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Abstract
In this work, an in house topology optimization (TO) solver is developed to optimize a conjugate heat transfer problem:
realizing more complex and efficient coolant systems by minimizing pressure losses and maximizing the heat transfer.
The TO method consists in an idealized sedimentation process in which a design variable, in this case impermeability, is
iteratively updated across the domain. The optimal solution is the solidified region uniquely defined by the final distribution
of impermeability. Due to the geometrical complexity of the optimal solutions obtained, this design method is not always
suitable for classic manufacturing methods (molding, stamping....) On the contrary, it can be thought as an approach to
better and fully exploit the flexibility offered by additive manufacturing (AM), still often used on old and less efficient
design techniques. In the present article, the proposed method is developed using a Lagrangian optimization approach to
minimize stagnation pressure dissipation while maximizing heat transfer between fluid and solid region. An impermeability
dependent thermal conductivity is included and a smoother operator is adopted to bound thermal diffusivity gradients across
solid and fluid. Simulations are performed on a straight squared duct domain. The variability of the results is shown on the
basis of different weights of the objective functions. The solver builds automatically three-dimensional structures enhancing
the heat transfer level between the walls and the flow through the generation of pairs of counter rotating vortices. This is
consistent to solution proposed in literature like v-shaped ribs, even if the geometry generated is more complex and more
efficient. It is possible to define the desired level of heat transfer and losses and obtain the closest optimal solution. It is the
first time that a conjugate heat transfer optimization problem, with these constraints, has been tackled with this approach for
three-dimensional geometries.
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Symbols
v Velocity [m/s]
p Pressure [Pa]
T Temperature [K]
w Adjoint velocity [m/s]
q Adjoint pressure [Pa]
τ Adjoint temperature [−]
vin Inlet velocity [m/s]
Tin Inlet temperature [K]
Twall Wall temperature [K]
μ Dinamic viscosity [m2/s]
ρ Density [kg/m3]
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c Specific heat [J/(kg K)]
α Brinkman penalization coefficient [kg/(s m3)]
αmax Upper bound of Brinkman coefficient [kg/(s m3)]
γ Re-scaled Brinkman penalization coefficient [−]
k Thermal conductivity [W/(m K)]
kf Thermal conductivity of the fluid [W/(m K)]
ks Thermal conductivity of the solid [W/(m K)]
L Lagrangian operator
F Multi objective function
f1 Pressure drop
f2 Temperature gain
ω1 Pressure drop weight [−]
ω2 Temperature gain weight [−]
� Domain
� Domain boundary
X Set of state variables
Y Set of design variables
R∗ Constraints, fluid governing equations
	� Set of feasible solutions for the optimization

process
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θ Feasible solution for the optimization process

Abbreviations
TET Turbine entry temperature
AM Additive manufacturing
TO Topology optimization
CHT Conjugate heat transfer
VoF Volume of fluid method
HP High pressure

1 Introduction

In modern gas turbines, the turbine entry temperature (TET)
exceeds the melting point of the used alloys, reaching up
to 2200 K in the advanced engines (Chyu and Siu 2013).
Efficient coolant systems must be employed to make tur-
bine blades resistant against fusion and mechanical stresses.
Coolant systems are mainly characterized by internal chan-
nels optimized to reduce pressure losses. Turbulators and
other microstructures are used instead to promote heat trans-
fer between solid parts and coolant fluid. The design of
such channels, position, and shape of turbulators is still
a complex subject of study. The main goal is increas-
ing heat transfer while reducing thermal gradients across
the blades and minimize the energy used for coolant pur-
pose (Saha and Acharja 2014). Temperature uniformity is
strongly required to avoid cracks and ensure high level of
reliability; this aspect is still considered one of the greatest
challenges in gas turbine production (Bunker 2007; Monto-
moli et al. 2012). In order to predict the metal temperature
accurately, it is important to carry out a conjugate heat trans-
fer (CHT) method, where the thermal field in the fluid and
the solid are solved at the same time. There are mainly two
methodologies, using a single solvers for fluid and solid
region or using ad hoc solver for the solid part (Montomoli
et al. 2009). In this work a single code is used for fluid
and solid domains because it is required by the optimiza-
tion process. Several methods have been proposed for the
optimization of CHT problem in gas turbines. It is crucial
to consider this aspect specially in small gas turbines and
when there are strong thermal gradients, as in HP compo-
nents (Verstraete 2008). The majority of the available work
is based on shape optimization and conjugate heat trans-
fer (Verstraete et al. 2013). However, shape optimization is
based on an “a priori” definition of the baseline geometry,
taking into account the manufacturability limits. Relatively
complex geometry cannot always be produced using actual
manufacturing processes. With the introduction of additive
manufacturing (AM), the design envelope changed and we
do not have anymore such limits. However, the design and
optimization methods are still considering these constraints.
AM allows the production of three-dimensional metal
components, directly from digital models, avoiding pro-
cesses as stamping, molding, and bending. Major limitations

