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Abstract 
Nanoporous materials used in industrial applications (e.g., catalysis and separations) draw their functionality 
from properties at the nanoscale (1 – 10 Å). When shaped into a technical form these solids reveal spatial 
variations in the same properties over much larger length scales (1 µm – 1 cm). The multiscale characterization 
of these systems is impaired by the trade-off between sample size and image resolution that is bound to the use 
of most imaging techniques. We show here the application of X-ray computed tomography for the non-invasive 
spatial characterization of a zeolite/activated carbon adsorbent bed across three orders of magnitude in scale. 
Through the unique combination of gas adsorption isotherms measured locally and their interpretation by 
physisorption analysis, we determine three-dimensional maps of the specific surface area and micropore 
volume. We further use machine learning to identify and locate the materials within the packed bed. This novel 
ability to reveal the extent of heterogeneity in technical porous solids will enable a deeper understanding of 
their function in industrial reactors. Such developments are essential towards bridging the gap between material 
research and process design. 
 
 
The ability of an adsorbent to separate molecules selectively depends on the distribution of 
size, shape, volume and surface chemistry of the pores[1-4]. These micro-mesoporous 
materials can be characterised by gas physisorption, which is a genuine manifestation of the 
structural properties of the pore network, and can be determined from e.g. gravimetric or 
manometric methods[5]. These experimental techniques provide ensemble-averaged 
measurements of the material's properties in terms of texture[6] and wetting behaviour[7,8], 
as well as of the adsorption equilibrium[9], kinetics[10] and dynamics[11] that are needed for 
process design. The tacit assumption in the interpretation of such measurements is that the 
material (e.g. a powder, a pellet and their assemblage into packed-bed reactors) is 
homogeneous in the measurement cell or adsorption column. However, in this macroscopic 
form, these systems reveal heterogeneities in composition, structure and porosity across the 
length scales that span from the nanometre to the metre[12-21]. These are associated to the 
nature and distribution of active sites (nm)[12]; to crystal-to-crystal diversity[15] (µm); to the 
variability in morphology, composition and voidage of formulated particles (mm)[16-19]; to the 
packing structure, including wall effects[20] and artificially produced layers in fixed bed 
reactors (cm–m)[21]; and to the presence of non-uniform material degradation or 
poisoning[18]. Most significantly, these heterogeneities have been shown to impact the overall 
macroscale transport properties of the porous medium[15,22,23]. A multi-scale, multi-
dimensional spatial characterisation of adsorbents is therefore crucial to guide the scale-up 
into technical bodies (pellets, monoliths or foams), and to design robust separation processes 
that account for these heterogeneities. 
 
The current trend in the multidimensional characterisation of nanomaterials is that of imaging 
the solid at increasingly higher resolution to resolve individual pores[24-27]. Such studies are 
making transformative progress in our current understanding of the operando behaviour of 
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synthetic and natural porous solids and of their genesis. However, while some three-
dimensional techniques, e.g. nano-CT, FIB-SEM, Electron tomography, achieve the required 
resolution, they are limited by a narrow field of view (typically 10003 voxels, corresponding 
to micrometre-sized samples)[28]. Because only very small samples can be accommodated at 
a time, the statistical relevance of the obtained dataset may be questioned. One alternative 
is to exploit quantitative imaging methods that provide a space-resolved measurement of a 
macroscopic quantity, which can in turn be correlated to the microstructural properties of 
the pores. Experimental protocols based on nuclear magnetic resonance have been devised 
with this aim to result in one- or two-dimensional maps of the average pore size[29-31]. More 
recently, X-ray computed tomography (CT) has been used to probe gas adsorption in 
microporous materials and to build spatially distributed adsorption isotherms (digital 
adsorption)[32,33]. Here, we report the results of a case study with commercially available 
samples of activated carbon and zeolite 13X, demonstrating the deployment of digital 
adsorption to produce for the first time a three-dimensional characterisation of a packed-bed 
adsorber in terms of textural properties (specific surface area and micropore volume) and 
operational metrics (cyclic capacity) resolved at millimetre resolution. The successful 
application of a machine learning approach to locate the two materials in the adsorber based 
on a simple parameterization of the adsorption isotherm further demonstrates that insights 
on the nanostructure properties of the system can be obtained. 
 
