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Almost universal codes for MIMO wiretap channels
Laura Luzzi, Roope Vehkalahti and Cong Ling

Abstract—Despite several works on secrecy coding for fading
and MIMO wiretap channels from an error probability perspec-
tive, the construction of information-theoretically secure codes
over such channels remains an open problem. In this paper, we
consider a fading wiretap channel model where the transmitter
has only partial statistical channel state information. Our channel

model includes static channels, i.i.d. block fading channels, and
ergodic stationary fading with fast decay of large deviations for
the eavesdropper’s channel.

We extend the flatness factor criterion from the Gaussian
wiretap channel to fading and MIMO wiretap channels, and
establish a simple design criterion where the normalized product
distance / minimum determinant of the lattice and its dual should
be maximized simultaneously.

Moreover, we propose concrete lattice codes satisfying this
design criterion, which are built from algebraic number fields
with constant root discriminant in the single-antenna case, and
from division algebras centered at such number fields in the
multiple-antenna case. The proposed lattice codes achieve strong
secrecy and semantic security for all rates R < Cb−Ce−κ, where
Cb and Ce are Bob and Eve’s channel capacities respectively, and
κ is an explicit constant gap. Furthermore, these codes are almost
universal in the sense that a fixed code is good for secrecy for a
wide range of fading models.

Finally, we consider a compound wiretap model with a more
restricted uncertainty set, and show that rates R < C̄b − C̄e − κ

are achievable, where C̄b is a lower bound for Bob’s capacity
and C̄e is an upper bound for Eve’s capacity for all the channels
in the set.

Index Terms—algebraic number theory, division algebras,
fading wiretap channel, information theoretic security, lattice
coding, MIMO wiretap channel, statistical CSIT.

I. INTRODUCTION

The wiretap channel model was introduced by Wyner [2],

who showed that secure and reliable communication can be

achieved simultaneously over noisy channels even without

the use of secret keys. Wyner’s secrecy condition, which is

sometimes called the weak secrecy condition, requires that

the normalized mutual information 1
k I(M ;Zk) between the

confidential message M and the channel output Zk should

vanish when the code length k tends to infinity. However,
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certain weak secrecy schemes exhibit security flaws [3], and

today the most widely accepted secrecy metric in the infor-

mation theory community is Csiszár’s strong secrecy [4], i.e.

I(M ;Zk) should tend to zero when k tends to infinity.

While in the information theory community confidential

messages are often assumed to be uniformly distributed, this

assumption is not accepted in cryptography. A cryptographic

treatment of the wiretap channel was proposed in [5] to com-

bine the requirements of the two communities, establishing

that achieving semantic security in the cryptographic sense is

equivalent to achieving strong secrecy for all distributions of

the message. This equivalence holds to some extent also for

continuous channels [6, Proposition 1].

A. Known results on the secrecy capacity of wiretap channels

The original work of Wyner considered discrete channels;

the Gaussian wiretap channel was first studied in [7] where

it was proven that its (weak) secrecy capacity is Cb − Ce,

where Cb and Ce are the capacities of Bob and Eve’s channels

respectively. Ergodic fading models were first considered

in [8, 9] and their secrecy capacity was investigated under

the assumption of perfect channel state information at the

transmitter (CSIT); [9] also considered the scenario where the

CSI of the legitimate channel is perfectly known, but there is

only statistical information about the wiretapper’s channel, and

gave some degrees of freedom results in this case. All these

early works were under the assumption of weak secrecy.

Clearly, the assumption of perfect CSIT about Eve’s channel

is unrealistic in most cases, and for fast fading channels, even

the assumption of perfect CSIT about Bob’s channel may be

problematic. A general (non-explicit) formula for the secrecy

capacity of a fading wiretap channel with imperfect CSIT

was given in [10] for an intermediate secrecy metric based

on variational distance. With statistical CSIT only, the weak

secrecy capacity is Cb −Ce for i.i.d. Rayleigh fading wiretap

channels such that Bob and Eve’s channels are independent

[11].

Note that while it is often argued that it is possible to obtain

strong secrecy from weak secrecy “for free” using the privacy

amplification technique in [12], applying this technique to

fading channels without CSIT seems to be an open problem;

see the discussion in [13].

The weak secrecy capacity of multiple-input multiple output

(MIMO) Gaussian wiretap channels was investigated in [14–

17] assuming perfect CSIT. In this setting, it was also shown

in [18] that the MIMO channel can be decomposed into

parallel channels, allowing to use scalar Gaussian codebooks

to achieve strong secrecy.

The case of fading channels where only statistical CSIT is

available is less well-understood. In [19] it was shown that

http://arxiv.org/abs/1611.01428v3
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the weak secrecy capacity for i.i.d. Rayleigh fading MIMO

wiretap channels is Cb − Ce if Bob and Eve’s channels are

independent.

Yet these channel models are rather restrictive, since know-

ing the channel statistics of the wiretapper is a strong assump-

tion. A more general model is the compound channel1, where

Bob and Eve’s channels belong to a certain uncertainty set

(Db,De). Following the standard convention in [20] we say

that a sequence of wiretap codes achieve rate R if it achieves

the strong secrecy rate R for each of the pairs (Db, De) ∈
(Db,De) in the uncertainty set uniformly, i.e. Eve’s leakage

and Bob’s error probability tend to zero uniformly. The com-

pound capacity can then be defined as the maximal achievable

rate. The ultimate goal of code design would then be to find a

code that uniformly achieves rate Cb −Ce for all the channel

pairs such that Bob’s capacity is lower bounded by Cb and

Eve’s capacity is upper bounded by Ce. Unfortunately it is not

known whether this goal is achievable. The secrecy capacity

of degraded compound wiretap channels was studied in [21–

23]. An arbitrarily varying MIMO channel with no CSI about

the wiretapper was considered in [13], assuming perfect CSI

of the legitimate channel and that the wiretapper has less

antennas than the legitimate receiver. For arbitrarily varying

wiretap channels, the deterministic compound capacity was

shown to be discontinuous with respect to small variations in

the uncertainty set [24].

If we relax the constraint of uniform convergence in the

definition of compound capacity as in Han’s definition [25]

(see also the discussion in [26]), then we can deal with more

general uncertainty sets. With Han’s definition, a wiretap code

achieves rate R over the compound channel if it achieves this

rate for any channel pair (Db, De) ∈ (Db,De) individually.

Obviously the compound capacity in Han’s sense cannot be

smaller than the standard compound capacity, but again it is

not known for general uncertainty sets.

B. Previous code constructions

Coding for wiretap channels. In the case of discrete memo-

ryless channels, the first wiretap code constructions were based

on polar codes [27] and LDPC codes [28] for degraded and

symmetric wiretap channels. The polar code construction was

extended to general wiretap channels in [29, 30].

Lattice codes for the Gaussian wiretap channel under an

error probability criterion were first proposed in [31, 32].

Subsequent works on algebraic lattice codes extended the error

probability approach to fading and MIMO channels [33–36].

In the case of Gaussian wiretap channels, [6] considered

the problem of designing lattice codes which achieve strong

secrecy and semantic security. Following an approach by

Csiszár [4, 37], strong secrecy is guaranteed if the output

distributions of the eavesdropper’s channel corresponding to

different messages are indistinguishable in the sense of vari-

ational distance. To this aim, the flatness factor of a lattice

1 We note that typically the compound model in the MIMO literature refers
to a scenario where the uncertainty set consists of static channels. However,
one can consider more general uncertainty sets which contain both static and
time-varying channels.

was proposed in [6] as a fundamental criterion which implies

that conditional outputs are indistinguishable. Using random

coding arguments, it was shown that there exist families of

lattice codes which are good for secrecy, meaning that their

flatness factor is vanishing, and achieve strong secrecy and

semantic security for rates up to 1/2 nat from the secrecy

capacity. The work [38] adopted the flatness factor as a design

criterion in MIMO wiretap channels, yet it is unclear whether

that approach achieves strong secrecy.

Other non-algebraic lattice code constructions with strong

secrecy include polar lattices for Gaussian wiretap channels

[39]. A different approach (not based on lattices) in [40]

achieves the strong secrecy capacity of the Gaussian wiretap

channel using 2-universal hash functions.

Universal codes for fading channels. Several previous

works considered the problem of designing universal codes

for fading and MIMO channels without secrecy constraints.

Division algebras were first used to obtain MIMO codes

that are “approximately universal” from the point of view

of the diversity-multiplexing gain trade-off in [41]. Lattice

codes with precoded-integer forcing were shown to achieve

constant gap to MIMO capacity in slow fading channels in

[42]. Most closely related to the present work, [43] proposed a

construction of algebraic lattices based on number field towers

which are almost universal over static and ergodic fading

MIMO channels. More recently, random lattice codes from

Generalized Construction A were shown to achieve compound

capacity for the uncertainty set of static MIMO channels

[44]. After this paper was first submitted, the Generalized

Construction A was extended to a MIMO wiretap setting [45].

C. Main contributions

Main results. We consider a MIMO fading wiretap channel

model where the transmitter has only access to partial statisti-

cal CSI, while the legitimate receiver has perfect knowledge of

its own channel, and the eavesdropper has perfect knowledge

of both channels. All static, i.i.d. fading and i.i.d. block

fading, and all ergodic fading models are allowed for the main

channel. For the eavesdropper’s channel, our results hold for

static channels, i.i.d. fading and block fading channels, and

stationary ergodic channels with faster than linear convergence

in the law of large numbers.