of this technique, such as poor mechanical properties of
layered material and low resolution for small components,
have reduced exponentially in the last year due to the
large interest towards the versatility of this technique (Ford
2014; Additive Manufacturing 2013; Ibabe et al. 2014). For
instance, the possibility to increase structural complexity
and efficiency of mechanical components is expected to
have a relevant impact in coolant system technology (Jones
et al. 2015). Shape optimization is not able to fully exploit
the potential of this manufacturing method. The natural next
step is finding those complex and efficient geometries, suit-
able for AM. Topology optimization (TO) is expected to be
a satisfying solution. The key idea of TO is to iteratively
update a scalar variable, usually impermeability, across a
domain, respecting a set of constraints and minimizing a
multi-objective function. At the end of the process, the
solution is found as the region with relatively high imperme-
ability, i.e., the solidified optimum structure. This process
bears resemblance to the physical sedimentation of particles
in a fluid. For this reason, we will refer to that as an idealized
sedimentation process.

Geometries obtained in this way show high levels of
complexity. Complex channels, fractals, ribs, and series
of fluid splitters are examples of the structures present in
the final geometries. Those structures cannot be produced
using actual manufacturing processes but only exploiting
the flexibility offered by additive manufacturing. First intro-
duction of topology optimization can be found in the 1980s
in Bendsoe and Sigmund (2004), Lavrov et al. (1980),
Gibiansky and Cherkaev (1997), Glowinski (1984), and
Goodman et al. (1986). Since then, the technique has been
used mainly for structural problems. A wide introduction
can be found in Bendsoe and Kikuchi (1988). In the last 20
years the technique has been also considered for other phys-
ical problems like aerodynamics and electromagnetism.
Only recently, this application has been extended to fluid-
thermal dynamics problem, i.e., considering both Navier-
Stokes equations and convection-conduction equations. In
2009, Dede used TO to optimized power dissipation and
mean temperature across a uniformly heated domain (Dede
2009; Dede et al. 2014). In the same year, Yoon consid-
ered a two-dimensional TO approach for the cooling of
a hot plate by mean of an external coolant flow (Yoon
2010). An extension of this work has been published in
2011, with the application of the same method to a hier-
archical system of microchannels (Dede 2011). In 2013,
Matsumori improved the method by using a conjugate heat
transfer equation, taking simultaneously into account both
the fluid and the solid part (Matsumori et al. 2014). In
the same year, Koga performed TO on a three-dimensional
uniformly heated medium (Koga et al. 2013). In 2014,
Marck and Alexandersen further refined the model express-
ing thermal conductivity as a function of impermeability
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(Marck and Privat 2014; Alexandersen et al. 2014). In 2015,
Dede, Alexandersen, and Kentaro performed further analy-
sis on three-dimensional TO methods for thermal exchange
in fluid domain with a heat sink in Dede et al. (2015),
Alexandersen et al. (2016), and Yaji et al. (2015).

In 2013, in Marck et al. a full conjugate heat convection-
conduction equation is used together with a moving
asymptotes method: a coolant flow is injected from the
inlet of a two-dimensional domain to be expelled by the
outlet. The domain is not uniformly heated, but heat is
directly diffused from the domain walls (Marck et al.
2013). A similar problem is tackled in Pietropaoli et al. in
2016 by using a steepest descent gradient method for the
optimization process (Pietropaoli et al. 2017).

Using uniformly heated walls as boundary condition,
this problem is a simplification of the coolant channel
optimization for turbine blades. In this work, a similar
model is applied to three-dimensional geometry, such as a
square duct. The optimization is carried in order to increase
heat transfer while reducing stagnation pressure dissipation
of the coolant flow. A description of the problem is present
in the work together with the relative governing equations
and boundary conditions. The optimization process is built
in TOffee, the house code based on the adjoint optimization
method presented in Pietropaoli et al. (2017).

