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Abstract

In this thesis I explore the usefulness of alternative compactifications as a tool for answer-
ing some questions in Gromov-Witten theory, as well as the beautiful - and often simpler
- geometry they exhibit, which is of independent interest.

After a tour of quasimap theory with applications - including an explicit localisation
formula in the toric setting, and an investigation of the quasimap quantum product in
the semipositive case -, I discuss joint work with N. Nabĳou in which we introduce the
notion of relative quasimaps (in genus zero, when the target is toric, and the divisor is
smooth and very ample), extend Gathmann’s formula, and exploit it in the semipositive
case to obtain a quantum Lefschetz theorem for quasimaps.

I describe a number of different approaches to the genus one Gromov-Witten theory
of projective complete intersections, and hint at the relationship between them. I prove
that the Li-Vakil-Zinger’s reduced invariants of the quintic threefold can be recovered
from Viscardi’s moduli space of maps from at worst cuspidal curves (joint with F. Carocci
and C. Manolache). Finally, I give a sketch of joint work in progress with N. Nabĳou and
D. Ranganathan on reduced genus one invariants relative to a smooth and very ample
divisor, and show by means of examples how Gathmann’s recursion exhibits some non-
trivial relations between the reduced invariants of the ambient space and those of the
divisor (possibly with a double ramification condition).

A chi col suo passaggio ha lasciato
una voragine nel mio cuore, pulsante di mancanza;

e a chi ogni giorno si sforza di colmarla,
mai stanchi di dare amore laddove tanto abbisogna.
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INTRODUCTION

Kontsevich’s moduli space of stable maps M g ,n (X, β) [Kon95] is meant to provide a
first approximated answer to the question: How many smooth curves of genus g and
curve class β are there in X, that pass through a number of subvarieties V1 , . . . ,Vn ⊆ X?
Except in the g � 0, X homogeneous case (and few others), it turns out the geometry of
M g ,n (X, β) is overwhelmingly complicated (indeed these spaces satisfy Vakil-Murphy’s
law in algebraic geometry [Vak06]). Even though its properness makes it well-suited for
intersection-theoretic computations, this space is often not endowed with a fundamental
class (itmaynot be equidimensional). Rather it has a virtual fundamental class, that enjoys
a number of properties expected from an actual fundamental class - if there existed one -,
most notably deformation invariance, but is constructed by means of a somewhat heavy
technical machinery that globalises the (expected) deformation theory of this moduli
problem [LT98,BF97,Beh97]. Even so, the ideal situation of a smooth curve embedding in
X is far from generic, both in the actual and virtual sense. Understanding the degenerate
contributions from curves of lower genus or degree has been one of the main difficulties
since the origins of the subject, together with the similarly hard problem of actually
computing the Gromov-Witten invariants: in most cases the computations are relegated to
some - clever but partial - generating functions, and the remarkable algebraic structures
underlying them (quantum cohomology and Frobenius manifolds, see e.g. [Man99]),
for a direct understanding of the moduli space of maps becomes virtually impossible
as soon as the degree gets larger, or the target does not belong to some special class of
varieties. Comparing Kontsevich’s moduli space of stable maps with different modular
compactifications of the locus of maps from a smooth curve has proven both a beautiful
and a fruitful technique, and it is this approach - in some simple instances - that I am
going to discuss within this thesis.

Chapter 1 deals with the theory of quasimaps. Quasimaps are defined whenever
the target belongs to a large class of GIT quotients (when there are no strictly semistable
points, the stabilisers are all trivial, and the space actedupon is atmostmildly singular; see
[CFKM14]), in particular when X is a smooth projective toric variety [CFK10]. Quasimaps
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can be thought of as maps to the quotient stack, such that the preimage of the unstable
locus is finite and non-special. They are beloved by the algebraic geometer because
their stronger stability condition forces the source curve not to have rational tails, nor
contracted rational bridges. In turn, the stability condition can be made to depend on
a positive rational parameter ε, endowing Q>0 with a finite wall-and-chamber structure,
such that the ε � 0 condition recovers Kontsevich’s stable maps. Elegant wall-crossing
formulae for the invariants (or rather their generating series) have been studied in [Tod11,
CFK14,CFK16,CFK17,CJR17]. In §1.1 I reviewand expandon some foundationalmaterial
in the theory of quasimaps, comparingwithwell-known results inGromov-Witten theory.
One goal is in particular the study of the quasimap quantum product - whose relation
with Batyrev’s quantum ring is not so direct as I hoped in the strictly semi-positive case,
see Section 1.1.8. In §1.2 I review the localisation formula for toric quasimaps, which not
only is a key ingredient in the proof of wall-crossing formulae for toric targets, but also
can be made completely explicit in terms of weights for the big torus action, so that the
computation of the invariants in some simple situations becomes a combinatorial game.
Finally, in §1.3 I discuss the bulk of my joint work with N. Nabĳou [BN17], in which
we introduce the notion of relative quasimap invariants under the assumptions that g � 0
and the target (X |Y) is a smooth and very ample pair. We extend Gathmann’s formula
[Gat02] to this setting, relating the virtual classes of the relative quasimap spaces when
the tangency requirement is increased by 1; see Proposition 1.3.13:

Proposition. In the Chow group of Q0,α (X |Y, β)

(αkψk + x∗k c1(LY)) ∩ [Q0,α (X |Y, β)]vir
� [Q0,α+ek (X |Y, β)]vir

+ [DQ
α,k (X, β)]vir

whereDQ
α,k (X, β) is a boundary correction term.

In [Gat02] Gathmann discusses a theoretical algorithm for computing (X |Y)-relative
and Y-restricted invariants inductively, exploiting the recursive structure of the boundary
terms in the above formula. He then takes action in [Gat03b], where he gives a different
proof of Givental’s mirror theorem based on this algorithm. Analogously, we are able
to prove a quantum Lefschetz-type relation for some generating function of 2-pointed
quasimap invariants with one arbitrary descendant and one fundamental class insertion,
mimicking Givental’s J-function in Gromov-Witten theory; see Theorem 1.3.15 and the
discussion preceding it for notation and assumptions.

Theorem (Quasimap quantum Lefschetz). Let X be a smooth projective toric variety, Y a
smooth very ample divisor with −KY nef, and such that it contains all the curve classes.
Then ∑

β≥0 qβ
∏Y·β

j�0(Y + jz)SX
0 (z , β)

PX
0 (q)

� S̃Y
0 (z , q)
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where:

PX
0 (q) � 1 +

∑
β>0

KY ·β�0

qβ (Y · β)!〈[ptX]ψY·β−1
1 , 1X〉

X
0,2,β

In Chapter 2 I discuss the genus one Gromov-Witten theory of projective hypersur-
faces, especially the quintic threefold. In the genus zero case, M0,n (PN , d) is a smooth
stack, and there is a vector bundle π∗ f ∗OPN (l) with an induced section s̃ (virtually) cut-
ting out the locus of maps to Xl � V (s) ⊆ PN [CKL01]. Therefore the restricted genus
zero Gromov-Witten invariants of a hypersurface (or, more generally, a complete inter-
section) can be computed as twisted invariants of projective space. The higher genus
situation is more intricate: M g ,n (PN , d) has many components of different dimensions,
and π∗ f ∗OPN (l) is only a sheaf. The torus localised theory twisted by ctop(R• π∗ f ∗OP4 (5))
goes under the name of formal quintic: it is different from - but non-trivially related to -
the theory of the quintic, and it has recently received considerable interest [LP18,GJR17].
We consider the genus one case in detail, whose geometry is far better understood than
higher genus, mostly thanks to work of R. Vakil and A. Zinger [Vak00,VZ07]: both the
boundary components and the smoothable elements are known. Two apparently oppo-
site approaches have emerged to reduce the complexity of this problem: the first one,
developed in a series of papers by J. Li, R. Vakil, and A. Zinger, consists in a desingular-
isation of the main component ofM1,n (PN , d) via an iterated blow-up procedure along
boundary loci [VZ08,HL10], so that on the resulting spaceVZ1,n (PN , d) there is a vector
bundle π̃∗ f̃ ∗OPN (l) that can be used to define reduced invariants of a complete intersection.
By construction these invariants capture only the contribution of the main component,
and are therefore expected to have a more basic enumerative content. Indeed the relation
with ordinary genus one Gromov-Witten invariants has been studied in [LZ07,Zin08] (in
the symplectic category): they turn out to differ by an explicit genus zero correction term.
The simplest formulation is that for the quintic threefold X5 ⊆ P4, which has also been
proved with algebro-geometric techniques by J. Li and H.L. Chang [CL15]:

N1,d (X5) � Nred
1,d (X5) +

1
12 N0,d (X5) (Li-Zinger formula for the quintic threefold)

In §2.1 I describe the structure ofM1,n (PN , d), I review the Vakil-Zinger blow-up proce-
dure (following Y. Hu and J.Li), and I discuss to some extent the Li-Zinger formula for
projective spaces of small dimension, which is particularly easy because we understand
the geometry of the moduli spaces of maps in this case.

The second approach is due to M. Viscardi [Vis12], building on previous work of D.I.
Smyth on Gorenstein singularities of genus one and alternate compactifications of the
space of smooth pointed elliptic curves [Smy11a]. The idea is that allowing (smoothable)
maps from more singular than nodal curves, and at the same time imposing a stricter
stability condition that gets rid of the corresponding Kontsevich’s stable models, one is
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able to define alternative compactifications of the space of maps from a smooth elliptic
curve, that have less boundary components than ordinary stable maps, and ultimately
become irreducible when the target is PN , and the integer m controlling the permitted
singularities is large enough compared to the other numerical invariants.

The punchline is that the two approaches are intimately related. In §2.2 I review
Smyth’s singularities, describing a number of useful properties of theirs, and Viscardi’s
moduli spaces ofmaps; I prove the existence of the 1-stabilisationmorphism at the level of
weighted-stable curves (frommy paper with F. Carocci and C. Manolache [BCM18]), and
start adiscussionof themore complicatedgenus twogeometry (also fromdiscussionswith
F. Carocci). I explain how aligned log structures and the factorisation through a genus
one singularity allowed the authors of [RSW17a] to provide a modular interpretation for
the Vakil-Zinger’s desingularisation. Finally, I state the main result of [BCM18], equating
the reduced invariants of the quintic threefold with those arising from Viscardi’s space of
maps from pseudostable curves (i.e. admitting only nodes and cusps as singularities, the
name coming from [Sch91]), see Theorem 2.2.23 below:

Theorem. For a smooth quintic threefold X5 ⊆ P4,

GWred
1 (X5) � GWcusp

1 (X5).

Our proof is by an extension of techniques due to H.L. Chang, Y. Hu, Y.H. Kiem, and
J. Li to the present situation, which I outline in the technical section 2.3.

In §2.4 I outline an ongoing project with N. Nabĳou and D. Ranganathan: the goal is
to apply Gathmann’s techniques to the Vakil-Zinger desingularisation, in order to define
reduced relative invariants in genus one, and obtain a quantum Lefschetz-type result for
reduced invariants, the scope of which will extend Zinger’s computation for Calabi-
Yau hypersurfaces [Zin09b]. It seems a favourable moment for such a study, thanks to
the new light shed on this topic by Ranganathan–Santos-Parker–Wise’s beautiful work
[RSW17a, RSW17b]. This section is admittedly vague, fuzzy and incomplete, but my
enthusiasm for this project could not be held and I had to summarise our progress so far.

As a last word, I would like to clarify that most of the mathematics discussed within
this thesis originated from my collaborations with F. Carocci, C. Manolache, N. Nabĳou,
andD.Ranganathan; I have learntmuchworkingwith them, and I gratefully acknowledge
this, while the exposition of the material presented in this thesis (as well as any mistake
it can possibly contain) ought to be ascribed to me alone.

Notation and conventions

I work over an algebraically closed field k of characteristic 0. k[ε] ' k[t]/(t2) will denote
the ring of dual numbers. [n] will denote the set of natural numbers {1, . . . , n}. Mg ,n

(possibly with decorations) denotes the Artin stack of prestable curves (geometrically
connected, geometrically reduced, projective, flat and finitely presented morphisms of
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relative dimension 1, with at most nodes as singularities of the fibers) of genus g with n
markings (smooth and disjoint sections); Picg ,n denotes the Picard stack of the universal
curveCg ,n →Mg ,n . Iwill normallyuseC, C , @ for a curve, (universal) family of curves, and
tropical curve respectively, Γ(C) for the dual graph of C; a subcurve is always connected.
They are usually stablewith respect to some extra structure (e.g. aweight or amap), while
C̃ and C shall denote respectively a semistable modification, and a contraction admitting
a worse than nodal singularity. M g ,n (X, β) denotes Kontsevich’s moduli space of stable
maps from a genus g, n-marked prestable curve to a smooth projective variety X of degree
β ∈ Eff(X) � H2

+(X). In this setting π will denote the universal curve, and f the universal
stable map (possibly with similar tilde and bar decorations as above); the universal
sections (markings)will bedenotedby the letters x or p, and evk � f ◦xk : M g ,n (X, β) → X,
while the letter q will mostly be reserved for a separating node.
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CHAPTER 1
ON QUASIMAPS

§ 1.1. Review of toric varieties and quasimaps

1.1.1. Definitions. Let N be a lattice with dual M � HomZ(N,Z), Σ ⊆ NR a rational
polyhedral fan with associated toric variety XΣ, with primitive generators vρ of the rays
ρ ∈ Σ(1). I assume throughout this text thatX � XΣ is smooth andprojective (equivalently
every cone is spanned by a Z-basis and the support of the fan is the whole of NR).

In [Cox95a] D.A. Cox gave a beautiful description of the functor of points of a smooth
toric variety, generalising the well-known equivalence between maps to the projective
space PN and the data of a line bundle with N + 1 sections that generate it.

Recall that the rays ρ ∈ Σ(1) correspond to toric divisors Dρ on X - which generate the
Picard group -, while M can be thought of as the lattice of characters of the torus T ⊆ X,
hence giving rational functions on X. In the smooth case the following sequence is exact:

0→ M → ZΣ(1)
→ Pic(X) → 0 (1.1)

Theorem 1.1.1 (Cox). Let X be a smooth toric varietywith notation as above. Amorphism
f : C → X is equivalent to the data:(

(Lρ , uρ)ρ∈Σ(1) , (ϕm)m∈M
)
,

where Lρ ∈ Pic(C), uρ ∈ H0(C, Lρ), and ϕm :
⊗

ρ∈Σ(1) L
⊗〈vρ ,m〉
ρ ' OC, satisfying the

following conditions:

1. nondegeneracy: for all x ∈ C there exists a maximal cone σ ∈ Σmax with uρ (x) , 0 for
all rays ρ 1 σ;

2. compatibility: ϕm ◦ ϕm′ � ϕm+m′ , ∀m ,m′ ∈ M.

Remark 1.1.2. The isomorphisms ϕm can be used to reduce the number of line bundles
down to the Picard rank of X.

13



14 Chapter 1. On quasimaps

Based on this and on previous work of A. Marian, D. Oprea and R. Pandharipande
[MOP11] (similar ideas had in fact already appeared in the work of Drinfeld, Morrison-
Plesser, Givental, and many others), I. Ciocan-Fontanine and B. Kim introduced the
following notion, which gives rise to an alternative compactification of the space of maps
from smooth curves to a smooth projective toric variety, by strengthening the stability
requirement and weakening the concept of map (with respect to Kontsevich’s space of
stable maps). For this let me fix a polarisation OX (1) and an expression thereof as an
integral combination of toric line bundles OX (1) �

⊗
ρ∈Σ(1) O(Dρ)⊗αρ .

Definition 1.1.3. [CFK10, Definition 3.1.1] Let X be as above. We fix the following
numerical invariants: a genus g ≥ 0, a number of marked points n ≥ 0, an effective curve
class β ∈ H+

2 (X), and a positive rational number ε. A quasimap is given by the data(
(C, x1 , . . . , xn), (Lρ , uρ)ρ∈Σ(1) , (ϕm)m∈M

)
where:

1. (C, x1 , . . . , xn) is a prestable curve of genus g with n marked points;

2. Lρ ∈ Picdρ (C) where dρ � Dρ · β and uρ ∈ H0(C, Lρ);

3. ϕm :
⊗

ρ∈Σ(1) L
⊗〈vρ ,m〉
ρ ' OC are isomorphisms satisfying compatibility under the

group structure;

4. there is an at most finite set of smooth and non-marked points B ⊆ C, called the
basepoints of the quasimap, such that nondegeneracy is satisfied for all x ∈ C \ B.

Furthermore a quasimap is said to be ε-stable if:

5. the line bundle ωC (x1 + . . . + xn) ⊗ L⊗ε is ample, where L � ⊗ρL
⊗αρ
ρ is determined

by the chosen polarisation,

6. for every x ∈ C ε`(x) ≤ 1, where `(x) is the order as a basepoint:

`(x) � min



ordx
*.
,

∏
ρ∈Σ(1)\σ(1)

uρ
+/
-
| σ ∈ Σmax



.

An isomorphism between two quasimaps is given by an isomorphism ψ : (C, x) ' (C′, x′)
of the underlying prestable curves, together with isomorphisms of the line bundles
λρ : Lρ ' ψ∗L′ρ preserving the sections and the trivialisations.

Theabovedefinitionsmake sense in families over arbitrarybase schemes, and therefore
determine themoduli space of ε-stable quasimaps as a category fibered in groupoids over
(Sch), denoted by Qεg ,n (X, β) , which comes with universal structures, such as a curve,
markings, line bundles and sections; note in particular that, since the basepoints cannot
coincidewith themarkings, it comeswithwell-defined evaluationmaps ev: Qεg ,n (X, β) →
Xn .
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Remark 1.1.4. There is a more general notion of quasimaps when the target belongs to
a certain class of GIT quotients W � G [CFKM14]; smooth toric varieties fit nicely in this
framework, as they can always be described as a quotientAΣ(1) �Gr

m, where r is the Picard
rank of X. In this light, quasimaps can be thought of as maps to the stack quotient [W/G],
such that the preimage of the unstable locus is finite and disjoint from the special points.
Also, GIT quotients come with a preferred polarisation over the affine quotient W/G. The
theory deals effectivelywith non-projective targets in the presence of awell-behaved torus
action, and with complete intersections defined by homogeneous bundles as well.

Remark 1.1.5. The ε-stability condition is introduced in order to interpolate between
Kontsevich’s stable maps (for ε � 0, hence denoted by ε � ∞) and what in the sequel I
will refer to just as quasimaps (for ε � 1, denoted by ε � 0+) . Note that in the latter
case necessarily 2g − 2 + n ≥ 0 holds for every component, hence there cannot be any
rational tails (components isomorphic to P1, and with no special points other than the
node by which they are attached to the rest of the curve). In between these two extrema
one should imagine that rational tails of higher and higher degree are exchanged for
basepoints of order lower and lower; see §1.1.3 below. Notice that the stability condition
does not depend on the choice of the polarisation in the chambers ε � 0+ [CFK10, Lemma
3.1.3] and ε � ∞.

Example 1.1.6. Quasimaps to a point recover Hassett’s moduli space of weighted pointed
curves [Has03]. Thinking of {∗} as the GIT quotient of A1 by Gm, we find Qg ,n ({∗}, d) '
M g ,n |d/Sd where the first n-markings have weight 1, and the last d (which correspond to
the basepoints) have weight 0+ and are unordered. Notice that quasimaps do depend on
the presentation of the target as a GIT quotient.

1.1.2. Basic properties.

Theorem 1.1.7. [CFK10, Theorems 3.2.1 and 4.0.1] Qg ,n (X, β) is a proper and virtually
smooth DM stack of finite type over Spec(k).

Here is a brief sketch of their argument. Let me examine properness first: assume we
have a stable quasimap(

(CK , xK), (Li ,K)i�1,...,rk Pic(X) , (uρ,K)ρ∈Σ(1))
)

over a discretely valued field K, such that CK is smooth; we can do so by working com-
ponentwise on the generic fiber, after changing base to avoid self-nodes and monodromy
issues. Wewould like to extend it over the trait∆ � Spec(R), where K � Frac(R), possibly
after base-change. By semistable reduction for curves and Castelnuovo’s criterion, we
may find a regular model C over ∆ with no (−1)-curves. Note that we may not appeal to
the properness of the relative Picard functor in order to extend the line bundles (unless
we restrict to genus 0), since the central fiber might not be of compact type. We exploit
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properness of the relative Quot functor instead: after twisting with a sufficiently ample
polarisation OCK (m) on CK , we find an exact sequence

0→ Li ,K → OCK (m)⊕Ni → Qi ,K → 0

which may be extended to the whole of C. By normality of the later, and up to taking
double duals, Li is a line bundle for every i. Now the uρ are only rational sections of
the relevant line bundles. But observe that the given quasimap induces a bona fide map
outside the base locus, i.e. from CK \ BK to XK . By normality of C and properness of
X, this can be extended to a map from C \ (BK ∪ B0), where B0 is a finite set of points
on the central fiber; we thus get that the pullback of the toric line bundles are defined
everywhere, and so are the corresponding sections (by Hartogs). By twisting back with
OC (BK) we obtain an extension of the quasimap we started with. There may be two
(fixable) issues at this point: basepoints may coincide with nodes or markings in the
central fiber, which can be resolved by blowing-up (the process terminates because the
newly created rational components have nontrivial quasimap degree); finally unstable
components, that are (−2)-curves on which the line bundles and sections are constant,
may be contracted by Artin’s theory and all the data descend.

As for the (dual) perfect obstruction theory, the morphism to the fiber product of
universal Picard stacks overMg ,n that forgets the sections (uρ),

Qg ,n (X, β) → ×
ρ∈Σ(1),Mg ,n

(
Pic

dρ
g ,n

)
admits a virtual tangent bundle given by

⊕
ρ∈Σ(1) R• π∗Lρ, where π : C → Qg ,n (X, β) is

the universal curve andLρ are (linear combinations of) the universal line bundles (see also
[Wan12,CL12]). On the other hand the Euler sequence for X induces an exact sequence

0→ O⊕ rk Pic(X)
C

→

⊕
ρ∈Σ(1)

Lρ → FX → 0

on the universal curve, which shows that a compatible perfect obstruction theory relative
to Mg ,n is given by R• π∗FX . Notice that the latter agrees with R• π∗ f ∗TX on the open
locus of quasimaps with no basepoints (i.e. maps).

In particular Qεg ,n (X, β) is endowed with a virtual class of the same dimension as
[M g ,n (X, β)]vir. For cohomology classes δi ∈ H∗(X,Q) and natural numbers ai , i �

1, . . . , n, we may therefore define descendant ε-quasimap invariants by:

〈τa1 (δ1), . . . , τan (δn)〉X,εg ,n ,β �

∫
[Qεg ,n (X,β)]vir

n∏
i�1

ev∗i (δi)ψ
ai
i .

Remark 1.1.8. A fully-basepoint quasimap in case g � 1, n � 0 may generate some
confusion as to whether it has a finite automorphism group or not. Notice though that
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the translation action is non-trivial on the line bundles.

1.1.3. The collapsing morphism. I shall start this section with an example.

Example 1.1.9. Consider the evaluation map ev: M0,2(P2 , 1) → P2
× P2: when the two

image points are distinct, the map must necessarily parametrise the line between them,
while when they coincide we are left with choosing a line through that point. This shows
that M0,2(P2 , 1) ' Bl∆ P2

× P2, and ev is the blow-down map. In fact the exceptional
divisor consist of maps with a rational tail of degree 1, and a 3-pointed P1 mapping to
a point. On the other hand ev: Q0,2(P2 , 1) ' P2

× P2. The modular interpretation of the
blow-down map is that it collapses rational tails to basepoints. This is in fact a general
feature of quasimaps to projective space.

Lemma 1.1.10. There is a birational collapsing morphism χ : M0,n (PN , d) → Q0,n (PN , d) .

Here is an outline of the proof. We need to find a line bundle on the universal curve
that gives us the contraction q : C → Ĉ. If we work over Picd0,n � Mwt�d

0,n , the locus Tδ

spanned by rational tails (trees) of (total) degree δ is a Cartier divisor in the universal
curve C → Picd0,n . By pulling back to the universal curve overM0,n (PN , d), we see that
the line bundle

ωC *
,

n∑
i�1

xi+
-
⊗ f ∗OPN (1) ⊗

⊗
0<δ≤d

OC

(
(δ − 1)Tδ

)
is semiample and trivial precisely on the rational tails. On the other hand the uni-
versal sections u0 , . . . , uN of f ∗OPN (1) induce sections ũ0 , . . . , ũN of L̃ :� f ∗OPN (1) ⊗⊗

0<δ≤d OC
(
δTδ

)
, that are constant along the rational tails by degree reasons, hence de-

scend to sections ū0 , . . . , ūN of L̂ � q∗(L̃) (with basepoints appearing where there used
to be a rational tail).

Remark 1.1.11. A proof attributed to Jun Li can be found in [LLY97, Lemma 2.6] for
the parametrised/graph space; a more careful weighting of the line bundles shows that
the collapsing can be performed step-by-step, i.e. for every ε1 < ε2 there is a proper
morphism:

Q
ε2
0,n (PN , d) → Qε1

0,n (PN , d),

which was exploited for example in [MM07] to study the Chow ring of such spaces,
and is at the core of the wall-crossing formulae of [Tod11] and [CFK14]. The statement
generalises well to higher genus - where it is only a virtually birational morphism, see
[MOP11, Theorem 3] and [Man12b, Proposition 4.21]; instead it does not extend to the
case that the target is any toric variety. The problem is that there could be some toric
line bundle of negative degree along a rational tail; examples arise already from the
Hirzebruch surface F1. A lengthier discussion can be found in [BN17, Appendix A].

1.1.4. Generating functions and ε-wallcrossing. If we fix X and the numerical invari-
ants g , n , β, the quasimap spaces determine a finite wall-and-chamber structure on Q>0,
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such that Qεg ,n (X, β) is constant for ε in a fixed chamber, and changes across finitely
many values of ε. I will briefly report on the beautiful results of Ciocan-Fontanine and
Kim [CFK14,CFK17,CFK16] entailing relationships between the virtual classes and the
resulting invariants when crossing an ε-wall.

Let me introduce somemore notation. Fix a homogeneous basis η0 , . . . , ηl of H∗(X) �
H∗(X,Q), with dual basis η0 , . . . , ηl with respect to the intersection product 〈·, ·〉, and
let t �

∑l
i�0 tiηi be a general element of H∗(X). Let Λ be the Novikov ring obtained by

completing the polynomialQ-algebra associated to themonoid H+

2 (X) along themaximal
ideal of non-invertible elements. Adopting double bracket notation:

〈〈τa1 (δ1), . . . , τan (δn)〉〉εg ,n (t) �
∑

β∈H+

2 (X)
m≥0

qβ

m! 〈δ1ψ
a1
1 , . . . , δnψ

an
n , t, . . . , t〉εg ,n+m ,β

wemayconsider the big Jε-function as agenerating series for genus 0 ε-quasimap invariants
assuming the following form:

Jε (q , t , z) � 1 +
t
z
+

l∑
i�0

ηi

∑
β>0,OX (1)·β≤1/ε

qβ Jεi ,β (z) +
l∑

i�1
ηi 〈〈

ηi

z(z − ψ1)
〉〉
ε
0,1(t). (1.2)

Remark 1.1.12. Among the variations on the notion of quasimaps, that of parametrised
quasimaps is relevant here: QGεg ,n (X, β) involves the extra data of a map of degree 1 to
P1, singling out a specific rational component C0 of C, which is exempt from satisfying the
ε-stability condition; the ε � ∞ case recovers the well-known construction of the graph
space M g ,n (X × P1 , (β, 1)) in Gromov-Witten theory. The Gm-action on P1, fixing two
points 0 and∞, lifts to an action on QGεg ,n (X, β), and the Jε-function is defined as a sum
of residue integrals along some specialGm-fixed loci F0, namely those where all the curve
class is supported over 0 ∈ P1:

Jε (q , t , z) �
∑

m≥0,β≥0
qβ ev0,∗

(∏m
i�1 evi (t)

m! ∩ ResF0[QGε0,m (X, β)]vir
)

;

it is understood that the first three terms in the expression (1.2) correspond to the unstable
F0 terms in the above sum, i.e. (m , β) � (0, 0), (1, 0), and m � 0, β , 0 but OX (1) · β ≤ 1/ε
respectively. J∞(q , t , z) coincideswithGivental’s big J-function; on the other handCiocan-
Fontanine and Kim denote J0+(q , t , z) by I(q , t , z).

Definition 1.1.13. The small Jε-function is obtained by restricting to t � 0.

The small I-function plays a central role in the theory, and it turns out that all small
Jε-functions are polynomial q-truncations of the small I-function. The latter has been
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computed by Givental for toric targets and it is given by the following expression:

I(q , 0, z) �
∑
β≥0

qβ
∏
ρ∈Σ(1)

∏Dρ ·β

i�0 (Dρ + iz)∏
ρ∈Σ(1)

∏Dρ ·β

i�−∞(Dρ + iz)
. (1.3)

Define I0(q) � 1 + O(q) ∈ Λ and I1(q) ∈ qH≤2(X,Λ) as the following coefficients in
the 1

z -expansion

I(q , 0, z) � I0(q)1 + I1(q)
1
z
+ O(

1
z2 ).

Remark 1.1.14. In the toric semipositive case (−KX nef), it can be computed from (1.3) that
I0(q) � 1, and I1(q) is a sum over those curve classes β ∈ Ker(−KX ·) such that there is
exactly one ray ρβ ∈ Σ(1) satisfying Dρβ · β < 0:

I1(q) �
∑

KX ·β�0
∃!ρβ :Dρβ ·β<0

qβDρβ

(−1)Dρβ ·β+1(−Dρβ · β − 1)!∏
ρ′,ρβ (Dρ′ · β)! .

Let me introduce one more generating function: the Sε-operator is defined by

Sε (q , t , z)(η) �
l∑

i�0
ηi 〈〈

ηi

z − ψ1
, η〉〉ε0,2(t).

Lemma 1.1.15 (Birkhoff factorisation). [CFK14, Theorem 1.3.1] In the toric semipositive
case Jε (q , t , z) � Sε (q , t , z)(1).

Remark1.1.16. S∞(q , t , z)(1) recoversGivental’s fundamental solutionmatrix inGromov-
Witten theory.