We consider a fixed-bed adsorber composed of spherical 2 mm zeolite 13X (Z13X) pellets and 
rod-like 3–4 mm activated carbon (AC) particles. The 3 cm-long, 5 cm-diameter cylindrical bed 
was packed to form a simple macroscopic heterogeneity, consisting of an inner core of 
activated carbon between two outer layers of zeolites. X-ray CT was used to obtain the three-
dimensional digital reconstruction of the adsorbent bed (Figure 1a, left tomogram) that 
shows clear differences in the average bulk density values of the layers (–208 HU and –493 
HU for Z13X and AC, corresponding to rB = 0.543 g/cm3 and rB = 0.423 g/cm3, respectively). 
The average attenuation in the two regions differs, because of differences in material's 
composition, particle porosity and packing density. Most significantly, the local attenuation 
values produce a bimodal distribution (Figure 1b, left violin plot) that reveals heterogeneity 
in possibly all these properties within each region and at the scale of observation considered 
here (voxel resolution: 0.234 mm ´ 0.234 mm ´ 1 mm). After exposure to CO2 gas and with 
increasing pressure (1–30 bar, Figure 1a and Table S2, ESI), the measured X-ray attenuation 
increases systematically throughout the bed due to the densification in the nanopores of the 
gas that forms the adsorbed, liquid-like phase. While the distribution of the local attenuation 
values remains bimodal (Figure 1b), the observed trend in the average values of the two 
regions differs, with the AC rods (lower attenuation mode) showing a more gradual increase 
with pressure as compared to the Z13X layers (higher attenuation mode). As discussed below, 
this behaviour relates to differences in the adsorption process that can be traced back to the 
distinct pore structure of the two materials. 
 
As example of general validity, Figure 2a shows maps of the excess adsorbed amount for one 
slice of the composite bed at three different CO2 pressures. These were obtained from the 
difference of CO2 and helium tomograms (see Methods, ESI) that were resampled to a voxel 
size of 2.34 mm ´ 2.34 mm ´ 2 mm to decrease image noise (reduction of the voxel 
attenuation uncertainty from ca. 8 HU to ca. 2 HU). At 1 bar, CO2 adsorption in the two outer 
layers (Z13X, 2.7 mmol/cm3) is significantly larger than in the core (AC, 1.3 mmol/cm3) and 
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the two-dimensional adsorption map mimics unequivocally the macroscopic distribution of 
the two materials in the bed. With increasing CO2 pressure this difference decreases 
gradually, and a reversal is observed at 30 bar, where the average adsorbed amount in the 
core is now slightly larger than in the outer layers, and markedly more heterogeneous. The 
local adsorption isotherms are constructed by tracking the adsorption process on a voxel-by-
voxel basis (Figure 2b) and the Langmuir equation, n = n¥ K p/(1 + K p), is applied to 
parametrise all 4284 measured isotherms. We note that (i) the uncertainty of the fitted 
parameters n¥ and K is quite small (the error on the predicted adsorbed amount is typically 
ca. 0.11 mmol/g) and that (ii) the spread of values is significant (Figure S3, ESI and Figure 4a). 
Most significantly, as evidenced in Figure 2b for four representative voxels, the two sets of 
isotherms (outer layer vs. core) are markedly different and their shape reflect the typical 
features of materials with a narrower (Z13X, showing an early saturation) and wider (AC, 
showing a late saturation) size distribution of the micropores. We acknowledge that systems 
which conform accurately to the Langmuir model and its assumptions (i.e. the formation of a 
monolayer, energetically uniform surface, no interaction between adsorbed molecules) are 
rare. Z13X and AC do not represent an exception to this statement, given that they contain a 
significant amount of microporosity. However, the model still has the correct qualitative form 
to represent type I isotherms, such as those observed here. The agreement discussed below 
between the obtained parameters and the results from independent measurements confirms 
its suitability for the analysis presented in this study. 
 
The parametrisation of the local adsorption parameters enables extracting and resolving 
spatially the microscopic textural properties at the same scale. Here, we use the voxel specific 
saturation capacity, n¥, to determine the spatial distribution of specific surface area (SSA) and 
micropore volume (Vp) per voxel volume (Figures 3a,b). The range of obtained values is quite 
large, spanning 200–800 m2/cm3