2Method description

This section describes briefly the structure of TOffee, the
in house optimization code for additive manufacturing.
Topology optimization emulates an idealized sedimentation
process, where the sediments represent the boundaries of the
optimized geometries. The overall algorithm is an adjoint
VoF method, where the solid material is identified by
associating to each point of the domain a scalar value,
usually impermeability or porosity. This variable is updated
during the optimization routine in order to minimize a
multi-objective function subject to a set of constraints. At
the end of the process, the material distribution allows
to find the solid optimized structures identified with high
impermeability regions. A formal definition of the method
needs the introduction of some mathematical entities:

– A design domain �. It is the spatial domain in which
the solution is sought. In this work, the domain is a
three-dimensional bounded open set;

– A set of state variables X. In this work, pressure p,
velocity vector v, and temperature T are considered;

– A set of design variables Y . In this work, only
impermeability α is used, better described as a
Brinkman penalization coefficient in the following ses-
sion. Impermeability is naturally expressed as a scalar

between 0 (fluid region) and ∞ (solid region). For clear
numerical reasons, impermeability has to be bounded
with a relatively high value αmax. The advantage of this
choice is the possibility to re-scale the quantity of inter-
est and express it as α = αmaxγ , where γ ∈ [0, 1] is
the re-scaled design variable such that the region is fluid
when γ = 0 and solid when γ = 1. Fluid parameters
will be easily expressed as a function of γ .

– Design constraints R. They are a set of equalities and
inequalities expressed for X and Y . In this case, they
are identified by the governing equations of the fluid
, that is an expression for the pressure Rp, one for
the i − th velocity component Rvi

and one for the
temperature RT ;

– A set of feasible solutions 	�. Each element θ =
θ(X, Y ) of this set is a state of the system that verifies
all the constraints;

– A multi-objective function F , usually expressed as a
combination of many objective functions.

The optimization process aims to minimize (or to
maximize according to necessity) the multi-objective
function F that is to find a feasible solution θ such that
F(θ) = F(X, Y ) is a minimum of the set F(	�).

3 Governing equations for porousmedia

The VoF algorithm is shown below. The fraction variable
is the impermeability. A variable impermeability is here
taken into account by adopting idealized porous media fluid
equations as governing equations of the system. Governing
equations Rp, Rvi

and RT are defined below and they
express the fluid optimization constraints as

Rp = Rvi
= RT = 0 (1)

for i = 1,2,3. Note that we will use a vectorial notation
Rv instead of Rvi

, i = 1, 2, 3, when needed. The flow is
considered incompressible and at constant density ρ,

Rp = ∇ · v (2)

A modified steady Navier-Stokes equation expresses the
balance of momentum,

Rv = ρ(v · ∇)v + ∇p − ∇ · (μ(∇v + ∇ t v)) + αmaxγ v (3)

The impermeability appears in the penalization Brinkman
term (αmaxγ v). This is a model of the resistance applied
to the flow: when γ = 0, no resistance is made and
the momentum equation is the Navier-Stokes equation. For
increasing values of γ , the penalization coefficient forces
the magnitude of v to approach 0, emulating a solid material
(Marck and Privat 2014). The impermeability dependence
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is introduced also in the energy equation by using a variable
thermal conductivity k,

RT = ρc v · ∇T − ∇ · (k∇T ) (4)

In this work, the thermal conductivity k is defined as a linear
interpolation between the minimum value corresponding to
the fluid (kf ) and the maximum value corresponding to the
solid (ks), that is

k = k(γ ) = kf + (ks − kf )γ (5)

The implementation of the boundary conditions follows
what proposed by Nel et al. (2014) and this work uses the
same assumptions. Differently from Nel et al. (2014) in this
work, the energy equation is also present and the code is
three-dimensional. At walls, no slip conditions are imposed,
and isothermal conditions is used for the temperature,
Twall (that in this case is an hot surface, the maximum
temperature in the domain). At the inlet, both velocity
and temperature are prescribed, with uniform constant
distributions, respectively vin and Tin, with Tin < Twall (the
temperature of the inlet flow is lower than the solid surface
temperature in this case). At the outlet, constant pressure is
imposed, where the code is using, as reference pressure, the
exit pressure so the value imposed of P at the exit is set to
zero. For the velocity and the temperature gradients at the
outlet, no gradients perpendicular to the surface are imposed
as in Nel et al. (2014) (Table 1).