We propose an algebraic construction of lattices which

achieve strong secrecy and semantic security for all secrecy

rates R < Cb −Ce − κ, where Cb and Ce are Bob and Eve’s

channel capacities respectively, and κ is an explicit constant

gap which depends on the geometric invariants of the chosen

lattices2.

Our codes are almost universal in the sense that given Cb

and Ce, the same code is good for secrecy for a wide range

of fading models. Since for many of the channel models we

consider we don’t know the actual strong secrecy capacity, the

achievable rate Cb − Ce − κ provides a lower bound.

2For stationary ergodic eavesdropper’s channel models with slow conver-
gence in the law of large numbers, we can guarantee weak secrecy for the
same rates.
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Thanks to the universality property, our codes do achieve

a constant gap to the compound capacity in Han’s sense. The

gap is at most κ because for some wiretap channels in the

compound set, the achievable rate is at most Cb − Ce. For

individual fading channel pairs where the capacity is known

to be Cb − Ce, our gap to capacity is exactly κ.

We also consider a compound channel model with the

standard definition of compound capacity, and prove that if

we consider a more restrictive uncertainty set, then we can

guarantee uniform bounds for the error probability and the

leaked information, and our codes achieve a constant gap κ to

the standard compound capacity.

Unfortunately, for the best currently known families of

lattices from algebraic number fields the value of κ turns out

to be very large: 9.75 bits per complex channel use, which

for an i.i.d. Rayleigh fading channel corresponds to an SNR

advantage of approximately 30 dB for the legitimate receiver.

Some perspectives to improve this gap are discussed in the

conclusion of the paper.

Design criteria. We extend the secrecy criterion based on

the flatness factor in [6] to the case of fading and MIMO

channels and propose a family of concrete lattice codes from

algebraic number fields satisfying this criterion. Intuitively,

a vanishing flatness factor, to be defined precisely in our

paper, implies that the output distributions of the eavesdrop-

per’s channel corresponding to different messages converge to

the same distribution (which depends on the eavesdropper’s

channel). Hence no information is leaked to the eavesdropper

asymptotically, even if she knows her channel as well as the

legitimate user’s channel.

The key feature to guarantee secrecy is that the dual of

the faded lattice at the eavesdropper should have a good

minimum distance, so that the flatness factor of the faded

lattice vanishes with high probability. At the same time, to

guarantee reliability, the faded lattice at the legitimate receiver

should have a good minimum distance when the channel is not

in outage.

More precisely, we establish a simple design criterion

where the normalized product distance / normalized minimum

determinant of the lattice and its dual should be maximized

simultaneously; in the case of the Gaussian wiretap channel,

the packing density of the lattice and its dual should be

maximized3. The gap κ to the secrecy capacity only depends

on these geometric invariants.

Lattice construction. Our wiretap lattice codes are con-

structed from a particular sequence of algebraic number fields

with constant root discriminant4. These lattices were already

used in [47, 43] to design almost universal codes for fading and

MIMO channels without secrecy constraints. In this paper, we

show that the underlying multiplicative structure and constant

root discriminant property guarantee that the lattices and their

duals satisfy our joint design criteria for secrecy. Compared to

[43], we also improve the coding rate by replacing spherical

3The dual code also plays a role in the design of wiretap codes for discrete
memoryless channels, such as LDPC codes for binary erasure wiretap channels
[28].

4Coincidentally, the sequences of number fields that we consider are also
used in lattice-based cryptography [46].

shaping with a discrete Gaussian distribution over the infinite

lattice as in [6].

D. Organization of the paper

To make the paper reader-friendly, we present our method-

ology firstly for single-antenna fading wiretap channels, then

for MIMO wiretap channels, since the latter requires division

algebras which are more technical. The rest of the paper is

accordingly organized as follows. In Section II, we introduce

some technical tools, such as the lattice Gaussian distribution,

the flatness factor, and ideal lattices. Section III is devoted

to code construction and security proofs for single-antenna

fading wiretap channels. The proposed lattice codes can be

generalized to the MIMO case using the multi-block matrix

lattices from division algebras in [43]. This is accomplished in

Section IV and V, which may be skipped in the first reading.

In Section VI, we extend our achievability results to the

compound model. In Section VII, we discuss the implications

of our results in terms of code design criteria. Finally, Section

VIII concludes the paper and presents some open problems.

II. PRELIMINARIES

A. Basic lattice definitions

In this section we recall some basic notions about lattices

and define the corresponding notations.

Consider Ck as a 2k-dimensional real vector space with the

real inner product

〈x,y〉 = ℜ(x†y). (1)

This inner product naturally defines a metric on the space Ck

by setting ‖x‖ =
√
〈x,x〉. With this inner product, we can

identify Ck with R2k with the canonical real inner product,

through the isometry

φ(z1, . . . , zk) = (ℜ(z1), . . . ,ℜ(zk),ℑ(zk), . . . ,ℑ(zk)). (2)

An n-dimensional lattice Λ is a discrete subgroup of Rn

defined by

Λ = {MGx : x ∈ Zn},

where the columns of the generator matrix MG ∈Mn(R) are

linearly independent.

We consider lattices of even dimension n = 2k in the

Euclidean space R2k, which is identified with the complex

space Ck through (2). Given a lattice Λ ⊂ Ck, we define the

dual lattice as

Λ∗ = {x ∈ Ck | ∀y ∈ Λ, 〈x,y〉 ∈ Z}. (3)

A fundamental region of the lattice Λ is a measurable set

R(Λ) ⊂ Rn such that Rn is the disjoint union of the translates

of R(Λ), i.e. Rn =
⋃̇

λ∈Λ(R(Λ) + λ). We denote by V (Λ)
the volume of any fundamental region of Λ, and by λ1(Λ) the

minimum distance of the lattice, i.e. the smallest norm of a

non-zero vector:

λ1(Λ) = min
λ∈Λ\{0}

‖λ‖ .
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B. Flatness factor and discrete Gaussian distribution

In this section, we define some fundamental lattice param-

eters that will be used in the rest of the paper. For more

background about the smoothing parameter and the flatness

factor in information theory and cryptography, we refer the

reader to [48, 6, 49].

Let f√Σ,c(z) denote the k-dimensional circularly symmetric

complex normal distribution with mean c and covariance

matrix Σ:

f√Σ,c(z) =
1

πk det(Σ)
e−(z−c)†Σ−1(z−c) ∀z ∈ Ck.

We use the notation fσ,c(z) for fσI,c(z) and f√Σ for f√Σ,0.

Given a lattice Λ ⊂ Ck, we consider the Λ-periodic function

f√Σ,Λ(z) =
∑

λ∈Λ

f√Σ,λ(z), ∀z ∈ Ck.

Note that the restriction of f√Σ,Λ(z) to any fundamental

region R(Λ) is a probability distribution.

Definition 2.1: Given a complex lattice Λ ⊂ Ck and

a positive definite matrix Σ ∈ Mn(C), the flatness factor

ǫΛ(
√
Σ) is defined as the maximum deviation of f√Σ,Λ from

the uniform distribution over a fundamental region R(Λ) of

Λ, with volume V (Λ):

ǫΛ(
√
Σ) = max

z∈R(Λ)

∣∣∣V (Λ)f√Σ,Λ(z) − 1
∣∣∣ .

Compared to [6], in this paper we use an extended version

of the flatness factor for correlated Gaussians, related to the

extended notion of the smoothing parameter in [49]. We also

extend the definition to the case of complex lattices. In the

case of scalar matrices we write ǫΛ(σ) = ǫΛ(σI).
Note that correlations can be absorbed by the lattice in

the sense that ǫΛ(
√
Σ) = ǫ√

Σ
−1

Λ
(I), and that ǫΛ(

√
Σ1) ≤

ǫΛ(
√
Σ2) if Σ1 and Σ2 are two positive definite matrices with

Σ1 � Σ2.

Definition 2.2: Given a lattice Λ and ε > 0, the

smoothing parameter5 ηε(Λ) is the smallest s such that∑
λ∗∈Λ∗\{0} e

−π
2 s2‖λ∗‖2 ≤ ε, where Λ∗ is the dual lattice.

For scalar covariance matrices the smoothing parameter is

related to the flatness factor as follows [6]:
√
2πσ = ηε(Λ) if and only if ǫΛ(σI) = ε.

More generally, for Σ � 0 we can say that
√
2πΣ � ηε(Λ) if ǫΛ(

√
Σ) ≤ ε. (4)

The smoothing parameter is upper bounded by the minimum

distance of the dual lattice [48]. More precisely, we have the

following corollary of a result by Banaszczyk [50]:

Lemma 2.3: Suppose that Λ is an n-dimensional lattice, and

consider two constants c > 1√
2π

, C = c
√
2πee−πc2 < 1.

If τ >
√
nc

λ1(Λ) , then

∑

λ∈Λ\{0}
e−τ2π‖λ‖2 ≤ Cn

1− Cn
. (5)

5We define the smoothing parameter per complex dimension, which differs
by a factor

√

2 from the definition in [48]. We have adjusted the bounds on
ηε(Λ) accordingly.

Therefore the smoothing parameter of the dual lattice is

bounded as follows:

ηε(Λ
∗) ≤

√
2nc

λ1(Λ)
for ε =

Cn

1− Cn
. (6)

Equivalently, in terms of the flatness factor,

ǫΛ∗

( √
nc√

πλ1(Λ)

)
≤ Cn

1− Cn
. (7)

Proof: Let B be the open unit ball, and ρ(A) =∑
x∈A e

−πx2

. From Lemma 1.5 in [50] we have that

∀c ≥ 1√
2π
, ρ(Λ \ c√nB) < Cnρ(Λ),

where C = c
√
2πe e−πc2 . Then we can write

ρ(Λ\ c√nB) < C2ρ(Λ) = Cnρ(Λ\ c√nB) + Cnρ(Λ ∩ c√nB)

⇒ ρ(Λ \ c√nB) < Cn

1− Cn
ρ(Λ ∩ c√nB).