vox (SSA) and 0.1–0.3 cm2/cm3
vox (Vp). Moreover, while they 

reproduce the macroscopic distribution of the materials, the obtained three-dimensional 
maps reveal quantitative details at a finer scale, such as the much stronger variability in both 
properties in the centre of the composite bed. From the close inspection of the cumulative 
distribution of the obtained parameters (Figure S4, ESI), two main modes are identified, 
further suggesting that the spatial distribution of the Langmuir isotherm parameters can in 
principle be exploited to identify the location of the two materials in the composite bed, non-
invasively. We discuss the approach to this segmentation below but use here those results to 
further discuss our observations. In particular, larger average SSA and Vp are observed in the 
core of the bed (AC), while the individual subsets follow by and large normal distributions, 
which are well described by Gaussian curves (Figures 3d,e, solid lines). We have 
independently validated the outcomes of the X-ray CT experiments in complementary 
experimental measurements of the same properties by N2 physisorption analysis at 77 K using 
samples from the same batch of materials in a dedicated apparatus (Figure S1, ESI). The SSA 
values determined from the conventional N2-BET technique are in excellent agreement with 
the position of the modes of the distribution in SSA for both adsorbents (vertical lines in Figure 
3d, 557 ± 29 m2/cm3 and 415 ± 11 m2/cm3 for AC and Z13X, respectively). Similarly, the 
observed distributions of micropore volume in the two materials are well constrained by 
estimates obtained from the Dubinin-Raduskevitch method Vp,DR and the Gurvich rule Vp,GR [5] 
applied on N2 data (vertical lines in Figure 3e, covering for 37% and 82% of the AC and zeolite 
13X data, respectively). 
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A similar analysis is applied to the so-called adsorbent cyclic capacity, enabling to gain more 
insight into the performance of continuous separation processes, such as pressure swing 
adsorption[35]. Figure 3c shows the cyclic capacity of every voxel evaluated as the difference 
in the adsorbed amount between 15 bar and 1 bar, while Figure 3f shows the corresponding 
histogram. The spatial difference in the behaviour of the adsorbent bed is striking and the 
distribution of values reveals the presence of two distinct modes: voxels of lower and higher 
cyclic capacity centred at ca. 0.74 mmol/cm3 and 2.24 mmol/cm3, respectively. This behaviour 
relates to the microscopic properties of the two materials, whereby the steepness of the CO2 
isotherm on zeolite 13X makes desorption at ambient pressure difficult, resulting in a smaller 
cyclic capacity as compared to activated carbon for which the CO2 isotherm increases more 
steadily. Again, we observe very good agreement with data reported in the literature on 
similar materials[34-38]. 
 
A machine learning approach was used to identify the adsorbent material within every voxel 
of the composite bed based on the local Langmuir isotherm parameters (n¥, K). In particular, 
unsupervised learning by cluster analysis was deployed using a Gaussian-mixture model 
(GMM) (Figure 4a, solid line; see Methods). Remarkably, only a relatively small number of 
voxels (103, corresponding to 2.4% of the population, shown as grey squares in the figure) 
could not be identified unambiguously through this analysis (probability P < 0.95 of belonging 
to either material). The corresponding three-dimensional reconstruction of the adsorbent 
bed is shown in Figure 4b and reflects the expected segregation of both materials, i.e. Z13X 
on the outer edges, and AC in the centre. It is interesting to note that most of the non-
identified voxels are located in the proximity of the boundary between the two materials, 
where mixing may occur within the 10 mm3 voxels. To quantitatively assess the quality of the 
performed unsupervised segmentation, the material identification was also performed with 
a support vector machine (SVM) model that was trained on an independent set of data[33] 
consisting of 3060 Z13X isotherms and 4540 AC isotherms (Figure S5, ESI). The SVM boundary 
estimated from the training set is plotted as dashed line in Figure 4a and the corresponding 
three-dimensional reconstruction is shown in Figure 4c. Comparison between the 
unsupervised GMM and the supervised SVM method show an excellent agreement, with only 
1.5% voxels that are classified differently. 
 
Our new perspective for adsorbent characterisation is not to try to resolve the nanostructures 
themselves, because this would impose a serious limit on the size of the system to be 
analysed. On the contrary, we image and quantify the physisorption process by X-ray CT and 
use the adsorption isotherms to extract properties of the material, spatially. The advantage 
is that the experiment can be carried out on technical adsorbents, i.e. materials that have 
been shaped in a form that is suitable for commercial use (e.g., a pellet or a fixed-bed 
adsorber), while exploiting the robustness of physisorption methods and the strength of 
imaging methods. We have reported the results of a first in-depth study, where 
measurements of space-resolved adsorption isotherms are combined with machine learning 
to provide a three-dimensional characterisation of an adsorbent bed over three orders of 
magnitude in scale (0.1–10 cm). The good agreement with independent observations from 
conventional state-of-the-art methods demonstrates that digital adsorption experiments can 
be used to probe both microporous properties (SSA and pore volumes) and process 
performance metrics (cyclic capacity). Although in this study we purposely focused on two of 
the most widely deployed commercial adsorbents, the imaging approach to measuring 
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adsorption is clearly suited for high-throughput screening analyses of microporous materials, 
including porous catalysts. The capability of measuring adsorption and process metrics in-situ 
is unprecedented and constitutes a powerful tool to spatially probe variations in material 
performance at the reactor scale and operando. 
 