The geometrical constraints specified here are only
the physical boundaries of the domain. Other geometrical
constraints can be added without any loss of generality.
Furthermore, in this work no volume constraints are
imposed of the portion of domain that can be occupied by
solid material.

4Multi - objective function

A multi-objective function is defined here as a linear
combination of stagnation pressure dissipation, f1, and
temperature gain of the coolant flow, f2. They are expressed

Table 1 Boundary conditions v and T . Tin and Twall represent
respectively the inlet and the wall temperature; whereas, vin indicates
the inlet velocity of the coolant flow

Variable Inlet Outlet Walls

v v = vin ∇v · n = 0 v = 0

T T = Tin < Twall ∇T · n = 0 T = Twall

With n we refer to the normalized outward-pointing normal vector

respectively as the mechanical energy and the temperature
flux through the domain boundaries �, namely,

f1 = −
∫

�

(
p + 1

2
ρ|v|2

)
vn d� (6)

f2 = +
∫

�

(ρcT ) vn d� (7)

where vn = v · n with n the normalized outward-pointing
normal vector. The weighted combination of the objective is
then defined as

F = ω1f1 − ω2f2 (8)

where ω1 and ω2 are positive constants used to tune the
relative weight of the objectives during the optimization pro-
cess. The negative weighting of f2 is justified by the need
of maximizing the temperature gain while minimizing F .

5 Continuous fluid adjoint optimization

For the adjoint optimization, we follow the work in
Giles and Pierce (2000) and Cea (1986). The approach
defined here is a special case of general continuous adjoint
optimization.

As a general formulation, following the nomenclature
already introduced in Section 2, the optimization problem
can be concisely written as

minimize F(X, γ ),

subject to R(X, γ ) = 0

where, as stated before, X represents the set of state
variables p, v, and T , γ the design variable and R the
set of constraints, in this case identified by the governing
equations Rp, Rv , and RT .

For the fluid adjoint optimization, as shown by Qian
and Dede (2016) and Dilgen et al. (2018), a Lagrangian
approach is considered to tackle the minimization problem.
Precisely, the augmented objective function is considered,
i.e., the Lagrangian functional

L = F −
∫

�

qRp + w · Rv + τRT d�, (9)

where q, w, and τ are, respectively, Lagrange multiplier
functions enforcing the constraints Rp = 0, Rv = 0, and
RT = 0. Following the terminology used by Giles and
Pierce (2000), we refer to q, w, and τ as adjoint variables.
The variables p, v, T are clearly functions of the design
variable γ and, similarly, the adjoint variables q, w, and
τ should also depend on γ . Thus, to (locally) optimize F

with respect to γ one can look for a state θ = (X, γ ) and
adjoint variables such that the variation of L with respect to
γ vanishes.
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To compute the variation of F an adjoint formulation is
used. Considering the total variation dL, we have

dL =
(

∂F

∂X
−

∫
�

q
∂Rp

∂X
+ w · ∂Rv

∂X
+ τ

∂RT

∂X
d�

)
dX

+
(

∂F

∂γ
−

∫
�

q
∂Rp

∂γ
+ w · ∂Rv

∂γ
+ τ

∂RT

∂γ
d�

)
dγ

(10)

where the symbols ∂(−)
∂X

and ∂(−)
∂γ

indicate the partial
derivative with respect to the state variables and the design
variable respectively. The adjoint variable q, w, and τ are
computed in order to satisfy the following relations, i.e., the
adjoint equations,

∂F

∂X
=

∫
�

q
∂Rp

∂X
+ w · ∂Rv

∂X
+ τ

∂RT

∂X
d� (11)

It follows that

dL =
(

∂F

∂γ
−

∫
�

q
∂Rp

∂γ
+ w · ∂Rv

∂γ
+ τ

∂RT

∂γ
d�

)
dγ

(12)

from which the variation dL/dγ can be obtained.
At this point, a local minimum of the objective function

F is computed through an iterative process, progressively
updating the distribution of γ across the domain by means
of the information coming from the sensitivity function
exploiting the steepest descent method as in Bigs (2008),
that is, the relation

Dγ = −dL

dγ
(13)

where Dγ represents the variation of γ between to
consecutive iterations of the process. To achieve that, at each
iteration the set of governing equation and adjoint equations
are solved together with the relative boundary conditions.