Now suppose that τ > c
√
n

λ1(Λ) and consequently τΛ \ c√nB =

τΛ \ {0}. We have
∑

λ∈Λ\{0}
e−τ2π‖λ‖2

=
∑

τλ∈τΛ\{0}
e−π‖τλ‖2

= ρ(τΛ \ {0})

= ρ(τΛ \ c√nB) < Cn

1− Cn
ρ(Λ ∩ c√nB) = Cn

1− Cn
ρ({0})

=
Cn

1− Cn
.

The second tool that we need to define our lattice coding

schemes is the notion of discrete Gaussian distribution.

Given c ∈ Ck and Σ � 0, the discrete Gaussian distribution

over the (shifted) lattice Λ− c ⊂ Ck is the following discrete

distribution taking values in Λ − c:

DΛ−c,
√
Σ(λ − c) =

f√Σ(λ− c)
∑

λ′∈Λ f
√
Σ(λ

′ − c)
.

The following result is a generalization of Regev’s

lemma [51, Claim 3.9] (see also [6, Lemma 8]) to correlated

Gaussian distributions. The proof is given in Appendix A.

Lemma 2.4: Let X1 be sampled according to the discrete

Gaussian distribution DΛ+c,
√
Σ1

and X2 be sampled according

to the continuous Gaussian f√Σ2
. Let Σ0 = Σ1 + Σ2 and

Σ−1 = Σ−1
1 +Σ−1

2 . Denote by g(x) the density of the random

variable X = X1 +X2. If

ǫΛ(
√
Σ) ≤ ε ≤ 1

2
, (8)

then the L1 distance V( , ) between the distributions g and

f√Σ0
is bounded as follows:

V(g, f√Σ0
) ≤ 4ε.

We will also need a basic result concerning linear transfor-

mations of discrete Gaussian distributions, which is proven in

Appendix B.

Lemma 2.5: Let X be sampled according to the k-

dimensional discrete Gaussian distribution DΛ+c,
√
Σ, and let
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A ∈ Mk(C) an invertible matrix. Then the distribution of

Y = AX is DA(Λ+c),
√
AΣA† .

Finally, we introduce subgaussian random variables, whose

tails behave similarly to the Gaussian tail distributions:

Definition 2.6: A random vector z taking values in Ck is

δ-subgaussian with parameter σ if ∀t ∈ Ck, E[eℜ(t†z)] ≤
eδe

σ2

4 ‖t‖2

.

For a complex Gaussian vector z ∼ NC(0,Σ), E[e
ℜ(t†z)] =

e
1
2 t

†Σt.

The following result holds (see also [52, Lemma 2.8]):

Lemma 2.7: Let x ∼ DΛ+c,σ be a k-dimensional discrete

complex Gaussian random variable, and let A ∈ Mk(C).
Suppose that ǫΛ(σ) < 1. Then ∀t ∈ Ck,

E[eℜ(t†Ax)] ≤
(
1 + ǫΛ(σ)

1− ǫΛ(σ)

)
e

σ2

4 ‖A†
t‖2

.

The proof can be found in Appendix C.

C. Ideal lattices from number fields with constant root dis-

criminant

Let us first formalize some properties of algebraic number

fields that are relevant for our construction of algebraic lattice

codes in the single-antenna case. We refer the reader to [53]

for the relevant notions about number fields.

Let F be a totally complex number field of degree [F :
Q] = 2k, with ring of integers OF . We denote by dF
the discriminant of the number field. The relative canonical

embedding of F into Ck is given by

ψ(x) = (σ1(x), . . . , σk(x)),

where {σ1, . . . , σk} is a set of Q-embeddings F → C such

that we have chosen one from each complex conjugate pair.

Assume that I is a fractional ideal of F , that is, there exists

some integer a such that aI is a proper ideal of OF . Then

Λ = ψ(I) is a 2k-dimensional lattice in Ck. In particular,

ψ(OF ) is a lattice.

We define the codifferent of F as

O∨
F = {x ∈ F : TrF/Q(xOF ) ⊆ Z}.

The codifferent is a fractional ideal, and its algebraic norm is

the inverse of the discriminant:

N(O∨
F ) = 1/dF . (9)

The codifferent embeds as the complex conjugate of the dual

lattice:

Λ∗ = 2ψ(O∨
F ). (10)

Using Lemma 2.3, equation (6), we have that ∀c > 1√
2π

ηεk(Λ) ≤
√
4kc

λ1(Λ∗)
=

√
kc

λ1(ψ(O∨
F ))

. (11)

where εk = C2k

1−C2k → 0 as k → ∞.6

6A similar result is shown in [46, Lemma 6.2] for ε = 2−2k . In this paper
we prefer to consider general ε in order to get the best possible secrecy rates.

Due to the arithmetic mean – geometric mean inequality,

for any fractional ideal I of OF , λ1(ψ(I)) ≥
√
k(N(I)) 1

2k .
In particular, from (9) we get

λ1(ψ(O∨
F )) = λ1(ψ(O∨

F )) ≥
√
k/ |dF |

1
2k . (12)

Combining equations (11) and (12), we find that the smoothing

parameter of Λ is upper bounded by the root discriminant:

ηεk (Λ) ≤ c |dF |
1
2k for εk =

C2k

1− C2k
. (13)

Note that as long as c > 1√
2π

, we have C < 1 and εk → 0
exponentially fast, but the rate of convergence will get slower

if C is very close to 1.

In order to have small smoothing parameter when the dimen-

sion k is large, we need the discriminant |dF | to grow as

slowly as possible with k.

Given a family F = {Fk} of number fields with [Fk : Q] →
∞ as k → ∞, we define the asymptotic root discriminant [54]

of F as

rdF = lim sup
k→∞

|dK |
1

[Fk:Q] . (14)

The following theorem by Martinet [55] proves the exis-

tence of infinite towers of totally complex number fields with

constant root discriminant:

Theorem 2.8 (Martinet): There exists an infinite tower of

totally complex number fields FC = {Fk} of degree 2k =
5 · 2t, such that

|dFk
| 1
2k = G ≈ 92.368. (15)

Consequently, rdFC ≈ 92.368.

The value for rdF in Theorem 2.8 is not the best known

possible; the existence of a family of totally complex number

fields FHM with rdFHM < 82.2 was proved in [56]. However,

for the number fields in this family, the root discriminant is

not constant although it remains bounded.

Remark 2.9: Although in principle the number fields in the

families FC and FHM can be computed explicitly for fixed

degree k, at present an efficient algorithm to do so is not

available; see the discussion in [43].

Given a sequence F = {Fk} of number fields, we denote

by {Λ(k)
F } = {ψ(OFk

)} the corresponding sequence of lattices

in Ck, with volume

V (Λ
(k)
F ) = 2−k

√
|dF |.

D. Ideal lattices and normalized product distance

Given an element x = (x1, . . . , xk) ∈ Ck we will use the

notation p(x) =
∏k

i=1 |xi|, and define

p(Λ) = inf
x∈Λ\{0}

p(x).

A classically used parameter to design lattices for the

Rayleigh fast fading channel [57] is the normalized product

distance

Np(Λ) =
p(Λ)

V (Λ)
1
2

. (16)

The proof of the following will be given in Appendix D.
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Lemma 2.10: Let F/Q be a totally complex extension of

degree 2k and let ψ be the relative canonical embedding and

I a fractional ideal of F . Then

Np(ψ(I)) ≥ 2
k
2

|dF | 14
, Np(ψ(I)∗) ≥ 2

k
2

|dF | 14
.

In other words, given a fixed number field F , the product

distances of all its ideal lattices and their duals are lower

bounded by the same value 2
k
2 /|dF |

1
4 , which only depends

on the size of the discriminant of the field F .

This property of number fields immediately implies a result

concerning the euclidean distance of lattice points in ideal

lattices.

Definition 2.11: Given a 2k-dimensional lattice Λ in Ck, its

Hermite invariant is defined as

h(Λ) = inf
x∈Λ\{0}

||x||2
V (Λ)

1
k

=
λ1(Λ)

2

V (Λ)
1
k

.

Using the arithmetic – geometric mean inequality, we have

for all 2k-dimensional lattices that

(Np(Λ))2 ≤ h(φ(Λ))k

kk
. (17)

Therefore, given a fixed number field F , for any ideal I we

have that

h(ψ(I)) ≥ 2k

|dF |1/2k
, h(ψ(I)∗) ≥ 2k

|dF |1/2k
. (18)

In other words, given a number field with small discrim-

inant, then all the ideal lattices and their duals have large

Hermite invariants.

III. SINGLE-ANTENNA FADING WIRETAP CHANNEL

A. Channel model

We consider the single-antenna ergodic fading channel

model illustrated in Figure 1, where the outputs y and z at

Bob and Eve’s end are given by
{
yi = hb,ixi + wb,i,

zi = he,ixi + we,i,
i = 1, . . . , k (19)

where wb,i, we,i are i.i.d. complex Gaussian vectors with

zero mean and variance σ2
b , σ2

e per complex dimension. A

confidential message M and an auxiliary message M ′ with

rate R and R′ respectively are encoded into x. We denote by

M̂ the estimate of the confidential message at Bob’s end. We

define He = diag(he,1, . . . , he,k), Hb = diag(hb,1, . . . , hb,k).
The input x satisfies the average power constraint

1

k

k∑

i=1

|xi|2 ≤ P. (20)

We suppose that hb,i, he,i are isotropically invariant chan-

nels such that the channel capacities Cb and Ce are well-

defined. All rates are expressed in nats per complex channel

use.