Theorem 1.1.17. [CFK14, Theorem 1.2.2] In the toric semipositive case

Jε (q , t , z) � J∞(q , t + Jε1 (q), z)

and in particular∑
β∈H+

2 (X)

qβ〈τa1 (δ1), δ2 , . . . , δn〉
ε
0,n ,β �

∑
β′∈H+

2 (X)

qβ
′
∑
m≥0

1
m! 〈τa1 (δ1), δ2 , . . . , δn , Jε1 (q), . . . , Jε1 (q)〉ε0,n+m ,β′ .
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More generally [CFK17, Theorem 1.3.2]∑
β∈H+

2 (X)

qβ〈τa1 (δ1), . . . , τan (δn)〉εg ,n ,β �

∑
β′∈H+

2 (X)

qβ
′
∑
m≥0

1
m! 〈τa1 (δ1), . . . , τan (δn), Jε1 (q), . . . , Jε1 (q)〉εg ,n+m ,β′ .

Remark 1.1.18. 0+ ≤ ε1 < ε2 ≤ ∞wall-crossing follows from the formulae above and the
invertibility of t 7→ t + Jε1 .

Remark 1.1.19. Ciocan-Fontanine and Kim proved the genus 0 formulae in greater gen-
erality for semipositive GIT quotients admitting a torus action with isolated fixed points
- in which case, though, the formula I have written above is not quite right: some Jε0 (q)
factors must be introduced.

Their proof of the genus 0 result follows from a careful analysis of the fixed loci of
the T-action on Qε0,2+m (X, β) and how they change under embedding of X in projective
space postcomposed with the collapsing morphism. The more general statement follows
from an extension of Dubrovin’s reconstruction that allows one to reduce any invariant
to one-pointed descendant invariants. The higher genus result for semipositive toric
varieties follows from an application of the localisation formula, which expresses the
residue integrals as products of vertex, edge, and flag contributions, and the genus-
invariance of certain universal polynomials appearing at the vertices, a lemma inspired
by [MOP11, §7.6].

I will now review a number of basic properties of quasimap spaces and comment on
those that differ from ordinary Gromov-Witten theory.

1.1.5. Functoriality. A toric morphism f : X → Y between smooth projective toric vari-
eties induces amorphismat the level of quasimap spacesQ( f ) : Qg ,n (X, β) → Qg ,n (Y, f∗β)
(i.e. toric quasimaps are functorial). This is slightly more complicated than postcompos-
ing with f , but it has to coincide with this operation on the locus of quasimaps with
no basepoints. Notice that Cox’s description of the functor of points of a smooth toric
variety becomes particularly useful when the source X is also toric, since [Cox95b] allows
us to describe line bundles on X and their global sections in terms of the homogeneous
coordinate ring SX � C[zρ : ρ ∈ ΣX (1)] . Putting these results together the following
holds:

Theorem 1.1.20. [Cox95a, Theorem 3.2] A toric morphism f : X → Y as above is equiv-
alent to the following data: ∀τ ∈ ΣY (1) homogeneous polynomials Pτ ∈ SX

δτ
, where

δτ � f ∗OX (Dτ) ∈ Pic(X), and SX
δτ

is the corresponding graded piece of the Cox ring of X.
These are required to satisfy the following two conditions:

1.
∑
τ∈ΣY (1) δτ ⊗ vτ � 0 in Pic(X) ⊗NY , where vτ is the primitive generator of the ray τ.
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2. (Pτ (zρ)) < Z(ΣY) ⊆ AΣY (1) whenever (zρ) < Z(ΣX) ⊆ AΣX (1) , where Z(Σ) ⊆ AΣ(1)

is the unstable locus determined by the Stanley-Reisner ideal of Σ.

Furthermore, two such sets of data (Pτ) and (P′τ) correspond to the same morphism if
and only if there exists a λ ∈ HomZ(Pic Y,Gm) such that

λ(Dτ) · Pτ � P′τ

for all τ ∈ ΣY (1).

If we set f̃ (zρ) � (Pτ (zρ)), then this defines a lift of f to the prequotients:

AΣX (1)
\ Z(ΣX) AΣY (1)

\ Z(ΣY)

X Y

f̃

qX qY

f

The second property above states precisely that f̃ −1(Z(ΣY)) ⊆ Z(ΣX). The last statement
of the theorem explains that the ambiguity in the choice of a lifting f̃ corresponds exactly
with the torus action on AΣY (1) .

Functoriality for quasimaps essentially comes from composing with f̃ in local trivial-
isations for (Lρ , uρ)ρ (or thinking of quasimaps as maps to the stack quotient). In terms
of line bundles and sections, suppose we are given a quasimap to X:

ξ �

(
(C, x), (Lρ , uρ)ρ∈ΣX (1) , (ϕm)m∈MX

)
,

and we want to associate to it a quasimap to Y. First of all we should stabilise the
curve: if C0 is an irreducible component of C which is isomorphic to P1 with two special
points and has class β0 for the quasimap, such that f∗(β0) � 0, then we may choose a
polarisation OY (1) on Y; writing f ∗O(1) �

⊗
ρ∈ΣX (1) OX (Dρ)⊗cρ , it follows that the line

bundle ωC (x) ⊗
⊗

ρ∈ΣX (1) L
⊗cρ
ρ is semiample on C and contracts all C0 as above. Call

q : C → C̄ the resulting contraction morphism.
Pick data (Pτ)τ∈ΣY (1) associated to f , and write

Pτ (zρ) �
∑
aτ
µa

∏
ρ∈ΣX (1)

z
aτρ
ρ ,

where aτ � (aτρ) ∈ NΣX (1) is such that [aτ] � δτ ∈ Pic(X). Choose one such aτ; notice that
all other bτ with [bτ] � δτ differ from aτ by a uniquely determined element of MX , due
to the exact sequence (1.1). Set Lτ �

⊗
ρ∈ΣX (1) L

⊗aτρ
ρ ; then

∏
ρ∈ΣX (1) u

aτρ
ρ is a section of Lτ,

and so are ϕbτ−aτ (
∏
ρ∈ΣX (1) u

bτρ
ρ ); we may then set

uτ :� µaτ
∏

ρ∈ΣX (1)

u
aτρ
ρ +

∑
aτ,bτ :[bτ]�δτ

µbτϕbτ−aτ
*.
,

∏
ρ∈ΣX (1)

u
bτρ
ρ

+/
-
.
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Notice that (Lτ , uτ) are trivial/constant along the fibers of q, hence they descend to
(L̄τ , ūτ) on C̄. We only need to define ϕmY :

⊗
τ∈ΣY (1) L̄〈mY ,vτ〉

τ ' OC̄ for mY in MY .

The left hand side can be expanded as q∗
(⊗

ρ∈ΣX (1) L
∑
τ∈ΣY (1) aτρ 〈mY ,vτ〉

ρ

)
. I claim that

there is a unique mX ∈ MX such that

(〈mX , vρ〉)ρ � (
∑

τ∈ΣY (1)

aτρ〈mY , vτ〉)ρ .

Again by the exact sequence (1.1), this is equivalent to∑
ρ∈ΣX (1)

∑
τ∈ΣY (1)

aτρ〈mY , vτ〉OX (Dρ) � 0 ∈ Pic(X).

But since δτ �
∑
ρ∈ΣX (1) aτρOX (Dρ) ∈ Pic(X), this is precisely condition (1) in 1.1.20. We

can set ϕmY � q∗(ϕmX ) for the unique mX that we have thus found.
Finally, notice that the basepoint set of

ξ′ :�
(
(C̄, x̄), (L̄τ , ūτ)τ∈ΣY (1) , (ϕmY )mY∈MY

)
is the image of that of ξ under q, hence it is a finite set of non-special points by construction;
also, ξ′ is stable by the very construction of q. We may therefore set Q( f )(ξ) � ξ′.

Remark 1.1.21. We have proved in [BN17, Lemma B.5] that if f is finite onto its image
(i.e. it does not contract any effective curve class in X) and Qg ,n (Y, f∗β) is unobstructed,
then Q( f ) admits a perfect obstruction theory compatible with the ones concerned, hence
Q( f )![Qg ,n (Y, f∗β)] � [Qg ,n (X, β)]vir. I review this in a special case in Lemma 1.3.10 below.

Remark 1.1.22. I. Ciocan-Fontanine has kindly pointed out that, contrary to the case of
stable maps, Q( f ) might not be a closed embedding, even if f is. Consider the Segre
embedding:

P1
× P1 i

↪−→ P3

([x : y], [z : w]) 7→ [xz : xw : yz : yw]

Consider the induced morphism between quasimap spaces

k : Q0,3(P1
× P1 , (2, 2)) → Q0,3(P3 , 4)

and the following two objects of Q0,3(P1
× P1 , (2, 2)):((

P1
[s:t] , 0, 1,∞

)
,
(
L1 � OP1 (2), u1 � s2 , v1 � st

)
,
(
L2 � OP1 (2), u2 � st , v2 � t2

))((
P1

[s:t] , 0, 1,∞
)
,
(
L1 � OP1 (2), u1 � st , v1 � t2

)
,
(
L2 � OP1 (2), u2 � s2 , v2 � st

))
These two quasimaps are non-isomorphic, but they both map to the same object under k,
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namely: ((
P1

[s:t] , 0, 1,∞
)
,
(
L � OP1 (4), z0 � s3t , z1 � s2t2 , z2 � s2t2 , z3 � st3

))
Notice that this only happens on the locus of quasimaps with basepoints.

1.1.6. Splitting axiom and CohFT. This is discussed e.g. in [CFK17, §2.3.3]. There is a
morphism fgt : Qεg ,n (X, β) → M g ,n given by stabilising the source curve and forgetting
all the extra data. For every ε ∈ Q>0 and 2g − 2+ n > 0 there is a system of Λ-linear maps

Ωεg ,n : H∗(X,Λ)⊗n
→ H∗(M g ,n ,Λ)

Ωεg ,n (⊗n
i�1δi) � fgt

∗
*
,
[Qεg ,n (X, β)]vir

∩

n∏
i�1

ev∗i (δi)+
-

The splitting axiom holds for ε-quasimaps by noticing that the proof in [Beh97] is ε-
independent; the details have been explicitly worked out in [BN17, Appendix B.3]. Recall
its content: given a stable splitting ξ � ((g1 , S1), (g2 , S2)) such that g � g1 + g2 and
[n] � S1

∐
S2, there is a divisor ιξ : Dξ ↪→M g ,n , whose pullback under fgt is a boundary

(virtual) divisor Dε
ξ of Qεg ,n (X, β). Such a divisor can also be described as the image of

the proper gluing morphism from D̃ε
ξ, the latter being defined by the cartesian diagram

D̃ε
ξ

∐
β�β1+β2

β1 ,β2∈H+

2 (X)
Q
ε
g1 ,S1∪•

(X, β1) × Qεg2 ,S2∪•
(X, β2)

X X × X

� ev• × ev•

∆

Lemma1.1.23. Theabove construction is compatiblewithvirtual classes: ι!ξ[Qεg ,n (X, β)]vir �

∆!
(∑

β�β1+β2[Qεg1 ,S1∪•
(X, β1)]vir � [Qεg2 ,S2∪•

(X, β2)]vir
)
.

A consequence of this fact is that, if we write ι̃ξ : M g1 ,S1 ×M g2 ,S2 →M g ,n , the maps
{Ωεg ,n } satisfy:

ι̃∗ξ (Ωεg ,n (⊗n
i�1δi)) �

l∑
i�0
Ωεg1 ,|S1 |+1((⊗ j∈S1δ j) ⊗ ηi)Ωεg2 ,|S2 |+1((⊗ j∈S2δ j) ⊗ ηi),

and similarly for the irreducible boundary divisor. Hence {Ωεg ,n }2g−2+n>0 determine a
cohomological field theory over Λ on (H∗(X,Λ), 〈·, ·〉).

Finally define the ε-quasimap quantum product on generators by:

ηi ◦ε η j �

l∑
k�1

ηk 〈〈ηi , η j , η
k
〉〉
ε
0,3(t),

and extend by linearity to all of H∗(X,Λ). The small product is obtained by letting t � 0.
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Remark 1.1.24. The quasimap quantum product is clearly commutative; its associativity
(equivalent to the WDVV equation for the genus 0 ε-quasimap potential) follows from
considering the morphism fgt5,...,n ◦ fgt : Q0,n (X, β) →M0,4 ' P1 for n ≥ 4, pulling back
the rational equivalence between any two boundary points ofM0,4, and exploiting the
splitting axiom to deduce that the expression∑

β1+β2�β
n1+n2�n−4

〈〈A, B, δi1ψ
ai1
i1
, . . . , δin1

ψ
ain1
in1
〉〉0,2+n1 ,β1 〈〈C,D , δ j1ψ

a j1
j1
, . . . , δ jn2

ψ
a jn2
jn2
〉〉0,2+n2 ,β2

is totally symmetric in A, B, C,D.

1.1.7. String and dilaton equations. The relation between Qg ,n+1(X, β) and Qg ,n (X, β)
is delicate in quasimap theory; even when there is a forget and stabilise morphism (e.g.
for X � PN ), this may not be the universal curve, and the virtual classes may not be
compatible under pullback. As a consequence, the usual proof of the string, dilaton,
and divisor equation is not ε-independent. On the other hand Ciocan-Fontanine and
Kim proved that, for semi-positive targets, the string equation holds (with any number of
descendant insertions) for the class Jε0 (q)1 [CFK17, Proposition 3.4.1]. The same result for
at most one-pointed descendants is already contained in [CFK14, Corollary 5.5.4], and it
is sufficient in order to show that Jε0 (q)1 is the unit for the ε-quasimap quantum product
[CFK17, Remark 3.1.4]. Recall that I0(q) � 1 in the toric semipositive case, and Jε0 (q) is a
q-truncation of I0(q) for every ε. From these remarks the next lemma follows.

Lemma 1.1.25. Let X be a semipositive toric variety. The ε-quasimap quantum cohomol-
ogy (H∗(X,Λ), ◦ε) is an associative, commutative algebra with unit 1X .

Similarly they prove that the dilaton equation is satisfied by the class ( Jε0 (q)1)ψ− Jε1 (q)
[CFK17, Lemma 3.4.3]. We collect these results in the following lemma, restricting to the
special case of semipositive toric varieties.

Lemma 1.1.26. In the tori semipositive case, the following equations hold.

〈τa1 (δ1), . . . , τan (δn), 1〉g ,n+1,β �

n∑
i�1
〈τa1 (δ1), . . . , τai−1(δi), . . . , τan (δn)〉g ,n ,β (string)

∑
β

qβ〈τa1 (δ1), . . . , τan (δn), ψ − Jε1 (q)〉g ,n+1,β �

(2g − 2 + n)
∑
β

qβ〈τa1 (δ1), . . . , τai−1(δi), . . . , τan (δn)〉g ,n ,β (dilaton)

where the sum is over the effective curve classes β such that 2g − 2 + n + εOX (1) · β > 0.
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1.1.8. Divisor equation and final remarks. On the other hand the divisor equation does
not hold in general in the toric semipositive case. This can be seen by looking at the wall-
crossing formulae of Theorem 1.1.17 and observing that, applying the divisor equation
on the Gromov-Witten side, the coefficient coming out is not the same for all addends;
indeed it depends on the curve class, and there can be many different β′ contributing to
the same β on the quasimap side. Notice though that the divisor equation holds in the
toric Fano case.

It is a consequence of thewall-crossing formulae that the big J and I functions coincide
in the toric Fano case; in fact in this case the mirror map is trivial, i.e. I1(q) � 0, so in
particular the quasimap invariants are ε-independent. It is well-known that the small
quantum cohomology coincides with the Batyrev’s quantum ring in the toric Fano case
[CK99, Example 11.2.5.2]. They may instead be different in the −KX nef, non-Fano case.
I will recall the definitions involved in Batyrev’s ring for the reader’s convenience (see
[Bat93] and [CK99, Example 8.1.2.2]).

Definition 1.1.27. A primitive collection P � {vρ1 , . . . , vρk } is a collection of rays of Σ such
that it is not contained in any cone of Σ and it is minimal with such property.

It is well-known that the cohomology of the toric variety XΣ is generated by divisors,
and it is isomorphic to C[xρ]ρ∈Σ(1)/(P(Σ) + SR(Σ)), where P(Σ) � 〈

∑
ρ∈Σ(1) 〈m , vρ〉xρ :

m ∈ M〉 is the ideal of linear equivalences imposed by the character lattice of the torus,
and SR(Σ) � 〈xρ1 · · · xρk : {vρ1 , . . . , vρk } is a primitive collection〉 is the Stanley-Reisner
ideal defining the unstable locus in the affine prequotient.

Every primitive collection P gives rise to an effective curve class as follows: the sum of
P lies in the interior of some cone σ′, hencewemaywrite vρ1 + . . .+vρk � c1vρ′1 + . . .+ch vρ′h
for some positive integers {c j }. Dualising the exact sequence (1.1), we obtain

0→ H2(X) → ZΣ(1)
→ N → 0,

hence the above relation among the vρ determines a curve class, which Batyrev showed
to be effective, and which is denoted by β(P).

Batyrev’s quantum ring is a q-deformation of ordinary cohomology, defined as

QH∗ω (XΣ ,C) :� C[xρ]ρ∈Σ(1)/(P(Σ) + SRω (Σ)),

where

SRω (Σ) � 〈xρ1 · · · xρk − qβ(P)xc1
ρ′1
· · · xch

ρ′h
: P is a primitive collection〉.

Since Batyrev’s ring naively accounts for smooth rational curves in the toric variety,
roughly speaking the difference resides in the count of nodal curves (see [Spi02] for a
discussion that motivated this remark); on the other hand quasimaps make rational tails
unstable, so it might be tempting to wonder whether the small quasimap cohomology is
always isomorphic to the Batyrev’s ring in the semipositive case.
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Unfortunately the answer is negative: as a counterexample consider the Hirzebruch
surface F2. Thinking of it as a projective bundle over P1, call F the the pullback of OP1 (1),
D∞ the section such that D2

∞ � −2 and D0 � D∞ + 2F; I will use square brackets when I
think of them as curve classes instead of as divisor classes. Then the relation D0∗D∞ � q[F]

holds in Batyrev’s ring. On the other hand,

I1(q) � −D∞ f (q[D∞]), where f (z) �
∑
k>0

zk (2k − 1)!
(k!)2 ,

and it can be shown by applying the wall-crossing formulae that

D0 ◦0+ D∞ � q[F] *
,
−e f (q[D∞])

+
e− f (q[D∞])

− 1
q[D∞]

+
-
.

In particular the two rings do not coincide on the nose, but rather only after a coordinate
transformation related to the mirror map.

One more comment is in order: since Witten’s genus 0 topological recursion re-
lation holds for ε-quasimaps by [CFK17, Corollary 2.3.4], it follows from the same
proof as in [CK99, Theorem 10.3.1] that a quantum differential operator annihilating
I(q , t |H≤2(X) , z) determines a relation in quasimap quantum cohomology. It is instead
not true that I(q , t |H≤2(X) , z) � e t/z I(q , 0, z) due to the failure of the divisor equation.
Hence I(q , t |H≤2(X) , z) does not necessarily satisfy the GKZ system as in [CK99, §5.5.3],
the relations associated to which give back precisely the Batyrev’s quantum ring.

§ 1.2. The localisation formula for toric quasimaps

The localisation formula is discussed in [CFK17, §5], as it is a fundamental tool in the
extension of the wall-crossing formulae to higher genus. I review it here and make a
further step towards explicitness by expressing the various contributions combinatorially
in terms of weights, following [Spi00].

1.2.1. Notation and weights. Fix a bĳection of Σ(1) and [N]. The (non-effective) action
of the big torus T � GN

m on X induces an action on Qg ,n (X, β), by scaling the sections. Let
me denote by λ1 , . . . , λN the corresponding weights, i.e. generators of the T-equivariant
cohomology of a point H∗T ({∗}). For this section let d denote the dimension of X.

Let me denote by {σi }i∈Σmax the T-fixed points on X (corresponding to maximal cones
ofΣ) and by {τi , j }i , j∈Σmax the 1-dimensional orbits (corresponding to facets of the maximal
cones; if it exists, τi , j connects σi and σ j). Write σi � σ j if σi and σ j are two adjacent
maximal cones; since X is smooth, {vρ}ρ≺τi , j ∪ {vd } is a Z-basis of N (where vd is the only
ray in σi , but not in τi , j), so we can find the dual basis {m1 , . . . ,md } of M. Define:

λσi
σ j �

∑
ρ∈Σ(1)

〈md , vρ〉λρ and λσtot �
∏

σ′∈Σmax : σ′�σ
λσσ′
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Notice that there is a correspondence between rays of σ and adjacent maximal cones,
via the complementary facet, resp. the intersection; I will denote by σ(ρ) the adjacent
maximal cone corresponding to ρ ≺ σ. Compare with [Spi00, §§6.4 and 7.3].

Lemma 1.2.1. Let σi be a T-fixed point on X and τi , j be a 1-dimensional orbit through it,
furthermore let Dρ be a toric divisor. Then the weight of the T-action on O(Dρ)σi is




λσi
σi (ρ) if ρ ≺ σi

0 otherwise.

The weight of the T-action on T (τi , j)σi is λ
σi
σ j .

Proof. Let σi be spanned by {vi1 , . . . , vid }. If [z1 : . . . : zN ] are homogeneous coordinates
on X, then local coordinates around σi are given by

*.
,

xi1 � zi1

∏
j,i1

z
〈mi1 ,v j〉

j , . . . , xid � zid

∏
j,id

z
〈mid ,v j〉

j
+/
-
,

where {mi1 , . . . ,mid } is the dual basis of {vi1 , . . . , vid }.
If ρ ⊀ σi then the weight is 0 because we can find a divisor representing O(Dρ) that

does not pass through σi . Otherwise ρ � i j for some j ∈ {1, . . . , d}, so Dρ has local
equation xi j � 0 near σi , which makes the first statement clear.

The second part follows from the exact sequence

0→ Tτi , j → TX |τi , j →

⊕
ρ≺τi , j

Oτi , j (Dρ) → 0

together with the Euler exact sequence for TX and the first part. �

1.2.2. T-fixed loci. Are indexed by decorated graphs
(
Γ, v , γ, b , ε, δ, µ

)
where:

1. Γ � (V, E) is a connected graph with vertex set V and edge set E (no self-edges
allowed); let me denote by F the set of flags f � (v , e) such that v is adjacent to e;

2. v: V → {σi }i∈Σmax assigns a fixed point to each vertex;

3. γ : V → N is a genus assignment;

4. b : V → H+

2 (X,Z) assigns an effective curve class to each vertex;

5. ε : E → {τi , j }i , j∈Σmax assigns a one-dimensional orbit to each edge;

6. δ : E → N≥1 specifies the degree of the covering map;

7. µ : {1, . . . , n} → V is a distribution of the markings among the vertices.

These data are required to satisfy a number of compatibility conditions:
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• total genus h1(Γ) +
∑

v∈V γ(v) � g;

• total degree
∑

v∈V b(v) +
∑

e∈E δ(e)[ε(e)] � β;

• e is compatible with v;

• b is compatible with v, namely Dρ · b(v) ≥ 0 for all ρ ⊀ v(v).

Let me denote by val : V → N≥1 the number of edges adjacent to a vertex, and by
deg: V → N≥2 the sum of val with the number of marked points associated to each
vertex.

The corresponding T-fixed locus is isomorphic, up to a finite map, to:

MΓ :�
∏
v∈V

Mγ(v),deg(v) |
∑
ρ⊀v(v) Dρ ·b(v)

Recall Example 1.1.6. The moduli spaces corresponding to degenerate vertices (deg(v) �
2, γ(v) � 0, and b(v) � 0) are treated as points in this product; let me denote the collection
of such vertices by Vdgn, and in particular by Vdgn

val�2 those with valence 2 (corresponding
to nodes between two non-contracted components). The finite map has degree

aΓ :� |A| ·
∏
v∈V

∏
ρ⊀v(v)

(Dρ · b(v))!

where |A| can be extrapolated from

0→
∏
e∈E

Z/δ(e)Z→ A→ Aut(Γ) → 0.

The corresponding quasimap can be described as follows: edges correspond to maps
(without basepoints) from P1 to the corresponding 1-dimensional T-orbit ε(e), of degree
δ(e), and totally ramified at the two T-fixed points. For a vertex v ∈ V : notice that, for
every maximal cone σi , the collection {Dρ}ρ⊀σi constitutes a basis of Pic(X) (since every
support function can be made into vanishing on every ρ ≺ σi by subtracting an appropri-
ate m ∈ M). According to v(v) � σi then, we may write O(Di j ) �

⊗
ρ⊀σi
O(Dρ)⊗ai j ,ρ for

each i j , j � 1, . . . , d such that vi j ∈ σi . For a marked curve Cv in the mixed moduli space
Mγ(v),deg(v) |

∑
ρ⊀σi Dρ ·b(v) with markings

{p1 , . . . , pdeg(v) } ∪
⋃
ρ⊀σi

{qρ,1 , . . . , qρ,Dρ ·b(v) }

the corresponding quasimap is given by:

*.
,
(Cv , p), (OCv ↪→ OCv (

Dρ ·b(v)∑
j�1

qρ, j) �: Lρ)ρ⊀σi , (OCv

0
−→

⊗
ρ⊀σi

L
⊗ai j ,ρ

ρ �: Li j ) j�1,...,d
+/
-

Gluing along flags f ∈ F is possible by the required compatibilities.
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1.2.3. The obstruction theory. Recall that the obstruction theory of Qg ,n (X, β) relative
toMg ,n is given by R• π∗FX , where FX is defined on the universal curve

0→ OCQ ⊗ t →
⊕
ρ∈Σ(1)

Lρ → FX → 0, (1.4)

t being the Lie algebra of the torus G :� Hom(Pic(X),Gm), and the first map being
determined by the derivative of the action of G on AN at the identity element of G.

For a quasimap
(
(C, p), (Lρ , uρ)

)
there is therefore an exact sequence:

0→ Ext0(ΩC (p),OC) → H0(C, FX) → T 0
|C →

→ Ext1(ΩC (p),OC) → H1(C, FX) → T 1
|C → 0

where T 0
− T

1 is the class of the tangent-obstruction bundle in K-theory. Denote by
B1 , . . . , B6 the terms appearing in the above exact sequence, by (−) f and (−)m their fixed
andmoving parts respectively. We can study thembymeans of the (partial) normalisation
sequence, which displays their contributions as a product of vertex, edge, and flag factors.

Recall that an object is fixed if, for every element of the torus, we can find an isomor-
phism between it and its image under the torus action. Observe that the edge factors are
just the same as in the stable maps case. On the other hand, a vertex contribution may
come from a totally basepoint quasimap; in this case, write σi :� v(v) � 〈ρi1 , . . . , ρid 〉,
and notice that the d (zero) sections ui1 , . . . , uid are going to be unaffected by the torus
action, while the non-trivial action of a torus element on {uρ}ρ⊀σi can be adjusted by
taking an appropriate automorphism of the corresponding line bundles (of which there
are precisely rk Pic(X)); the underlying curve Cv is not altered by the action, i.e. we can
take idCv .

Focussing on the fixed part first, observe that B f
1 comprises a 1-dimensional contri-

bution from both the edges and the genus 0, deg(v) � 2 (b(v) , 0) components. B f
4

corresponds to deformations of the contracted components. On the other hand the fixed
part of B2 and B5 may be simultaneously studied from the normalisation exact sequence:

0→ H0(C, FX) →
⊕
v∈V

H0(Cv , FX |Cv ) ⊕
⊕
e∈E

H0(Ce , FX |Ce ) →
⊕

f�(v ,e)∈F

TXv(v)

→ H1(C, FX) →
⊕
v∈V

H1(Cv , FX |Cv ) ⊕
⊕
e∈E

H1(Ce , FX |Ce ) → 0

(for degenerate vertices v ∈ Vdgn
val�2, it ismeant thatH0(Cv , FX |Cv ) � TXv(v) cancels outwith

one of the corresponding flag terms, and H1(Cv , FX |Cv ) � 0.) The only contribution to the
fixed part comes from H0(Cv , FX |Cv ): set σi � v(v) as above, and choose {OX (Dρ)}ρ⊀σi as
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a basis of Pic(XΣ); then the exact sequence (1.4) can be rewritten as

0→ O⊕r
C

(can,0)
−−−−−→

⊕
ρ⊀σi

Lρ︸  ︷︷  ︸⊕
d⊕

j�1
Li j → FX → 0

�

⊕
ρ⊀σi

OC (
Dρ ·b(v)∑

j�1
q j)

(1.5)

The fixed part of B2−B5 results in ⊕ρ⊀σi H
0(C,OC (q)|q), which coincides with the relative

tangent ofM g(v),val(v) |
∑
ρ⊀σi Dρ ·b(v) overMg(v),val(v) . This discussion proves that the fixed

part of the restriction of the perfect obstruction theory to the fixed loci corresponds to
their tangent bundle. Let us move on to the moving part.

As compared to the case of stable maps, the stability condition implies that there
are no rational tails of any degree, hence Bm

1 � 0 (see [Spi00, Lemma 7.2]). One more
convention: for a flag f � (v , e), if v(v) � σi and ε(e) � τi , j , denote by λ f :� 1

δ(e)λ
σi
σ j .

Since deformations of contracted components are T-fixed, Bm
4 comes from smoothing

nodes between a non-contracted component and:

• another non-contracted component: i.e. v ∈ Vdgn
val�2; if f1 � (v , e1) and f2 � (v , e2)

are the two flags containing it, then the weight is given by λ f1 + λ f2 ;

• a contracted component: such a node determines a marking on the corresponding
contracted component, and let ψ f denote the first Chern class of the cotangent line
bundle at that point; in this case the flag f � (v , e) is such that v is non-degenerate,
and the contribution is given by λ f − ψ f .

Summing up, we have the following (see [Spi00, Lemma 7.3]):

Lemma 1.2.2. The moving part from deformations of the underlying curve can be ex-
pressed as:

eT (Bm
4 ) �

∏
f ∈F : v( f )∈Vnon-deg

(λ f − ψ f )
∏

v∈Vdgn
val�2 : v∈ f1 , f2

(λ f1 + λ f2 ),

Finally, the moving part of B2 − B5 can be analysed from the normalisation exact
sequence, which we rewrite as:

H0(C, FX) − H1(C, FX) �
⊕
v∈V

H0(Cv , FX |Cv ) −
⊕
v∈V

H1(Cv , FX |Cv )

+

⊕
e∈E

H0(Ce , f ∗e TX) −
⊕
e∈E

H1(Ce , f ∗e TX)

−

⊕
f�(v ,e)∈F

TXv(v)

(1.6)

The computation for the edge contributions is the same as in the stable maps case: one
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must take into account the torus action on the line bundle, but also a non-trivial action
on Ce (identified with that on ε(e) weighted by 1

δ(e) ); such an action can be understood
by Lemma 1.2.1. Let me denote by σ1 and σ2 the image of the vertices of e, and for every
maximal cone σ2 , σ′�σ1 denote by d′e � O(Dρ′) · ε(e), where ρ′ is the ray corresponding
to σ′ under the bĳection discussed before Lemma 1.2.1. Compare with [Spi00, Lemma 7.4
and Corollary 7.5]. On the other hand the vertex contribution is easily computed from
(1.5) and Riemann-Roch.