In order to derive an explicit set of adjoint equations and
the correct boundary conditions to apply, we consider, in
(11), variations of the state variables, ∂p, ∂v, and ∂T . As
shown in the Appendix, it is possible to integrate by parts
the elements of relation (11) in order to group the resulting
terms by ∂p, ∂v, and ∂T . In this way, the adjoint equations
can be re-written as∫

�

(∂p)Rq + (∂v) · Rw + (∂T )Rτ d� +
∫

�

(∂p)BCq + (∂v) · BCw + (∂T )BCτ d� +
∫

�

BC1(∂v, w) d� +
∫

�

BC2(∂T , τ ) d� = 0 (14)

where Rq , Rw, and Rτ constitute the adjoint operators of
Rp, Rv , and RT , whereas BCq , BCw, BCτ , BC1, and BC2

are the surface contributions coming from integrating by
part relation (11). In more details:

Rq = ∇ · w (15)

Rw = −ρ v · (∇w + ∇ tw) − ∇q

−∇ · (μ(∇w + ∇ tw)) + αmaxγw + ρcτ∇T (16)

Rτ = −ρc v · ∇τ − ∇ · (k∇τ) (17)

BCq = −wn − ω1vn (18)

BCw = −q n − ρ(w · v)n − ρwvn − μ(n · ∇w)

−ω1(ρvnv + (p + 1

2
ρ|v|2))n − ω2ρcT n (19)

BCτ = −ρc τ vn − k∇τ · n − ω2ρc vn (20)

BC1 = μ(n · ∇∂v) · w (21)

BC2 = τk(∂∇T ) · n (22)

Solving (11) for q, w, and τ is obtained by vanishing
all the volume and surface integral terms in (14). For the
volume terms, it follows that for any variation of the state
variables, the explicit form of the adjoint equations is found
for Rq = Rwi

= Rτ = 0. To be noticed that the
adjoint equations have a similar structure of the governing
equations. However, relation Rw contains also the transpose
gradient of the adjoint velocity in the advection term and
the source term ρcτ∇T as a result of the integration by
parts in the advection term of the energy equation. To vanish
the surface terms, instead, it must hold BCq = BCwi

=
BCτ = BC1 = BC2 = 0. This relations give the set of the
adjoint boundary conditions that q, w, and τ must verify on
the border of the domain. In particular, considering the set
of boundary conditions for the governing equations, adjoint
boundary conditions can be specified for the different parts,
that is inlet, outlet, and walls. Please note that it is more
practical to consider separately the normal component and
the tangential vector of the adjoint velocity, respectively
wn = w · n and wti = (w · ti )ti with ti components of the
unit vector tangential to w.

• Inlet and wallsVelocity and temperature are prescribed
as constant so (19) and (20) are not considered because
the respective terms in (14) vanish automatically. The
pressure is in general not constant then

wn = −ω1vn

Operating a decomposition of ∇ across the normal
component n and the tangential components ti , the
following relation holds

0 = ∂(∇ · v) = ∇ · ∂v = (n · ∇)∂vn + (ti · ∇)∂vti

The tangential components of the velocity vti are zero.
It follows that (n · ∇)∂vn = 0 and consequently, to
vanish (21)

(n · ∇)(∂vti ) · wti = 0



M. Pietropaoli et al.

Fig. 1 Design domain for the
straight square duct. Inlet face is
pointed by the arrow. The outlet
face is on the opposite side of
the geometry

that implies wti = 0. Finally, to vanish (21), it follows
that τ = 0.

• Outlet The pressure is prescribed as p = 0 so (18)
is not considered because the respective term in (14)
is automatically zero. The components perpendicular to
the surface of the velocity and temperature gradients
are imposed as zero, so (21) vanishes. Taking the
tangential components of relation (19), the condition for
the tangential components wti is found as

−ρ wti vn − μ(n · ∇wti ) − ω1ρvnvti = 0

By taking the normal component, instead, the boundary
conditions for q and wn are obtained from

q = −ρ(w · v) − ρ wnvn − μ(n · ∇wn) − ω1ρvnvn

−ω1

(
1

2
ρ|v|2

)
− ω2ρcT

A similar approach is used in Othmer et al. (2007).
Finally, to vanish (20), the conditions for the adjoint
temperature is found,