We assume that the weak law of large numbers (LLN) holds

for Bob’s channel: ∀δ > 0

lim
k→∞

P

{∣∣∣∣∣
1

k

k∑

i=1

ln

(
1 +

P |hb,i|2
σ2
b

)
− Cb

∣∣∣∣∣ > δ

}
= 0, (21)

ALICE ENC Hb

⊕
DEC BOB

He

⊕
EVE

M,M ′

x y M̂

z

wb

we

Fig. 1. The fading wiretap channel.

This general setting includes the Gaussian channel, i.i.d. block

fading channels where the size of the blocks is fixed and the

number of blocks tends to infinity as well as all ergodic fading

channels.

Moreover, we require a stricter condition for Eve’s channel,

i.e. the asymptotic rate of convergence in the LLN should be

faster than o
(
1
k

)
: ∀δ′ > 0,

lim
k→∞

k P

{∣∣∣∣∣
1

k

k∑

i=1

ln

(
1 +

P |he,i|2
σ2
e

)
− Ce

∣∣∣∣∣> δ′
}

= 0 (22)

This condition is satisfied for static channels, i.i.d. fading

channels and i.i.d. block fading channels, and ergodic channels

whose decay of large deviations is vanishing with rate o
(
1
k

)
.7

Recall that in the ergodic case, Cb = Ehb

[
ln
(
1 + P |hb|2

σ2
b

)]

and Ce = Ehe

[
ln
(
1 + P |he|2

σ2
e

)]
, where hb and he are random

variables with the same first order distribution as the processes

{hb,i},{he,i} [58].

We suppose that Bob has perfect CSI of his own channel,

and Eve has perfect CSI of both channels. Alice has no

instantaneous CSI, apart from partial knowledge of channel

statistics. More precisely, the knowledge of Cb and Ce and of

the properties (21) and (22) is sufficient for Alice.

Definition 3.1: A coding scheme achieves strong secrecy if

lim
k→∞

P{M̂ 6=M} = 0,

lim
k→∞

I(M ; z, He) = 0.

Definition 3.2: A coding scheme achieves weak secrecy if

lim
k→∞

P{M̂ 6=M} = 0,

lim
k→∞

1

k
I(M ; z, He) = 0.

Remark 3.3: Even if Eve knows Bob’s channel Hb, and even

though He and Hb are possibly correlated, the leakage can

still be expressed as I(M ; z, He). In fact, the Markov chain

7This condition was missing in the conference version of this paper [1],
where it was stated that Corollary 3.7 holds whenever Eve’s channel is ergodic.
Actually ergodicity is not sufficient with the current approach. Here we make
that statement more precise.



7

z−He−Hb always holds, and using the chain rule for mutual

information twice we get

I(M ; z|He, Hb) = I(M,Hb; z|He)− I(Hb; z|He)

= I(M,Hb; z|He) = I(M ; z|He)− I(Hb; z|M,He)

= I(M ; z|He).

Remark 3.4: To the best of our knowledge, in the case

of statistical CSIT only, for general channels the strong

and weak secrecy capacities Cs and Cw
s are not known.

In [11] the equality Cw
s = Cb − Ce was shown in the

case of i.i.d. Rayleigh fading channels where Bob and Eve’s

channels are independent8. In [59, Lemma 2], it was shown

that Cw
s ≥ Cb − Ce for arbitrary wiretap channels. In [37]

(Corollary 2 and remarks about Theorem 3) it was noted

that this result extends to the strong secrecy metrics for i.i.d.

channels provided that exponential convergence holds in the

Chernoff bound; [10] deals with general ergodic channels but

considers an intermediate secrecy metrics (stronger than weak

secrecy but weaker than strong secrecy).

B. Lattice wiretap coding

Let Λ
(k)
e ⊂ Λ

(k)
b be a pair of nested lattices in Ck with

nesting ratio |Λb/Λe| = ekR, and volumes

V (Λe) =
(πeP )k

ekR′ , V (Λb) =
(πeP )k

ek(R+R′)
, (23)

where R′ > 0. To simplify the notation, we will omit the

dependence on k of the lattices unless necessary.

Let R(Λe) be a fundamental region of Λe. We consider the

secrecy scheme in [6], where each confidential message m ∈
M = {1, . . . , ekR} is associated to a coset leader λm ∈ Λb ∩
R(Λe). To transmit the message m, Alice samples x ∈ Λb

from the discrete Gaussian DΛe+λm,σs with σ2
s = P . We

denote this lattice coding scheme by C(Λb,Λe).
Remark 3.5 (Power constraint and rate of auxiliary mes-

sage): Let θt =
π−t
π → 1 as t→ 0. It follows from [6, Lemma

6 and Remark 6] that ∀ 0 < t < π, if εk = ǫ
Λ

(k)
e

(
√
θtP ) < 1,

∣∣∣E[‖x‖2]− kP
∣∣∣ ≤ 2πεk

1− εk
P.

Thus as k → ∞, the variance per complex dimension of x

tends to P provided that

lim
k→∞

ǫ
Λ

(k)
e

(
√
θtP ) = 0, (24)

and the power constraint (20) is verified asymptotically9. From

[6, Lemma 7 and Remark 7], the information rate H(M ′) of

the auxiliary message M ′ (corresponding to the choice of a

point in Λe) is bounded by
∣∣∣∣H(M ′)−

(
ln(πeP )− 1

k
lnV (Λe)

)∣∣∣∣ ≤ νt(εk)

= − log(1 − εk) +
π

1− εk
εk(1 + 1/t4),

8Note that the weak secrecy capacity is an upper bound for the strong
secrecy capacity.

9More precisely, one can choose any σ2
s < P , so that the power constraint

is verified for k large enough. We omit this step to simplify the notation.

where νt(ǫk) → 0 as ǫk → 0. Therefore we have

|H(M ′)−R′| ≤ νt(ǫk).

If ǫk → 0, the entropy rate of the auxiliary message tends to

R′ as k → ∞.

Coding scheme based on number fields with constant root

discriminant. Given a sequence F = {Fk} of number fields,

let {Λ(k)
F } be the family of lattices defined in Section II-C.

We consider scaled versions Λb = αbΛ
(k)
F , Λe = αeΛ

(k)
F such

that (23) holds.

Since the choice of R and R′ determines the scaling factors

αb and αe, we will denote the corresponding lattice coding

scheme by C(ΛF , R,R′).

C. Achievable secrecy rates

We now state our main result, which will be proven in

sections III-D and III-E:

Theorem 3.6: Consider the wiretap scheme C(Λb,Λe) in

Section III-B, and suppose that there exist positive constants

tb, te such that

lim inf
k→∞

Np(Λb)
2/k ≥ tb, lim inf

k→∞
Np(Λ∗

e)
2/k ≥ te. (25)

where Np is the normalized product distance defined in (16).

If the main channel and the eavesdropper’s channel verify the

conditions (21) and (22), then the codes C(Λb,Λe) achieve

strong secrecy for any message distribution pM , and thus they

achieve semantic security, if

R′ > Ce + ln
( e
π

)
− ln te,

R+R′ < Cb − ln

(
4

πe

)
+ ln tb.

(26)

Thus, any strong secrecy rate

R < Cb − Ce − 2 ln

(
2

π

)
+ ln tbte

is achievable with the proposed lattice codes.

Then, we can state the following Corollary.

Corollary 3.7: Let F = {Fk} be a sequence of number

fields with rdF < ∞, where rdF is the asymptotic root

discriminant defined in (14). If the main channel and the

eavesdropper’s channel verify the conditions (21) and (22)

respectively, then the wiretap coding scheme C(ΛF , R,R′)
achieves strong secrecy and semantic security if

R′ > Ce+ln

(
e rdF
2π

)
, R+R′ < Cb−ln

(
2 rdF
πe

)
. (27)

Thus, any strong secrecy rate

R < Cb − Ce − 2 ln (rdF /π)

is achievable with the proposed lattice codes.

Proof of the Corollary: By using the definition of

normalized product distance and Lemma 2.10 we find

that for the number field lattices C(ΛF , R,R′) we have

lim infk→∞ Np(Λe)
2
k ≥ 2/ rdF and lim infk→∞ Np(Λ∗

e)
2
k ≥

2/ rdF .
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Fig. 2. Achievable rate for a single-antenna i.i.d. Rayleigh wiretap channel,
where the SNR for Eve is fixed at 5 dB.

Remark 3.8: Let S(Cb, Ce) denote the set of all ergodic

stationary isotropically invariant fading processes {(Hb, He)}
such that (21) and (22) hold. The proposed codes are al-

most universal in the sense that a fixed coding scheme

C(Λ(k), R,R′) with rates satisfying (26) achieves strong se-

crecy and semantic security over all channels in the set

S(Cb, Ce). Moreover, it is clear from the statement of Corol-

lary 3.7 that this fixed code will also achieve secrecy over all

fading processes in S(C′
b, C

′
e) for all C′

b ≥ Cb and for all

C′
e ≤ Ce.

Although a rate of convergence of the order o
(
1
k

)
in the law

of large numbers for Eve’s channel seems to be necessary for

strong secrecy, any rate of convergence is enough to guarantee

weak secrecy:

Proposition 3.9: Suppose that (25) holds for the wiretap

scheme C(Λb,Λe). If the condition (21) holds for the main

channel and ∀δ′ > 0 we have

lim
k→∞

P

{∣∣∣∣∣
1

k

k∑

i=1

ln

(
1 +

P |he,i|2
σ2
e

)
− Ce

∣∣∣∣∣> δ′
}

= 0 (28)

for the eavesdropper’s channel, then C(Λb,Λe) achieves weak

secrecy for all rates (26).