Lemma 1.2.3. The edge contribution to the moving part is given by

eT (H0(Ce , f ∗e TX)m) � (−1)δe
(δe !)2

δ2δe
e

(λσ1
σ2 )2δe

∏
σ′∈Σmax:

σ2,σ′�σ1 ,d′≥0

d′∏
k�0

(λσ1
σ′ −

k
δe
λσ1
σ2 ),

and by Serre duality

eT (H1(Ce , f ∗e TX)m) �
∏

σ′∈Σmax:
σ2,σ′�σ1 ,d′≤−2

−2∏
k�d′

(λσ1
σ′ −

k + 1
δe

λσ1
σ2 ),

with notation as above. Notice that these expressions are independent of the ordering of
{σ1 , σ2}.

Lemma 1.2.4. The vertex contribution to the moving part is given by

eT (H0(Cv , FX |Cv )m
− H1(Cv , FX |Cv )m) �

d∏
j�1

(λσi
σi j

)di j−γ(v)+1
,

where σi � v(v), σi j � σi , and di j � OX (Di j ) · b(v) for the divisor associated to σi j . In
particular when γ(v) � b(v) � 0 this reduces to

eT (TXσi ) � λ
σi
tot.

1.2.4. Quasimap invariants. Recall that the cohomology of a smooth complete toric
variety H∗(X,Z) is generated by H2(X,Z) ' Pic(X), and in fact by the toric divisors;
choose one such basis D1 , . . . ,Dr . For cohomological insertions ξ1 , . . . , ξn , fix once and
for all a writing ξk �

∏r
i�1 D li ,k

i (this might automatically kill some of the fixed loci).

Proposition 1.2.5. The quasimap invariants of X are given by

〈ξ1 , . . . , ξn〉
0+
g ,n ,β �

∑ 1
aΓ

∫
MΓ

∏n
k�1

∏r
j�1(λk

j ) l j,k

eT (Nvir
Γ

)

where: the sum runs over all fixed point loci
(
Γ, v , γ, b , ε, δ, µ

)
as before; setting σ(k) �
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v(µ(k)), λk
j is given by:




0 if v j < σ(k);

λσ(k)
σ( j) if v j ∈ σ(k) and σ( j) � σ(k) is complementary to v j ;

and the weight of the virtual normal bundle is given by

1
eT (Nvir

Γ
)
�

∏
f ∈F : v( f )∈Vnon-deg

1
λ f − ψ f

·

∏
v∈Vdgn

val�2
fi :�(v ,ei )∈F,i�1,2

1
λ f1 + λ f2

·

∏
e∈E,δe :�δ(e),
{σ1 ,σ2}:�v{∂e}

*....
,

(−1)δe δ2δe
e

(δe !)2(λσ1
σ2 )2δe

∏
σ′∈Σmax :

σ2,σ′�σ1 ,d′�O(Dρ′ )·ε(e)

∏
−1
k�d′+1(λσ1

σ′ −
k
δe
λσ1
σ2 )∏d′

k�0(λσ1
σ′ −

k
δe
λσ1
σ2 )

+////
-

·

∏
v∈V

σ:�v(v)

∏
σ′∈Σmax : σ′�σ

1
(λσσ′)

Dρ′ ·b(v)
·

∏
v∈V

(λv(v)
tot )val(v)+γ(v)−1

.

1.2.5. An example: F2. As an application I compute a quasimap invariant of the Hirze-
bruch surface F2 and compare it to the corresponding Gromov-Witten invariant. The
moment polytope is:

σ1 Z3 σ2

Z2

σ3Z4σ4

Z1

The cohomology ring is given by:

H∗(F2 ,Z) ' Z[Z1 , . . . , Z4]/〈Z1 − Z2 , Z4 − Z3 − 2Z2 , Z1Z2 , Z3Z4〉

The following are the weights of the G4
m-action:

λσ1
σ2 � −λ

σ2
σ1 λ1 − λ2 λσ3

σ4 � −λ
σ4
σ3 λ2 − λ1

λσ2
σ3 � −λ

σ3
σ2 2λ1 + λ3 − λ4 λσ4

σ1 � −λ
σ1
σ4 λ4 − 2λ2 − λ3

When thinking of them as curve classes, I shall write F � [Z1],D0 � [Z4],D∞ � [Z3].
I am going to compute 〈Z3 , Z4 , Z1Z4〉

F2 ,ε
0,3,D∞+F for ε � ∞, 0+.

The relevant graphs in the stable maps case are:
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{p2 , p3}

{p1}

F

D∞

Γ1
{p2 , p3}

{p1}

F

D∞

Γ2

For ε � 0+, Γ2 is unstable, instead we have to consider:

{p2 , p3}

F

{p1}, b � D∞

Γ̃2

The white circle indicates a basepoint component.
Using the above formula (and [Spi00, Theorem 7.8] to deal with Γ2) we compute the

following contributions:

• Γ1 - insertions: λσ2
σ3 · λ

σ4
σ1 · (λ

σ4
σ1λ

σ4
σ3 );

inverse normal bundle: 1
λ
σ4
σ1
·

1
λ
σ1
σ4+λ

σ1
σ2
·

(
−1

(λσ1
σ4 )2

1
λ
σ1
σ2

) (
−1

(λσ1
σ2 )2 (λσ1

σ4 + λ
σ1
σ2 )

)
.

• Γ2 - insertions: λσ1
σ4 · λ

σ4
σ1 · (λ

σ4
σ1λ

σ4
σ3 );

inverse normal bundle: (λσ1
σ2λ

σ1
σ4 ) · 1

λ
σ4
σ1

1
λ
σ1
σ2λ

σ1
σ4
· λσ2

σ1 ·

(
−1

(λσ1
σ4 )2

1
λ
σ1
σ2

) (
−1

(λσ1
σ2 )2 (λσ1

σ4 + λ
σ1
σ2 )

)
.

• Γ̃2 - insertions: λσ1
σ4 · λ

σ4
σ1 · (λ

σ4
σ1λ

σ4
σ3 );

inverse normal bundle: 1
λ
σ4
σ1

1
λ
σ1
σ4
·
−1

(λσ1
σ4 )2

1
λ
σ1
σ2
·

1
λ
σ1
σ2

(λσ1
σ4 )2.

Putting everything together we find:

〈Z3 , Z4 , Z1Z4〉
F2 ,∞
0,3,D∞+F � cont(Γ1) + cont(Γ2) �

λσ4
σ3 (−λσ2

σ3 + λ
σ1
σ4 + λ

σ1
σ2 )

(λσ1
σ2 )2 � −1,

while

〈Z3 , Z4 , Z1Z4〉
F2 ,0+
0,3,D∞+F � cont(Γ1) + cont(Γ̃2) �

−λσ4
σ3 (λσ2

σ3 + λ
σ4
σ1 )

(λσ1
σ2 )2 � −2.

§ 1.3. Relative quasimaps

The relative problem in Gromov-Witten theory consists in studying maps satisfying not
only incidence conditions, but also a tangency (multiplicity) requirement to a divisor. It
has seen great advancements in the past twenty years, of which I will sample some most
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relevant ones in algebraic geometry (there is an almost parallel and similarly rich story in
symplectic geometry):

• L. Caporaso and J. Harris’ count of planar curves [CH98];

• R. Vakil’s pioneering work on rational and elliptic curves in projective space, satis-
fying tangency conditions to a hyperplane [Vak00];

• A. Gathmann’s work in genus zero, enhancing the previous one to the case of a
smooth very ample divisor in any variety [Gat02];

• J. Li’s moduli space of maps to expanded targets, removing the ampleness hypothe-
sis on the divisor and developing the framework for the all important degeneration
formula [Li01,Li02];

• the latter has been reviewed by B. Kim exploiting more explicitly the relevant log-
arithmic structures [Kim10], and by D. Abramovich and B. Fantechi, who replaced
the cumbersome predeformability condition with a more tractable transversality
condition, after passing to a root stack [AF16];

• a host of recent works around D. Abramovich, Q. Chen, M. Gross, and B. Siebert’s
space of logarithmic stable maps [Che14b,AC14,GS13], which allows for example
the divisor to be simple normal crossing.

It would be interesting to have a full relative theory for ε-quasimaps, including a de-
generation formula and wall-crossing formulae for relative invariants as well; one ap-
plication (suggested by I. Ciocan-Fontanine) would be to the study of the higher genus
ε-quasimap invariants of the quintic threefold via Maulik-Pandharipande’s degeneration
scheme [MP06]. In [BN17] we have made a first step towards this program, namely we
have introduced spaces of genus 0 relative quasimaps to a smooth very ample divisor,
extending the work of Gathmann. Among the peculiarities of this approach are the fact
that the tangency needs not be maximal (i.e. not all intersection points of the curve with
the divisor must be marked with the respective tangency order requirement), and the
fact that the relative spaces are nested (they become smaller as the tangency requirement
gets higher), with a nice formula expressing their virtual classes in terms of one another,
corrected by a boundary term exhibiting a clear recursive structure. This led Gathmann
to the discovery of an algorithm for computing relative invariants, or, even further, re-
stricted invariants of the hyperplane section, recursively, starting from the descendant
theory of the ambient space; under positivity assumptions, he was able to realise this
in a different proof of what goes under the name of Givental’s mirror theorem, or the
quantum Lefschetz principle [Gat03b]. In this section I will report on my joint work with
N. Nabĳou [BN17].
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1.3.1. Review of Gathmann’s work. The starting point is the case of PN relative to a
hyperplane H. The most down-to-earth approach works in this case: chosen a tangency
condition α ∈ Nn with

∑
α ≤ d, Gathmann defines the relative spaceM0,α (PN

|H, d) ⊆
M0,n (PN , d) as the closureof the “nice” locusofmaps f : (P1 , x) → PN such that f (P1) ( H
and f −1(H) −

∑
αi xi is an effective divisor.

Lemma 1.3.1. [Gat02, Lemma 1.8] The nice locus is an irreducible locally closed substack
ofM0,n (PN , d) of codimension

∑
α.

Proof. It can be described as follows: there is a Gm torsor X overM0,n that parametrises(
(P1 , x1 , . . . , xn), s ∈ H0(P1 ,OP1 (

∑
α))

)
such that the vanishing locus of s is

∑n
i�1 αi xi . Letting

Y ⊆

(
VectX

(
π∗OP1 (d −

∑
α)

)
\ 0X

)
×X VectX

(
π∗OP1 (d)⊕N

)
be the open substack where st0 and t1 , . . . , tN do not have common zeroes, there is a
morphismY →M0,n (PN , d) given by(

(P1 , x), s , t0 , t1 , . . . , tN
)
7→

(
(P1 , x), f � [st0 : t1 : . . . : tN ]

)
,

which is a G2
m-torsor over the nice locus. The dimensional count is

(n − 3) + 1 + (d −
∑

α + 1) + N (d + 1) − 2 � dimM0,n (PN , d) −
∑

α.

�

Notice that this endowsM0,α (PN
|H, d) with a schematic structure.

Remark 1.3.2. Gathmann then proves [Gat02, Proposition 1.14] that the reducible maps
that lie in the closure can be characterised combinatorially as follows: (C, x1 , . . . , xn , f )
belongs toM0,α (PN

|H, d) if and only if, for each connected component Z of f −1(H) ⊆ C:

1. if Z is the i-th marking xi , then f is tangent to H at Z to order αi at least;

2. if Z is a curve - it is then a rational tree -, and if we let C(i) for 1 ≤ i ≤ r denote the
irreducible components of C adjacent to Z, and m (i) denote the multiplicity of f |C(i)

to H at the node Z ∩ C(i) (there is only one because g � 0), then:

H · f∗[Z] +
r∑

i�1
m (i)

≥

∑
xi∈Z

αi (1.7)

More generally, if we assume that Y is a very ample smooth divisor in the smooth
variety X, we may use the complete linear system associated to Y in order to embed
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φ |Y | : X ↪→ PN , and find a hyperplane H ⊆ PN such that H ∩ X � Y. Set d � φ |Y |,∗(β) for
a curve class β ∈ H+

2 (X). DefineM0,α (X |Y, β) by the following cartesian diagram:

M0,α (X |Y, β) M0,n (X, β)

M0,α (PN
|H, d) M0,n (PN , d)

� Φ|Y |

The afore-mentioned combinatorial de-
scription of degenerate relative maps works
as well for every such pair (X |Y), by just
replacing H with Y - in equation (1.7) the
first summand is the degree of f ∗

|ZNY/X .
Y

X
Z

C(2)
C(1)

xi
m (1)

m (2)

Figure 1.1: A degenerate relative map.

Furthermore R• π∗ f ∗NX/PN provides a compatible perfect dual obstruction theory for
Φ|Y | (since H1(P1 , f ∗OX (1)), which surjects onto H1(P1 , f ∗NX/PN ), vanishes - i.e. by the
unobstructedness ofM0,n (PN , d)), hencewemay endowM0,α (X |Y, β) with a virtual class

[M0,α (X |Y, β)]vir
� Φ!

|Y |,vir[M0,α (PN
|H, d)]

which also has the expected codimension
∑
α with respect to [M0,n (X, β)]vir.

As a side remark,Gathmanndidnot talk aboutvirtual pullback -whichwas introduced
later in [Man12a] - but defined [M0,α (X |Y, β)]vir as the refined intersection product of
[M0,α (PN

|H, d)] and [M0,n (X, β)]vir in the smooth DM stackM0,n (PN , d), i.e.

[M0,α (X |Y, β)]vir
� ∆!

(
[M0,α (PN

|H, d)] × [M0,n (X, β)]vir
)

where ∆ is the diagonal ofM0,n (PN , d) ×M0,n (PN , d). The two definitions coincide:

Lemma 1.3.3. [BN17, Lemma C.1] Let f : Y → X be a morphism of DM stacks over
a smooth base M, such that X → M is smooth, and there is a compatible triple of
obstruction theories

f ∗LX/M EY/M EY/X

f ∗LX/M LY/M LY/X

Id

[1]

[1]

Then, for every cartesian diagram

G F

Y X

g

q � p

f
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and every class α ∈ A∗(F), the diagonal pullback

f !
∆

(α) � ∆!
X/M ([Y]vir × α) ∈ A∗(G)

coincides with the virtual pullback of α along ( f , EY/X) .

Proof. Consider the following cartesian diagram:

G Y ×M F Y

F X ×M F X

X X ×M X

q×g

g �

pr1

f×Id � f

p×Id

p �

pr1

Id×p
∆X/M

Then, by commutativity of (virtual) pullbacks, we have

∆!
X/M ([Y]vir × α) � ∆!

X/M (( f !
vir[X]) × α)

� ∆!
X/M ( f !

vir([X] × α))

� f !
vir(∆!

X/M ([X] × α))

� f !
vir(α).

�

Noticeably from the combinatorial description, Gathmann’s relative spaces become
smaller as we increase the tangency requirement, and in particular M0,α+ek (X |Y, β) ⊆
M0,α (X |Y, β) is a virtual divisor (where ek is the k-th standard basis vector of Nn). In
order to describe its virtual class, Gathmann finds a line bundle onM0,α (X |Y, β) with a
section that vanishes alongM0,α+ek (X |Y, β), with a number of boundary correction terms.

Let me start with some heuristic: assume n � 1 for this. Let Y � V (s) ⊆ X. Then
M0,(1) (X |Y, β) ⊆ M0,1(X, β) is cut out by the section ev∗1(s) of ev∗1 OX (Y).

Key relation: tangency and ψ-classes. Now the restriction of ev1 toM0,(1) (X |Y, β)
lands into Y; by composing d fx1 : TCx1 → TX f (x1) with the projection to NY/X, f (x1) we get
a map that has to vanish if f is tangent to H at x1. Rearranging we get a section ev∗1(d1s)
of x∗1(T∗C) ⊗ ev∗1 OX (Y) that vanishes alongM0,(2) (X |Y, β) withinM0,(1) (X |Y, β).

More generally we may use the jet bundles (or bundles of principal parts) of OX (Y):
there is an exact sequence

0→ x∗1Ω
⊗α
C ⊗ ev∗1 OX (Y) → ev∗1P

α (OX (Y)) → ev∗1P
α−1(OX (Y)) → 0

and s induces a section ev∗1(dαs) of the middle term (which should be thought of as the
Taylor expansion of s at x1 up to order α), the image of which in the rightmost term (i.e.
its truncation up to order α − 1) vanishes on M0,(α) (X |Y, β), hence inducing a section
of the line bundle x∗1Ω

⊗α
C ⊗ ev∗1 OX (Y) which vanishes along M0,(α+1) (X |Y, β). Notice
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though that it also vanishes (for every α, really) on those maps such that the irreducible
component of C containing x1 is mapped entirely into Y. This is some of the motivation
behind Gathmann’s formula:

Theorem 1.3.4. [Gat02, Theorem 2.6] In the Chow group ofM0,α (X |Y, β)

(αkψk + ev∗k OX (Y)) ∩ [M0,α (X |Y, β)]vir
� [M0,α+ek (X |Y, β)]vir

+ [Dα,k (X, β)]vir

whereDα,k (X, β) is a sum over all

• r ≥ 0 determining the number of adjacent external components C(1) , . . . , C(r) ,

• M � (m (1) , . . . ,m (r)) ∈ Nr
>0 determining the order of contact of C(i) with Y at the

intersection with the internal component Z � C(0) ,

• A � (α(0) , . . . , α(r)) and B � (β0 , . . . , βr ) dictating the splitting of the tangency
conditions at the markings, and of the curve class respectively,

of the following “comb loci” (see Figure 1.1):

D(X |Y,A, B,M) �M0,|α(0) |+r (Y, β0) ×Hr

r∏
i�1
M0,α(i)∪m (i) (X |Y, βi)

satisfying αk ∈ α(0) and the equality in (1.7):

OX (Y) · β0 +
∑

M �

∑
α(0) ,

so that the corresponding stable maps belong toM0,α (X |Y, β), but not toM0,α+ek (X |Y, β).
These comb loci are endowed with the pullback of the product virtual fundamental

class under the diagonal of Hr as in

D(X |Y,A, B,M) M0,|α(0) |+r (Y, β0) ×
∏r

i�1M0,α(i)∪m (i) (X |Y, βi)

H Hr

� ev

∆

weighted by a factor m (1)
·...·m (r)

r! ; the denominator is there to make the auxiliary gluing
markings unordered, while the numerator is the real content of Gathmann’s formula.

The proof goes roughly as follows: the reduction to the case of (PN
|H) is just a matter

of virtual intersection calculus. In the unobstructed case, the vanishing locus of the section
can be described as we did above, and it takes a dimensional computation (not virtual) to
see what comb loci are divisors inM0,α (PN

|H, d); so the hard part is to get the coefficients
right. One can reduce to the case of maximal tangency

∑
α � d: marking (or, the other

way round, forgetting) the unmarked intersections of the curve with H induces a finite
(d −

∑
α)! − 1 cover (this is true on an open inside the nice locus, which is dense). One

needs some extra care in dealing with the ψ-classes and their pullbacks under forgetting
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the markings. Locally, one may further reduce to the case of (P1 , {∞}) by projecting from
a generic (N − 2)-plane inside H. Finally, the proof for P1 is based on Vakil’s observation
that, for maps from curves to curves, the obstruction theory only picks up the special loci
(markings, nodes, ramification points, and contracted components), so that one can split
the deformation space and reduce to a much simpler moduli problem (an orbi-P1).

Remark 1.3.5. Gathmann’s recursion can be recovered in the framework of Jun Li’s spaces
of maps to expansions (or rather Kim’s logarithmic stable maps). This was suggested by
J. Wise and D. Ranganathan. It may seem surprising but in fact the idea of reduc-
ing from non-maximal to maximal tangency order was already contained in the proof
of Gathmann’s formula. Here is the strategy to get Theorem 1.3.4 for (PN

|H) using
maps to expansions: add h � d −

∑
α auxiliary markings of multiplicity 1, so consider

M
Kim
0,α∪(1,...,1) (PN

|H, d). Call ch the map forgetting the auxiliary markings and the log
structures, collapsing the target, and stabilising the source curve, which is an (h! : 1)
cover ofM0,α (PN

|H, d) (generically we are just marking the h simple unmarked intersec-
tions of the image of C with H, and endowing C with the pullback of the divisorial log
structure on PN ; here we use that g � 0 and the target is PN , but notice that the approach
will work whenever the nice locus is dense in the relative space). Denote instead by
c : M

Kim
0,α∪(1,...,1) (PN

|H, d) → M0,α∪(1,...,1) (PN , d) the map that forgets the log structures,
collapses the target, and stabilises the source curve; we may then pullback Gathmann’s
line bundle and section along c. The vanishing locus of the section thus obtained con-
sists of maps such that the target is expanded, and xk lies on a non-trivial (i.e. having
either positive horizontal degree, or at least three markings) component at higher level.
Notice that, as soon as there is more than one non-trivial component at higher level, c has
positive-dimensional fibers. Hence we are reduced to a sum over bipartite graphs with
only one vertex at higher level; we recognise in these the shape of the comb loci appearing
in Gathmann’s formula. Also, I claim that the only term that survives pushforward under
ch , and inwhich one of the auxiliarymarkings (say xn+1) lies on the component containing
xk , is when the latter has zero horizontal degree and contains only xk and xn+1 among the
markings - otherwise the map collapsing the target and forgetting the auxiliary markings
will have positive dimensional fibers. This recoversM0,α+ek (PN

|H, d).

level 0

αk + 1

αi

1

xk
xn+1

xi
xn+ j

The claim follows from the fact that the rubber spaceM0,µ(PH (O ⊕ O(1)), β0)∼ has
the same dimension asM0,|µ| (H, β0), see [GV05, §2.4]. Now the coefficient with which
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each of these loci appears has been computed by several authors in the framework of the
degeneration formula (see e.g. [Kim10, Remark 6.3.1.2] and [KLR18, Equation (1.7)]): the
log structure is determined at the level of ghost sheaves by the underlying morphism,
and the numerator counts the number of log liftings, while the denominator again clears
out the ordering of the edges. There is one more subtlety, as noticed by Gathmann
already [Gat02, Corollary 3.5]: M0,α+ek (PN

|H, d) appears on one side with a coefficient
αk +1, which is partially cancelled by an αk on the other side, arising from the comparison
betweenψk and fgt∗n+1,...,n+h ψk . All the degeneracy loci that persist under ch-pushforward
cover (h! : 1) one of the comb loci in Gathmann’s formula.

1.3.2. Definitions and propositions. I come now to the definition of relative quasimaps
[BN17, §2.3]. As in the case of stable maps, we start from the unobstructed situation
(PN
|H), with H � {z0 � 0}.

Definition 1.3.6. The space of relative quasimaps Q0,α (PN
|H, d) is the closure inside

Q0,n (PN , d) of the nice locus of quasimaps(
(P1 , x1 , . . . , xn), u0 , . . . , uN ∈ H0(P1 ,OP1 (d))

)
such that u0 . 0, u∗0(0) ≥

∑
αi xi and (u0 , . . . , uN ) do not vanish simultaneously on P1.

More generally, if X is a smooth toric variety and Y ⊆ X a smooth and very ample
divisor, the closed embedding φ |Y | : X ↪→ PN induces Φ|Y | : Q0,n (X, β) → Q0,n (PN , d) by
functoriality (§1.1.5), and we may define the relative space as the fiber product:

Q0,α (X |Y, β) Q0,n (X, β)

Q0,α (PN
|H, d) Q0,n (PN , d).

� Φ|Y |

Lemma 1.3.7. Q0,α (PN
|H, d) is irreducible and has codimension

∑
α in Q0,n (PN , d).

The proof is the same as in Lemma 1.3.1 since the nice loci are isomorphic.

Lemma 1.3.8. The collapsing morphism χ restricts to a proper and birational morphism

χα : M0,α (PN
|H, d) → Q0,α (PN

|H, d).

Proof. Due to thedefinition as the closure of loci that are isomorphic under χ, weobviously
have χ(M0,α (PN

|H, d)) ⊆ Q0,α (PN
|H, d), while the reverse inclusion follows from the

properness of χ. Notice that M0,α (PN
|H, d) embeds as a closed substack of the fiber

product χ−1(Q0,α (PN
|H, d)), hence χα is also proper. �

Before discussing the virtual fundamental classes, I will give a set-theoretical descrip-
tion of Q0,α (X |Y, β), entirely analogous to the one of Remark 1.3.2. Let me start with some



1.3. Relative quasimaps 41

useful notation. Fix one way of writing OX (Y) �
⊗

ρ∈Σ(1) OX (Dρ)⊗aρ , and let

s �

∑
b:[b]�OX (Y)

µb
∏
ρ∈Σ(1)

z
bρ
ρ

in terms of Cox’s homogeneous coordinates. For a quasimap(
(C, x1 , . . . , xn), (Lρ , uρ)ρ∈Σ(1) , (ϕm)m∈M

)
set LY �

⊗
ρ∈Σ(1) L

⊗aρ
ρ and

us � µa
∏
ρ∈Σ(1)

u
aρ
ρ +

∑
b,a:[b]�OX (Y)

µbϕb−a
*.
,

∏
ρ∈Σ(1)

u
bρ
ρ

+/
-
∈ H0(C, LY).

Lemma 1.3.9 (Combinatorial description). A quasimap belongs to the relative space
Q0,α (X |Y, β) ⊆ Q0,n (X, β) if and only if for every connected component Z of u−1

s (0),
the following holds:

1. if Z is a point and is equal to a marking xi , then u∗s (0) has order at least αi at xi ;

2. if Z is a curve - it is then a rational tree -, and if we let C(i) for 1 ≤ i ≤ r denote the
irreducible components of C adjacent to Z, and m (i) denote the multiplicity of f |C(i)

to H at the (unique) node Z ∩ C(i) , then:

deg(LY |Z) +
r∑

i�1
m (i)

≥

∑
xi∈Z

αi (1.8)

Proof. From the cartesian diagram that we used to define Q0,α (X |Y, β), we see that it is
enough to prove the characterisation above in the case of (PN

|H). Now the statement is
true for the nice locus, so it holds on its closure Q0,α (PN

|H, d) by the principle of conser-
vation of number. On the other hand, let ξ′ be a quasimap satisfying the combinatorial
description, with a basepoint q0 of order d0 on an internal component Z. Choose any line
` through the image of q0, with ` transverse to H. Lift ξ′ to a stable map ξ by adjoining a
P1 �: R to the source curve at q0, and defining the map f |R to be a d0-fold cover of ` totally
ramified at q0 (any basepoint which is not internal is easier to deal with). Then ξ belongs
toM0,α (PN

|H, d) by Remark 1.3.2, and it can be smoothed by the work of Gathmann. By
applying χ to such a smoothing, we see that ξ′ belongs to Q0,α (PN

|H, d). �

Before getting to a Gathmann-type recursion formula for relative quasimaps, I shall
discuss virtual fundamental classes. First I show that there is a meaningful virtual
pullback along Φ|Y |, following Appendix B of the first version of [BN17]. Φ|Y | is simply
called k in the next lemma, because the connection to Y is irrelevant.
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Lemma1.3.10. Given a closed embedding i : X ↪→ PN , there is a perfect obstruction theory
Ek for k : Q0,n (X, β) → Q0,n (PN , d) which fits into a compatible triple with the standard
obstruction theories for the quasimap spaces overM0,n . So, in particular:

k!
vir[Q0,n (PN , d)] � [Q0,n (X, β)]vir.

Proof. Note first that, since i is an embedding, i∗β0 , 0 for every effective curve class
β0 ∈ H+

2 (X), hence k does not change the source curve of a quasimap (there is no need
for stabilising), so we indeed have a commuting triangle:

Q0,n (X, β) Q0,n (PN , d)

M0,n

k

The following diagram of universal curves is therefore cartesian:

CX CPN

Q0,n (X, β) Q0,n (PN , d)

α

π � ρ

k

Recall from §1.1.2 that we have sheaves FX and FPN on CX and CPN respectively such that:

E∨
Q(X)/M � R• π∗FX

E∨
Q(PN )/M � R• ρ∗FPN

By flatness of ρ and [Har77, Proposition III.9.3]:

k∗E∨
Q(PN )/M � R• π∗α∗FPN

To construct a compatible triple, we require a morphism k∗EQ(PN )/M → EQ(X)/M. Dually,
it is therefore enough to construct a morphism of sheaves on CX

FX → α∗FPN

and then apply R• π∗. This is analogous to the morphism f ∗TX → f ∗TPN |X which is used
in the stable maps setting, but unfortunately we have no universal map f .

The sheaf FX is defined on CX by the short exact sequence

0→ O⊕rX
CX
→

⊕
τ∈ΣX (1)

Lτ → FX → 0

where rX � rk(Pic X) (implicitly we have chosen a basis for Pic X), and the first arrow can
be described as the composition of the derivative of the torus (GrX

m )-action on AΣX (1) with
the diagonal matrix diag(uτ)τ∈ΣX (1) . Similarly FPN on CPN is given by:
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0→ OCPN → L
⊕N+1

→ FPN → 0

where by construction (compare with §1.1.5) the first arrow can be described as follows.
The line bundle sections determining i : X ↪→ PN can be expressed as homogeneous
polynomials in the Cox ring of X:

P0 , . . . , PN ∈ SX
OX (1) ⊂ SX

� k[zτ : τ ∈ ΣX (1)].

By fixing one way of writing OX (1) �
⊗
OX (Dτ)⊗aτ , L is set to be

⊗
L
⊗aτ
τ , and if

P j � µ j,a
∏
τ∈ΣX (1) zaτ

τ +
∑

b,a:[b]�OX (1) µ j,b
∏
τ∈ΣX (1) zbτ

τ , the first arrow above is given by:

*.
,
P j (uτ) � µ j,a

∏
τ∈ΣX (1)

uaτ
τ +

∑
b,a:[b]�OX (1)

µ j,bϕb−a
*.
,

∏
τ∈ΣX (1)

ubτ
τ

+/
-

+/
- j�0,...,N

.