(τ + ω2)ρc vn + k∇τ · n = 0

Finally, after solving the set of governing and adjoint
equations, the variation dL/dγ can be computed through
relation (12). Precisely, we have

dL

dγ
= αmaxv · w + τ(ks − kf )�T (23)

so, an iterative process to find the solution is built by mean
of the steepest descent method. Equation (13) is discretized
in order to find the updated distribution on impermeability
(γnew) as a function of the actual distribution γ :

γnew = γ − h
(
αmaxv · w + τ(ks − kf )�T

)
(24)

where h is a constant deriving by the approximation of the
volume integral. This constant can be chosen in order to tune
the speed of convergence. Furthermore, the relation (24)
should be adapted in order to avoid non physical negative
impermeability and to avoid the impermeability term αmaxγ

to exceed the threshold value αmax that is

γnew =max
{
0,min

{
1, γ −h

(
αmaxv · w+τ(ks −kf )�T

)}}
(25)

Fig. 2 Inlet view: geometry
optimized for pressure losses
and heat transfer. In this case,
ω1 = 1 whereas ω2 = 0.01
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Fig. 3 Outlet view: geometry
optimized for pressure losses
and heat transfer. In this case,
ω1 = 1 whereas ω2 = 0.01

Fig. 4 Velocity streamlines
around the solution for the
squared duct. The color is
consistent with the local
temperature of the coolant flow,
from blue (800 K) to red
(1800K).

Fig. 5 Velocity streamlines
around the solution, generated
from a transversal segment at
the inlet. The color is consistent
with local temperature of the
coolant flow, from blue (800 K)

to red (1800 K)
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Fig. 6 Diagonal planar section
for the straight squared duct

Validations of the code have been carried out (Pietropaoli
et al. 2017) comparing the results with experimental data by
Von Karman Institute (Verstraete et al. 2013).

6 Fluid topology optimization of a straight
squared duct

Relatively simple three-dimensional test cases have been
adopted for the simulations. At first, a straight squared duct,

with an aspect ratio of 1:6 is used, Fig. 1. The inlet face
is pointed by the arrow whereas the outlet is the opposite
square face. A coolant flow is injected by the inlet at
constant velocity, with Reynolds number Re ∼ 1000, and
at constant temperature, T = 800 K . Walls temperature
is kept as constant, 1800 K . Density and specific heat are
consider as constant across the domain, ρ = 0.44 kg/m3

and c = 1.1 × 103J/(kg K). The thermal conductivity of
the coolant flow is kf = 5.8 × 10−2 W/(mK) whereas

Fig. 7 Temperature distributions
across the diagonal planar
section of the squared duct.
From top to bottom, heat transfer
weight has been progressively
increased: top ω2 = 0; center
ω2 = 0.0001; bottom ω2 = 0.01
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Table 2 First column: percentage relative pressure drop

ω2 Relative Relative Outlet Solid volume

press. drop temp. gain mean temp. [K] ratio

0 0% 0.0% 1503.8 0.00

0.0001 14.3% 5.08% 1649.8 0.140

0.0005 30.8% 6.81% 1736.7 0.200

0.001 37.5% 7.16% 1757.8 0.233

0.005 61.6% 7.55% 1788.7 0.261

0.01 65.2% 7.63% 1792.4 0.300

0.05 78.3% 7.70% 1796.6 0.406

0.1 87.3% 7.71% 1797.6 0.491

0.5 91.7% 7.72% 1798.4 0.619

1 97.8% 7.73% 1799.2 0.634

5 98.7% 7.74% 1799.3 0.697

Second column: percentage relative temperature gain. The reference
value is obtained for ω2 = 0. Third column: mass averages outlet
temperature. Fourth column: fraction of domain occupied by solid
region. For all the tests the value of ω1 is kept as constant value 1

ks = 25 W/(mK). A squared uniform mesh is generated
in the domain, 50 cells on the shortest edges and 300 on the
longest.

Since no volume constraints are imposed on α, when
optimizing only for pressure losses, trivial solution is found
and the sedimentation process does not produce any internal
structure in the geometry. When using a nonzero heat
transfer weight, ω2 > 0, the flow pattern becomes more
complex. Figures 2 and 3 show respectively an inlet and
an outlet end view of the solution obtained using ω1 = 1
and ω2 = 0.01. The structure is connected and touches the
external walls in proximity of the inlet and the outlet. In
order to show the complexity of the coolant pattern, velocity
streamlines of the coolant flow are shown in Figs. 4 and 5.