In particular, if rdF < ∞, any weak secrecy rate R < Cb −
Ce−2 ln (rdF /π) is achievable with the codes C(ΛF , R,R′).

A sketch of the proof of Proposition 3.9 can be found in

Appendix F.

Remark 3.10: At least in the settings in which the secrecy

capacity is known and is equal to Cs = Cb −Ce, when using

the Martinet family of number fields FC the proposed lattice

schemes incur a gap to secrecy capacity of 2 ln(G/π) nats per

channel use with G = rdFC ≈ 92.368, i.e. approximately 6.76
nats (or 9.76 bits) per channel use. When the main channel

and eavesdropper’s channel are i.i.d. Rayleigh channels, this

corresponds to an SNR gap of approximately 30 dB (see

Figure 2).

D. Proof of Theorem 3.6: Secrecy

Let x ∈ Λb be the lattice point sampled by Alice from the

discrete Gaussian DΛe+λM ,σs . Then, the received signal z at

Eve’s end is z = Hex + we. Since the message M and the

channel He are independent, the leakage can be expressed as

follows:

I(M ; z, He) = I(M ;He) + I(M ; z|He) = I(M ; z|He)

= EHe

[
I(pM|He

; pz|He
)
]
= EHe

[
I(pM ; pz|He

)
]
. (29)

We want to show that the average leakage with respect to

the fading is small. In order to do so, we will show that for any

confidential message m, the output distributions pz|He,M=m

are close to a Gaussian distribution with high probability.

1) Fixed channel sequence. First, we prove a bound

for the leakage for a fixed channel sequence He =
diag(he,1, . . . , he,k).

Proposition 3.11 (Bound for the leakage): Suppose that

Np(Λ∗
e)

2
k ≥ te for the 2k-dimensional lattice Λe, and

that He = diag(he,1, . . . , he,k) is fixed and such that
1
k

∑k
i=1 ln

(
1 + P

σ2
e
|he,i|2

)
≤ C̄e.

Then ∀c > 1√
2π

, if R′ ≥ C̄e + ln(2c2e) − ln te, for

sufficiently large k ≥ k̄(c), the leakage is bounded by

I(pM ; pz|He
) ≤ 8kεkR − 8εk ln 8εk, where εk = C2k

1−C2k and

C = c
√
2πee−πc2 .

Proof: For a fixed channel realization He and a fixed

message M = m, from Lemma 2.5 we have that Hex ∼
D

HeΛe+Heλm,
√

HeH
†
e

√
P

. Using Lemma 2.4 with Σ1 =

HeH
†
eP , Σ2 = σ2

eI , we have

V(pz|He,M=m, f√Σ0
) ≤ 4εk

provided that

ǫHeΛe(
√
Σ) = ǫ√

Σ
−1

HeΛe
(1) ≤ εk ≤ 1

2
, (30)

where we define

Σ0 = HeH
†
eP + σ2

eI, Σ−1 =
(HeH

†
e )

−1

P
+

I

σ2
e

.

Recalling the upper bound (6) in Lemma 2.3, we have that for

any c > 1√
2π

, C = c
√
2πee−πc2 , εk = C2k

1−C2k ,

ηεk(
√
Σ−1HeΛe) ≤

2c
√
k

λ1((
√
Σ−1HeΛe)∗)

=
2c
√
k

λ1(
√
Σ(H†

e)−1Λ∗
e)
. (31)

Using (10) and the arithmetic mean – geometric mean inequal-

ity,

λ1(
√
Σ(H†

e )
−1Λ∗

e)

≥
√
k

k∏

i=1

(
Pσ2

e

σ2
e + P |he,i|2

) 1
2k

min
x∈Λ∗

e\{0}

k∏

i=1

|xi|
1
k

=
√
k

k∏

i=1

(
Pσ2

e

σ2
e + P |he,i|2

) 1
2k

p(Λ∗
e)

1
k

Replacing in (31), we find that

ηεk(
√
Σ−1HeΛe) ≤

2c
∏k

i=1(1 +
P
σ2
e
|he,i|2) 1

2k

p(Λ∗
e)

1
k

√
P

. (32)
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Equivalently, in terms of flatness factor we have

ǫ√Σ−1HeΛe




2c
∏k

i=1(1 +
P
σ2
e
|he,i|2) 1

2k

p(Λ∗
e)

1
k

√
2πP



 ≤ εk

for fixed fading He. Now suppose that

2ce
C̄e
2

p(Λ∗
e)

1
k

√
2πP

≤ 1. (33)

Then (30) holds for sufficiently large k (depending only on c)
and it follows from [6, Lemma 2] that

I(pM ; pz|He
) ≤ 8kεkR− 8εk ln 8εk. (34)

Recalling the definition of normalized product distance and

the scaling condition (23), we have

Np(Λ∗
e) =

p(Λ∗
e)√

V (Λ∗
e)

= p(Λ∗
e)
√
V (Λe) = p(Λ∗

e)

√
πeP

k

ekR′/2
.

Thus we can rewrite the condition (33) as

2ec2eC̄e

Np(Λ∗
e)

2
k eR′

≤ 1

In particular if the bound (25) holds for Np(Λ∗
e)

2/k , this

condition will be guaranteed if

2ec2eC̄e

teeR
′ ≤ 1.

or equivalently if R′ ≥ C̄e + ln
(
2ec2

)
− ln te.

2) Random channel sequence. For a random channel se-

quence He = diag(he,1, . . . , he,k), we can bound the leakage

as follows:

EHe

[
I(pM ; pz|He

)
]

≤ P

{ k∏

i=1

(
1 +

P |he,i|2
σ2
e

) 1
k

> eCe+δ
}
(kR)

+ EHe

[
I(pM ; pz|He

)
∣∣∣

k∏

i=1

(
1 +

P |he,i|2
σ2
e

) 1
k≤ eCe+δ

]
. (35)

Given δ > 0, the law of large numbers (22) implies that

P

{
k∏

i=1

(
1 +

P

σ2
e

|he,i|2
) 1

k

> eCe+δ

}
→ 0. (36)

Therefore the first term vanishes when k → ∞. If the bound

(25) holds, then ∀γ > 0, for sufficiently large k, Np(Λ∗
e)

2/k >
te−γ. Using Proposition 3.11, ∀γ > 0, the second term in (35)

tends to zero and the scheme achieves strong secrecy provided

that

R′ ≥ Ce + δ + ln(2c2e)− ln(te − γ).

Since this is true for any δ, γ > 0 and any c > 1√
2π

, we find

that a rate

R′ > Ce + ln
( e
π

)
− ln te (37)

is required for strong secrecy.

Remark 3.12: In equation (37), we improve the gap com-

pared to the conference version of this paper, due to consid-

ering general c > 1√
2π

rather than c = 1.

Remark 3.13: In this proof we are only using the fact that

the probability to have a good channel for Eve is vanishing

faster than 1
k . Consequently, in the case when Alice does not

know Eve’s channel capacity Ce but only knows an upper

bound C̄e ≥ Ce such that

lim
k→∞

k P

{
1

k

k∑

i=1

ln

(
1 +

P |he,i|2
σ2
e

)
> C̄e + δ′

}
= 0 (38)

holds, strong secrecy is still guaranteed provided that R′ >
C̄e + ln

(
e
π

)
− ln te.

3) Power constraint and rate of auxiliary message. We still

need to check that the condition (24) holds. This is required

for the power constraint (20), and implies that the information

rate of the auxiliary message tends to R′ asymptotically (see

Remark 3.5).

Proposition 3.14 (Bound for the flatness factor): Suppose

that Np(Λ∗
e)

2
k ≥ te for the 2k-dimensional lattice Λe. Let 0 <

t < π, θt =
π−t
π and c > 1√

2π
. If R′ ≥ ln(2ec2)−ln te−ln θt,

then ǫΛe(
√
θtP ) ≤ εk = C2k

1−C2k , where C = c
√
2πee−πc2 .

Proof: By the arithmetic–geometric mean inequality,

λ1(Λ
∗
e) ≥

√
kp(Λ∗

e)
1
k =

√
k
Np(Λ∗

e)
1
k

V (Λ∗
e)

1
k

≥
√
kNp(Λ∗

e)
1
k
eR

′/2

√
πeP

≥
√
k
√
te
eR

′/2

√
πeP

Then for εk = C2k

1−C2k , we have

ηεk(Λe) ≤
2c
√
k

λ1(Λ∗
e)

≤ 2c
√
πeP

√
tee

R′

2

Therefore εΛe(
√
θtP ) = εk → 0 provided that

√
θtP ≥ 2c

√
πeP√

teeR
′/2

√
2π
,

or equivalently R′ ≥ ln(2c2e)− ln te − ln θt.
For c→ 1√

2π
and t→ 0, θt → 1, we find the condition

R′ > ln
( e
π

)
− ln te, (39)

which is weaker than (37).

E. Proof of Theorem 3.6: Reliability

Recall that to transmit the message m, Alice samples x

from the discrete Gaussian DΛe+λm,σs .

Let y = Hbx+wb be the received signal at Bob. Note that if

Bob correctly decodes x, he can also identify the right coset

of Λe in Λb, and consequently the confidential message m.