We will construct the map FX → α∗FPN by first constructing a morphism:

⊕τLτ → α∗L⊕N+1

The latter is given by the Jacobian of (P0 , . . . , PN ), namely the matrix(
∂P j

∂zτ
(uτ)

) j�0,...,N

τ∈ΣX (1)
,

where one needs to use the isomorphisms ϕb−a as above in order tomake sense of the sum
as a section of one fixed line bundle. On the other hand writing OX (1) in the preferred
basis of Pic X gives us a vector v ∈ ZrX . The commutativity of the left-hand square in the
following diagram follows from the fact that Cox’s result (Theorem 1.1.20) allows us to
lift i : X ↪→ PN to a (GrX

m → Gm)-equivariant morphism AΣX (1)
→ AN+1; hence there is an

induced (dashed) map of sheaves as the one we were after:

0 O
⊕rX
CX

⊕τLτ FX 0

0 OCX α∗L⊕N+1 α∗FPN 0

vt Jac(P)(uτ ) (1.9)

Applying R• π∗ and dualising we obtain a morphism between the obstruction theories for
the quasimap spaces, and we can complete this to obtain an exact triangle

k∗EQ(PN )/M → EQ(X)/M → Ek
[1]
−−→

on Q(X). The axioms of a triangulated category then give a morphism of exact triangles:
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k∗EQ(PN )/M EQ(X)/M Ek

k∗LQ(PN )/M LQ(X)/M Lk

[1]

[1]

It follows from a simple diagram chase that Ek → Lk is a relative obstruction theory for k
supported in [−2, 0]. On the other hand, since Q0,n (PN , d) is unobstructed overM0,n , we
may look at the long exact sequence in cohomology and find:

0→ h−2(Ek ) → h−1(k∗EQ(PN )/M) � 0

Hence h−2(Ek ) � 0 and so Ek is perfect in [−1, 0]. �

Definition 1.3.11. Let (X |Y) be as above, inducing Φ|Y | : Q0,n (X, β) → Q0,n (PN , d). The
relative spaceQ0,α (X |Y, β) is endowedwith avirtual class of codimension

∑
α inQ0,n (X, β)

by setting
[Q0,α (X |Y, β)]vir

� Φ!
|Y |,vir[Q0,α (PN

|H, d)].

Remark 1.3.12 (Quasimaps to Y). Under our assumptions Y needs not be toric. The
moduli space of (absolute) quasimaps to Y can be defined via the cartesian diagram:

Q0,n (Y, β) Q0,n (H, d)

Q0,n (X, β) Q0,n (PN , d)

�
Φ|Y |

It consists of those quasimaps to X such that 0 ≡ us ∈ H0(C, LY). It is also endowed with
a virtual class by pulling back [Q0,n (H, d)] along Φ|Y |.

On the other hand, Y has the natural structure of a GIT quotient Y � C(Y) � G, where
C(Y) ⊆ AΣX (1) is the affine cone over Y and G � HomZ(Pic(X),Gm) � GrX

m acts on C(Y)
via the natural inclusion GrX

m ↪→ GΣX (1)
m (here C(Y) ⊆ AΣX (1) is preserved by G because it

is cut out by a homogeneous equation).
In [CFKM14] moduli spaces of quasimaps are constructed for GIT quotient targets

(satisfying a number of conditions, all of which hold for Y). There is thus a moduli space

Q
GIT
0,n (Y, β),

which admits a virtual class. Hence we have two moduli spaces of quasimaps to Y, each
equipped with a virtual class, and we want to check that these definitions agree.

Objects of QGIT
0,n (Y, β) are diagrams of the form

P C(Y)

C

G
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where C is a prestable curve, P is a principal G-bundle and the map P → C(Y) is G-
equivariant. Equivalently, an object consists of a prestable curve C, a principal G-bundle
P and a section u of the associated C(Y)-bundle:

P ×G C(Y)

C

p u

Theobstruction theoryon this space isdefined relative to the stackBunG parametrising
principal G-bundles on the universal curve CM0,n →M0,n . It is given by

E∨
Q/BunG

� R• π∗(u∗ Tp),

where π is the universal curve overQ � Q
GIT
0,n (Y, β) and Tp is the relative tangent complex.

There is a natural isomorphism

Bun
0,n
G � ×rX

M0,n
Pic,n

given by sending P to the rX individual factors of the affine bundle P×GArX . Furthermore
there is a G-equivariant embedding

P ×G C(Y) P ×G AΣX (1) �
⊕

ρ∈ΣX (1) Lρ

C

j

p u

which expresses P ×G C(Y) as the vanishing locus of us in ⊕ρ∈ΣX (1)Lρ. This shows that
the two definitions of the moduli space agree.

Finally we must compare the virtual classes. Using the normal sheaf sequence for the
inclusion j (relative to the base C) we obtain a short exact sequence on C:

0→ u∗ Tp →
⊕

ρ∈ΣX (1)

Lρ → u∗NP×GC(Y)/⊕ρ∈ΣX (1) Lρ → 0

Since P×G C(Y) is defined by the vanishing of us , we see that the final term is isomorphic
to the line bundle LY discussed above. Thus as elements of the derived category

u∗ Tp �



⊕
ρ∈ΣX (1)

Lρ → LY



Applying R• π∗ we obtain on the left hand side the obstruction theory for the GIT moduli
space relative Bun0,n

G . On the other hand, the first term on the right hand side is the
obstruction theory for Q(X) relative the product of the Picard stacks (isomorphic to
Bun

0,n
G via the discussion above) whereas the second term is the relative obstruction

theory for Q(Y) inside Q(X). Thus the virtual classes agree, as claimed.
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Proposition 1.3.13. In the Chow group of Q0,α (X |Y, β)

(αkψk + x∗k c1(LY)) ∩ [Q0,α (X |Y, β)]vir
� [Q0,α+ek (X |Y, β)]vir

+ [DQ
α,k (X, β)]vir

where DQ
α,k (X, β) is a sum of “comb loci”, running over all splittings A, B,M of the

markings, curve class, and multiplicities at the internal-to-external nodes, satisfying

deg(LY |Z) +
r∑

i�1
m (i)

�

∑
xi∈Z

αi

and the quasimap stability condition (in particular there are no rational tails):

D
Q (X |Y,A, B,M) � Q0,|α(0) |+r (Y, β0) ×Hr

r∏
i�1
Q0,α(i)∪m (i) (X |Y, βi)

The latter is endowed with the pullback of the product virtual fundamental class along
the diagonal ∆Hr : H → Hr , weighted by a factor m (1)

·...·m (r)

r! .

Proof. In the case of (PN
|H) the result follows by pushing forward Gathmann’s formula

(Theorem 1.3.4) along χα: for this it is useful to notice that

χ∗(ψk ) � ψk , and χ∗(x∗kLY) � ev∗k OX (Y), (1.10)

since collapsing does not affect the universal curve in a neighbourhood of the marking xk .
On the other hand, if a comb locus D(PN

|H,A, B,M) contains a rational tail (necessarily
external), then the restriction of χ toD(PN

|H,A, B,M) is not finite over its image, because
dim(M0,(m (i) ) (PN

|H, d)) > dim H, so the corresponding term of Gathmann’s formula
vanishes under χ∗. To be more precise, there is a cartesian diagram

D(PN
|H,A, B,M) E(PN

|H,A, B,M)

D
Q (PN

|H,A, B,M) E
Q (PN

|H,A, B,M)

Hr Hr
× Hr

χ �
∏
χ

� ev
∆Hr

(where E is the usual - not -fiber - product of the relevant (quasi)map spaces, see below)
and by commutativity of proper pushforward with Gysin maps we can argue as above at
the level of E, where we are actually pushing forward the fundamental class.

The case of a smooth very ample divisor (X |Y) follows by virtual pullback along Φ|Y |
- see Lemma 1.3.10 -, which I will simply denote by Φ!

|Y |. Indeed Φ!
|Y |[Q0,α (PN

|H, d)] �

[Q0,α (X |Y, β)]vir (and similarly for the α + ek relative space) by the very definition of the
latter, so we are left with checking that the fundamental class of a comb locus behaves
well under virtual pullback. Let me introduce some more useful notation at this point:
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consider the product (not the fiber product over Yr)

E
Q (X |Y,A, B,M) :� Q0,A(0)∪{q1 ,...,qr }

(Y, β(0)) ×
r∏

i�1
Q0,α(i)∪(mi ) (X |Y, β(i))

which we may endow with the product virtual class (with weighting as before):

[EQ (X |Y,A, B,M)]vir :�(
m (1)
· · ·m (r)

r!

)
· *

,
[Q0,A(0)∪{q1 ,...,qr }

(Y, β(0))]vir
×

r∏
i�1

[Q0,α(i)∪(mi ) (X |Y, β(i))]vir+
-

We have the following cartesian diagram

D
Q (X |Y,A, B,M) E

Q (X |Y,A, B,M)

Xr Xr
× Xr

�
∆Xr

and the virtual class on the comb locus is given by:

[DQ (X |Y,A, B,M)]vir :� ∆!
Xr [EQ (X |Y,A, B,M)]vir

On the other hand, there is another cartesian diagram:

∐
B : i∗B�B′

D
Q (X |Y,A, B,M) D

Q (PN
|H,A, B′,M)

Q0,n (X, β) Q0,n (PN , d)

�

Φ|Y |

Weshall also denote byDQ (X,A, B) andEQ (X,A, B) the fiber product (resp. ordinary
product) above where every occurrence of relative quasimaps to (X |Y) and absolute
quasimaps to Y have been replaced by absolute quasimaps to X. Let us introduce the
following shorthand notation.

D(X |Y) :�
∐

B : i∗B�B′D
Q (X |Y,A, B,M) D(PN

|H) :� DQ (PN
|H,A, B′,M)

E(X |Y) :�
∐

B : i∗B�B′ E
Q (X |Y,A, B,M) E(PN

|H) :� EQ (PN
|H,A, B′,M)

D(X) :�
∐

B : i∗B�B′D
Q (X,A, B) D(PN ) :� DQ (PN ,A, B′)

E(X) :�
∐

B : i∗B�B′ E
Q (X,A, B) E(PN ) :� EQ (PN ,A, B′)

Q(X) :� Q0,n (X, β) Q(PN ) :� Q0,n (PN , i∗β)

There is a cartesian diagram:
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E(X |Y) E(PN
|H)

E(X) E(PN )

� θ

Since E(PN ) is smooth (being a product of spaces of quasimaps to PN ) and there is a
(product) fundamental class on E(PN

|H), we have a diagonal pullback θ! � θ!
∆
, such that

[E(X |Y)]vir
� θ![E(X)]vir

� [E(PN
|H)] ·E(PN ) [E(X)]vir. (1.11)

Now consider the following cartesian diagram

D(X) D(PN ) Mwt
A,B

Q(X) Q(PN ) Mwt
0,n ,β

ψX � ψPN � ψ

Φ|Y |

whereMwt
0,n ,β is the moduli space of prestable curves weighted by the class β and:

Mwt
A,B :�Mwt

0,A(0)∪{q0
1 ,...,q

0
r },β(0) ×

r∏
i�1
Mwt

0,A(i)∪{q1
i },β

(i) .

The vertical maps in the above diagram are given by gluing together curves (in the case
of ψ) and quasimaps (in the case of ψX and ψPN ). The morphism ψ admits a perfect
obstruction theory, and by the splitting axiom [CFK17, §2.3.3]:

[D(X)]vir :� ∆!
Xr [E(X)]vir

� ψ![Q(X)]vir ,

and similarly for PN . Commutativity of virtual pullbacks then implies that:

[D(X)]vir
� ψ![Q(X)]vir

� ψ!Φ!
|Y |[Q(PN )] � Φ!

|Y |ψ
![Q(PN )] � Φ!

|Y |[D(PN )] (1.12)

Putting all the preceding results together, we consider the cartesian diagram:

D(X |Y) E(X |Y) E(PN
|H)

D(X) E(X) E(PN )

Xr Xr
× Xr

� � θ

�
∆Xr
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We then have:

[D(X |Y)]vir
� ∆!

Xr [E(X |Y)]vir by definition

� ∆!
Xrθ![E(X)]vir by Equation (1.11)

� θ!∆!
Xr [E(X)]vir by commutativity

� θ![D(X)]vir by definition

� θ!Φ!
|Y |[D(PN )] by Equation (1.12)

� θ!Φ!
|Y |∆

!
(PN )r [E(PN )] by definition

� Φ!
|Y |∆

!
(PN )rθ

![E(PN )] by commutativity

� Φ!
|Y |∆

!
(PN )r [E(PN

|H)] by Equation (1.11)

� Φ!
|Y |[D(PN

|H)] by definition.

Summing over all the relevant r,A, B, and M, we obain

Φ!
|Y |[D

Q

α,k (PN
|H, d)] � [DQα,k (X |Y, d)]vir ,

from which Gathmann’s formula for relative quasimaps follows. �

1.3.3. Gathmann’s algorithm andquasimapquantumLefschetz. Notice that in the very
last step of the recursion, i.e. increasing

∑
α from Y · β to Y · β + 1, there is no main term

but only boundary corrections; also, one of them has got no external components, so that
it boils down to Q0,n (Y, β).

Gathmann describes an algorithm for computing relative invariants of (X |Y) and
restricted absolute invariants of Y (i.e. the cohomological insertions lie in the image of the
restriction map i∗ : H∗(X) → H∗(Y)) recursively, assuming that we know the descendant
invariants of X. The proof is by induction on the numerical invariants (i) d � Y · β, (ii)
n , and (iii)

∑
α (convention: for absolute invariants of Y set

∑
α � d + 1). If we want to

compute a relative invariant with tangency condition α and degree β, assume αk > 0 (if
we cannot find such a k then we are just considering an absolute invariant of X); we may
then write down the formula as

[Q0,α (X, β)]vir
� ((αk − 1)ψk + ev∗k OX (Y))[Q0,α−ek (X, β)]vir

− [DQ
α−ek ,k

(X, β)]vir

The classes appearing on the right hand side have lower numerical invariants, so we may
assume they have been computed inductively.

There is adelicatepoint, namely thatweuse the cohomological splittingof thediagonal
of Yr

×Yr in order to reduce the integrals on comb loci to products of relative (X |Y)- and
absolute Y-invariants, but in doing so wemight introduce some non-restricted insertions.
Let me call unrestricted an insertion in i∗H∗(X)⊥; by linearity of Gromov-Witten invariants
we may always assume that the insertions are either restricted or unrestricted.



50 Chapter 1. On quasimaps

It can be proved that invariants of Y comprising only one unrestricted insertion vanish:
assumeweare interested in 〈τa1 (δ1), . . . , τan (δn)〉Y,0+0,n ,βwithonly δ1 ∈ i∗H∗(X)⊥. Recall that
i∗[Q0,n (Y, β)]vir � ctop(π∗ f ∗OX (Y)) ∩ [Q0,n (X, i∗β)]vir follows from pulling back the anal-
ogous statement for (PN

|H), and we may write ctop(π∗ f ∗OX (Y)) � ev∗1 OX (Y)ctop(EY·β)
for a certain vector bundle EY·β. Consider the following factorisation:

Q0,(1,0,...,0) (X |Y, β) Q0,n (X, β)

Y X

j

ẽv1 ev1

i

and 〈τa1 (δ1), . . . , τan (δn)〉ε,Y0,nβ is computed by

δ1 · ẽv1,∗i! *
,
ψa1

1

n∏
i�2

ev∗i (δi)ψ
ai
i ctop(EY·β) ∩ [Q0,n (X, β)]vir+

-
�

δ1 · i∗ ev1,∗ *
,
ψa1

1

n∏
i�2

ev∗i (δi)ψ
ai
i ctop(EY·β) ∩ [Q0,n (X, β)]vir+

-
� 0

It is then possible to prove recursively that any relative invariant with only one unrestricted
insertion vanishes (see [Gat02, Lemma 5.6]), and this is sufficient for our application, since
the external components always get at most one such insertion due to g � 0.

Under some positivity assumptions - which allow us to discard most contributions
from the comb loci by dimensional reasons -, the algorithm above can be realised into a
compact formula, relating some astutely chosen combination of quasimap invariants of
Y to those of X . The following discussion (from [BN17, §5]) is inspired by [Gat03b], in
which Gathmann applies the stable map recursion formula to obtain a new proof of the
mirror theorem for hypersurfaces [Giv96].

From now on we make the following two assumptions:

1. Y is semi-positive: −KY is nef;

2. Y contains all curve classes: the map i∗ : A1(Y) → A1(X) is surjective.

Remark 1.3.14. By adjunction, −KX pairs strictly positively with every curve class coming
from Y, hence with every curve class by Assumption (2). Thus −KX is ample, or in other
words X is Fano, by Kleiman’s criterion (note that, according to the latter, positivity must
be checked on the closure of the cone of effective curve classes, but, since X is a toric
variety, Eff(X) is finitely generated in A1(X), hence it is closed in A1(X)R). Also observe
that if dim X ≥ 3 Assumption (2) always holds, due to the classical Lefschetz hyperplane
theorem; on the other hand if dim X � 2 Assumption (2) forces X to be P2.

Recall that we have fixed a homogeneous basis η0 , . . . , ηl for H∗(X) � H∗(X,Q) and
let η0 , . . . , ηl denote the dual basis with respect to the Poincaré pairing. Without loss
of generality we may suppose that η0 � 1X and η1 � [Y]. We get an induced system
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of generators ρ1 � i∗η1 , . . . , ρl � i∗ηl for i∗H∗(X) (some are possibly zero when the
cohomological degree is bigger than dim X − 1). Notice that ρ0 � i∗η0 � i∗[ptX] � 0,
ρ1 � i∗η1 � [ptY]. After possibly extracting a linearly independent subset of {ρ j } that
spans i∗H∗(X) and renumbering, we may extend it to a basis ρ1 , . . . , ρk for H∗(Y) by
adding a basis ρ l̃+1 , . . . , ρk of i∗H∗(X)⊥. Let ρ1 , . . . , ρk denote the dual basis; notice that
ρi is not equal to i∗ηi , and ρ1 � 1Y .

We are going to analyse the behaviour of a generating function of 2-pointed quasimap
invariants with a fundamental class insertion, which in fact coincides with the small I-
function from Section 1.1.4. Let me break the notation into two: for any smooth projective
toric variety X and any effective curve class β ∈ H+

2 (X), define

SX
0 (z , β) � (ev1)∗

(
1

z − ψ1
[Q0,2(X, β)]vir

)
,

and then the small I-function is

SX
0 (z , q) �

∑
β≥0

qβSX
0 (z , β),

where by convention SX
0 (z , 0) � 1X ; this function takes values inH∗(X,Λ) and thenotation

is reminiscent of I(q , z) � S0+(q , 0, z)(1).
The same definition applies to Y. However we may wish to consider only restricted

insertions, and we therefore set

S̃Y
0 (z , β) � (ev1)∗

(
1

z − ψ1
[Q0,2(Y, β)]vir

)
,

where crucially ev1 is viewed as mapping to X instead of to Y. Remark that i∗SY
0 (z , β) �

S̃Y
0 (z , β) (since X and Y are smooth, wemay use Poincaré duality to define a push-forward

map on cohomology, i∗ : Hk (Y) → Hk+2(X)).

Theorem 1.3.15. Let X and Y be as above. Then∑
β≥0 qβ

∏Y·β
j�0(Y + jz)SX

0 (z , β)

PX
0 (q)

� S̃Y
0 (z , q), (1.13)

where:

PX
0 (q) � 1 +

∑
β>0

KY ·β�0

qβ (Y · β)!〈[ptX]ψY·β−1
1 , 1X〉

X
0,2,β .

Notice that PX
0 (q) depends not only on X but also on [Y] in Pic X; the superscript is

supposed to indicate that the definition only involves quasimap invariants of X.

Proof. For m � 0, . . . ,Y · β, define the following auxiliary generating functions for 2-
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pointed relative quasimap invariants

SX |Y
0,(m) (z , β) � (ev1)∗

(
1

z − ψ1
[Q0,(m ,0) (X |Y, β)]vir

)
,

and for “comb loci invariants”

TX |Y
0,(m) (z , β) � (ev1)∗

(
m[Q0,(m ,0) (X |Y, β)]vir

+
1

z − ψ1
[DQ(m ,0),1(X |Y, β)]vir

)
,

where in both cases we view ev1 as mapping to X. Note that SX |Y
0,(0) (z , β) � SX

0 (z , β). A
formal manipulation of Gathmann’s formula for relative quasimaps (Proposition 1.3.13),
based on the push-pull formula and the identity

mz
z − ψ1

− m �
mψ1

z − ψ1
,

shows that
(Y + mz)SX |Y

0,(m) (z , β) � SX |Y
0,(m+1) (z , β) + TX |Y

0,(m) (z , β) (1.14)

and we can apply this repeatedly to obtain:

Y·β∏
j�0

(Y + jz)SX
0 (z , β) �

Y·β∑
m�0

Y·β∏
j�m+1

(Y + jz)TX |Y
0,(m) (z , β) (1.15)

We now examine the right-hand side in detail. By definition, TX |Y
0,(m) (z , β) splits into two

parts: those terms coming from the relative space, and those coming from the comb loci.

Let us first consider the contribution of the comb loci. Since there are only twomarked
points and the first is required to lie on the internal component of the comb, it follows
from the strong stability condition that there are only two options: a combwith zero teeth
or a comb with one tooth.

First consider the case of a comb with zero teeth. The moduli space is then Q0,2(Y, β)
and we require that Y · β � m. Thus this piece only contributes to TX |Y

0,(Y·β) (z , β), and the
contribution is:

l∑
i�1

〈
ρi

z − ψ1
, 1Y

〉Y

0,2,β
ηi .

Next consider the case of a comb with one tooth. Let β(0) and β(1) denote the curve
classes of the internal and external components, respectively, and let m (1) be the contact
order of the external component with Y. The picture is as follows
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x2

x1

m (1)

and the invariants which contribute take the form〈 ρi

z − ψ1
, ρh

〉Y

0,2,β(0)

〈
ρh , 1X

〉X |Y

0,(m (1) ,0),β(1)

for i � 1, . . . , l and h � 1, . . . , k. By computing dimensions, we find

0 ≤ codim ρh
� dim Y − codim ρh

� dim Y − vdimQ0,(m (1) ,0) (X |Y, β(1))

� dim Y − (dim X − 3 − KX · β
(1)

+ 2 − m (1))

� KY · β
(1)
− Y · β(1)

+ m (1)

≤ 0

where the last equality follows from adjunction and the final inequality holds because
−KY is nef and m (1)

≤ Y · β1. This shows that the only non-trivial contributions come
from curve classes β(1) such that KY · β(1) � 0, and that in this case the order of tangency
must be maximal, i.e. m (1) � Y · β(1) . Furthermore we must have codim ρh � 0 and so
ρh � ρ1 � 1Y which implies ρh � ρ1 � [ptY]. Finally since m (1) � Y · β(1) we have

m � Y · β(0)
+ m (1)

� Y · (β(0)
+ β(1)) � Y · β.

So again this piece only contributes to TX |Y
0,(Y·β) (z , β), and the contribution is:

l∑
i�1

*.....
,

∑
0<β(1)<β

KY ·β(1)�0

(Y · β(1))
〈 ρi

z − ψ1
, 1Y

〉Y

0,2,β−β(1)

〈
ρ1 , 1X

〉X |Y

0,(Y·β(1) ,0),β(1)

+/////
-

ηi ,

where the Y · β(1) factor comes from the weighting on the virtual class of the comb locus.
Finally, we must examine the terms of TX |Y

0,(m) (z , β) coming from

ev1∗(m[Q0,(m ,0) (X |Y, β)]vir).

Notice thatwe only have insertions from i∗H∗(X) ⊆ H∗(Y), since ev1 is viewed asmapping
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to X. On the other hand

vdimQ0,(m ,0) (X |Y, β) � dim X − 3 − KX · β + 2 − m

� dim X − 1 − KY · β + Y · β − m by adjunction

≥ dim X − 1 + Y · β − m since −KY is nef

≥ dim X − 1 since m ≤ Y · β

where in the second line we have applied the projection formula to i, and thus implicitly
used Assumption (2), namely that every curve class on X comes from a class on Y.

Consequently the only insertions that can appear are those of dimension 0 and 1.
However, the restriction of the 0-dimensional class η0 � [ptX] to Y vanishes, as do the
restrictions of all 1-dimensional classes except for η1 (by the definition of the dual basis,
since η1 � Y). Thus the only insertion is i∗η1 � ρ1 � [ptY], and since η1 has dimension 1
all the inequalities above must actually be equalities. Thus we only have a contribution if
−KY · β � 0 and m � Y · β. The contribution to TX |Y

0,(Y·β) (z , β) in this case is:

(Y · β)〈ρ1 , 1X〉
X |Y
0,(Y·β,0),βη

1.

Thus we have calculated TX |Y
0,(m) (z , β) for all m; substituting into equation (1.15) we obtain

Y·β∏
j�0

(Y + jz)SX
0 (z , β) � TX |Y

0,(Y·β) (z , β)

�

l∑
i�1

〈
ρi

z − ψ1
, 1Y

〉Y

0,2,β
ηi
+

l∑
i�1

*.....
,

∑
0<β(1)<β

KY ·β(1)�0

(Y · β(1))
〈 ρi

z − ψ1
, 1Y

〉Y

0,2,β−β(1)

〈
ρ1 , 1X

〉X |Y

0,(Y·β(1) ,0),β(1)

+/////
-

ηi
+

(Y · β)〈ρ1 , 1X〉
X |Y
0,(Y·β,0),βη

1

where the third term only appears if KY · β � 0. We can rewrite this as:

Y·β∏
j�0

(Y + jz)SX
0 (z , β)

� S̃Y
0 (z , β) +

∑
0<β(1)

≤β

KY ·β(1)�0

(
(Y · β(1))

〈
ρ1 , 1X

〉X |Y

0,(Y·β(1) ,0),β(1)

)
S̃Y

0 (z , β − β(1)).

It is now clear from the expression above that equation (1.13) in the statement of Theorem
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1.3.15 holds, with:

PX
0 (q) � 1 +

∑
β>0

KY ·β�0

qβ (Y · β)〈ρ1 , 1X〉
X |Y
0,(Y·β,0),β .

To complete the proof it thus remains to show that:

PX
0 (q) � 1 +

∑
β>0

KY ·β�0

qβ (Y · β)!〈ψY·β−1
1 [ptX], 1X〉

X
0,2,β .

The aim therefore is to express the relative invariants

〈ρ1 , 1X〉
X |Y
0,(Y·β,0),β

in terms of absolute invariants of X. Unsurprisingly, we once again do this by applying
Proposition 1.3.13. We have:

[Q0,(Y·β,0) (X |Y, β)]vir
� ((Y · β − 1)ψ1 + ev∗1 Y)[Q0,(Y·β−1,0) (X |Y, β)]vir

−

[DQ(Y·β−1,0),1(X |Y, β)]vir.

We begin by examining the contributions from the comb loci. As before, we have only
contributions coming from combs with 0 teeth and combs with 1 tooth. The former
contributions take the form

〈ρ1 , 1Y〉
Y
0,2,β ,

which vanish because vdimQ0,2(Y, β) � dim Y − 1 − KY · β � dim Y − 1 whereas the
insertion has codimension dim Y. The latter contributions take the form

〈ρ1 , ρ
h
〉

Y
0,2,β(0) 〈ρh , 1X〉

X |Y
0,(Y·(β−β(0) )−1,0),β−β(0) ,

and these must also vanish since:

codim ρh
� dim Y − codim ρh

� dim Y − vdimQ0,(Y·(β−β(0) )−1,0) (X |Y, β − β(0))

� dim Y − (dim X − 3 − KX · (β − β(0)) + 2 − Y · (β − β(0)) + 1)

� −1 + KX · (β − β(0)) + Y · (β − β(0))

� −1 + KY · (β − β(0))

≤ −1.

Thus the comb loci do not contribute at all. Applying this recursively (the same argument
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as above shows that we never get comb loci contributions), we find that

(Y · β)〈ρ1 , 1X〉
X |Y
0,(Y·β,0),β � (Y · β)〈η1

Y·β−1∏
j�0

(Y + jψ1), 1X〉
X
0,2,β

� (Y · β)!〈[ptX]ψY·β−1
1 , 1X〉

X
0,2,β ,

where the second equality holds because Y · η1 � η1
· η1 � [ptX] and Y2

· η1 � 0. This
completes the proof of Theorem 1.3.15. �

Corollary 1.3.16. If Y is Fano then there is no correction term:

∑
β≥0

qβ
Y·β∏
j�0

(Y + jz)SX
0 (z , β) � S̃Y

0 (z , q).

Corollary 1.3.17. Let Y � Y5 ⊆ X � P4 be the quintic threefold. Then

S̃Y5
0 (z , q) �

IY5
sm(z , q)
P(q)

,

where

IY5
sm(z , q) � 5H +

∑
d>0

∏5d
j�0(H + jz)∏d

j�0(H + jz)5
qd

and:
P(q) � 1 +

∑
d>0

(5d)!
(d!)5 qd .

Proof. Apply Theorem 1.3.15 and use the fact that the quasimap invariants of P4 coincide
with the Gromov–Witten invariants, which are well-known from mirror symmetry. �

Remark 1.3.18. Theorem 1.3.15 agrees with [CZ14, Theorem 1] when X is a projective
space. It also recovers a corollary of Ciocan-Fontanine and Kim’s Birkhoff factorisation in
the semipositive case, as detailed in [CFK14, §5.5] and [BN17, §5.6].



CHAPTER 2

ON GENUS ONE

§ 2.1. Reduced invariants and the Li-Zinger’s formula

Contrary to the genus zero case,M1,n (PN , d) is not a smooth stack; indeed it is not even
equidimensional. A classical example - discussed e.g. in [VZ07] - is given byM1,0(P2 , 3):

• smooth planar cubics are elliptic curves by the degree-genus formula; viewing them
as E ↪→ P2 gives a component of dimension 9 ofM1,0(P2 , 3), often referred to as the
main component;

• a contracted elliptic curve attached to a rational tail that normalises a nodal cubic
determines the generic point of a different component, which has dimension 10 and
I am going to denote by D1(P2 , 3);

• finally, a contracted genus one curve with two rational tails parametrising the
union of a line and a quadric in P2 describes the generic element of yet another
9-dimensional component, that I shall denote by D2(P2 , 3).