While the experiments presented here are limited to relative pressures p/p0 ≤ 0.5, the 
methodology can be applied without modifications to other adsorptives, including those used 
in physisorption analysis, e.g., N2 (77 K), Ar (87 K) and CO2 (273 K). This novel ability to probe 
gas adsorption in three dimensions creates the missing link between traditional pore 
characterisation techniques and imaging technology. We anticipate that future developments 
will also make use of higher-resolution instruments, such as micro- and nano-CT scanners, to 
enable an integrated characterisation that resolves properties of nanoporous solids across 
the continuum of length scales from the micrometre to the metre. Combination of this 
method with the suite of complementary imaging techniques that resolve nanometre sized 
features or chemical composition is expected to pave the way towards gaining a deeper 
understanding of the scale and extent of heterogeneity in technical nanoporous solids, of how 
it affects their operation in large-scale processes, and of how it can be controlled. 
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Figures 
 

 
 

Figure 1 - Imaging gas adsorption in a fixed-bed adsorber by X-ray CT. (a) Three-dimensional 
maps of the attenuation (in Hounsfield units) of the composite bed (zeolite 13X spherical 
particles on the outer layers and activated carbon rods in the core) when exposed to helium, 
and at increasing pressures of CO2. Experiment carried out at room temperature. Voxel 
resolution 0.234 mm ´ 0.234 mm ´ 1 mm); unprocessed images. (b) Violin plots of the 
distribution of attenuation. Data was smoothed with a normal kernel with bandwidth 16 HU 
(equivalent to twice the measurement uncertainty). The median (white dot), interquartile 
range (thick black line), 5%--95% percentile range (thin line) and the two modes (blue lines) 
are also summarised in Table S2, ESI. 
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Figure 2 - Voxel-by-voxel adsorption isotherms. (a) Map of the adsorbed amount at p = 1, 10, 
30 bar of the central slice of the composite bed, and indication of the position of voxels a, d 
(activate carbon core) and b, c (zeolite layers). (b) Excess adsorption isotherms of selected 
voxels taken from the same slice. Solid lines represent Langmuir fits to the isotherms (n = n¥ 
K p/(1 + K p), where the parameters n¥ and K refer to the saturation capacity and Langmuir 
constant, respectively). The empty squares are the bed-averaged excess isotherm, which 
shows a non-Langmuirian behaviour; the dashed line is a guide to the eye. 
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Figure 3 - 3D mapping of microporous adsorbent properties in a packed bed. (a--c) Maps of 
selected metrics (specific surface area, pore volume and cyclic capacity). (a) Specific surface 
area (SSA) of the composite bed obtained from a Langmuir fit onto the measured voxel CO2 
isotherms. (b) Pore volume (Vp), as obtained from the saturation capacity of CO2. (c) Cyclic 
capacity (Dn) between 15 bar and 1 bar of the composite bed. (d–f) Histograms of the selected 
metrics. The continuous coloured lines represent Gaussian fits to the individual voxel subsets 
identified with a probability PAC ≥ 0.95 as activated carbon (purple) and P13X ≥ 0.95 as zeolite 
13X (orange). The fit to the subset of remaining voxels (P13X < 0.95 Ç PAC < 0.95) is shown by 
the white solid line. In the histograms, the vertical dotted lines refer to independent 
observations on the same materials by subcritical N2 adsorption isotherms (d--e, see 
Methods) and from the literature[34-38] (f). 
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Figure 4 - Adsorbent identification by machine learning. (a) Scatter plot of Langmuir 
adsorption parameters estimated from the voxel-based isotherms (10 mm3). Classification 
boundaries (P = 0.5) obtained from an unsupervised gaussian mixture model (GMM, solid line) 
and a support vector machine model (SVM, dashed line) trained onto data reported by Joss 
et al.[33]. Colours of the points, purple (activated carbon), orange (zeolite 13X), and grey (non-
identified), represent the classification according to the GMM model. (b,c) Three phase 
segmentation of composite bed in terms of identified materials with GMM (b) and SVM (c) 
models. Voxels identified as activated carbon or zeolite 13X with a probability ≥ 0.95 are 
shown in purple and orange, respectively; the remaining voxels are shown in white. 