1) Fixed channel sequence. First of all, we prove an upper

bound for Bob’s finite-length error probability for a given

sequence of channels Hb = diag(hb,1, . . . , hb,k).
Proposition 3.15 (Bound for the error probability): Suppose

that Np(Λb)
2
k ≥ tb, Np(Λ∗

e)
2
k ≥ te for the 2k-dimensional

lattices Λb and Λe, and that Hb = diag(hb,1, . . . , hb,k) is given

with 1
k

∑k
i=1 ln

(
1 + P

σ2
b
|hb,i|2

)
≥ C̄b.

Then ∀c > 1√
2π

, for code rates R+R′ < C̄b−ln
(

8c2

e

)
+ln tb,
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R′ > ln(2ec2) − ln te, the ML error probability for Bob is

bounded by

Pe ≤
1 + εk
1− εk

εk,

where εk = C2k

1−C2k , and C = c
√
2πee−πc2 .

Proof: We suppose that Bob performs MMSE-GDFE

preprocessing as in [60]: let ρb = P
σ2
b

, and consider the QR

decomposition

H̃b =

(
Hb
1√
ρb
I

)
=

(
Q1

Q2

)
R,

where R,Q1 ∈Mk(C). Observe that H̃†
b H̃b = H†

bHb +
I
ρb

=

R†R, and

‖y −Hbx‖2 +
1

ρb
‖x‖2

= x†HbHbx+ y†Hbx− x†H†
by + y†y +

x†x

ρb

= x†R†Rx− y†Q1Rx− x†R†Q†
1y + y†y

=
∥∥∥Q†

1y −Rx
∥∥∥
2

+ C,

where C is a constant which does not depend on x.

Since the distribution of x is not uniform, MAP decoding

is not equivalent to ML. However, similarly to [6, Theorem

5], for fixed Hb which is known at the receiver, the result of

MAP decoding can be written as

x̂MAP = argmax
x∈Λb

p(x|y) = argmax
x∈Λb

(p(x)p(y|x))

= argmax
x∈Λb

(
e−

‖x‖2

2P e
−‖y−Hbx‖2

2σ2
b

)

= argmin
x∈Λb

(
1

ρb
‖x‖2 + ‖y −Hbx‖2

)

= argmin
x∈Λb

∥∥∥Q†
1y −Rx

∥∥∥
2

.

Thus, Bob can compute

y′ = Q†
1y = Rx+ v, (40)

where v = Q†
1wb − 1

ρb
(R−1)†x [60].

Clearly, the error probability for the original system model

with optimal (MAP) decoding is upper bounded by the ML

error probability for the system model (40).

The noise v is the sum of a discrete Gaussian and of

a continuous Gaussian. We will show that its tails behave

similarly to a Gaussian random variable.

Suppose that a fixed message m has been transmitted, so

that x ∼ DΛe+λm,
√
P . It follows from Lemma 2.7 that x is

δ-subgaussian with parameter
√
P for δ = ln

(
1+ε
1−ε

)
provided

that

ε = ǫΛe(
√
P ) < 1, (41)

which is guaranteed by (39). This is weaker than the condition

(37) we have already imposed for secrecy, so it doesn’t affect

the achievable secrecy rate. Consequently, for the equivalent

noise v,

E[eℜ(t†v)] = E

[
eℜ(t†Q†

1wb)
]
E

[
e
−ℜ

(

1
ρb

t
†(R−1)†x

)
]

≤
(
1 + ε

1− ε

)
e

σ2
b
4 t

†
(

Q†
1Q1+

1
ρb

(R−1)†R−1
)

t
=

(
1 + ε

1− ε

)
e

σ2
b
4 ‖t‖2

since

Q†
1Q1+

1

ρb
(R−1)†R−1 = (R−1)†

(
H†

bHb +
1

ρb
I

)
R−1 = I.

Therefore, v is δ-subgaussian with parameter σb.

For fixed R, from the union bound for the error probability

we get

Pe(R) ≤
∑

x′∈Λb,x′ 6=x

P {x → x′|R}

Note that we have

P {x → x′|R} = P

{
‖v −R(x− x′)‖2 ≤ ‖v‖2

}

= P

{
2〈R(x− x′),v〉 ≥ ‖R(x− x′)‖2

}

= P

{
a ≥ 1

2
‖R(x− x′)‖

}

where a = ℜ
(

(R(x−x
′))†v

‖R(x−x′)‖

)
is a real scalar random variable

with zero mean. By subgaussianity of v, ∀t > 0

E[eta] ≤ eδe
σ2
b
4 t2 .

Using the Chernoff bound, we find that ∀t > 0

P

{
a ≥ 1

2
‖R(x− x′)‖

}
≤ E[eta]e−

t
2‖R(x−x

′)‖

≤ eδe
σ2
b
4 t2e−

t
2‖R(x−x

′)‖

The tightest bound is obtained for t = ‖R(x− x′)‖ /σ2
b and

yields

P {x → x′|R} ≤ eδe
−‖R(x−x

′)‖2

4σ2
b .

Therefore we find

Pe(R) ≤ eδ
∑

λ∈RΛb\{0}
e
−‖λ‖2

4σ2
b

Due to Lemma 2.3, equation (5), Pe(R) → 0 as long as

τ2 =
1

4πσ2
b

>
2c2k

λ1(RΛb)2
. (42)

The minimum distance in the received lattice is lower bounded

as follows using the arithmetic – geometric mean inequality:

λ1(RΛb)
2 = min

x∈Λb\{0}

k∑

i=1

|Rixi|2

≥ k

k∏

i=1

(
1

ρb
+ |hb,i|2

) 1
k

p(Λb)
2
k .

From the scaling condition (23), we have

p(Λb) = Np(Λb)
√
V (Λb) = Np(Λb)

√
πeP

k

ek(R+R′)/2
.
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Replacing in (42), we find that Pe(R) → 0 when k → ∞ as

long as

eR+R′

<
Np(Λb)

2
k e

8c2

k∏

i=1

(
1 +

P

σ2
b

|hb,i|2
) 1

k

.

Using the assumption (25), a sufficient condition is that

eR+R′

<
tbe

8c2

k∏

i=1

(
1 +

P

σ2
b

|hb,i|2
) 1

k

.

Recalling the hypothesis 1
k

∑k
i=1 ln

(
1 + P

σ2
b
|hb,i|2

)
≥ C̄b,

this concludes the proof.
2) Random channel sequence. We now consider the average

error probability for a random sequence of channels Hb =
diag(hb,1, . . . , hb,k). By the law of total probability, ∀η > 0,

Pe ≤ P

{ k∏

i=1

(
1 +

P

σ2
b

|hb,i|2
)1/k

< eCb−η
}
+

+ P

{
x̂ 6= x

∣∣
k∏

i=1

(
1 +

P

σ2
b

|hb,i|2
)1/k

≥ eCb−η
}
.

The first term vanishes when k → ∞ due to the law of large

numbers (21). If the bound (25) holds, then ∀γ > 0, for

sufficiently large k, Np(Λb)
2
k > tb−γ and Np(Λe)

2
k > te−γ.

Using Proposition 3.15, the second term tends to 0 if

R+R′ < Cb − η − ln

(
8c2

e

)
+ ln(tb − γ),

R′ > ln(2ec2)− ln(te − γ).

Since η, γ > 0 and c > 1√
2π

are arbitrary, any rate

R+R′ < Cb − ln

(
4

πe

)
+ ln tb (43)

is achievable for Bob, with R′ > ln(2ec2)− ln te.

From equations (37) and (43), the proposed coding scheme

achieves strong secrecy for any message distribution (and thus

semantic security) for any secrecy rate

R < Cb − Ce − 2 ln

(
2

π

)
+ ln tbte.

This concludes the proof of Theorem 3.6.

Remark 3.16: In the conference version of this paper [1],

the error probability estimate was based on the sphere bound,

while in this paper it is based on the union bound. Both

approaches give the same gap to Bob’s capacity.

Remark 3.17: Note that in this proof we only need the one-

sided law of large numbers

lim
k→∞

P

{
1

k

k∑

i=1

ln

(
1 +

P

σ2
b

|he,i|2
)
< Cb − δ

}
= 0.

Therefore if Alice does not know Bob’s capacity Ce but only

knows an upper bound C̄b ≤ Cb, reliability holds provided

that R+R′ < C̄b − ln
(

4
πe

)
+ ln tb.

Remark 3.18: From Remarks 3.13 and 3.17, we can con-

clude that if Alice does not know the exact capacities Cb and

Ce but is provided with a lower bound C̄b ≤ Cb and an upper

bound C̄e ≥ Ce such that (38) holds, the scheme can still

achieve strong secrecy rates R < C̄b− C̄e−2 ln
(
2
π

)
+ln tbte.

F. Gaussian wiretap channel

Although in our proofs we used the product distance prop-

erties of the lattices Λb and Λ∗
e, if we assume that the channels

under consideration are Gaussian, we only need to know that

the Hermite invariants of Λb and Λ∗
e are large.

Consider the special case of the channel model (19) where

hb,i, he,i are constant and equal to 1 for all i = 1, . . . , k:

{
yi = xi + wb,i,

zi = xi + we,i,
i = 1, . . . , k (44)

Proposition 3.19: Consider the wiretap scheme C(Λb,Λe)
in Section III-B, and suppose that the Hermite invariants of

Λb and Λ∗
e (see Definition 2.11) are bounded by

lim inf
k→∞

h(Λb)

k
≥ h2b , lim inf

k→∞

h(Λ∗
e)

k
≥ h2e, (45)

for some positive constants hb, he. Then the codes C(Λb,Λe)
achieve strong secrecy and semantic security if

R′ > ln

(
1 +

P

σ2
e

)
+ ln

( e
π

)
− ln he,

R+R′ < ln

(
1 +

P

σ2
b

)
− ln

(
4

πe

)
+ ln hb.