We also have a neat description of the boundary of themain component:M1,0(P2 , 3)main
∩

D1(P2 , 3) consists of those maps where the rational tail normalises a cusp, and the elliptic
curve is contracted precisely to the singular point (this locus has dimension 8, thus being
a divisor in main); whileM1,0(P2 , 3)main

∩ D2(P2 , 3) has the line tangent to the conic.
The description above generalises to all moduli spaces of maps to PN in genus one:

besides the main component, which is the closure of the locus of maps from a smooth
elliptic curve, for every positive integer k and partition λ ` d into k positive parts, there is
an irreducible boundary component Dλ (PN , d) defined to be the closure of the locus where:

(i) the source curve is obtained by gluing a smooth k-pointed elliptic curve E with as
many rational tails Ri � P1 , i � 1, . . . , k,

(ii) the map contracts the elliptic curve E to a point,

57
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(iii) the map has degree λi on the rational tail Ri .

Dλ (PN , d) is irreducible, being the image of the gluing morphism from

*
,
M1,k ×

k∏
i�1
M0,1(PN , λi)+

-
×(PN )k PN .

I will denote by Dk (PN , d) the union of all Dλ (PN , d) where λ has k parts. Notice that
in a less generic situation the elliptic curve may degenerate to a circle of P1 (the minimal
subcurve of arithmetic genus one is named the core), and the rational tails to rational trees.
In particular the various Dk (PN , d) do intersect for different values of k; this, among other
things, is studied in [VZ08, §§1,4]. An analogous description holds true in the case of a
positive number of markings, except that the combinatorial data should also include a
partition µ ` n into k + 1 parts (the 0-th of which telling how many points lie on E).

Proposition 2.1.1. 1. The ones above are all the irreducible components ofM1(PN , d):

M1(PN , d) �M1(PN , d)main
∪

⋃
λ

Dλ (PN , d).

2. A map [ f ] lies in the boundary of the main component if and only if:

• f is non-constant on at least one irreducible component of the core, or

• if f contracts the core, writing C � Z ptq
⊔k

i�1 Ri with Z the maximal contracted
subcurve of genus one, then {d f (Tqi Ri)}ki�1 is a linearly dependent set in T f (Z)P

N .

In this case we say that [ f ] is smoothable.

This is essentially due to R. Vakil and A. Zinger, see [Vak00, Lemma 5.9] [VZ08, §1.2].
I shall later discuss a proof of the second fact based on local equations for the moduli
space. Notice that it implies that the image curve cannot have an ordinary m-fold point
(the genus zero singularity with m branches, see [HM98, p.98] and [Smy11a, Appendix
A]) where the curve of genus one is contracted.

Let me carry the comparison to the genus zero situation one step further: assume we
are interested in the Gromov-Witten theory of a complete intersection in PN , say a hyper-
surfaceX ofdegree l, cut out bya section s ∈ H0(PN ,OPN (l)). Letting (π, f ) : C0,n (PN , d) →
M0,n (PN , d) × PN denote the universal curve and stable map, recall that there is an in-
duced section s̃ of the sheaf E � π∗ f ∗OPN (l) on M0,n (PN , d), which vanishes along
M0,n (X, d). In fact more is true: E is a vector bundle of rank dl + 1 (by cohomology and
base-change, and a Riemann-Roch computation) and, after shifting, it provides us with
a dual perfect obstruction theory for the inclusion ι : M0,n (X, d) ↪→ M0,n (PN , d) com-
patible with the standard ones for these two spaces. This follows from applying R• π∗ f ∗

to the exact sequence 0 → TX → TPN
|X → NX/PN → 0, observing that NX/PN ' OX (l),

R• π∗ f ∗NX/PN [1] � E[1] is perfect supported in degree 1, and the maps from the tangent
complexes commute, together with [Ful98, Proposition 14.1(a)]. We thus have:
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Proposition 2.1.2. [CKL01,KKP03] With notation as above,

ι∗[M0,n (X, d)]vir
� cdl+1(E) ∩ [M0,n (PN , d)].

In particular, this result makes the restricted Gromov-Witten invariants of X into
twistedGromov-Witten invariants of projective space, thus computable e.g. by localisation
[Kon95]. This is called the hyperplane property of genus zero invariants.

Again, the situation is much more intricate in genus one: π∗ f ∗OPN (l) has rank dl on
the open locus of the main component, while the rank of the fiber jumps to dl + 1 on
the boundary, where the elliptic curve is contracted - as can be seen by constancy of the
Euler characteristic and the fact that R1 π∗ f ∗OPN (l), which always satisfies cohomology
and base-change, is a line bundle supported on such boundary loci. In other words, the
natural dual obstruction theory forM1,n (X, d) ↪→M1,n (PN , d) is not supported in [0, 1].

A possible approach to this problem is the one taken by J. Li, R. Vakil and A.Zinger
in a series of papers [Zin09c,Zin07,Zin09a,LZ07,LZ09,Zin08,VZ07,VZ08]: roughly, they
produce a desingularisation VZ1,n (PN , d) of the main component, on which the cone of
sections C(π∗ f ∗OPN (l)) (see [CL12] and §2.3.1 below for this notation) is seen to contain a
vector bundle E of rank dl, and for a hypersurface Xl ⊆ P

N as before (more generally for
a projective complete intersection) they define reduced invariants by integrating against

[ι∗VZ1,n (X, d)]red :� cdl (E) ∩ [VZ1,n (PN , d)].

Reduced invariants may be computed by torus localisation as well [Zin09b, Pop13]. Let
me describe Vakil and Zinger’s construction more in detail: it is an iterated blow-up that
makes all the boundary components intersect main in a divisor (within the latter).

Definition 2.1.3. LetMwt
g ,n denote the stack of prestable curves with a weight assignment:

its objects are families of curves C → B, together with the assignment of a non-negative
integer (values in a different monoid, such as H+

2 (X), may sometimes result useful as
well) to every irreducible component of every fiber of C → B, in a way compatible
with specialisations (in the sense that if the - say irreducible - fiber Cη over η ∈ B
degenerates to the nodal C1 ∪ C2 over b ∈ B for some η  b, then the weights must
satisfy d(Cη) � d(C1) + d(C2)). Observe thatMwt

g ,n is étale but non-separated overMg ,n ;
it was first introduced by K. Costello in [Cos06]. By a slight abuse of notation, I will also
denote by Mwt

g ,n the open, bounded locus where the curve is weighted-stable, i.e. every
irreducible component of weight zero whose normalisation is P1 has at least three special
points (preimages of markings and nodes in P1), and every elliptic curve of weight zero
has at least one .

M1(PN , d) projects down to Mwt
1 by retaining only the degree of the map. Let Θk ⊆

Mwt
1 denote the closure of the locuswhere the elliptic curve hasweight zero, and k rational

tails of positive weight attached to it. DefineM(0) �Mwt
1 andM(k) iteratively as the blow-

up of the strict transform ofΘk inM(k−1) . Notice thatΘ1 is already a Cartier divisor, while
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taking the strict transform of Θk in M(k−1) eliminates all self-intersections. The blow-up
loci are therefore smooth, and so isM(k) for every k. Also, by weighted-stability, for every
fixed total degree d the procedure stops after finitely many steps: denote by M̃ the end
result. (This whole discussion can be extended to the pointed case, but the combinatorics
becomes slightly more involved, see [VZ08, §2].) Form the cartesian diagram

ṼZ1(PN , d) M1(PN , d)

M̃ Mwt
1

�

Now the pullback of any boundary component ofM1(PN , d) has the same dimension in
ṼZ1(PN , d), and intersects its main component (which is denoted by VZ1(PN , d) and
is smooth [VZ08, Theorem 1.1(1)][HL10, Theorem 2.9]) in a Cartier divisor. Denoting
L � f̃ ∗OPN (1) on the universal curve, notice that R• π̃∗L may be resolved locally by
picking a smooth sectionA of the universal curve passing through the core and writing:

0→ π̃∗L → π̃∗(L ⊗ OC (A))
resA
−−−→ π̃∗(L(A)|A ) → R1 π̃∗L → 0

By first restricting to VZ1,n (PN , d) and then pushing forward, it can be proven that the
image of the middle arrow is π̃∗(L(A)|A )(−Ξ), where Ξ denotes the boundary of the
main component of the Vakil-Zinger’s desingularisation. This follows from the fact that(
π̃∗(L(A)|A )

)
|Ξ
' R1 π̃∗L, because it is a surjective map of line bundles on a reduced

space (namelyΞ). Hence π̃∗L is a vector bundle, being the kernel of a surjectivemorphism
of vector bundles. A similar argument works for all the tensor powers of L, and in
particular we let E :� π̃∗L⊗l . The previous discussion can be made accurate by studying
the arrow resA in local coordinates [HL10, Proposition 4.13].

It is clear from the construction above that reduced invariants ought to have a better
enumerative meaning than ordinary Gromov-Witten invariants, in the sense that they
discard most boundary contributions from rational curves. In the realm of symplectic
geometry, it was proved by J. Li and A. Zinger [LZ07] that for every primary insertion
(δ1 , . . . , δn) ∈ H∗(X)⊗n and curve class β ∈ H+

2 (X):

〈δ1 , . . . , δn〉
X
1,n ,β − 〈δ1 , . . . , δn〉

X,red
1,n ,β �




0 if dim(X) � 2,
2−KX ·β

24 〈δ1 , . . . , δn〉
X
0,n ,β if dim(X) � 3.

Li-Zinger’s equation tells us that in the case of a threefold - which is the most natural one
to look for such a comparison result because the virtual dimension (hence the meaningful
insertions) does not depend on the genus - the difference between ordinary and reduced
genus one invariants is given by the corresponding genus zero invariant multiplied by
a correction factor. The relation has been proved in algebraic geometry for the quintic
threefold [CL15], and it is an extension of this project that I am going to discuss in the
next few sections. Together with Cristina Manolache and Tom Coates I am also working
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towards a different proof of the formula: the key issue is proving that the components of
the intrinsic normal cone supported on the boundary components of the moduli space
compare well (as in [Man12b]) to their genus zero relatives, excluding those that do not
contribute at all. I shall not attempt a detailed discussion here; I will rather work out the
case of projective spaces of low dimension, which can be dealt with entirely by hand. Let
me recall the following

Lemma 2.1.4. [Ful98, Proposition 1.8] Let U
j
↪→ X

i
←↩ Z be complementary open and

closed subvarieties. Then the following sequence is exact:

Ak (Z)
i∗
→ Ak (X)

j∗
→ Ak (U) → 0

This means that, whenever we are studying a virtual cycle of dimension d on X, we
are allowed to disregard any closed substack of dimension less than d by restricting to
its complement. Furthermore, cones and Gysin pullbacks behave well under restriction
to open subsets [Ful98, Proposition 4.2(b) and Theorem 6.2(b)]. Also, ṼZ1,n (PN , d) →
M1,n (PN , d) is virtually birational, and all the insertions we are interested in are pulled
back from the latter space.

Let me start by looking atM1,n (P1 , d). Except for d � 1, where the main component is
empty, there are n + 2 components: main, and a boundary component for every partition
of n into two parts, which is the image of gluing

M1,k+1 ×M0,n−k+1(P1 , d).

All components have the samedimension,which is also equal to the virtual dimension;
this in particular means that we can discard all the intersections, so that every compo-
nent of what remains is smooth. The following discussion deals with a fixed boundary
component. Consider the coboundary map δ of the exact triangle

E•
M1,n (P1)/M1,n

→ E•
M1,n (P1)

→ ρ∗T•
M1,n

[1]
→

The relative obstruction space forM1,n (P1) → M1,n is E1 � E∨ � ev∗q TP1 - where E is
the Hodge bundle (onM1,k+1) and q is the gluing node on the rational component. E1 is
the image under δ of the normal bundle of the boundary divisor in the moduli space of
curves, which is L∨q ,E � L

∨

q ,R - where Lx ,C denotes the cotangent line of the curve C at the
smooth point x. The reason is that the difference between E∨ and TqE arises only when
the point q dwells on a rational bubble, or E itself is a circle of P1 rather than a smooth
elliptic curve; while d fq gives an isomorphism TqR

∼

−→ ev∗q TP1 , except when the gluing
node is a ramification point for the stable map. All of this may be effectively neglected
because we are allowed to work on an open inside every component (in particular the
first issue appears only at the intersection of different boundary components, while the
last one involves the intersection of the boundary with main; compare with Proposition
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2.1.1). This shows that the restriction of the absolute obstruction theory E•
M1,n (P1)

to an

open inside each boundary component has vanishing h1, hence the virtual class is the
sum of the fundamental classes of all the components (compare with [BF97, Proposition
5.5]). No boundary component will contribute to the primary invariants because in such
a situation theM1,k+1 factor is positive-dimensional and gets no insertion at all.

The case of P2 is slightly more complicated: the boundary component D1 has excess
dimension 1, and two irreducible components Dλ�(d),µ�(A0 ,A1) and Dλ,µ′ intersect if and
only if A0 ⊆ A′0 and A′1 ⊆ A1, or viceversa; in this case the dimension of the intersection is
equal to the virtual dimension, so we cannot simply discard it. Notice though that D1 is
the pull back of the boundary (Cartier) divisorD1 inMwt

1,n , and the projection D1
→ D1 is

smooth, so in particular the intrinsic normal cone of D1
\M1,n (P2 , d)main is a vector bundle

stack; we may therefore work componentwise on D1
\ M1,n (P2 , d)main. Comparing the

normal bundle of D1 inMwt
1,n with the obstruction bundle of D1, it follows from a Chern

class computation that

c1 *
,

E∨ � ev∗q TP2

L∨q ,E � L
∨

q ,R

+
-
� 3 · 1 � ev∗q H + 2 · λ1 � 1 − ψ � 1 − 1 � ψ

D2 has dimension equal to the virtual dimension, and it follows from arguments similar
to the ones above that it contributes with its fundamental class. We may wrap it all up in
the following tremendous formula:

〈τh1 (Hk1 ), . . . , τhn (Hkn )〉P
2

1,n ,d � 〈τh1 (Hk1 ), . . . , τhn (Hkn )〉P
2 ,red

1,n ,d +∑
A0

∐
A1�[n]

(
〈3H

∑
i∈A0 ki+1

− τ1(H
∑

i∈A0 ki ), τh1
1
(Hk1

1 ), . . . , τh1
n1

(Hk1
n1 )〉P

2

0,{qR }∪A1 ,d

∫
M1,A0∪{qE }

(ψh0
1 · · ·ψh0

n0 )+

〈H
∑

i∈A0 ki , τh1
1
(Hk1

1 ), . . . , τh1
n1

(Hk1
n1 )〉P

2

0,{qR }∪A1 ,d

∫
M1,A0∪{qE }

(ψh0
1 · · ·ψh0

n0 (2λ1 − ψq ))
)
+

∑
A0

∐
A1

∐
A2�[n]

d1+d2�d: d1 ,d2>0

2∑
j�0
〈H j+

∑
i∈A0 ki , τh1

1
(Hk1

1 ), . . . , τh1
n1

(Hk1
n1 )〉P

2

0,1+n1 ,d1
〈H2− j , τh2

1
(Hk2

1 ), . . . , τh2
n2

(Hk2
n2 )〉P

2

0,1+n2 ,d2

∫
M1,n0+2

(ψh0
1 · · ·ψh0

n0 )

Notice in particular that ordinary and reduced invariants coincide for primary insertions
(using the string equation).

The case of P3 is evenmore complicated: D1 has excess dimension two, and D2 has ex-
cess dimension 1. They intersect in the locus pictorially represented by (the configuration
of points is admittedly arbitrary):

Figure 2.1: “Mickey Mouse with an earring is eating a doughnut with a fly”

Away from the main component, the local model for the moduli space near such a
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boundary point is V (x y , xz) ⊆ A3
x ,y ,z , where D1 � {x � 0} and D2 � {y � z � 0}, as

can be argued from [HL10, §5.2]. These are in fact the equations of the boundary in the
underlying moduli space of genus one curves. The normal cone

Spec
(
k[x , y , z][A, B]/(x y , xz , zA − yB)

)
has two components defined by (y , z) (this is a rank-two vector bundle on D2, coinciding
with its normal bundle) and (x , zA − yB): the latter is not a line bundle on D1, as it has
rank two over the origin, so in particular it is not its normal bundle; on the other hand
the cycle of this cone has dimension three, and its restriction to the origin has dimension
two, so we may effectively delete it, and behave as if it were just the normal bundle of D1.
We may therefore argue as before, and we find that the relevant bundles are

E∨ � ev∗q TP3

L∨q ,E � L
∨

q ,R

on D1, of which we take c2, while on D2 we compute c1 of

E∨ � ev∗q TP3

L∨q1 ,E
� L∨q ,R1

⊕ L∨q2 ,E
� L∨q ,R2

.

D3 has dimension equal to the virtual dimension. A Chern class calculation implies (with
schematic notation suggested by N. Nabĳou):

[M1,n (P3 , d)]vir
� [ ]+

4[
ψ H ] + 4[

ψH
] − 3[

λ1ψ
] − 3[

λ1 ψ
] + [

ψ2

] + 2[
ψ ψ

]+

[
ψ2

] + 3[
λ2

1 ] − 8[
λ1 H ] + 6[ H2

] + 4[
H

] − 3[
λ1 ]+

[
ψ

] + [
ψ

] + [
ψ

] + [
ψ

] + [ ]

If we restrict our attention to primary invariants, the only survivors are:

[ ] + 4[
ψ H ] − 3[

λ1ψ
] − 3[

λ1 ψ
]+

[
ψ2

] + 2[
ψ ψ

] + 3[
λ2

1 ] − 8[
λ1 H ]

They contribute tidily as follows:
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1. gives the reduced invariants,

2. 4〈ψ〉1,1〈H,−〉P
3

0,n+1,d �
4d
24 GW0 by divisor,

3. −3〈λ1ψ, 1〉1,2〈−〉P
3

0,n ,d �
−3n
24 GW0 since there are n possible choices for the marking

on the genus one curve,

4. −3〈λ1〉1,1〈ψ,−〉P
3

0,n+1,d �
−3(n−2)

24 GW0 by dilaton,

5. 〈ψ2 , 1〉1,2〈−〉P
3

0,n ,d �
n
24 GW0,

6. 2〈ψ〉1,1〈ψ,−〉P
3

0,n+1,d �
2(n−2)

24 GW0 by dilaton,

7. vanishes since 〈λ2
1 , 1〉1,2 � 0,

8. −8〈λ1〉1,1〈H,−〉P
3

0,n+1,d �
−8d
24 GW0 by divisor.

Summing up we obtain the following:

Proposition 2.1.5 (Li-Zinger formula for primary insertions on P3).

〈δ1 , . . . , δn〉
P3

1,n ,d � 〈δ1 , . . . , δn〉
P3 ,red
1,n ,d +

2 − 4d − 3n
24 〈δ1 , . . . , δn〉

P3

0,n ,d .

Notice that this differs from Li-Zinger’s original formula by the contribution of the
markings (which is not of interest in the CY3 case). An alternative approach would be to
compare every boundary component to its genus zero relative by virtual pushforward:
if we are only interested in primary insertions, notice that the components of D1 such
that more than one marking dwells on the elliptic curve will not contribute, since the
obstruction bundle has rank two and no other insertions involve the factorM1,k (k > 2).
Now the componentM1,1 ×M0,n+1(P3 , d) will contribute 2−4d

24 GW0, while each of the n
componentsM1,2×M0,n (P3 , d) will contribute− 3

24 GW0 (these numbers can be computed
by integrating the obstruction bundle on the generic fiber ofM1,2−k ×M0,n+k (P3 , d) →
M0,n (P3 , d), for k � 0, 1).

§ 2.2. Maps from curve singularities

A different approach to reduce the complexity of M1,n (PN , d) is the one followed by
M. Viscardi in [Vis12], building on work of D.I. Smyth on the minimal model program
forM1,n [Smy11a]. Rather than blowing up and desingularising the main component,
the idea is to collapse a number of boundary components, filling in their intersection
with main and the boundary components of smaller dimension. Vakil’s description of
the smoothable elements ofM1,n (PN , d) (see Proposition 2.1.1(2)) suggests to do so by
allowingmaps frommore singular (than nodal) curves, and simultaneously making their
semistable models unstable, in order to preserve the separatedness of the moduli space.
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The easiest example is the following: the cusp

k[[x , y]]/(y2
− x3)

is the only unibranch singularity of genus one (meaning that there exists a flat family of
smooth elliptic curves degenerating to an irreducible curve of geometric genus 0 andwith
only one singular point, around which the curve is formally isomorphic to the spectrum
of the ring above). The semistable reduction of a 1-parameter smoothing of the cusp
with regular total space is well-known [HM98, §3.C]: the central fiber has a rational tail
(normalising the singularity) attached to an elliptic curve at the preimage of the singular
point; this indicates that we should make curves of genus one with only one special point
unstable. Consider then the following:

Definition 2.2.1. Themoduli space of 1-stable mapsM
(1)
1,n (X, β) parametrises f : (C, p) →

X such that

1. C is an at worst cuspidal, projective curve of arithmetic genus one, and p is an
n-tuple of smooth and disjoint sections of C;

2. if C0 is a minimal subcurve of C contracted by f , the number of markings on C0

added to the number of intersections of C0 with C \ C0 is at least 3 if pa (C0) � 0,
and at least 2 if pa (C0) � 1;

3. f∗[C] � β ∈ H+

2 (X) and Aut(C, f ) is finite.

The idea is that the limit of a family of smooth embedded elliptic curves degenerating
to a cusp is no longer

q

f (q)

Figure 2.2: A smoothable point of D1.

but rather the identity of the cusp itself. Also, notice that the only fiber singularities
appearing in the miniversal family of the cusp are nodes, hence being at worst nodal is
an open condition.

Proposition 2.2.2. M
(1)
1,n (X, β) is a proper DM stack of finite type over k.

See Proposition 2.2.15 below for amore general statement and a reference. For example
M

(1)
1 (P2 , 3) only has two irreducible components: D1 is not there anymore, because its

generic element does not factor through a cusp and is unstable according to Viscardi’s
1-stability condition above. The intersection of D1 with main and D2, on the other hand,
has been filled in with maps from cuspidal curves. This is the main instance of Smyth-
Viscardi’s spaces that I am going to be concerned with, but there is a well-developed
theory which I shall quickly review here.
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2.2.1. Gorenstein singularities of genus one and 1-stabilisation.

Definition 2.2.3. Let (C, p) be the germ of a curve singularity, with normalisation ν : C̃ →
C. Let me denote by m the number of branches of C at p (i.e. irreducible components of
C̃) and by δ � dimk(ν∗OC̃/OC). The genus of (C, p) is defined by

g � δ − m + 1.

Proposition 2.2.4. [Smy11a, Proposition A.3] There is up to isomorphism only one germ
of Gorenstein curve singularity (C, p) of genus one with m branches, namely

ÔC,p '




k[[x , y]]/(y2
− x3) (cusp) if m � 1,

k[[x , y]]/y(y − x2) (tacnode) if m � 2,

and the germ of m generic lines through the origin in Am−1 for m ≥ 3. It is called the
elliptic m-fold point.

All these singularities are smoothable (see the proof of [Smy11a, Theorem 3.8]). Smyth
studied their semistable models: pick a smoothing C of the m-fold elliptic point and con-
sider its semistable model with regular total space C̃; let (E, q1 , . . . , qm) be the exceptional
locus of the contraction (the fiber over the m-fold elliptic point) marked with its inter-
section with the rest of the curve (m rational trees). Call a semistable genus one curve
(E, q1 , . . . , qm) a semistable tail if it arises in this way. Smyth shows [Smy11a, Proposition
2.12] that semistable tails can be characterised combinatorially as those curves such that
the distance (on the dual graph) from qi to the core of E is constant for all i � 1, . . . ,m
(balancing condition). The idea is that C is a normal surface, and it is Gorenstein if
and only if the central fiber is. In this case, denoting by φ : C̃ → C the contraction,
φ∗ω

C
� ω

C̃
(D) for some effective divisor D supported on the exceptional locus E and

such that ω
C̃

(D)|E ' OE; we can find appropriate weights on the components of E such
that this holds precisely in the balanced case. On the other hand, if balancing holds, we
may contract E by applying the Proj construction to ω

C̃
(D) (possibly twisted by some hor-

izontal divisor away from E) as above, and then show that the resulting C is Gorenstein
by relating its dualising sheaf to the O

C
(1) given by the Proj construction. The Smyth’s

singularity one gets when contracting a balanced curve is determined by the number of
rational trees attached to it, which is exactly the number of branches of the singularity.
These singularities have no moduli (on the other hand the global configuration of the
curve may have moduli, i.e. the positioning of special points). This discussion indicates
what are the stable curves/maps that we should make unstable in order to keep the
moduli space separated. Before passing to maps, let me make a few remarks.

Remark 2.2.5. It is well known that the cusp is obtained by collapsing the double point
in P1, i.e. it is the pushout of the following diagram:
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Spec k[ε] Spec k

(P1 , 0) (C, 0̄)

y

where the vertical arrow on the left is any but the zero tangent vector. In fact a simi-
lar statement is true for every elliptic m-fold, which is the collapsing of a generic (not
contained in any coordinate linear subspace) tangent vector at a rational m-fold point,
i.e. the union of the coordinate axes in Am , i.e. the pushout of a point in m copies of
P1. At the level of algebra, this boils down to the statement that ÔC,0̄ � R ×k[ε] k, where
R ⊆ k[[t1]] ⊕ . . . ⊕ k[[tm]] is the subalgebra {(p1 , . . . , pm) : p1(0) � . . . � pm (0)} and the
map R → k[ε] sends (p1 , . . . , pm) to ε

∑m
i�1 p′i (0).

I will record here a useful fact for the study of maps to PN that descend to a Smyth’s
singularity. Observe that, if ν : (C, 0) → (C, 0̄) is the semi-normalisation of a Gorenstein
genus one singularity (i.e. (C, 0) is a rational m-fold point), then ν∗ : Pic(d1 ,...,dm ) (C) →
{OC (d1 , . . . , dm)} has kernel isomorphic to Ga . On the other hand the pullback of
sections of a line bundle L of non-negative multidegree on C gives a hyperplane in
H0(C,OC (d1 , . . . , dm)) by Riemann-Roch.

Lemma 2.2.6. Two sections s and t of H0(C,OC (d1 , . . . , dm)) descend to the same line
bundle L on C if and only if they satisfy:

s(0)
m∑

i�1
t′i (0) � t(0)

m∑
i�1

s′i (0). (2.1)

Proof. Notice that (2.1) is invariant under scaling on the line bundle fibers, aswell as under
automorphisms of the curve that fix 0 (these act as scalar multiplication up to first order),
so it does not depend on the choice of coordinates. Assume first that t does not vanish at
0. Then s/t is a rational function on C with poles away from 0, so it must satisfy a linear
condition on the derivatives along the different branches, which up to automorphisms
of C we may assume to be

∑m
i�1(s/t)′i (0) � 0; multiplying by t(0)2 we get the desired

equation. This defines a hyperplane inside H0(C,OC (d1 , . . . , dm)) andwe can associate to
it 1

t(0)
∑m

i�1 t′i (0) ∈ Ga . Otherwise assume that all the sections of L vanish at 0̄; then they
have to do so to order higher than one, because 0̄ is not a Cartier divisor in C, but this
defines too small a subspace of H0(C,OC (d1 , . . . , dm)), hence there is no such an L. �

Remark 2.2.7. The operation of collapsing elliptic tails to cusps (1-stabilisation)workswell
in families (in fact, even when the elliptic tail is a component of a curve of higher genus
[Sch91]). On the other hand, the m-stabilisation is not well-defined. Here is an example
from [BCM18, Remark 4.12]: the curve on the left is not 3-stable (the minimal subcurve of
genus one has level 2; see [Smy11a] or §2.2.2 below for the relevant definitions). We could
contract themaximal unpointed subcurve of genus one, but it is not balanced; on the other
hand, say we could consistently contract the minimal genus one subcurve: by smoothing
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q
(tacnode)

(3-fold elliptic point)

Figure 2.3: Two different plausible 3-stabilisations.

the node q and doing so, we would get a family of 3-fold elliptic points specialising to
the tacnode, which can be excluded by studying the miniversal deformation of the latter.
This problem is studied in [Smy11b, §4.1].

I will discuss a specific variation on this [BCM18, Theorem 4.4] that I am going to
need later. Recall from Definition 2.1.3 that I denote by Mwt�d ,st

1 the open and bounded
substack within the Artin stack of prestable curves with a weight assignment, defined
by the conditions that the total weight is d and the curve is weighted-stable; similarly
M

wt�d ,st
1 (1) is the stack of weighted 1-stable (at worst cuspidal) curves.

Proposition 2.2.8. There exists a morphism Mwt�d ,st
1 → M

wt�d ,st
1 (1) which extends the

identity on the smooth locus.

The proof is inspired by [HH09, §2] and [RSW17a, §3.7]. We construct the contraction
over Mdiv

1 (the moduli space of at worst nodal curves of arithmetic genus one endowed
with a d-uple of distinct smooth points that makes them weighted-stable) first, and then
show that it descends toMwt,st

1 . We work onMdiv
1 in order to have a natural polarisation.

Let E be the locus inside the universal curve over Mwt,st
1 spanned by elliptic tails of

weight 0; this is a Cartier divisor (the total space of the universal curve over Mwt,st
1 is

smooth, because it is isomorphic toMwt,st
1,1 ), and abusing notation I will denote by E all its

pullbacks. Moreover letD1 be its image inMwt,st
1 , which is a Cartier divisor as well.

Consider the following line bundle on the universal curve overMdiv
1 :

N :� ωπ (E) ⊗ OC (2D),

whereD is the universal Cartier divisor overMdiv
1 .

Proposition 2.2.9. Let C � Proj
Mdiv

1
(
⊕

n≥0 π∗N
⊗n). Then C is a flat family of weighted

1-stable curves and φ is a regular morphism:

(C ,D) (C , φ(D))

Mdiv
1

φ

π π̄
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This defines the 1-stabilisation morphismMdiv
1 →Mdiv

1 (1).

Notice that N is trivial on the locus of elliptic tails, so this will be contracted by
φ. We need to prove that N is π-semiample (regularity of φ) and that π∗N is locally
free (flatness of π̄). This is clear on the smooth locus; to prove it along D1 we use
[RSW17a, Lemma 3.7.2.2].