The color is consistent with the temperature of the particle
generating the streamlines: from fluid inlet temperature,
800 K (blue), to fluid outlet temperature, 1800 K (red). In
Fig. 5, the origin of the streamlines are randomly generated
with uniform distribution across the inlet patch. For the sake
of clarity, in Fig. 6, streamlines origins are distributed on
a diagonal segment across the squared inlet patch: in this
case is easier to follow how the internal structure forces
spreading and mixing motions of the fluid particles in order
to enhance thermal exchange. Moreover, a diagonal planar
section is taken into account to show the efficiency of heat
exchange inside the domain, Figs. 6 and 7. The complex
pattern of the streamlines is further shown in Fig. 8. In
the picture, the view is perpendicular to the inlet plane.
The color of the streamlines is chosen consistently with the
angular velocity magnitude of the fluid particle generating
the streamline, showing that the symmetric structures are
pairs of counter rotating vortices.

When ω2 = 0, the heat is mainly conducted from
the walls. For increasing ω2 = 0 , instead, advection
processes lead to a more efficient heat exchange, bringing
to an almost completely hot exiting flow when ω2 = 0.01.
Table 2 and Fig. 9 show the percentage pressure drop and
temperature gain for different choices of ω2, while ω1 = 1.
Relative pressure drop and relative temperature gain are
expressed with respect to the reference values obtained
optimizing pressure losses only (ω1 = 1, ω2 = 0). The
relation is nonlinear. For a thermal exchange, improvement
of nearly 5%, the pressure drop is 15% higher, whereas
for an improvement of approximately 7.5%, the pressure
drop is nearly double. Table 2 contains also the proportion
of volume occupied by the solid region for each test.
The nonlinear dependence of the objective functions on
ω2 is confirmed. In fact, adding more than 30% of solid
material within the design domain produces a relatively
small increase of the thermal objective function, while
drastically increasing the pressure drop.

Fig. 8 Velocity streamlines: the
view direction is perpendicular
to the inlet face. The color of the
streamlines is consistent with
the angular velocity magnitude
of the fluid particle
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Fig. 9 Percentage relative pressure drop and temperature gain. The
reference value on the origin is obtained with ω1 = 1 and ω2 = 0

7 Conclusion

This paper presents a new application of fluid topology opti-
mization. Full three-dimensional geometries have been auto-
matically optimized considering both pressure losses and
heat exchange as objective. For the first time TO has been
applied on a simplification of gas turbine heat transfer prob-
lem. Ducts and solid structures shapes inside the cavity have
been optimized in order to enhance heat transfer while mini-
mizing pressure losses of the coolant fluid. In this sense, the
problem is a simplification of the internal coolant system of
a gas turbine blade. A formulation for conjugate heat trans-
fer is used in the paper. The design domain is considered
as idealized porous medium with variable impermeability,
updated in each iteration by using a Lagrangian adjoint
approach. Complex and connected structures are automat-
ically generated inside a straight squared duct (test case).
Different choices of the objective functions weights have an
influence on the efficiency of the heat exchange inside the
domain. The dependence of the objective functions on the
weights is nonlinear. Relatively small improvements on the
heat exchange efficiency lead to consistent increase of the
volume occupied by the solid region and, consequently, to
relatively high pressure drop. Axial and diagonal symmetric
fluid structures are visible along the main direction of both
the geometry. The stability of the results open the way to the
adoption of this technique to the design for additive manu-
facturing, possibly with many application in the design of a
new advanced internal coolant system for turbine blades.
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Appendix

This section contains the main derivations for the adjoint
equation and the relative adjoint boundary conditions.
The variation of the state variables is concisely indicated
with the symbol ∂ . Essentially, to obtain (14) from (12),
integration by parts is applied.

For the first integrand term in (12) it holds:

∫
�

q∂Rp d� =
∫

�

q∇ · ∂v d� =
∫

�

q∂v · n d�

−
∫

�

∇q · ∂v d�

For the second one, it might be useful to remind that for
any tensor A and vector x it holds

∇ · (A · x) = A : ∇x + x · (∇ · A)

where the symbol “ : ” indicates the trace of the scalar
product, that is A : ∇x = tr(A · ∇x).