Thus, any strong secrecy rate

R < ln

(
1 +

P

σ2
b

)
− ln

(
1 +

P

σ2
e

)
− 2 ln

(
2

π

)
+ ln hbhe

is achievable with the proposed lattice codes.

The proof of Proposition 3.19 is very similar to the proof of

Theorem 3.6. A sketch is provided in Appendix G.

From the bound (18), we have hb = he = 2/ rdF for the

lattices Λb = αbΛ
(k)
F , Λe = αeΛ

(k)
F and Proposition 3.19

gives achievable rates R < ln
(
1 + P/σ2

b

)
− ln

(
1 + P/σ2

e

)
−

2 ln(rdF /π) for the wiretap coding scheme C(ΛF , R,R′).
This is the same result that we obtain if we apply directly

Corollary 3.7. For the Martinet sequence FC of number fields,

recalling that |dF |1/2k = rdFC = G ≈ 92.368, we get a rather

large gap to capacity of 9.75 bits per complex channel use,

or 4.875 bits per real channel use, corresponding to around

30 dB (see Figure 3). Thus, a legitimate receiver with an SNR

of 35 dB could only be protected against eavesdroppers with

an SNR of 5 dB or less.

However, for general lattices the condition (45) is easier

to satisfy than the condition (25) in Theorem 3.6. Using an

analogue of the Minkowski-Hlawka theorem for inner product

spaces, Conway and Thompson showed the existence of self-

dual lattices with large Hermite invariants [61, Theorem 9.5]:

Theorem 3.20 (Conway-Thompson): For all n, there exists

a rank n self-dual lattice Λ̃n with Hermite invariant h(Λ̃n) ≥
K(n), where K(n) ∼ n

2πe as n→ ∞.

Observe that identifying 2k-dimensional real lattices with

k-dimensional complex lattices as in (2) does not affect the

Hermite invariant and dual Hermite invariant, since duality

is defined with respect to the real inner product as in (3).

With this identification, for a wiretap scheme C(Λb,Λe) built

from the Conway-Thompson sequence of lattices Λb = αbΛ̃2k,
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Fig. 3. Achievable rate on a single-antenna Gaussian wiretap channel, where
the SNR for Eve is fixed at 5 dB.

Λe = αeΛ̃2k we have hbhe =

√
h(Λb)h(Λe)

k ∼ 1
πe and applying

Proposition 3.19 we obtain achievable rates

R < ln

(
1 +

P

σ2
b

)
− ln

(
1 +

P

σ2
e

)
− ln

4e

π
,

i.e. a gap of 1.24 nats or 1.79 bits per complex channel use

from the secrecy capacity, or a loss of approximately 6 dB (see

Figure 3). This is slightly worse than the gap of 1/2 nat per

real channel use (or 1 nat per complex channel use) obtained in

[6] for random lattices using the Minkowski-Hlawka theorem.

On the other hand, the design criterion (45) based on the

Hermite invariant, though suboptimal, is more practical to

analyze the performance of non-random lattices.

IV. ALGEBRAIC LATTICE CONSTRUCTIONS FOR

MULTI-ANTENNA CHANNELS

In this section, we will recall the algebraic constructions

of lattice codes for multiple antenna wireless channels, which

will be needed for the wiretap coding scheme in the MIMO

case.

A. Matrix lattices

The space Mnk×n(C) is a 2n2k-dimensional real vector

space endowed with a real inner product

〈X,Y 〉 = ℜ(Tr(X†Y )), (46)

where Tr is the matrix trace. This inner product defines a

metric on the space Mnk×n(C) by setting ||X || =
√
〈X,X〉.

Remark 4.1: Consider the function ξ : Mnk×n(C) → Cn2k

which vectorizes each matrix by stacking its columns. Note

that ξ is an isometry between Mnk×n(C) with the previously

defined inner product and Cn2k with the inner product (1).

Given H ∈Mnk×nk(C) and X ∈Mnk×n(C), we have

ξ(HX) = Hξ(X), H = H ⊗ In. (47)

Given a matrix X ∈Mnk×n(C) of the form

X =



X1

...

Xk


 , (48)

we introduce the notation

Xh
+



X†

1
...

X†
k


 .

We also define the product determinant as follows:

pdet(X) =

k∏

i=1

det(Xi). (49)

Remark 4.2: For X of the form (48), we have

‖X‖2=
k∑

i=1

‖Xi‖2
(a)

≥ n

k∑

i=1

|det(Xi)|
2
n

(b)

≥ nk

k∏

i=1

|det(Xi)|
2
nk = nk |pdet(X)| 2

nk . (50)

Here (a) follows from the inequality ‖A‖n ≥ |det(A)| nn/2

for any A ∈ Mn(C), and (b) follows from the arithmetic –

geometric mean inequality.

Definition 4.3: A matrix lattice L ⊆ Mnk×n(C) has the

form

L = ZB1 ⊕ ZB2 ⊕ · · · ⊕ ZBr,

where the matrices B1, . . . , Br are linearly independent over

R, i.e., form a lattice basis, and r is called the rank or the

dimension of the lattice.

The Gram matrix of an r-dimensional lattice L ⊂Mnk×n(C)
is defined as

Gr(L) = (〈Xi, Xj〉)1≤i,j≤r ,

where {Xi}1≤i≤r is a basis of L. The volume of the funda-

mental parallelotope of L is then given by

V (L) =
√
| det(Gr(L))|.

Definition 4.4: Given a lattice L in Mnk×n(C), the dual

lattice is defined as

L∗ = {X ∈Mnk×n(C) | ∀Y ∈ L, 〈X,Y 〉 ∈ Z}.

We also define the product determinant and normalized min-

imum determinant of the matrix lattice L ⊂ Mkn×n(C) as

follows:

pdet(L) = min
X∈L\{0}

pdet(X),

δ(L) =
pdet(L)

V (L)
1
2n

.

B. MIMO lattices from division algebras

We will first recall the construction of single-block space-

time codes from cyclic division algebras (see for example

[62]). Due to space constraints, we refer the reader to [63]

for algebraic definitions.

Definition 4.5: Let F be an algebraic number field of degree

2k and assume that E/F is a cyclic Galois extension of degree
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n with Galois group Gal(E/F ) = 〈σ〉. We can define an

associative F -algebra

A = (E/F, σ, γ) = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

where u ∈ A is an auxiliary generating element subject to the

relations xu = uσ(x) for all x ∈ E and un = γ ∈ F \ {0}.

We call the resulting algebra a cyclic algebra. Here F is the

center of the algebra A.

Definition 4.6: We call
√
[A : F ] the degree of the algebra

A. It is easily verified that the degree of A is equal to n.

We consider A as a right vector space over E. Every

element a = x0 + ux1 + · · · + un−1xn−1 ∈ A, with xi ∈ E
for all i = 0, . . . , n− 1, has the following representation as a

matrix:

φ(a) =




x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

. . .
...

xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)




The mapping φ is called the left regular representation of

A and allows us to embed any cyclic algebra into Mn(C).
Under such an embedding φ(A) forms an 2kn2-dimensional

Q-vector space.

We are particularly interested in algebras A for which φ(a)
is invertible for all non-zero a ∈ A.

Definition 4.7: A cyclic F -algebra D is a division algebra

if every non-zero element of D is invertible.

In order to code over several fading blocks, we will next define

a multi-block lattice construction based on a cyclic division

algebra. A multi-block embedding was constructed in [64, 65]

for division algebras whose center F contains an imaginary

quadratic field. In this paper we consider a more general multi-

block embedding proposed in [66], which applies to any totally

complex center F .

Let F be totally complex of degree [F : Q] = 2k. F admits

2k Q-embeddings αi : F →֒ C in complex conjugate pairs:

αi = αi+k , for 1 ≤ i ≤ k. Each αi can be extended to

an embedding E →֒ C. Given a ∈ D, consider the mapping

ψ : D 7→Mnk×n(C) given by

ψ(a) =



α1(φ(a))

...

αk(φ(a))


 , (51)

where each αi is extended to an embedding αi : Mn(E) →֒
Mn(C).

Remark 4.8: For all x ∈ D,

pdet(ψ(a)) =

k∏

i=1

det(αi(φ(a)))
(a)
=

k∏

i=1

αi(det(φ(a)))

(b)
= (NF/Q(ND/F (a)))

1
2 = (ND/Q(a))

1
2 , (52)

where (a) follows from the fact that the αi are ring homo-

morphisms, and (b) follows from the definition of the reduced

norm.

In order to obtain a matrix lattice, we will consider a suitable

discrete subset of the algebra called an order.

Definition 4.9: A Z-order Γ in D is a subring of D having

the same identity element as D, and such that Γ is a finitely

generated module over Z which generates D as a linear space

over Q.

The following result was proven in [66, Proposition 5]:

Proposition 4.10: Let Γ be a Z-order in D and ψ the previ-

ously defined embedding. Then ψ(Γ) is a 2kn2-dimensional

lattice in Mnk×n(C) which satisfies

min
a∈Γ\{0}

|pdet(ψ(a))| = 1, V (ψ(Γ)) = 2−kn2√|d(Γ/Z)|.

Here d(Γ/Z) is a non-zero integer called the Z-discriminant

of the order Γ. We refer the reader to [63] for the relevant

definitions.

C. Dual lattice and codifferent

Let Γ be a Z-order in D. We define the codifferent of Γ as

Γ∨ = {x ∈ D : trD/Q(xΓ) ⊆ Z},
where trD/Q is the reduced trace.