Lemma2.2.10 (Pullbackwith a boundary). Let π : C → S be a proper family of curves over
a smooth base, and letN be a line bundle on C such thatR1 π∗N is a line bundle supported
on a Cartier divisorD ⊆ S. Then for every DVR scheme ∆with closed point 0 and generic
point η, and for every morphism f : ∆→ S such that f (0) ∈ D and f (η) ∈ S \Dwe have

f ∗π∗N � π∆,∗ f ∗
C
N .

Lemma 2.2.11. The line bundleN is π-semi-ample, i.e. the natural map

π∗π∗N
⊗n
→N

⊗n

is surjective for n � 0.

Proof. Outside the locus of elliptic tailsN is π-ample. We are left with checking at points
of an elliptic tail; thanks to the above Lemma we can reduce to the case that C is the
central fiber of a one-parameter smoothing with regular total space. The fact is then
proved within Smyth’s contraction lemma [Smy11a, Lemma 2.12]. �

Lemma 2.2.12. π∗N is locally free onMdiv
1 .

Proof. Comparewith [RSW17a, Proposition 3.7.2.1]. We check that π∗N has constant rank.
OnMdiv

1 \D
1,R1 π∗N � 0, soπ∗N satisfiesCohomology andBaseChange [Har77, Theorem

III.12.11] and its rank is determined by Riemann-Roch, hence constant. Given a point x
on the boundaryD1, we can pick a one-parameter smoothing as above, and we can check
the rank at x by looking at π∗ f ∗N over ∆. Now f ∗N is flat over ∆, so π∗ f ∗N is as well,
which implies torsion-free and thus constant rank. �

Proof. (2.2.9) Let S →Mdiv
1 be a smooth atlas, then we have:

(CS ,DS) (CS , φ(DS))

S

φS

πS π̄S

where CS � Proj
S
(
⊕

n≥0 πS,∗N
⊗n), φS is a proper and birational, and π̄S is a flat family.

To verify that this defines a morphism S →Mdiv
1 (1) we have to argue that CS has reduced

fibers and only nodes and cusps as singularities. After pulling back to a generic ∆, this is
again Smyth’s contraction lemma [Smy11a, Lemma 2.13]. D is pushed forward along φ
and it satisfies weighted-stability, since φ is an isomorphism outside the locus of elliptic
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tails. To conclude that this defines a morphism Mdiv
1 → Mdiv

1 (1) it is enough to verify
that there is an isomorphism pr∗1CS � pr∗2CS satisfying the cocycle condition, where
pri : S′ � S ×Mdiv

1
S⇒ S.

Now pr∗i CS is obtained by applying the Proj construction to pr∗i (πS,∗N ) � πS′,∗(pr∗iN ),
which are isomorphic because S′→ S is flat. On the other hand pr∗1N � pr∗2N sinceN is
the pullback of a line bundle onMdiv

1 . The cocycle condition is derived similarly. �

Lemma 2.2.13. The 1-stabilisation for curves with a divisor induces an analogous mor-
phism at the level of weighted curves:

Mdiv
1 Mdiv

1 (1)

M
wt,st
1 M

wt,st
1 (1)

�

∃

Proof. Étale locally on Mwt,st
1 we can choose smooth sections si of the universal curve

so that the Cartier divisor D �
∑

si has degree compatible with the weight function,
so in particular it makes N � ωπ (E) ⊗ OC (2D) trivial on the elliptic tails and π-ample
elsewhere. For a smooth atlas S → Mwt,st

1 , this observation allows us to define a lifting
S → Mdiv

1 , and thus a morphism ξ : S → Mwt,st
1 (1) via the construction of Proposition

2.2.9.
In order to show that this descends to a morphism Mwt,st

1 → M
wt,st
1 (1) we need to

verify that there exists pr∗1(ξ) � pr∗2(ξ) satisfying the cocycle condition, where pri : S′ �
S ×
M

wt,st
1

S⇒ S.
This boils down to checking that for twodifferent choices of a liftingD1 ,D2 : S →Mdiv

1
there exists a unique isomorphism

C1 � Proj
S

*
,

⊕
n≥0

π∗(N⊗n
1 )+

-
� Proj

S
*
,

⊕
n≥0

π∗(N⊗n
2 )+

-
� C2.

By construction there is a birational map ψ:

CS

C1 C2.

φ1 φ2

ψ

We want to show that ψ extends to a regular morphism. Notice that C i is normal,
i � 1, 2: indeed since S is smooth and the singularities of the fibers are in codimension
1, C i is regular in codimension 1; since both S (smooth) and the fibers (Cohen-Macaulay)
satisfy Serre’s condition S2, so does the total space of C i by [Mat89, Theorem 23.9]. By
Zariski’s connectedness theorem φi ,∗OCS � OC i

. By construction Exc(φ1) � Exc(φ2) is
the locus of elliptic tails of weight 0, so in particular φ2 contracts all the fibers of φ1.
Then [Deb13, Lemma 1.15] implies that φ2 factors through φ1, and viceversa. This proves
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the regularity of ψ and its inverse. Notice that ψ is unique as it is the only extension of
φ2 ◦ φ−1

1 . �

This concludes the proof of Proposition 2.2.8.

2.2.2. Viscardi’s moduli spaces of maps. I finally come to M. Viscardi’s definition of
alternative compactification of the space of maps from a smooth elliptic curve [Vis12,
Definition 2.15].

Definition2.2.14. Themoduli spaceofm-stablemapsM
(m)
1,n (X, β) parametrises f : (C, p) →

X of class β such that:

1. C has only nodes and l-fold elliptic points as singularities, with l ≤ m, pa (C) � 1
and p � (p1 , . . . , pn) are smooth and disjoint sections,

2. if E ⊆ C is a connected subcurve contracted by f , and pa (E) � 1, then its level is

|{i ∈ [n] : pi ∈ E}| + |E ∩ C \ E | > m ,

3. |Aut(C, f ) | < +∞.

The usual Behrend-Fantechi’s construction of a perfect obstruction theory for the space
of morphisms relativeM1,n (m) [BF97, Proposition 6.2] endowsM

(m)
1,n (X, β) with a virtual

class of the usual dimension - indeedM1,n (m) is irreducible, being all the relevant curves
smoothable, even though it is not smooth for m ≥ 5. Setting m � 0 recovers the usual
space of Kontsevich’s stable maps.

Proposition 2.2.15. [Vis12, Theorem 3.6]M
(m)
1,n (X, β) is a proper DM stack of finite type

over k.

Checking the valuative criterion for properness goes as follows: assume the generic
fiber is smooth (in general we may work componentwise on the generic fiber); for a start,
we may complete the family over ∆ - possibly after a finite base-change - as an ordinary
stable map. If f contracts the core and it does not satisfy m-stability, we can make it into
doing so by a sequence of operations: alternate between contracting the core to a Smyth’s
singularity and sprouting, i.e. blowing up at markings or nodes along the core. Notice
that more sprouting may be required in order for the map to descend to the singularity
(see [BCM18, Remark 2.6]).

As anticipated, Viscardi’smoduli space of m-stablemaps to PN “collapses” the bound-
ary components Dk

1 (PN , d) for k ≤ m (the pointed case is subtler, as usual), hence the
following result [Vis12, Corollary 5.10].

Proposition 2.2.16. There exists an m0 � m0(d , n) such that, for m ≥ m0,M
(m)
1,n (PN , d) is

irreducible.
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2.2.3. Aligned log structures and factorisation. Finally, I would like to discuss how
these two lines of thought (Li-Vakil-Zinger’s desingularisation and reduced invariants,
compared to Smyth-Viscardi’s alternative compactifications) are not unrelated. A main
issuewith theVakil-Zingerdesingularisation is that the iteratedblow-upproceduremakes
the modular interpretation of the resulting space not so immediately clear. This has been
recently fixed by D. Ranganathan, K. Santos-Parker and J. Wise with the introduction
of the notion of an aligned log curve. Recall the description of log smooth curves, due
to F. Kato [Kat00], and the parallel with marked prestable curves. Let us work over a
geometric point S � Spec(k � k̄), and assume we have a log smooth curve of genus one
(C,MC) → (S,MS). We can modify the usual dual graph construction by collapsing all
the vertices corresponding to components of the core (in case the latter is a circle of P1)
to one vertex, called the circuit and denoted by ◦. Define a piecewise-linearMS-valued
function on the dual graph Γ(C) by

λ(v) �
∑

e∈[◦,v]
ρe ,

i.e. by associating to a vertex/component the sum of all the smoothing parameters of the
edges/nodes separating it from the circuit.

Definition 2.2.17. Let S be a log scheme and C → S a family of log smooth curves of
genus one. We say that C is radially aligned if for every geometric point s ∈ S the values of
λ(v) are comparable inMS,s for every vertex v of Γ(Cs ), with respect to the partial order
m1 ≤ m2 if there is m1−2 ∈ MS,s such that m1 + m1−2 � m2.

There exist minimal radially aligned log structures, hence the moduli problem over
(Lo gSch) is the enhancement of a moduli stack over (Sch) endowed with a log structure,
after work of D. Gillam [Gil12]. At this level

Mrad
1,n →M1,n

is a log modification, due to the key observation that a log blow-up along a log ideal
K determines on every one of its charts a minimal element among the generators of K,
hence a sequence of log blow-ups will serve the goal of ordering a collection of sections
of MS [Par17, Lemma 3.36]. Pictorially, it corresponds to a subdivision of the dual
minimal monoid (see [RSW17a, §3.3-3.4]). On the other hand, for every stable radially
aligned curve over a geometric point S, and for every integer m ≥ 0, we may find a
section δm ofMS such that δm � λ(v) for some vertex of Γ(C), and the circle of radius
δm has inner valence less than m and outer valence strictly larger than m. δm behaves
well under specialisation/generisation, by semicontinuity of the inner and outer valence
[RSW17a, Proposition 3.5.2], hence it can be defined over any base. The power of log
structures is two-fold at this point:

1. it produces a log-modification C̃ → C by subdividing the edgeswhere theymeet the
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circle of radius δm (i.e. blowing up some nodes and markings on the components
with λ(v) < δm) [RSW17a, Proposition 3.6.1];

2. by combining λ and δm , it produces a π̃-semiample line bundle on C̃, the morphism
associated to which contracts the strict interior of the circle of radius δm , producing
a diagram, with π̄ : C → S an m-stable Smyth’s curve [RSW17a, Proposition 3.7.3.1]:

C̃

C C

S

π
π̄

Remark 2.2.18. It may seem that this construction sometimes happens to contract unbal-
anced curves, but it is not the case; notice that the blow-ups in point (1) above may occur
along non-reduced centers. In fact, the strict interior of a circle around the circuit is the
correct generalisation of a balanced elliptic tail when C → S is not just a one-parameter
smoothing with regular total space.

This construction in the stable case provides a resolution of indeterminacy of the birational
map between different Smyth’s compactifications:

M
rad
1,n

M1,n M
(m)
1,n

More to the point, there is an extension of this construction to the realm of maps.

Definition 2.2.19. A centrally alignedmap f : (C, p) → X over S is a logmorphism (where X
has the trivial log structure) with a section δ0 ofMS, such that δ0 � λ(v) for v of minimal
distance to the circuit among the non-contracted components, λ(w) is comparable with
δ0 for every w, and the λ(w) are comparable with one another whenever they are smaller
than δ0.

The section δ0 together with λ defines a modification C̃ and a contraction to C with a
Smyth’s singularity as above.

Definition 2.2.20. A centrally aligned map satisfies the factorisation property if its pullback
to C̃ descends to C:

C̃

C C

X

f

∃ f̄
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Theorem 2.2.21. [RSW17a, Theorems 4.6.3.2 and 4.5.1] The moduli space of centrally
aligned maps to projective space is isomorphic to the Vakil-Zinger blow-up. The factori-
sation property identifies the main component.

Notice that by construction f̄ is non-constant on at least one branch of the core. For
every Gorenstein curve of genus one with no separating nodes, the dualising sheaf is
trivial [Smy11a, Lemma 3.3]. Therefore H1(C, f̄ ∗OPN (1)) � 0 by Serre duality, and the
projection toMcen

1,n is unobstructed (a perfect obstruction theory is given by R• π̄∗ f̄ ∗TPN ),
so every element satisfying factorisation is smoothable; on the other hand factorisation is
a closed condition [RSW17a, Theorem 4.3]. This proves the second claim.

Remark 2.2.22. From the discussion abovewe see that the construction in [RSW17a]might
be suitable to extend the definition of reduced invariants to a larger class of varieties than
projective complete intersections. It is enough thatVZ1,n (X, β) is irreducible and Y ⊆ X
is such that NY/X is an ample vector bundle, so that R1 π̄∗ f̄ ∗NY/X � 0 and the inclusion
VZ1,n (Y, β) ↪→ VZ1,n (X, β) admits a perfect obstruction theory. On the other hand if
we want to prove that VZ1,n (X, β) is smooth following in the steps above, we need TX

ample, which is quite a restrictive condition (the only smooth variety with ample tangent
bundle is the projective space, by a theorem of Mori [Mor79], on the other hand it could
be possible e.g. to extend to the orbifold theory of weighted projective spaces).

2.2.4. Reduced vs cuspidal invariants. In the next section I am going to discuss a result
that I have obtained with F. Carocci and C. Manolache, which illustrates the relation
between the Li-Vakil-Zinger’s and the Smyth-Viscardi’s projects under a slightly different
light: namely, the idea is that the reduced invariants may be recovered as m-stable
invariants, whenever m is big enough that all the boundary components contributing
non-trivially to the right hand side of the Li-Zinger’s formula have been collapsed. We
demonstrate this principle in the case of the quintic threefold, for which only D1 matters,
so that it is enough to allow maps from cuspidal curves.

Theorem 2.2.23. [BCM18] For a smooth quintic threefold X5 � V (w) ⊆ P4,

GWred
1 (X5) � GW (1)

1 (X5).

Here is an idea of how the proof could go: recall from Proposition 2.2.8 that there
is a well-defined 1-stabilisation morphism at the level of weighted-stable curves; also,
Viscardi’s moduli space of 1-stable maps projects down to Mwt�d ,st

1 (1) by forgetting the
map and retaining its degree. The following fiber product

ZX M
(1)
1 (X5 , d)

M
wt�d ,st
1 M

wt�d ,st
1 (1)

α

�
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is endowed with a class [ZX]vir by virtual pullback (see the discussion after Definition
2.2.14, and recall thatMwt�d ,st

1 (1) →M1(1) is étale), such that α∗[ZX]vir � [M
(1)
1 (X5 , d)]vir,

by commutativity of virtual pullbacks with proper pushforward [Man12a, Theorem
4.3.1(3)(i)] and the following lemma.

Lemma 2.2.24. [BCM18, Lemma 4.19] The 1-stabilisation Mwt,st
1 → M

wt,st
1 (1) is proper

and birational.

Proof. The 1-stabilisation is an isomorphism on the open dense locus of smooth elliptic
curves. For properness use the valuative criterion: let ∆ be a DVR scheme with generic
point η; we have to fill in the upper right part of the following diagram:

Cη C

Cη C

φη φ

We may in fact assume that φη is an isomorphism (by the strengthened version of the
valuative criterion that holds with the generic point of ∆mapping to a dense open locus),
and then it is enough to take the weighted stable model of C. �

On the other hand, by the following lemma, there is a closed embedding of ZX into
ordinary stablemapsM1(X, d); it is an isomorphismwith the substack ofmaps satisfying
factorisation through the 1-stabilisation of the underlying weighted curve. In particular
ZX has a main component, and all the boundary components except D1(X, d).

Lemma 2.2.25. [BCM18, Lemma 4.13] There is a closed embedding i : ZX ↪→ M1(X, d).
In particularZX is a proper DM stack.

Proof. Objects ofZX over a scheme S consist of diagrams:

C C X

S

φ

π

f̄

π̄

where f̄ is a 1-stable map and φ is the weighted 1-stabilisation; arrows over idS are
commutative diagrams:

C C X

C′ C
′

X

φ

ψ

f̄

ψ̄ idP
φ′ f̄ ′

where ψ and ψ̄ are isomorphisms. Observe that ψ̄ is determined by ψ.
Forgetting C and keeping f :� f̄ ◦ φ : C → X, we obtain a morphism

i : Z →M1(X, d).
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From the above description of arrows in ZX , i is representable (i.e. faithful) and a
monomorphism (i.e. full).

We can check properness using the valuative criterion. We argue as in [RSW17a,
Theorem 4.3]. Let ∆ be a DVR scheme with generic point η; consider a diagram:

Cη C∆ X

Cη C∆

φη φ∆

f

j

g

Notice that there is an open dense substack of ZX where φ is an isomorphism. Indeed
the generic point of either the main component or any boundary component is already
1-stable. Thus we can assume that φη in the above diagram is an isomorphism.

Observe that f is constant on the fibers of φ∆, so it factors topologically through C∆.
We can conclude as in [RSW17a] or appeal to [Deb13, Lemma 1.15] using φ∗OC∆ � OC∆ .
To see this consider the exact sequence:

0→ O
C∆
→ φ∗OC∆ → φ∗OC∆/OC∆ → 0

Since φ is an isomorphism - possibly away from the cuspidal point -, the cokernel is
supported in dimension 0. However χ(O

Cη
) � χ(φ∗OCη ) implies the same equality

holds on the whole of ∆, since the Euler characteristic is constant in flat families. So
χ(φ∗OC∆/OC∆ ) � length(φ∗OC∆/OC∆ ) � 0. �

Unfortunately it is hard to study the intrinsic cone of M1(X, d) directly, hence we
resort to an indirect approach, extending work of H.L. Chang, Y. Hu, Y.-H. Kiem and J. Li
to the situation at hand.

2.2.5. A word on genus two. This section is based on discussions I have had with F.
Carocci. The geometry of the moduli space of maps of genus two to PN is more compli-
cated than that of genus one. A key focus of recent research has been towards verifying
the [BCOV93] prediction for the higher genus Gromov-Witten potential (of the quintic
threefold). Zinger managed to do so in genus one [Zin09b], as the culmination of the ar-
ticulate project I have tried to outline in the previous sections. An approach to the genus
two case à la Li-Vakil-Zinger, i.e. through a partial desingularisation of the moduli space,
has been attempted by Hu and Li in [HL12]: it is quite subtle, even though incomplete,
and it appears to have remained dormant formore than five years now. On the other hand
there has been a recent breakthrough, due to S. Guo, F. Janda, and Y. Ruan [GJR17], based
on torus localisation on a compactification - inspired by the theory of log stable maps -
of the moduli space of maps with p-fields (in fact of a more general GLSM moduli space
[CJRS18]). Nonetheless I believe it would be relevant to gain a better understanding of
the geometry of the moduli space of maps, possibly with a view towards the definition of
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reduced invariants, which should provide a modular definition of BPS numbers [Pan99],
at least under some extra hypotheses (e.g. the curve class is primitive).

Following Smyth’s procedure in [Smy11a, Appendix A], we may attempt a classifica-
tion of the (Gorenstein) singularities of genus two. I will start with a general discussion
from the algebraic viewpoint, and then restrict to the unibranch case, about which we
are able to say something definitive. Let (R,m) be the completion of the local ring of the
curve at the singularity, with normalisation:

(R̃, m̃) ' (k[[t1]] ⊕ . . . ⊕ k[[tm]], 〈t1 , . . . , tm〉) .

So m is the number of branches, and δ � m + 1 for g � 2 (compare with Definition 2.2.3).
It is an observation of Smyth’s that R̃/R is graded by:

(R̃/R)i :� m̃i/(m̃i
∩ R) + m̃i+1;

furthermore he notices that:

1. m + 1 � δ(p) �
∑

i≥0 dimk(R̃/R)i ;

2. 2 � g �
∑

i≥1 dimk(R̃/R)i ;

3. if (R̃/R)i � (R̃/R) j � 0 then (R̃/R)i+ j � 0.

The following facts will also turn out to be useful:

4.
∑

i≥k (R̃/R)i is a grading of m̃k/(m̃k
∩ R);

5. there is an exact sequence:

0→ m̃k
∩ R

m̃k+1 ∩ R
→
m̃k

m̃k+1 →
(
R̃/R

)
k
→ 0.

Notice that in the unibranch case dimk(R̃/R)1 ≤ 1, hence equality must hold (by
observation (3) above). We are thus left with two cases:

1. either dimk(R̃/R)2 � 1 and dimk(R̃/R)i � 0 for all i ≥ 3: in this case m̃3
⊆ m by

observation (4). Indeed we see by (5) that

m̃3
� m,

hence R ' k[[t3 , t4 , t5]], a non-Gorenstein singularity.

2. or dimk(R̃/R)3 � 1 and dimk(R̃/R)i � 0 for i � 2 and for all i ≥ 4: in this case
m̃4
⊆ m by observation (4). On the other hand from dimk(m̃2

∩ R/m̃3
∩ R) � 1 we

deduce that there is a generator of degree 2, and from dimk(m̃3
∩ R/m̃4

∩ R) � 0
there is none of degree 3; so we see that

m/m2
� 〈t2 , t5

〉,
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i.e. R ' k[[x , y]]/(x5
− y2), which is planar (hence Gorenstein).

We can show that the semistable models are as follows:

1. the non-Gorenstein singularity is obtained by collapsing a genus two tail which is
attached to a rational tree at a non-Weierstrass point;

2. the planar singularity is obtained by collapsing a genus two tail which is attached
to a rational tree at a Weierstrass point.

The idea is again that the normal surface you get after contracting is Gorenstein if and
only if it has Gorenstein central fiber, if and only if the line bundle used to perform the
contraction may be written as ωC (D) with D supported on the exceptional locus, and
such that ωC (D)| Exc(φ) is trivial.

Remark 2.2.26. It was pointed out by D.I. Smyth that we cannot always construct simul-
taneous smoothings of the singularity and a semistable curve mapping to it (compare
with [BCM18, Lemma 2.11]). In particular it will not be true that any map that factors
through a genus two singularity (and does not contract all of its branches) is automatically
smoothable. Consider the map f0 : P1

→ P3 given in coordinates by

[s : t] 7→ [s3t2 : t5 : st4 : s5].

It is the normalisation of a curve with a singularity of type (2) above. Now attach a genus
two curve with a non-Weierstrass point to (P1

[s:t] , [1, 0]), and let it be collapsed by themap.
Assume the resulting genus two stable map were smoothable: then, by pulling back
OP3 (1) and taking the relative Proj construction, we would get a family C with central
fiber of type (1), and such that themap f : C → P3 factors through C. But this map should
restrict to an isomorphism of the central fiber with its image (because it is birational, and
the two curves have the same normalisation and δ-invariant), which is a contradiction.

Remark 2.2.27. There are a number of genus two singularities with two branches. The
complexity of carrying out an algebraic study as above increases steeply with the number
of branches. On the other hand every genus two singularitywith two branches is obtained
by gluing two singularities R1 and R2 with g(Ri) ≤ 2 along a closed subscheme of
length ≤ 3. This is clear if we look at the factorisation of the normalisation R ↪→ R̃ �

k[[t1]]⊕k[[t2]] throughR ↪→ R1⊕R2 ↪→ R̃,where thefirst partial normalisation corresponds
to separating the branches. Algebraically, this can be achieved by considering the quotient
Kbr of R̃/R generated by those conditions involving only one branch at the time, and then
taking the kernel of R̃ → Kbr. For example k[[x , y]]/(y(x3

− y)) is obtained by gluing two
smooth branches. Compare with [Smy13, Appendix A].

Finally, the components ofM2,n (PN , d), d ≥ 3, are included in the following list (I will
not mention the various possible distributions of the markings, and I will represent the
decorated dual graph of a general element of each component):
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1. main is the closure of the locus of maps from a smooth curve of genus two;

2. Dk �




g � 2, d � 0

g � 0, d1

g � 0, dk

g � 0, d2
. . .




3. Dhypell,k �




g � 2, d0 � 2
g � 0, d̄1

g � 0, d̄k

g � 0, d̄2
. . .




4. Ek �




g � 1, d0

g � 1,
d � 0 g � 0, d1

g � 0, dk

g � 0, d2
. . .




5. E (k1 ,k2) �




g � 1,
d � 0g � 0, d1,1

g � 0, d1,k1

g � 0, d1,2

g � 0, d0

g � 1,
d � 0 g � 0, d2,1

g � 0, d2,k2

g � 0, d2,2
. . .. . .




6. Enct �
{

g � 0, d g � 1, d � 0
}

Here is a funny example: consider M2(P1 , 3). From the theory of limit linear series
[EH86], no element ofDhypell,1 is smoothable: let the underlying curve be Z

∐
q R, where

Z has genus two and R ' P1. The aspect of the linear series supported on Z is ωZ (q), with
vanishing sequence at q (1, 3) (if q Weierstrass) and (1, 2) (otherwise). [EH86, Theorem
2.6] shows that every smoothable limit linear series can be made into a refined one (i.e.
one which has no ramification at the nodes, by [EH86, Proposition 2.5]) after possibly
introducing chains of P1 at the nodes of the original nodal curve - but in our case the
aspect of the linear series supported on Z will always remain the same! On the other
handDhypell,1 intersectsD2,D3, E1, E0,1, E0,2, and E1,1.

§ 2.3. p-fields, local equations and a splitting of the cone

The indirect approach to the proof of Theorem 2.2.23 can be outlined as follows: we intro-
duce themoduli space of 1-stablemapswith p-fields,M

(1)
1 (P4 , d)p , the geometry ofwhich

is closely related to that ofM
(1)
1 (P4 , d) (in fact, it is a line bundle over the boundary, while

the open main components are isomorphic); M
(1)
1 (P4 , d)p is endowed with a cosection

localised virtual class carrying the same information as [M
(1)
1 (X, d)]vir. By pulling back

along the 1-stabilisation as above, we may defineZP4 andZp ; unfortunatelyZp does not
compare directly withM1(P4 , d)p . After studying local equations for the moduli space
and a Vakil-Zinger blow-up, we are able to split the normal cone of Z̃p directly, and show
that the only non-trivial contribution to the invariants comes from the main component.
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2.3.1. 1-stable maps with p-fields. In [CL12], Chang and Li developed a general theory
of moduli spaces of sections: let us work over a base B - an algebraic stack - and let
π : C → B be a family of proper l.c.i. curves (they restrict to the nodal case, but all their
arguments carry through unchanged, as we have checked in [BCM18, §3]). Let V be
representable, quasi-projective, and smooth over C. The moduli space of sections ofV over
C is a B-stackS defined by:

S(S → B) � {sections ofVS → CS} ;

with universal curve πS and universal section e. It has a dual perfect obstruction theory
relative to B [CL12, Proposition 2.5]:

φS/B : T•
S/B → E•

S/B :� R• πS,∗e∗TV/C .

This applies in particular whenV is a vector bundle over C (or an open within one), and
in this case we get a cone of sections C(V); in fact by Serre duality

C(V) � Spec
B

Sym•(R1 π∗(V∨ ⊗ ωC/B)).

If we let B � P be the universal Picard stack over M, we recover the moduli space of
stable maps to PN as an open (defined by stability and the fact that the sections do not
vanish simultaneously) inside C(π∗(L)⊕N+1); the relative obstruction theory R• π∗L⊕N+1

over P is compatible with the usual one R• π∗ f ∗TPN over M, by the Euler sequence and
T•
P/M ' R• π∗OC[1] [CL12, Lemma 2.8]. This is familiar from the theory of quasimaps (a

variation of the stability condition cuts a different openwithin the Artin stack of sections).

Definition2.3.1. Themoduli spaceof1-stablemapswith p-fieldsM
(1)
1 (P4 , d)p parametrises

1-stable maps f̄ : C → P4 together with a p-field:

ψ ∈ H0(C, f̄ ∗OP4 (−5) ⊗ ωπ̄).

It is the cone of sections of the line bundle P � f̄ ∗OP4 (−5) ⊗ ωπ̄ overM
(1)
1 (P4 , d). Notice

that it is isomorphic toM
(1)
1 (P4 , d) on the open locus of the main component, while it

is a line bundle over the boundary components; in particular it is not proper. The map
M

(1)
1 (P4 , d)p

→ P � Pic(C → M1(1)) given by (C̄, f̄ , ψ) 7→ (C̄, L̄ � f̄ ∗OP4 (1)) admits a
virtual tangent bundle given by R• π̄∗( f̄ ∗OP4 (1)⊕5

⊕ P), where P is defined as above.

The quintic polynomial w determines a cosection of the obstruction bundle as follows:
there is a (non-linear!) map between the two vector bundles on the universal curve over
P, h1 : Vb(L

⊕5
⊕ P) → Vb(ωπ̄), given by h1(x, p) � pw(x0 , . . . , x4). By differentiating it

and pulling back along the universal section/evaluation
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Vb(L
⊕5

) \ {0} ⊕ Vb(P)

C C

M
(1)
1 (P4 , d)p P

e

π̄ π̄

we obtain a cosection of the relative obstruction sheaf

σ1 : Ob
M

(1)
1 (P4 ,d)p/P

� R1 π̄∗(L
⊕5
⊕ P) → R1 π̄∗(ωπ̄) ' O

M
(1)
1 (P4 ,d)p

σ1|(u ,ψ) (x̊, p̊) � p̊w(u) + ψ
4∑

i�0
∂iw(u)x̊i (2.2)

The degeneracy locus of this cosection is preciselyM
(1)
1 (X, d): indeed if w(u) is not

zero, then by Serre duality (perfect pairing) we may find p̊ such that σ1|(u ,ψ) (0, p̊) , 0; on
the other hand if the p-field ψwere not zero, then by smoothness of X - that means ∂iw(u)
do not all vanish simultaneously on {w(u) � 0} -, we could find x̊ so that σ1|(u ,ψ) (x̊, 0) , 0,
againbySerreduality. Wemay therefore applyKiem-Li’smachineryof cosection-localised
virtual cycles [KL13][CL12, §5], to obtain a class supported on the degeneracy locus of σ1:

[M
(1)
1 (P4 , d)p]vir

loc � 0!
σ1 ,loc[C

M
(1)
1 (P4 ,d)p/P

] ∈ A0

(
M

(1)
1 (X, d)

)
.

Theorem 2.3.2.
deg[M

(1)
1,1 (P4 , d)p]vir

loc :� (−1)5d deg[M
(1)
1 (X, d)]vir

This is proved by considering the moduli space of 1-stable maps with p-fields with
target the deformation to the normal cone of X ⊆ P4. Then the central fiber admits a
projectionM

(1)
1 (NX/P4 , d)p

→ M
(1)
1 (X, d), and the localised virtual pullback at the level

of 0-cycles can be figured out explicitly. All the details are spelled out in [CL12] and
summarised in [BCM18, §3].

