contingencies set, the proposed multi-contingency autoencoder
can predict the security status for each contingency separately.

Table VI shows the average precision, specificity, and F1-
score of the various methods tested when considering a set
of contingencies Cmultiple = [l54, l71, l148, l154]. As can be
seen, the performance of all tested methods exhibit high
classification accuracy. This is because in a multi-contingency
setting more information (i.e. labels for different contingen-
cies) are provided for the repeated set of original features (e.g.,
power flows, phase angles, etc.). Additionally, it is important
to note that the multiple contingency scenario considered in



IEEE TRANSACTIONS ON SMART GRID (ACCEPTED) 12

Fig. 9. Heatplots of average precision (a), specificity (b), F1-score (c), and accuracy (d) across ten partitions for all N-1 line faults (i.e., 186 lines) obtained
via using M6.

the proposed framework refers to a stack of various N-1
contingencies. Therefore, the complexity of multiple contin-
gency scenario is highly dependent on the complexity of each
individual contingency of the considered lines. As shown in
Fig. 8, the contingency of Line #54 is a more complicated
scenario than Line #71, Line #48, Line #154, represented
by lower metric values. As such, classifier performance for
the single contingency case of Line #54 is worse than the
multi-contingency case because in the latter case, there is an
averaging effect across four contingencies (all three of which
are easier to predict than Line #54).

As in the previous case, it can be observed that M2,
which uses sampled data has better classification performance
than M1, which uses solely historical data. In addition, we
can see that when using the first 200 PCs extracted via
M3, label separability actually decreases. This clearly shows
the shortcomings of unsupervised dimension reduction meth-
ods for feature extraction. Finally, the benefits obtained by
moving from shallow (M4: 604-100) to deep (M5:604-800-
700-500-400-350-300-200-150-100) autoencoder, and from a
traditional loss function (M5: cross-entropy) to an objective-
based loss function (M6: embedded with estimated precision
and F1-score), are clearly demonstrated via the progressively
improving evaluation metrics. Note that under this multiple
contingency scenario, although the performance improvement
of the proposed loss function (M6) is smaller than the sin-
gle contingency scenario shown in Table III, even a small
improvement in average performance (e.g., 1%) can mean
a very meaningful improvement for individual cases due to

the above-mentioned averaging effect across different levels
of fault complexity.

The average computational time over ten partitions for all
the tested methods are given in Table VI. As can be seen,
training the deep autoencoder network (M5) is approximately
1.6 times slower than training the shallow network (M4). In
addition, the proposed loss-function (M6) results in slightly
longer training times compared to M5. Simpler methods such
as M1, M2 and M3 take much less time but suffer greatly in
terms of performance.

TABLE VII
AVERAGE CPU TIMES FOR CLASSIFIER TRAINING (SECONDS)

M1 M2 M3 M4 M5 M6
24.04 319.53 150.83 2586.28 4210.13 4282.90

G. Single vs Multiple

Beyond the case of four-line contingencies, Table VIII
shows the average evaluation metric values for all 186 con-
tingencies obtained via the proposed single deep autoencoder
network. As can be seen, compared with the results of M6
shown in Table V (i.e., M6-Single), which obtained by training
an autoencoder for each contingency and calculating the
average metric values over all contingencies, the proposed
muti-contingency autoencoder is also shown to be capable to
process all possible contingencies in the network with reliable
performance. It is imperative to note that there is a trade-off
between the classification performance and the computational
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time when training a single autoencoder for each contingency
or for all the contingencies. In other words, although the
performance of the muti-contingency autoencoder (i.e., M6-
Multiple) exhibits slightly lower metric values than M6-single,
it will significantly reduce the computational complexity to
select the appropriate hyper-parameters and training the model
for a single deep autoencoder instead of building different au-
toencoders for different contingencies (e.g., 186 autoencoders).

TABLE VIII
AVERAGE EVALUATION METRICS VALUES: ALL 186 CONTINGENCIES

Precision Specificity F1-score Accuracy
M1 (Multiple) 96.23% 99.66% 96.47% 99.42%
M6 (Multiple) 98.53% 99.76% 98.61% 99.72%
M6 (Single) 99.16% 99.84% 99.03% 99.78%

VII. CONCLUSIONS

This paper proposes a novel deep learning-based feature
extraction framework for system security assessment. The
framework consists of an R-vine fitting/sampling module for
enriching the available dataset and a feature extractor utilizing
deep autoencoders specifically tuned to handle populations
with imbalanced classes. The superiority of the proposed
approach was demonstrated through a series of case studies
involving single and multiple contingencies. In particular we
showed that a deep learning-based feature extractor outper-
forms other approaches in terms of precision, specificity, and
F1-score. Furthermore, the benefits of the proposed sampling
strategy, the great learning ability of the considered deep
autoencoder network, and the efficiency of the objective-based
loss function were also shown.

Future work will focus on developing a probabilistic feature
extraction framework by exploiting Bayesian deep learning
methods and on investigating scaling potential to even larger
systems. Furthermore, a feedback connecting evaluation met-
rics back to the initial phase of feature selection can be
considered in the proposed framework to improve model
performance. For practical and mission-critical applications,
it is important to further investigate how to mitigate possible
discrepancies between simulation results and real-world sys-
tem behavior since these become critical in fully automated
work-flows. On the other hand, in order to make the proposed
framework adapt to different systems, or the same system but
with topology changes, or other system variants, incremental
learning techniques can be employed in our future work
to solve the computational issue of retraining a new deep
network.
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