Let σ(−) be the symmetric stress tensor, namely σ =
(∇ + ∇ t ). It holds

∇ · (σ (∂v) · w) = ∇ · (w · σ(∂v)) and σ(∂v) : ∇w

= σ(w) : ∇∂v

Thanks to the last identity, we have

∫
�

w · (∇ · σ(∂v)) d� =
∫

�

w · σ(∂v) · n d�

−
∫

�

∂v · σ(w) · n d� +
∫

�

∂v · (∇ · σ(w)) d�

as a consequence of

∇ · (w · σ(∂v)) − w · (∇ · σ(∂v)) = ∇ · (∂v · σ(w))

− ∂v · (∇ · σ(w))

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Applying this to the second term of (12) we obtain

∫
�

w · ∂Rv d�

=
∫

�

w · (ρ (∂v · ∇)v + ρ (v · ∇)∂v + ∇∂p

−μ∇ · (∇∂v + ∇ t ∂v
) + αmaxγ ∂v

)
d�

=
∫

�

ρ(w · v)∂v · n d� −
∫

�

ρ (∂v · ∇w) · v d�

+
∫

�

ρ (w · ∂v) v · n d� −
∫

�

ρ (v · ∇w) · ∂v d�

+
∫

�

∂p w · n d� −
∫

�

∂p ∇ · w d�

−
∫

�

μ w · ∇∂v · n d� +
∫

�

μ ∇w · ∂v · n d�

−
∫

�

μ (∇ · ∇w) · ∂v d�

−
∫

�

μ w · ∇ t ∂v · n d� +
∫

�

μ ∇ tw · ∂v · n d�

−
∫

�

μ (∇ · ∇ tw) · ∂v d� +
∫

�

αmaxγw · ∂v d�

Finally, for the third integrand term in (12), we have

∫
�

τ∂RT d�

=
∫

�

τ (ρc ∂v · ∇T + ρc v · ∇∂T − ∇ · (k∇∂T )) d�

= +
∫

�

ρc τ∇T · ∂v d�

+
∫

�

ρc τ∂T v · n d� −
∫

�

ρc ∂T v · ∇τ d�

−
∫

�

τk∂∇T · n d� +
∫

�

k∂T ∇τ · n d�

−
∫

�

∇ · (k∇τ) ∂T d�

Remark 1 The adjoint momentum equation can be explic-
itly written in two different versions. In fact, using the
Gauss’ divergence theorem for the derivation of Rw, the
term
∫

�

w · ρ (∂v · ∇)v d� (26)

can be expressed as

∫
�

ρ(w · v)∂v · n d� −
∫

�

ρ (∂v · ∇w) · v d�

=
∫

�

ρ(w · v)∂v · n d� −
∫

�

ρ
(
v · ∇ tw

) · ∂v d�. (27)

Alternatively, the term in (26) can be simply re-written as∫
�

w · ρ(∂v · ∇ t v) d� =
∫

�

ρ(∂v · ∇ t v) · w d�

=
∫

�

ρ(w · ∇v) · ∂v d� (28)

The quantities in (27) and (28) represent the same value.
In this work and similarly to Nel et al. (2014), Othmer
et al. (2007), and Qian and Dede (2016), we use the
first formulation to obtain the advection term of (16). If
using the second formulation, instead, the advection term
would be written as ρ(−v · ∇w + w · ∇v), consistently
to Yaji et al. (2015). The two versions are equivalent
and produce the same results if not considering relatively
small discrepancies coming from the numeric of the solving
the two different methods. The only difference is in the
derivation of the methods and, in particular, of the boundary
conditions: in fact no surface contribution are given when
adopting form (28), whereas the surface correction ρ(w·v)n

to be included in the adjoint boundary conditions appears
when adopting (27).

Remark 2 The transpose gradient terms, ∇ t v and ∇ tw,
do not appear in (19) and (21) for the following reason:
Considering now

∫
�

(
(∇∂v + ∇ t ∂v) · w − (∇w + ∇ tw) · ∂v

) · n d�

=
∫

�

∇ · ((∇∂v + ∇ t ∂v) · w − (∇w + ∇ tw) · ∂v
)

d�

=
∫

�

σ(∂v) : ∇w−σ(w) : ∇∂v+w · (∇ · (∇∂v+∇ t ∂v))

−∂v · (∇ · (∇w + ∇ tw)) d�

=
∫

�

w · (∇ · (∇∂v))−∂v · (∇ · (∇w)) d�

since ∇ · (∇ tw) = ∇(∇ · w) = 0 for equation Rq = 0 and
∇ · (∇ t ∂v) = ∇(∇ · ∂v) = 0 for equation Rp = 0.
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