2.3.2. Auxiliary spaces. Consider now the fiber diagram:

Z
p

M
(1)
1 (P4 , d)p

Z P

M
wt,st
1 M

wt,st
1 (1)

�

�

Remark 2.3.3. The stack Z parametrises C → C with a line bundle L on C. By pulling
back L to C we obtain a morphism Z → P. This is generically an isomorphism, but has
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1-dimensional fibers over the locus of elliptic tails, due to the fact thatPic(C) → Pic(C) has
kernel Ga when C has a cusp; on the other hand the line bundle thus obtained is always
trivial on the elliptic tail, therefore Z→ P is not surjective, as it misses the non-trivial line
bundles of degree 0 on elliptic tails.

Similarly the stackZp parametrisesC
φ
−→ C

f̄
−→ P4 witha p-fieldψ ∈ H0(CS , f ∗SOP4 (−5)⊗

ωπ̄S ). We were not able to compare Zp with M1(P4 , d)p directly, since, denoting by
L � f̄ ∗OP4 (1) and by L � φ∗L, we only have a map R1 π̄∗L → R1 π∗L on Zp which is
not an isomorphism (while we would need the inverse).

Z
p has a localised virtual cycle of the same degree as [M

(1)
1,1 (P4 , d)p]vir

loc, by commuta-
tivity of localised virtual pullback with proper pushforward (see the discussion around
Lemma 2.2.24).

2.3.3. Local equations. In order to study the intrinsic cone of Zp we need to embed
it, at least locally, in a smooth space, and understand the equations of the embedding.
Since Zp is a line bundle over the boundary of ZP4 and an isomorphism over the main
component, it is enough to find local equations forZP4 . Recall thatZP4 is an open inside
the cone of sections π̄∗L

⊕5
overP. As already discussed, it is standard to resolve R• π̄∗L

twisting by a sufficiently π̄-ample line bundle on C, but in the genus one case this can be
performed very efficiently by twisting with a local sectionA passing through the smooth
locus of the core (a line bundle of positive degree on a Gorenstein genus one curve has
no h1); π̄∗L is the kernel of the restriction map π̄∗L(A) → π̄∗L(A)|A . Furthermore the
latter can be expressed very explicitly in local coordinates.

For technical reasons we work over Zdiv :� Z ×M1(1) M
div
1 (1): locally on ZP4 we can

choose a hyperplane H0 ⊆ P4 that pulls back to a simple divisor contained in the smooth
locus of the curve, say D �

∑d
i�1 δi , and choose coordinates on P4 such that H0 � {x0 � 0}.

Locally we thus get a map ZP4 → Zdiv by associating (C → C ⊇ D � f̄ −1(H0)) to

(C → C
f̄
−→ P4). By choosing a distinct local section B through the core, and possibly by

restricting the chartU →ZP4 , we may write [HL10, Lemma 4.10]:

1. π̄∗L � π̄∗L(−B) ⊕ π̄∗L |B , and π̄∗L |B ' OU ,

2. π̄∗L(−B) � Ker
(
π̄∗L(A − B)

resA
−−−→ π̄∗OA (A)

)
, and

3. π̄∗L(A − B) �
⊕d

i�1 π̄∗OC (δi +A − B)
⊕resi

A

−−−−→ π̄∗OA (A).

Let me introduce some notation: around a point [C] ∈ Mwt,st
1 (1), for every node q of

C there is a coordinate ζq on M1 whose vanishing locus is the divisor where that node
persists. Denote by ζ[δi ,A] �

∏
ζq where the product runs over all the nodes separating

δi from the core.
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Proposition 2.3.4. [HL10, Proposition 4.13] The line bundles π̄∗OC (δi + A − B) and
π̄∗OA (A) admit trivialisations such that:

resi
A

� ζ[δi ,A].

Proposition 2.3.5. [HL10, Theorems 2.17-19] A local chartU forZP4 can be embedded as
an open inside:

(F0 � . . . � F4 � 0) ⊆ Vb
P

(π̄∗L(A)⊕5), F j :�
d∑

i�1
ζ[δi ,A]w

j
i

where w j
i are coordinates on the fiber of the j-th copy of Vb(π̄∗L(A)) over (a chart of)P.

The local equations and the method adopted to find them is essentially the same as
in the case of stable maps [HL10], except that there is no boundary component D1(P4 , d)
in the 1-stable case. Local equations can be used to give a proof of Vakil’s criterion of
smoothability (see Proposition 2.1.1(2)), that I will include here.

Proof. Let me start with the easiest degenerate situation: a contracted elliptic curve at-
tached to a P1 of degree d at a single node q. Equations for the moduli space of maps
around such a point look like:

ζq

d∑
i�1

w j
i � 0, for j � 1, . . . , r.

This point corresponds to a smoothable map if and only if the equations admit a
solution with ζq , 0, that is

∑d
i�1 w j

i � 0 for every j. Taking a coordinate z on P1 centred
at the node q, the i-th basis vector corresponds to a polynomial vanishing at q and at
δl , ∀l , i. This can be written as:

ei (z) � z
∏
l,i

(z − δl)
−δl

,

where we have chosen a convenient normalisation. So the restriction to the rational tail
of the map corresponding to the point of coordinates (w j

i ) j�1,...,N
i�1,...,d can be written as:

[1 :
d∑

i�1
w1

i ei (z) : . . . :
d∑

i�1
wN

i ei (z)].

Differentiating with respect to z we see that the image of the tangent vector at q is given
in affine coordinates around f (E) by:

(
d∑

i�1
w1

i , . . . ,
d∑

i�1
wN

i ).



84 Chapter 2. On genus one

Hence smoothability is equivalent to the image of the tangent vector being zero.

More generally we may assume that the dual graph is terminally weighted [HL10,
§3.1]. Assume there are k rational tails of positive weight Rh , h � 1, . . . , k. Denote by
D(h) the set of indices i such that δi belongs to the Rh , and by E(h) the set of nodes
separating the core from Rh . The equations will then take the following form:

k∑
h�1

*.
,

∏
q∈E(h)

ζq
+/
-

*.
,

∑
i∈D(h)

w j
i
+/
-
� 0, j � 1, . . . , r,

which can be assembled in matrix form as follows:

W · ζ :� *.
,

∑
i∈D(h)

w j
i
+/
- j,h

·
*.
,

∏
q∈E(h)

ζq
+/
-h

� 0.

We see that smoothability is equivalent to the linear dependence of the rows of the above
matrix W . On the other hand we can choose a suitable coordinate zh around the node qh

on Rh and write the map as:

[1 : p1
h (zh) : . . . : pN

h (zh)],

where:
p j

h (zh) �
∑

i∈D(h)

w j
i eh

i (zh) and eh
i (zh) � zh

∏
l∈D(h)\{i}

(zh − δl)
−δl

.

The elliptic curve is contracted to the point [1 : 0 : . . . : 0] and the tangent vector to Rh at
qh is mapped to the h-th row of W (in affine coordinates around f (E)). Again we see that
the map is smoothable if and only if the image of the tangent vectors to the rational tails
at the nodes are linearly dependent in T f (E)P

N . �

2.3.4. AVakil-Zinger blow-up. At this pointweperformamodular blow-upofMwt,st
1 (1):

we successively blow Θk up, k ≥ 2, that is the closure of the locus where the core has
weight 0 and there are k rational tails of positive weight. After the k-th blow-up, the strict
transform of Θk+1 is smooth, so the final result M̃wt,st

1 (1) is smooth as well.

The fiber product
M̃

wt,st
1 (1) ×

M
wt,st
1 (1) M

wt,st
1

recovers the Hu-Li blow-up M̃wt,st
1 . Indeed Θ1 is already a Cartier divisor inMwt,st

1 , and
the inverse image of Θk is precisely Θk ; using the universal property of the blow-up, it
can be shown that there are maps in both directions, and they are inverse to one another.

After blowing up, the equations above are simplified and assume the following form:

ζ̃w̃ j
� 0, j � 0, . . . , 4 (2.3)
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where {ζ̃ � 0} is one of the newly created boundary divisors Θ̃k in M̃wt,st
1 (1) (i.e. one of

the exceptional divisors produced by the blow-up process), and w̃ is a suitably defined
coordinate on the fiber of Vb(π̄∗L(A)).

Summing up, we have a diagram:

Z̃
p

M̃
(1)
1 (P4 , d)p

M̃1(P4 , d) Z̃P4 M̃
(1)
1 (P4 , d)

P̃ic1 Z̃ P̃ic1(1)

M̃
wt,st
1 M̃

wt,st
1 M̃

wt,st
1 (1)

�

i

�

�

See Lemma 2.2.25 for the top left arrow. Notice that the components of Z̃p are in
bĳection with those of Zp , however all the boundary ones have the same dimension
5d + 4, and their intersection with main is a divisor in the latter. The blow-up procedure
does not affect the invariants:

Lemma 2.3.6. [CL15, Proposition 2.5] The following identity holds:

deg[Z̃p]vir
loc � deg[Zp]vir

loc.

2.3.5. Splitting the cone. The restriction of the intrinsic cone to the open strata is easily
understood, see [CL12, Lemma 4.3]. Recall that Z̃p

→ Z̃ has a dual perfect obstruction
theory E•

Z̃p/Z̃
� R• π̄∗L

⊕5
⊕ R• π̄∗P �: E•1 ⊕ E•2 .

Lemma 2.3.7. The intrinsic normal cone C
Z̃p/Z̃ has the following properties:

1. Its restriction to the open Z̃p ,◦ � Z̃p ,main
\

⋃
k≥2 Dk

Z̃
p is the zero section of

h1/h0(E•
Z̃p/Z̃

) |
Z̃p ,◦ .

2. Its restriction to the open Z̃p ,gst,◦ � Z̃p
− Z̃

p ,main is a rank 2 subbundle stack of
h1/h0(E•

Z̃p/Z̃
) |
Z̃p ,gst,◦ .

Proof. 1. Observe that Z̃p ,◦ � Z̃◦ because here H0(C, L
⊗−5
⊗ ωC) � 0. Moreover Z̃◦

is unobstructed on its image, which is an open of Z̃, because R1 π̄∗L � 0. So the
normal cone is [Z̃p ,◦/π̄∗L

⊕5
|Z̃p ,◦], which is the zero section of h1/h0(E•

Z̃p/Z̃
) |
Z̃p ,◦ �

[0 ⊕ R1 π̄∗P/π̄∗L
⊕5
⊕ 0]|

Z̃p ,◦ .

2. We know that Z̃p ,gst,◦ is a line bundle over Z̃gst,◦. From equation 2.3 we see that the
latter is smooth over its imageW in Z̃, which is the codimension 2 locus where the
core hasweight 0, the line bundle is trivial on it, and there are at least two rational tails
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of positive degree. Recall that every smooth morphism A→ B of relative dimension
n factors as A

é t
−→ B ×An

pr1
−−→ B. So we have

Z̃
p ,gst,◦

W×A5d+6 Z̃ ×A5d+6

W Z̃

é t

q

where the bottom horizontal arrow is a codimension 2 regular embedding. Thus

C
Z̃p/Z̃ |Z̃p ,gst,◦ �

[
q∗N

W/Z̃/π̄∗L
⊕5
⊕ π̄∗P

]

is a rank 2 − (5d + 6) subbundle stack of h1/h0(E
Z̃p/Z̃) |

Z̃p ,gst,◦ .

�

Notice that the image of Z̃◦ in M̃1(P4) contains M̃1(P4)main
∩ D̃1(P4).

Recall the definition of the closure of the zero section of a vector bundle stack: let B be an
integral algebraic stack and let F• � [F0

d
−→ F1] be a complex of locally free sheaves on B.

The zero section is 0F• : [F0/F0] → h1/h0(F•) � [F1/F0], which is in general not a closed
embedding; its closure is defined as:

0F• � [dF0/F0].

0F• is an integral stack.

Example 2.3.8. When h0(F•) � 0, the closure of the zero section looks like B with some
further stacky structure on the vanishing locus of d. Consider for example B � P1 and
F• � [OP1

x
−→ OP1 (1)]. Then the action of e ∈ F0 on F1 is given by f 7→ f + xe. Clearly dF0

is the whole line bundle F1; the F0-action is transitive on the fibers over {x , 0} and trivial
on the fiber over 0. Hence 0F• is isomorphic to P1

\ {x � 0} with a gerbe [A1/Ga] at 0.

We may now split the cone C
Z̃p/Z̃ in the following manner: we denote by Cmain the

closure of the zero section of h1/h0(E•
Z̃p/Z̃

) |
Z̃p ,main , which is an irreducible cone supported

on the main component. All the rest is supported on the boundary components, possibly
on their intersection with main, and we are going to pack all the components supported
on Dk

Z̃
p together and label them Ck accordingly, so in the end we obtain a splitting:

C
Z̃p/Z̃ � Cmain

+

∑
k≥2
Ck

We are going to show that:

1. the contribution of Cmain gives exactly the reduced invariants of X;

2. the other cones Ck , k ≥ 2, are enumeratively irrelevant.
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2.3.6. Contribution of themain component. In order to prove the first claimwe proceed
as in [CL12, §5]; let us recall the splitting of the obstruction theory E• :� E•

Z̃p/Z̃
as E•1 ⊕ E•2

where E•1 � R• π̄∗(L
⊕5

) and E•2 � R• π̄∗(P). When we restrict to Z̃p ,main we see that
h1/h0(E•1) is the closure of its own zero section; it follows that:

Cmain
� 0E• |

Z̃
p ,main � h1/h0(E•1) |

Z̃p ,main ⊕ 0E•2 |Z̃p ,main

Then by standard intersection theory (pullback the right-hand side by π̄∗E• � π̄
∗

E•1
◦ π̄∗E•2

):

0!
E•[C

main] � 0!
E•2

[0E•2 |Z̃p ,main ]

At this point we recall the following [CL12, Lemma 5.3]:

Lemma 2.3.9. Let E• � [E0 → E1] be a complex of locally free sheaves on an integral
Deligne-Mumford stack B, such that h1(E•) is a torsion sheaf on B and the image sheaf of
E0 → E1 is locally free. Let U ⊆ B be the complement of the support of h1(E•), and let B ⊆
h1/h0(E•∨[−1]) be the closure of the zero section of the vector bundle h1/h0(E•∨[−1]|U ) �
h0(E• |U )∨. Then

0![B] � ctop(h0(E•)∨) ∈ A∗(B).

We apply this to R• π̄∗L
⊗5

� E•∨2 on Z̃p ,main. Notice that it satisfies the hypotheses
by virtue of Proposition 2.3.4 and equation (2.3): indeed the question may be addressed
locally; looking at the resolution of E•∨2 :

π̄∗L
⊗5

(A) → π̄∗L
⊗5

(A) |A

we deduce from the equations that the image of this map is π∗L
⊗5

(A) |A ⊗ OZ̃p ,main (−Ξ),

where Ξ denotes the Cartier divisor Ξ � Z̃p ,main
∩

(⋃
k≥2 Dk

Z̃
p
)
. Then π̄∗L

⊗5
is a vector

bundle, being the kernel of a vector bundle map.

Lemma 2.3.10. If we let i be the inclusion of Z̃ in M̃1(P4 , d), then:

i∗(ctop(π̄∗L
⊗5

) ∩ [Z̃p ,main]) � ctop(π∗L⊗5) ∩ [M̃1(P4 , d)p ,main]

Proof. Recall that theprojection (−)p
→ (−) is an isomorphismonopenmain, so i∗[Z̃p ,main] �

[M̃1(P4 , d)p ,main] makes sense and holds true. On the other hand notice that on Z̃p ,main

we have:
π∗L � π̄∗φ∗φ

∗
L � π̄∗L

by projection formula and φ∗OC
Z̃

p ,main � O
C
Z̃

p ,main
. The result follows from the projection

formula for Chern classes. �

2.3.7. Contribution of the boundary components. We are left with showing that the
rest of the Ck do not contribute to the invariants. This is essentially a dimensional
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computation. The arguments of [CL12, §§6-8] may be adapted. We introduce the notation
Z̃

p ,gst :�
⋃

k≥2 Dk
Z̃

p for the union of the boundary components, and Cgst �
⋃

k≥2 C
k .

Step I: reduction to a cone inside a vector bundle

This section deals with removing the technicalities of working with a cone stack inside a
vector bundle stack.

The key point is that E• :� E• |
Z̃p ,gst has locally free h0 and h1. When we fix a resolution

by locally free sheaves E• � [F0
d
−→ F1], the image sheaf d(F0) is a subbundle of F1.

Consider the projections:

β : F1 → h1/h0(E•) and β′ : F1 → Ṽ :� R1 π̄∗(L
⊕5
⊕ P);

the second is also flat since d(F0) is a vector bundle. The cone stack Cgst can be descended
to a cone Cgst

⊆ Ṽ by taking the quotient of β−1Cgst by the free action of d(F0); Cgst should
then be thought of as the coarse moduli of Cgst. Recall that we started with a cosection σ1

of V (see Equation (2.2)) and pulled it back to all the relevant spaces. It follows from the
commutativity of localised Gysin pullback with flat pullback that:

s!
h1/h0(E•),σ̃1

[Cgst] � s!
Ṽ ,σ̃1

[Cgst].

See [CL12, Proposition 6.3].

Step II: compactification and reduction to a non-localised virtual class

Recall that the construction of a localised virtual class refines the standard one, namely:

ι∗[Y]vir
loc � [Y]vir ,

where ι : Y(σ) ↪→ Y is the degeneracy locus of the cosection. In particular, when Y
itself is a proper Deligne-Mumford stack, the degree of the localised virtual class can be
computed after pushing it forward to Y.

In order to compute s!
Ṽ ,σ̃1

[Cgst] we can compactify Z̃p ,gst in the naive way; extending
the cosection will introduce a pole at infinity, unless we twist the obstruction theory. A more
sophisticated solution is needed for higher genus, and is at the base of [CJRS18].

Since Z̃p ,gst � Vb
Z̃gst

(
π̄∗P

)
, we can take its standard compactification:

γ̄ : Z
p ,gst

:� P
(
π̄∗P ⊕ OZ̃gst

)
→ Z̃

gst.

In order for the cosection (2.2) σ1|(u ,ψ) (x̊ , p̊) � p̊w(u) + ψ
∑4

i�0 ∂iw(u)x̊i to make sense,
since the field ψ is allowed to go to infinity in the compactification, we shall better extend
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the obstruction theory toZ
p ,gst

by defining:

Ṽcpt
1 � γ̄∗Ṽ1(−D∞), Ṽcpt

2 � γ̄∗Ṽ2.

The cosection thus extends without poles and we get:

σ̄ : Ṽcpt
� Ṽcpt

1 ⊕ Ṽcpt
2 → O

Z
p ,gst .

The compatibility of σ̃ with σ̄, and the fact that Z
p ,gst

is proper, together with the
observation at the beginning of this section, explain the following:

Proposition 2.3.11. Let ι! : Z∗(Ṽ (σ̃)) → Z∗(Ṽcpt) be defined by ι![C] � [C].And i : D(σ̃) →
Z̃

gst the inclusion. Then

γ̄∗ ◦ s!
Ṽcpt ◦ ι! � i∗ ◦ s!

σ̃,loc : Z∗(Ṽ (σ̃)) → A∗(Z̃gst).

See [CL15, Proposition 6.4] for full details.
Furthermore, from functoriality of Gysin pullbacks and the deformation to the normal

cone it follows that:
s!

Ṽcpt[C] � s!
Ṽcpt

2
◦ s!

Ṽcpt
1

[NC∩0⊕Ṽcpt
2

C].

Step III: homogeneous cones

Chang an Li introduce the notion of homogeneity for substacks of Ṽ on Z̃p ,gst: write

Ṽ � Ṽ1 ⊕ Ṽ2 with Ṽ1 � R1 π̄∗(L
⊕5

) and Ṽ2 � R1 π̄∗(P),

and γ : Z̃p ,gst
→ Z̃

gst the projection. Since Z̃p ,gst is the total space of a line bundle over
Z̃

gst, it comes with a natural Gm-action on the fibers of γ. Moreover, since the highest
non-zero derived pushforward always satisfies cohomology and base-change, Ṽi � γ∗Vi

for the corresponding vector bundles Vi on Z̃gst, so the total space of Ṽi can be endowed
with a Gm-action that makes the projection to Z̃p ,gst equivariant. We say that a closed
substack of Ṽ is 0-homogeneous if it is the pullback of a closed substack of V along γ. In
fact there are different Gm-actions on Ṽ that make the projection to Z̃p ,gst equivariant:
namely, we can twist the trivial action on the fibers by two characters of Gm, one for each
Ṽi . Then we say that a substack of Ṽ is (l1 , l2)-homogeneous if it is invariant with respect
to the action defined by the characters l1 and l2 ∈ Z. Here is how we are going to use the
homogeneity:

Lemma 2.3.12. Let C ⊆ Ṽ be an (l1 , l2)-homogeneous subcone of Ṽ , and let C be the
closure of its pullback inside Ṽcpt over Z

p ,gst
, as above. Then the cone C ∩ (0 ⊕ Ṽcpt

2 ) is
pulled back from a cone in V2 on Z̃gst.

Proof. Locally wemay pick coordinates t on the fibers of γ, x1 , . . . , x5 on the fibers of Ṽcpt
1 ,
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and y1 , . . . , y5d+5 on the fibers of Ṽcpt
2 , such that the ideal of C is generated by separately

homogeneous polynomials p j in t−l1 xi and t−l2 yi . The ideal of C∩ (0⊕ Ṽcpt
2 ) is then given

by 〈x1 , . . . , x5 , p j (0, t−l2 y)〉 j , where p j (0, t−l2 y) results from setting xi � 0 in p j . Notice
now that C being a cone, it is invariant by scalar multiplication on the fibers of Ṽcpt, so we
may as well say that C ∩ (0 ⊕ Ṽcpt

2 ) is cut by the ideal 〈x1 , . . . , x5 , p j (0, y)〉 j . This makes it
clear that C ∩ (0 ⊕ Ṽcpt

2 ) is pulled back from (0 ⊕ V2) on Z̃gst. �

Finally Chang and Li point out that the coarsemoduli cone Cgst is (0, 1)-homogeneous
[CL12, Proposition 6.7].

Step IV: considerations on the support of the cone

Proving that Cgst is supported on a small sublocus of Ṽcpt
2 is the key to showing that it

pushes forward to zero when comparing with moduli spaces of maps of genus zero. See
[CL12, Proposition 7.1] for more details. Let Ξ denote Z̃main

∩ Z̃
gst.

Lemma 2.3.13. There is a line subbundle F of V2 |Ξ such that:

Cgst ∩ 0 ⊕ Ṽcpt
2 ⊆ 0Ṽcpt

2
∪ F̃ :� Z

p ,gst
∪ γ̄∗F

It is enough to show this before taking the closure. First they use the fact that there is
a triple of compatible obstruction theories for the triangle:

Z̃
p

Z̃

Z̃

γ

such that their restrictions to Z̃p ,gst have locally free h0 and h1. By taking h1 of the dual
obstruction theories we obtain a commutative diagram:

h1(L•∨
Z̃p/Z̃

|
Z̃p ,gst ) h1(L•∨

Z̃p/Z
|
Z̃p ,gst ) h1(γ∗L•∨

Z̃/Z
|
Z̃p ,gst )

Ṽ2 Ṽ1 ⊕ Ṽ2 Ṽ1
i2 pr1

The vertical arrows are injective by the definition of an obstruction theory, and the bottom
triangle is exact. Notice that 0 ⊕ Ṽ2 is precisely the kernel of pr1. It follows that, in order
to understand the support of Cgst

∩ 0 ⊕ Ṽ2, it is enough to study that of N , where N is the
coarse moduli cone of C

Z̃p/Z̃ , living in the upper left corner of the above diagram.

This is an easier task, since we know that Z̃p/Z̃ is a line bundle on Z̃gst and an
isomorphism on Z̃main,◦. Hence we can always find a local chart S → Z̃ and a diagram
as follows:
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Z̃
p T S ×A1

t

Z̃ S

�

V (ζ̃t)

é t

where ζ̃ is a local equation for the boundary. Then τ≥−1L•
Z̃p/Z̃

|T � [I/I2 δ
−→ ΩA1

S/S
]; I is

generated by ζ̃t, whose image under δ is ζ̃dt, which restricts to 0 on Z̃p ,gst
×
Z̃p T � {ζ̃ � 0}.

So the action is trivial, and the coarse moduli cone is precisely SpecTgst Sym• I/I2, which
is a line bundle supported on Ξ̃ ×

Z̃p T and trivial otherwise. By gluing different charts
we get the line bundle F̃ on Ξ̃ � Z̃p ,main

∩ Z̃
p ,gst.

The last part of the statement, namely that F̃ descends to a line bundle F onΞ is proved
by homogeneity: the normal cone of Z̃p/Z̃ is homogeneouswith respect to theGm-action
with character 1 on the fibers of Ṽ2 → Z̃

p ,gst, but being a cone it is 0-homogeneous as well
(see the above discussion of homogeneity), so it is γ̄∗F for some line bundle F on Ξ ⊆ Z̃.

Step V: the boundary cones push forward to zero

Recall that we need to show that the degree of the following class is 0:

s!
Ṽcpt[Cgst] � s!

Ṽcpt
2
◦ s!

Ṽcpt
1

[NCgst∩(0⊕Ṽcpt
2 )C

gst]

It follows from the previous section that s!
Ṽcpt

1
[NCgst∩(0⊕Ṽcpt

2 )C
gst] can be represented as

the sum of two cycles, one (call it N1) supported on a line subbundle of Ṽcpt
2 on Ξ̃, the

other one (call it N2) supported on the zero section of Ṽcpt
2 , i.e. Z̃p ,gst.

Lemma 2.3.14. Both N1 and N2 are 5d + 1-dimensional cycles, and for i � 1, 2:

deg(s!
Ṽcpt

2
[Ni]) � 0.

Proof. Compare with [CL12, Lemma 8.1]. The dimension of Z̃gst is 5d + 3, being locally a
5(d + 1) vector bundle over a dimension −2 stack; so Z̃p ,gst, which is a line bundle on the
former, has dimension 5d + 4. The coarse moduli cone has then dimension 5d + 6, as can
be argued from Lemma 2.3.7. Ṽcpt

1 |Z
p ,gst has rank 5, so s!

Ṽcpt
1

[Cgst] is represented by a cycle

of dimension 5d + 1. We shall exploit the commutativity of Gysin pullback with proper
pushforward.

Since deg(s!
Ṽcpt

2
[N1]) � deg(s!

V2
γ̄∗[N1]), but γ̄∗[N1] ∈ A5d+1(F) must be trivial because

F has dimension 5d, being a line bundle on Ξ, which is a divisor inZmain.
On the other hand N2 ⊆ Ṽcpt

2 admits a further splitting into N2,λ ⊆ Ṽcpt
2,λ according to

the component Dλ
Z

p ,gst
on which they are supported, with λ ` d in k parts. There exists

a comparison morphism:

βλ : Dλ
Z

p ,gst
→ Dλ

Z � Dλ
M1(P4 , d) →Wλ
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whereWλ :�
∏k

i�1M0,1(P4 , di)×(Pr )k Pr is a moduli space of maps from the rational k-fold
point. The map βλ is given by forgetting the p-field, the Vakil-Zinger blow-up and the
k-pointed elliptic curve contracted by the map to P4. It is interesting because Ṽcpt

2 is the
pullback along βλ of a vector bundle onWλ. First construct a connected curve Cλ by
gluing the universal curve over each factor along the given sections, towhich the universal
maps to P4 descend by the property of pushouts:

Cλ P4

Wλ

π̄

f̄

Notice now that the sheaf Vλ :� π̄∗ f̄ ∗OP4 (5) is a vector bundle of rank 5d + 1 onWλ, and
Ṽcpt

2,λ � β∗λ (V∨λ ). Finally the actual dimension ofWλ is 5d + 4 − 2k < 5d + 1 for k ≥ 2 by
Kleiman-Bertini theorem, so βλ,∗[N2,λ] � 0.

�

Proof. 2.2.23 Summarising:

• p-fields and the quintic are the same theory up to a sign (Theorem 2.3.2):

deg[M
(1)
1,1 (P4 , d)p]vir

loc � (−1)5d deg[M
(1)
1,1 (X, d)]vir.

• Zp andM
(1)
1,1 (P4 , d)p are virtually birational, see Remark 2.3.3:

deg[Zp]vir
loc � deg[M

(1)
1,1 (P4 , d)p]vir

loc.

• The VZ blow-up Z̃p
→Z

p does not alter the invariants (Lemma 2.3.6):

deg[Z̃p]vir
loc � deg[Zp]vir

loc.

• Themain component of Z̃p contributes with the reduced invariants up to a sign, while
the boundary is irrelevant, see Lemmas 2.3.10 and 2.3.14:

deg[Z̃p]vir
loc � (−1)5d deg

(
ctop(π̃∗ f̃ ∗OP4 (5) ∩ [M̃1(P4 , d)main]

)
.

�

§ 2.4. On the relative problem

I will outline here a joint work in progress with N. Nabĳou and D. Ranganathan. In
Chapter 1we have seen that Gathmann’s formula (and consequently his proof of quantum
Lefschetz) for invariants relative to a smooth, very ample divisor is based on a deep
understanding of the case of (PN

|H), and a good deal of virtual intersection theory;
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in particular it is essential that M0,n (PN , d) is unobstructed in order to have a perfect
obstruction theory and apply virtual pullback. We are working towards an extension of
the same techniques to the Vakil-Zinger desingularisation ofM1,n (PN , d)main.

2.4.1. The naïve definition.

Definition 2.4.1. Let α be an n-tuple of tangency conditions at themarkings, with
∑
α ≤ d.

The relative space for (PN
|H) is

VZ1,α (PN
|H, d) �

{
f : (E, x) → PN |E sm. ell., f (E) * H, f ∗H ≥

∑
αi xi

}

Remark 2.4.2. VZ1,α (PN
|H, d) is irreducible. A parametrisation of the nice locus can be

given from the vector bundle:

Vb *.
,
π∗OE (

n+δ∑
j�n+1

σ j) ⊕ π∗OE (
n+δ∑
j�1

σ j)⊕N +/
-

on M1,n+δ

where π : E → M is the universal curve and δ � d −
∑
αi . It also has the expected

codimension by deformation theory.

Question: how can the boundary elements be characterised? They will certainly
satisfyVakil’s criterion for smoothability (Proposition 2.1.1), andGathmann’s relative condition:
for every connected component Z of f −1(Y), either:

1. if Z � xi is a marking, then we require that the multiplicity of f at xi along H is at
least αi (if Z is a single point, but not a marking then there is no condition);

2. if Z ⊆ C is a subcurve, we require that

f ∗[H]|Z −
∑
xi∈Z

αi xi

is an effective class in A0(Z).

Remark 2.4.3. If Z is a smooth elliptic curve, recall that every line bundle of positive
degree on it is effective, hence the relative condition can be rephrased as the following
numerical criterion:

f∗[Z] · [H] +
r∑

j�1
m ( j)

≥

∑
xi∈Z

αi

where m ( j) is the multiplicity of the external tail R j at the node y j , with the additional
requirement that, when the above is an equality, there is an isomorphism of line bundles:

( f |Z)∗OPN (1) ⊗ OZ
*.
,

r∑
j�1

m ( j) y j
+/
-
� OZ

*.
,

∑
xi∈Z

αi xi
+/
-

(2.4)
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If Z is reducible, the correct extension is not to impose the same condition compo-
nentwise; rather, we should ask the numerical condition for the total degree, and, if Z is
obtained by gluing a smooth elliptic curve E with a forest of rational trees Ti at roots qE

i ,
then the line bundle equality (2.4) should be required in Pic(E) after counting each qE

i
towards the left hand side with multiplicity

f∗[Ti] · [H] +
∑

external components attached to Ti

m ( j)
−

∑
x j∈Ti

α j .

Will this be enough? There are at least two subtleties one should be careful with: first of
all, the Vakil-Zinger blow-up introduces a number of exceptional divisors, and we have
to understand how the closure of the nice locus intersects them (we are taking a strict
transform); second, it may not be enough for a map to be smoothable, and to satisfy the
relative condition, in order to be smoothable as a relative map. Indeed the first issue is clear
even only by dimensional reasons.

Example 2.4.4. Consider VZ1,(3) (P1
|H, 3). It has (virtual) dimension 4. Here is a

parametrisation of the nice locus: choose an object (E, p) ∈ M1,1, fix s0 : OE ↪→ OE (3p)
a section which vanishes at p with multiplicity 3, and let s1 be any other section of
OE (3p) not vanishing at p (notice that h0(E,OE (3p)) � 3). Then (E, p , [λs0 , s1]) gives a
well-defined element of the nice locus for λ ∈ Gm.

Consider now the following weighted graph for a map in the boundary

E
x1

y1 y2

R1 R2

2 1 P1

H

where the gray line represents a contracted elliptic curve. It satisfies Vakil’s criterion.
(E, x1 , y1 , y2) is apoint ofM1,3 subject to thedivisorial condition 3x1−2y1−y2 � 0 ∈ A0(E);
furthermore we have to choose the second branch point of the 2 : 1 map from R1 to
P1. This already makes up a 3-dimensional moduli space of degenerate relative maps
corresponding to such a graph. The Vakil-Zinger’s blow-up introduces a P1-bundle over
this locus, so overall the boundary has the same dimension as the nice locus.

We use aligned log structures in order to shed some light on the interaction between
the relative space and the boundary of the Vakil-Zinger’s desingularisation.

Claim: there is a desingularisation of the main component of the space of log stable
maps to (PN

|H), which is obtained by imposing an alignment on the log structure of the
curve, and requiring factorisation of the map from the resulting Smyth’s singularity.
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This space is proper, and its image is precisely the closure of the nice locus; we may
therefore characterise the latter as those centrally aligned maps that lift to the log space.
We introduce the following:

Compatibility condition: when the core is contracted to a point in H, we require that the
following diagram of minimal monoids admits a completion

Qprestable
min Qlog.map

min N

Qcen.align
min

∃

Choosing a morphism Qlog.map
min → N is the same as testing with the standard log point.

In the presence of a one-parameter smoothing (over a DVR scheme) the morphism to N
is determined by the valuation of the smoothing parameters of the nodes.

Example 2.4.5. Start with an elliptic curve E contracted to H, with two external compo-
nents R1 , R2 attached to it and a single marking x ∈ E. The tropical picture is:

The dual monoids in the compatibility condition give us the picture:

e1 � e2e2 > e1

e1 > e2

m1/m2

So e.g. the factorisation exists for the subcone e2 > e1 only when m1 > m2, which is
compatiblewith the fact thatN2 � Qprestable

min → Qlog.map
min � N is given by e1 7→ m2 , e2 7→ m1.

In factwe plan towork around the problembydirectly looking at the desingularisation
of the main component of Kim’s moduli space of logarithmic maps to expanded targets.
We do so because on one hand we are able to carry out Gathmann’s recursion in the
expanded setting (Remark 1.3.5), and on the other Kim’s approach blends nicely the
condition for being smoothable as a relative map into that of being a log morphism.
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2.4.2. Logarithmic maps with expansions, alignments, factorisations. I will recall the
basic definitions from [Kim10, Che14a]; see also [Ols07, AMW14]. Kim’s moduli space
parametrises log morphisms to an expansion, where the target has the nodal+divisorial
log structure, and the minimal log structure on the base is locally free, twisted (in the
sense that the irreducible elements are allowed to be roots of the smoothing parameters
of the nodes in both the source and target), and identifies all the smoothing parameters
of the distinguished nodes of C that map to the same component of the singular locus of
Xexp � W (corank condition). Kim’s moduli space should be thought of as the saturation
of J. Li’s moduli space. In the followingMC/S

S denotes the log structure on S pulled back
from the canonical one on the moduli space of prestable curves (i.e. the minimal log
structure on S viewed as the base of a family of log smooth curves), and similarlyMW/S

S .

Definition 2.4.6. An extended log twisted expansion of (X,Y) is a quadruple (π : W →

S, πX : W → X,D ⊆ W,MW/S
S →MS) such that:

1. π makes W into a flat, proper algebraic space over S, with fibers at worst nodal
in codimension 1, admitting a lifting to a special log morphism π : (W,MW/S

W ) →
(S,MW/S

S ), such that:

(a) MW/S
W andMW/S

S are locally free log structures;

(b) for every geometric point w̄ → W , either w̄ is in the smooth locus of πS and
π[ : π∗M

W/S
S,w̄ → M

W/S
W,w̄ is an isomorphism, or w̄ is in the nodal locus and the

following diagram is cocartesian:

N N2

π∗M
W/S
S,w̄ M

W/S
W,w̄

(1,1)

h y

with h(1) irreducible;

(c) for every geometric point s̄ → S there is a bĳection between the irreducible
elements ofM

W/S
S,s̄ and the irreducible components of Wsing

s̄ .

2. D ⊆ W is a Cartier divisor, smooth over S, and such that πX (D) � Y;

3. MS is twisted by integers (r1 , . . . , rl) and expanded with respect toMW/S
S , namely

étale locally at every point s ∈ S the morphism of log structures MW/S
S → MS

admits a chart:

Nl Nl Nl
⊕ Nk

M
W/S
S MS

(r1 ,··· ,rl ) (id ,0)
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The log structure on W is then given by

MW � π∗MS ⊕π∗MW/S
S
M

W/S
W ⊕O∗W

M
D

whereMD is the divisorial log structure associated to D. Notice that with this definition
(W,MW ) → (S,MS) is log smooth.

Similarly a log twisted curve is ((C, p1 , . . . , pn) → S,MC/S
S →MS) with

MC � π∗MS ⊕π∗MC/S
S
M

C/S
C ⊕O∗C

n⊕
i�1
M

pi

Alog twisted curve isminimal if the log structureMS is locally free, and for everygeometric
point s̄ → S and irreducible element b ∈ MS, we can find an irreducible a ∈ M

C/S
S and

a positive integer l such that a 7→ lb (by definition this means that the morphism of log
structuresMC/S

S →MS is simple).
Finally, fix an n-tuple of non-negative contact orders (c1 , . . . , cn).

Definition 2.4.7. A relative log prestablemapwith tangency condition c is givenby adiagram
of log morphisms:

((C, p),MC) ((W,D),MW ) (X,Y) × S

(S,MS)

f πX

1. ((C, p),MC) → (S,MS) is a minimal log twisted curve; ((W,MW ) → (S,MS),
(W,D) → (X,Y)) is an extended twisted log expansion of (X,Y);

2. (corank condition) for every geometric point s̄ ∈ S, the rank of

Coker(MW/S
S,s̄ →MS,s̄ )

is equal to the number of non-distinguished nodes of C s̄ ; recall that a node of C s̄ is
distinguished if it is mapped under f to the singular locus of Ws̄ .

3. (log admissibility) the morphism of log structures f [ : f ∗MW → MC is simple at
every distinguished node;

4. (tangency condition) the underlying map f : C → (W,D) is non-degenerate, namely
no component of C is mapped entirely into D, and locally around every marking pi

we can find a chart

N N

f ∗MD
M

pi

·ci
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for the restriction of f [ to the f ∗MD factor.

Definition 2.4.8. A relative log prestable map as above is stable if for every geometric
point s̄ ∈ S the group of automorphisms (σ, τ) is finite, where:

1. σ is an automorphism of ((C,MC) → (S,MS))s̄ preserving the markings p;

2. τ is an automorphism of ((W,MW ) → (S,MS))s̄ preserving D and πX : Ws̄ → X;

3. τ ◦ fs̄ � fs̄ ◦ σ.

Remark 2.4.9. The corank and simplicity condition imply the following: the rank of the
locally free log structureMS at s̄ amounts to the number of irreducible components of
Wsing

s̄ plus the number of non-distinguished nodes of C s̄ ; all the smoothing parameters
of the distinguished nodes mapping to the same component of Wsing

s̄ are identified up to
twisting. Indeed, at a distinguished node q of C, letting R be the local ring of S at π(q),
we can find étale local charts

N2
⊕NMS N2

⊕NMS

f ∗MW MC

R[z1 , . . . , zdim(X)−1 , x , y]/(x y − t) R[a , b]/(ab − s)

(id ,·mq )

f [

*
,

x 7→amq

y 7→bmq

t 7→smq

+
-

where the twist at f (q) is given by l, the one at q is given by rq , and the equality l � rq mq

must be satisfied.

The following is a variation on [RSW17b, §3.3]. I will focus on the case of (PN
|H).

Definition 2.4.10. Let (C, p) → (W,D) be a radially alignedKim’s logmap to (PN
|H), and

let ϕ : @→ R≥0 be its tropicalisation, with circuit @0. If ϕ does not contract the circuit, set
the contraction radius δ f � 0. Otherwise let δ f be the minimal distance from the circuit
to a vertex supporting a flag that is not contracted by ϕ.

To every Kim’s log map we can associate an ordinary (not expanded) log map by
collapsing the target and stabilising the curve [GS13, Proposition 6.1]. Furthermore, by
choosing generic hyperplanes that meet the image of the curve transversally at smooth
points of the latter, and by pulling back to C the resulting (toric) log structure on PN , we
may lift any log map to (PN

|H) to one to (PN
|∆), where ∆ denotes the toric boundary of

PN . Notice that, when looking at the tropicalisation, any generic choice of hyperplanes
will add flags only to vertices that already have a non-contracted flag, hence the resulting
δ∆f is the same as δ f , and does not depend on this choice.

It is discussed in [RSW17b, Proposition 2.4.2.1] how log morphisms from an fs log
scheme C → Z, where Z is a toric varietywith the log structure associated to its boundary,
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are equivalent to the data of M
α
−→ H0(C,Mgp

C ), such that for every x ∈ C we can find a
cone σ in the fan of Z and a factorisation:

M H0(C,Mgp
C ) M

gp
C,x

Sσ ∩M MC,x

where M is the character lattice of the torus T ⊆ Z, and Sσ is the dual cone of σ.
This is useful because it allows them to impose factorisation of C → Z d P1 to the
Smyth’s singularity determined by δ∆f without having to modify Z (and C, and S), see
[RSW17b, Definition 3.3.3].

Definition 2.4.11. A log map f : C → Z from an aligned curve to a toric variety satisfies
the factorisation property for a subtorus H ⊆ T if the associated composition

MT/H → M
α
−→ H0(C,Mgp

C ) → H0(C̃,Mgp
C̃

)

descends to MT/H → H0(C,Mgp
C

), where the modification and contraction C ← C̃ → C
are determined by the contraction radius δα, that is the largest distance of a vertex from
the circuit such that the line bundle associated to ᾱ is trivial on the interior of the circle
of radius δα.

A map f : C → Z is well-spaced if it satisfies factorisation for every subtorus H ⊆ T.

Definition2.4.12. Let α ∈ Nn beamaximal tangency condition. The spaceVZKim
1,α (PN

|H, d)
parametrises Kim’s log maps from an aligned curve to an expansion such that the asso-
ciated log map to (PN

|∆) (for any generic choice of hyperplanes H1 , . . . ,HN ) satisfies
well-spacedness.

I claim that this construction provides a desingularisation of the main component of
Kim’s space in genus one: indeed it includes the locus of maps from a smooth elliptic
curve whose image is not contained in H, and its smoothness can be argued as follows.
The morphism VZKim

1,α (PN
|H, d) → VZACGS

1,α (PN
|H, d) is toroidal (this can be argued

from [AMW14, LemmaA and §4.3] and the analogous statement for the universal target).
On the other hand, locally we may find U

VZ
Kim
1,α (PN |∆,d) → U

VZ
Kim
1,α (PN |H,d) which is étale

by the infinitesimal criterion (lifting is tantamount to deforming the extra hyperplanes
H1 , . . . ,Hn). We are then reduced to [RSW17b, Theorem 3.5.1].

2.4.3. Description of the boundary. As in Gathmann’s work, there is a line bundle with
section that forces the k-th marked point to have tangency of order αk + 1 to H, which in
the maximal tangency situation and in the expanded setup (as is the case for us) really
forces the target to break, and the k-th marking xk to lie on a non-trivial component
mapped to the highest level of the accordion. The line bundle and section (Lα,k , sα,k )
are the pullback of (x∗kΩ

⊗αk+1
C ⊗ ev∗1 O

N
P (1), ev∗k (dαk+1s)) from the collapsed and stabilised
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map. The description of the boundary in the case of (PN
|H) boils down to a dimension

computation, and is already present in the work of Vakil [Vak00]. There are three relevant
combinatorial types, corresponding to bipartite graphs:

(a)
. . .

Y
a
� *

,
VZ1,α(1)∪{m (1) } (P

N
|H, d1) ×

r∏
i�2
M0,α(i)∪{m (i) } (P

N
|H, di)+

-
×Hr

M0,(−m (1) ,...,−m (r) )∪α(0) (PH (O ⊕ O(1), d0)∼

(b)
. . .

Y
b
� *

,
M0,α(1)∪{m (1) ,m (2) } (P

N
|H, d1) ×

r∏
i�3
M0,α(i)∪{m (i) } (P

N
|H, di)+

-
×Hr

M0,(−m (1) ,−m (2) ...,−m (r) )∪α(0) (PH (O ⊕ O(1), d0)∼

(c)
. . .

Y
c
�

r∏
i�1
M0,α(i)∪{m (i) } (P

N
|H, di) ×Hr VZ

DRC
1,(−m (1) ,...,−m (r) )∪α(0) (PH (O ⊕ O(1), d0)∼

A few remarks on the notation are in order: a white circle in the graphs always stands
for a genus one component; the tilde denotes moduli spaces of rubber maps, which were
introduced in [GV05] (material on how they compare to the ordinary moduli space of
maps to the underlying H can be found in [Gat03a, Chapter 5]). DRC stands for “double
ramification cycle”, i.e. for the extra equation in Pic that needs to be satisfied:

f ∗
|EOH (1) � OE

*.
,

∑
x j∈E

α j x j −

r∑
i�1

m (i) yi
+/
-
.
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In the genus one case, this is a divisorial condition. When the left hand side is trivial,
e.g. when H � {∞} ⊆ P1, an explicit tautological formula was already known to R.
Hain [Hai13] (later confirmed and generalised in [JPPZ17]). What we can do exploiting
Gathmann’s argument is computing (relating) a number of ψ-integrals against the DRC,
more in the spirit of [BSSZ15].

It is worth subdividing case (c) above into Yc
+ (for d0 > 0) and Yc

0 (for d0 � 0): notice
that the generic element of the latter is already aligned (indeed the minimal monoid is N,
since all the nodes are distinguished andmap to the same component of the singular locus
of the target); on the other hand we need to impose the well-spacedness condition, which
will hopefully be expressible as a tautological integral, by expanding on the analysis of
Lemma 2.2.6. The data above depend on a splitting (A, B,M) of themarkings, degree, and
external multiplicities, such that d0 +

∑
m (i) �

∑
A(0) , and factorisation should impose

N − 1 independent conditions, unless all the m (i)
≥ 2, in which case there are only N − 2

conditions (this would be the dimensionally relevant case). Finally, let me observe that all
the insertions that we are interested in are pulled back from the moduli space of maps to
the collapsed target, hence any locus with positive-dimensional fibers for the collapsing
may be overlooked; this is the case when there is more than one non-trivial component
mapping to higher level in the accordion, which is the reason why only the three graph
types above appear. All the boundary divisors appear in the vanishing locus of sα,k with
positive multiplicity m (1)

···m (r)

r! (the r! is only there to make the gluing nodes unordered),
as already predicated in [Vak00] and discussed in Remark 1.3.5.

The formula in the case of non-maximal tangency can be proven by adding h � d−
∑
α

auxiliary markings of multiplicity (1, . . . , 1), and then forgetting them (which is generi-
cally an h! : 1 cover), pretty much along the lines of [Gat02, Corollary 3.5]. Importantly,
the difference between ψk on the space with auxiliary markings and fgt∗n+1,...,n+h ψk can
be expressed in terms of boundary classes. It may be useful to notice that as soon as
there is more than one non-trivial component at higher level, or the only such component
has zero horizontal degree and contains more than one of the auxiliary markings, then
the corresponding locus has positive-dimensional fibers for forgetting xn+1 , . . . , xn+h and
collapsing. Also, forgetting a point on the genus one component at level one in case (c)
may make the difference between having to impose the DRC condition or not. So after all
the general formula takes the following shape:

(αkψk + evk ∗H) ∩ [VZ1,α (PN
|H, d)] � [VZ1,α+ek (PN

|H, d)]+∑
(I)

[Ya] +
∑
(I)

[Yb] +
∑
(I)

[Yc] +
∑
(II)

[YnoDRC
c ]

where (I) and (II) range over all the splittings (A, B,M) such that αk ∈ A(0) and

(I) d0 +
∑

m (i) �
∑

A(0) ,

(II) d0 +
∑

m (i) �
∑

A(0) + 1.
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2.4.4. Sample computations. I will exemplify the use of the recursion in some low-
dimensional situations. Let me introduce the following shorthand notation: I will write
Hk for ev∗k H and ψ{n1 ,...,nh }

k for fgt∗
{n1 ,...,nh }

ψk .

Example 2.4.13. Consider the following step of the recursion:

(2ψ1 + H1) · [VZ1,(2,0) (P1
|∞, 2)] �

2
{x1 , x2}

d � 2
+

{x1}{x2}

d � 2
+ 2

{x1}{x2}

d � 2
+

{x1}
d � 1

d � 1

Notice that in the Ya term x2 has to be at level one to ensure stability (yet this results in
a positive dimensional moduli space with no insertions at level zero, so this term will
never contribute to the invariants); in the Yb and in the first Yc term it has to be at level
zero, otherwise there would be a positive dimensional moduli space with no insertions;
while I have remained agnostic as to where x2 lies in the second Yc term. Now choosing
ψ1ψ2H2 as insertion, we see that the only contributing term on the right hand side is the
firstYc term, so we get the following equality:

〈ψ(2ψ + H), ψH〉P
1
|∞,red

1,(2,0),2 � 2〈ψH, 1〉P
1
|∞

0,(2,0),2〈ψ, 1〉
DRC
1,(−2,2)

The next step of the recursion involves an auxiliary marking x3. Knowing the insertion,
the only non-trivial contributions are

(ψ1 + H1) · [VZ1,(1,0,1) (P1
|∞, 2)] � 2

{x1 , x3}{x2}

d � 2
+ 2

{x1 , x3}{x2}

d � 2
+ . . .

By comparing ψ1 with ψ{3}1 on the left hand side, a term appears cancelling with the
Ya on the right hand side; after forgetting x3, we recogniseVZ1,(2,0) (P1

|∞, 2) in the latter.
Also, theYc term has no DRC condition. By substituting in the above we get:

〈ψ(2ψ + H)(ψ + H), ψH〉P
1
|∞,red

1,(1,0),2 � 2〈ψH, 1〉P
1
|∞

0,(2,0),2

(
〈ψ, 1〉DRC

1,(−2,2) + 〈2ψ
2 , 1〉1,2

)
Finally

H1 · [VZ1,(0,0,1,1) (P1
|∞, 2)] �

{x1 , xi }
{x2}

d � 2
{x7−i } (i � 3, 4) + . . .
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from which, forgetting {x3 , x4} and substituting, we get:

〈ψ(2ψ + H)(ψ + H)H, ψH〉P
1 ,red

1,2,2 � 2〈ψH, 1〉P
1
|∞

0,(2,0),2

(
〈ψ, 1〉DRC

1,(−2,2) + 〈2ψ
2 , 1〉1,2

)
It is easy to see from the discussion at the end of Section 2.1 that the reduced invariant on
the left hand side coincides with the ordinary one, since the boundary does not contribute
in this case. The left hand side, as well as the genus zero relative invariant on the right
hand side, can be computed using Gathmann’s software GROWI; the right hand side can
be computed using the string and dilaton equations, together with the genus one DRC
formula of [JPPZ17, §0.5.2] with A � (−2, 2):

DR1(A) �
1
2

*.
,

n∑
i�1

a2
i ψi −

∑
I⊆[n],|I |≥2

a2
I δI −

1
12ξ∗[M0,n+2]+/

-

where A is a zero-sum n-tuple of integers, aI �
∑

i∈I ai , and δI � δ0,I |1,Ic .

Itmay seemhopeless to exploit the recursion to compute the invariants of H in terms of
those of PN , because degree d, genus one invariants of H will appear both at the d-th and
at the (d +1)-st step of the recursion, but in the latter they will comemingled in a range of
admissible DRC conditions. Instead, expressing an invariant of H as a well-chosen DRC
integral seems to be the key to success.

Example 2.4.14. Assume we want to compute ψ5
1 · [VZ1,1(P1 , 2)] by thinking of P1 as

a line in P2 and applying the recursion. There is a 4 : 1 cover of VZ1,1(P1 , 2) by
VZ1,(0,2) (P2

|H, 2)∼, forgetting the second marking. Hence we may start from

H1 · [VZ1,(0,2) (P2
|H, 2)] � 2

{x1 , x2}

d � 2
+

{x1 , x2}

d � 2
+ . . .

by multiplying both sides with 1
4 (ψ{2}1 )5 and rearranging we obtain:

〈ψ5
〉
P1 ,red
1,1,2 �

1
4 (ψ{2}1 )5H1 · [VZ1,(0,2) (P2

|H, 2)] − 1
2ψ

5
1 · [VZ1,(2) (P2

|H, 2)]

Applying the recursion again to the terms on the right hand side we get:

1
4 (ψ{2}1 )5H1 · [VZ1,(0,2) (P2

|H, 2)] �

1
4 (ψ{2,3}1 )5H1(ψ{3}2 + H2) · [VZ1,(0,1,1) (P2

|H, 2)] − 1
4 (ψ{2}1 )5H1 · [VZ1,(1,1) (P2

|H, 2)]
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−
1
2ψ

5
1[VZ1,(2) (P2

|H, 2)] �

−
1
2 (ψ{2}1 )5(ψ{2}1 + H1) · [VZ1,(1,1) (P2

|H, 2)] + 1
2 (ψ{2}1 )5

· [VZ1,(1,1) (P2
|H, 2)∼]

Notice that the last term on the right hand side is equal to 1
2 〈ψ

5
〉
P1 ,red
1,1,2 ; luckily the scalar

factor is not the same as in the left hand side above. Rearranging we get

1
2 〈ψ

5
〉
P1 ,red
1,1,2 �

1
4 (ψ{2,3}1 )5H1(ψ{3}2 + H2) · [VZ1,(0,1,1) (P2

|H, 2)]

−
1
4 (ψ{2}1 )5(2ψ{2}1 + 3H1) · [VZ1,(1,1) (P2

|H, 2)]

After further manipulations using ψ{2}1 � ψ1 − D1,2 we rewrite the right hand side as:

1
4 〈ψ

5H, (ψ + H)H〉P
2 ,red

1,2,2 −
1
4 〈ψ

4H(ψ + H)H〉P
2 ,red

1,1,2 −
1
4 〈ψ

5(2ψ + 3H)H〉P
2 ,red

1,1,2 (2.5)

According to the formulae at the end of Section 2.1, the relation with ordinary invariants
is the following:

〈ψ5H, ψH〉P
2 ,red

1,2,2 � 〈ψ5H, ψH〉P
2

1,2,2 +
1
24 〈ψ

5H, ψH, 1〉P2

0,3,2 − 〈ψ, ψ〉1,2〈ψ
5H, ψH〉P

2

0,2,2

〈ψ5H,H2
〉
P2 ,red
1,2,2 � 〈ψ5H,H2

〉
P2

1,2,2 +
1
24 〈ψ

5H,H2 , 1〉P2

0,3,2

etc. where the first correction terms come from D1,(0,n)
∼ M1,1 × M0,n+1(P2 , 2) (with

obstruction bundle −λ1 on the first factor), and the second correction term (only relevant
when computing the first of the invariants in (2.5)) comes from D1,(1,n−1)

∼ M1,2 ×

M0,2(P2 , 2). Instead 〈ψ5
〉
P1 ,red
1,1,2 � 〈ψ5

〉
P1

1,1,2 because ψ appears to the power 5 while on the
boundary we findM1,2 at most. Again the equality can be checked using GROWI.

You may be worried that it was just a lucky coincidence that the integral we were
interested in appeared on the two sides of the equality with different coefficients, instead
it seems to be a general feature.

Remark 2.4.15. Assume we want to compute 〈τh1 Hk1 , . . . , τh1 Hk1〉
PN−1 ,red
1,n ,d by writing it as

1
d2 (ψ{n+1}

1 )h1 Hk1 · · · (ψ{n+1}
n )hn Hkn · [VZ1,(0,...,0,d) (PN

|H, d)∼]. Let me start from the recur-
sion step H1 · [VZ1,(0,...,0,d) (PN

|H, d)] � . . . :

Ya : d
{x1 , xn+1}

d
contributes 1

dψ
h1
1 Hk1 · · ·ψhn

n Hkn · [VZ1,(d ,...,0) (PN
|H, d)]; if this is

the curve configuration, while there is any othermarking at level one, then fgtn+1 has
positive dimensional fibers; otherwise there must be another component of positive
horizontal degree (these contributions are computed inductively on d);
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Yb : is an entirely rational story;

Yc :
{x1 , . . . , xn+1}

d
is the term we are meant to compute, while all other terms will

include a DRC integral of lower degree.

I shall look one step further into the recursion for computing [VZ1,(0,...,0,d) (PN
|H, d)]: in

order to do so consider the formula for ((d − 1)ψn+1 + Hn+1) · [VZ1,(0,...,0,d−1,1) (PN
|H, d)].

This produces:

Ya : d
{xn+1 , xn+2}

d
this is the one we are after; while (d−1)

{xk , xn+1}

d
{xn+2} gives

a lower tangency condition [VZ1,(0,...,d−1,...,0) (PN
|H, d)]; and all other terms have

lower degree.

Yc :
{x1 , . . . , xn+1 , xn+2}

d
has positive dimensional fibers for fgtn+1,n+2, and all other

terms have lower degree.

Finally, let me look one step further into the reduction of [VZ1,(d ,...,0) (PN
|H, d)]: we have

((d − 1)ψ{n+1}
1 + H1) · [VZ1,(d−1,...,0,1) (PN

|H, d)] � . . . :

Ya : d
{x1 , xn+1}

d
is the one we care about; (d − 1)

{xk , x1}

d
{xn+1} has a lower

number of markings (indeed ψ{n+1}
1 and ψ{n+1}

k restrict to 0 on this locus, and ev1 ≡

evk); while all other terms have lower degree.

Yc :
{x1 , . . . , xn+1}

d
contributes 1

dψ
h1
1 Hk1 · · ·ψhn

n Hkn ·[VZ1,(0,...,0,d) (PN
|H, d)∼] so there

is no cancellation, while all other terms have lower degree.

To sum up, it is possible to determine the reduced genus one restricted invariants of H in
terms of those of PN and the genus zero theory, by induction on the degree, number of
markings, and total tangency order.



106 Chapter 2. On genus one

The last example is meant to show the factorisation condition in action.

Example 2.4.16. Let me apply the recursion at x1 on VZ1,(2,0) (P2
|H, 2) with insertion

ψ1ψ2
2H2

2 . The only surviving boundary term is of type Yc
0 and it is isomorphic to

2M
DRC
1,(−2,2) ×M0,(0,2) (P2

|H, 2)ramif with x1 sitting in the first factor, and x2 in the second
one. In this case the factorisation condition is simply requiring themap on the rational tail
to be ramified at the second marking: since we already know that d fq : TC,q → NH/P2 , f (q)

vanishes, it is enough to impose that d fq : TC,q → TH, f (q) also does. This is done for us by
the tautological insertion ψq + 2Hq . Summing up we have:

〈ψ(2ψ + H), ψ2H2
〉
P2
|H,red

1,(2,0),2 � 〈ψ〉DRC
1,(−2,2) 〈ψ

2H2 , ψ + 2H〉P
2
|H

0,(0,2),2

Applying the recursion twice more we may rewrite the left hand side as

〈ψ(2ψ + H)(ψ + H)H, ψ2H2
〉
P2 ,red
1,2,2 − 2〈2ψ2

〉1,2〈ψ
2H2 , ψ + 2H〉P

2
|H

0,(0,2),2

Finally from the formulae at the end of Section 2.1

〈ψ(2ψ + H)(ψ + H)H, ψ2H2
〉
P2 ,red
1,2,2 � 〈ψ(2ψ + H)(ψ + H)H, ψ2H2

〉
P2

1,2,2+

1
24 〈1, ψ(2ψ+H)(ψ+H)H, ψ2H2

〉
P2

0,3,2−
3
24 〈ψH2 , ψ2H2

〉
P2

0,2,2−
1
24 〈ψH(3ψH+2ψ2), ψH2

〉
P2

0,2,2

where the last three terms come from the boundary corrections

ψ − 2λ1

{x1 , x2}
+
{x1}

ψ

{x2}
+
{x2}

ψ

{x1}
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