The codifferent is an ideal of D, and its reduced norm is

related to the discriminant as follows [63]:

ND/Q(Γ
∨) =

1

d(Γ/Z)
1
n

. (53)

Similarly to the commutative case, the codifferent of Γ
embeds as the complex conjugate of the dual lattice.

Lemma 4.11: ψ(Γ)∗ = 2ψ(Γ∨)h.
This Lemma is proven in Appendix E.

D. Orders with small discriminants and dense matrix lattices

A family of division algebras with orders having particularly

small discriminants was constructed in [43]. These orders yield

dense lattices as shown in Proposition 4.10.

First, we need the following Theorem [67, Theorem 6.14]:

Theorem 4.12: Let F be a number field of degree 2k and P1

and P2 be two prime ideals of F . Then there exists a degree

n division algebra D having an order Γ with discriminant

d(Γ/Z) = (NF/Q(P1)NF/Q(P2))
n(n−1)(dF )

n2

. (54)

Thanks to this property, a suitable family of division alge-

bras can be chosen in two steps.

First, we should choose an infinite sequence of centers {Fk}
with small discriminants, such as Martinet’s sequence FC

(Theorem 2.8). Furthermore, one can choose suitable ideals

in these number fields [43, Lemma 7.9]:

Lemma 4.13: Every number field Fk in the Martinet family

has ideals P1 and P2 such that

NF/Q(P1) ≤ 23k/10 and NF/Q(P2) ≤ 23k/10.

This leads us to the main result in [43]:

Theorem 4.14: Given n, there exists a sequence of totally

complex number fields {Fk} of degree 2k and a sequence of

division algebras Dk of index n over Fk having an order Γk

with discriminant

d(Γk/Z) ≤ β2kn(n−1)G2kn2

,
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where G = rdFC ≈ 92.368 and β = 23
1
10 . Consequently,

{Λ(n,k)} = {ψ(Γk)} is a sequence of 2n2k-dimensional

lattices with

pdet(Λ(n,k)) = 1, V (Λ(n,k)) ≤ βkn(n−1)

(
G

2

)n2k

.

E. Flatness factor of multi-block matrix lattices from division

algebras

Remark 4.15: Due to the isometry ξ between Mnk×n(C)
and Cn2k (Remark 4.1), the definitions of flatness factor,

smoothing parameter and discrete Gaussian distribution extend

in a natural way for matrix lattices in Mnk×n(C).
Given a lattice Λ ⊂ Mnk×n(C), a multi-block matrix X̄ ∈
Mnk×n(C) and a positive definite matrix Σ ∈ Mnk×nk(C),
we define

ǫΛ(
√
Σ) + ǫξ(Λ)(

√
Σ⊗ In),

ηε(Λ) + ηε(ξ(Λ)),

DΛ−X̄,Σ(X − X̄) + Dξ(Λ−X̄),Σ⊗In(ξ(X − X̄)) ∀X ∈ Λ.

Note that these definitions are consistent with the previous

ones: for example,

ǫ√Σ−1Λ(I) = ǫξ(
√
Σ−1Λ)(I) = ǫ(

√
Σ⊗In)−1ξ(Λ)(I)

= ǫξ(Λ)(
√
Σ⊗ I) = ǫΛ(

√
Σ).

We now focus on the sequence of n2k-dimensional multi-

block matrix lattices Λ(n,k) = ψ(Γk) ⊂ Mnk×n(C) in

Theorem 4.14.

Let c > 1√
2π

, C = c
√
2πee−πc2 , ε = C2n2k

1−C2n2k
.

From (6) and Lemma 4.11, we obtain

ηε(Λ
(n,k)) ≤ n

√
kc

λ1(ψ(Γ∨
k )

h)
. (55)

V. MIMO WIRETAP CHANNEL

A. Channel model

We consider a MIMO fading channel model where Alice is

equipped with n antennas, while Bob and Eve have nb and

ne antennas respectively. In this paper, we always assume that

nb ≥ n and ne ≥ n.

Transmission takes place over k quasi-static fading blocks of

delay T = n, and the transmitted codeword is of the form

(48), where the matrix Xi ∈ Mn(C) is sent during the i-th
block.

The outputs Y and Z at Bob and Eve’s end respectively are

given by {
Y = HbX +Wb,

Z = HeX +We,
(56)

where the channel matrices Hb = diag(Hb,1, . . . , Hb,k) ∈
Mnbk×nk(C), He = diag(He,1, . . . , He,k) ∈ Mnek×nk(C)
are (possibly rectangular) block diagonal matrices. The co-

efficients of the noise matrices Wb and We are i.i.d. circularly

symmetric complex Gaussian with zero mean and variance σ2
b ,

σ2
e per complex dimension. The input X satisfies the average

power constraint (per channel use)

1

nk

k∑

i=1

‖Xi‖2 ≤ P. (57)

The average power per symbol is σ2
s = P

n . We denote by

ρb =
σ2
s

σ2
b

and ρe =
σ2
s

σ2
e

the signal-to-noise ratios for Bob and

Eve respectively.

We suppose that {Hb,i}, {He,i} are isotropically invariant

channels such that the channel capacities Cb and Ce are well-

defined and ∀γ, γ′ > 0,

lim
k→∞

P

{∣∣∣∣∣
1

k

k∑

i=1

ln det
(
Inb

+ρbH
†
b,iHb,i

)
−Cb

∣∣∣∣∣> γ

}
= 0 (58)

lim
k→∞

k P

{∣∣∣∣∣
1

k

k∑

i=1

ln det
(
Ine+ρeH

†
e,iHe,i

)
−Ce

∣∣∣∣∣>γ
′
}
=0 (59)

We suppose that Alice has no instantaneous CSI, Bob has

perfect CSI of his own channel, and Eve has perfect CSI of

her channel and of Bob’s.

Similarly to the single-antenna case, condition (58) is satisfied

for static channels, i.i.d. fading channels and i.i.d. block fading

channels, and all ergodic channels; condition (59) is more

restrictive and holds for static, i.i.d. fading and block fading

models, and ergodic channels for which the convergence in

the law of large numbers is faster than 1
k .

Recall that in the ergodic case with no instantaneous CSIT,

where the transmitter uses uniform power allocation, the

white-input capacities of Bob and Eve’s channels are given

by

Cb = EH̄b

[
ln det

(
Inb

+
ρb
n
H̄bH̄

†
b

)]
,

Ce = EH̄e

[
ln det

(
Ine +

ρe
n
H̄eH̄

†
e

)]
,

where H̄b ∈ Mnb×n(C) and H̄e ∈ Mne×n(C) are random

matrices with the same first order distribution as the processes

{Hb,i},{He,i}.

A confidential message M and an auxiliary message M ′

with rate R and R′ respectively are encoded into the multi-

block codeword X .

As in the single-antenna case (Remark 3.3), we have that

I(M ;Z|Hb, He) = I(M ;Z|He), i.e. the leakage is given by

I(M ;Z|He).
Remark 5.1: For general channels the strong secrecy capac-

ity is not known in this setting (see Remark 3.4 for the SISO

case). In [19] it was shown that the weak secrecy capacity

Cw
s = Cb − Ce

for i.i.d. fading wiretap channels such that Bob and Eve’s

fadings are independent.

B. Multi-block lattice wiretap coding

Let Λe ⊂ Λb be a pair of nested multiblock matrix lattices

in Mnk×n(C) such that Λe ⊂ Λb and |Λb/Λe| = enkR, with

volumes scaling as follows:

V (Λe) =
(πeσ2

s )
n2k

enkR′ , V (Λb) =
(πeσ2

s )
n2k

enk(R+R′)
, (60)
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where R′ > 0. Each message m ∈ M = {1, . . . , enkR} is

mapped to a coset leader X(m) ∈ Λb ∩R(Λe), where R(Λe)
is a fundamental region of Λe. In order to transmit the message

m, Alice samples X from the discrete Gaussian DΛe+X(m),σs

where σ2
s = P

n . We denote this coding scheme by C(Λb,Λe).
Similarly to Remark 3.5, it follows from [6, Lemma 6 and

Remark 6] that ∀ 0 < t < π, for θt = π−t
π , if εk =

ǫ
Λ

(k)
e

(
√
θtσs) < 1,

∣∣∣E[‖X‖2]− n2kσ2
s

∣∣∣ ≤ 2πεk
1− εk

σ2
s .

As k → ∞, the variance per complex dimension of X tends

to σ2
s provided that

lim
k→∞

ǫ
Λ

(k)
e

(
√
θtσs) = 0, (61)

and the power constraint (57) is verified asymptotically. From

[6, Lemma 7 and Remark 7], the information rate per complex

symbol of the auxiliary message is bounded by
∣∣∣∣
H(M ′)

n
−
(
ln(πeσ2

s )−
1

n2k
lnV (Λe)

)∣∣∣∣ ≤ νt(εk),

where νt(ǫk) → 0 as ǫk → 0. If ǫk → 0, the entropy rate of

the auxiliary message tends to R′.
Coding scheme based on division algebras with constant

root discriminant. Let {Λ(n,k)} = {ψ(Γk)} be the sequence

of n2k-dimensional multi-block matrix lattices in Mnk×n(C)
from Theorem 4.14. We consider scaled versions Λb =
αbΛ

(n,k), Λe = αeΛ
(n,k) such that Λe ⊂ Λb and |Λb/Λe| =

enkR. Given rates R,R′, we denote the corresponding multi-

block lattice coding scheme by C(Λ(n,k), R,R′).

C. Achievable secrecy rates

We now state the main result for MIMO wiretap channels,

which will be proven in Sections V-D and V-E.

Theorem 5.2: Consider the multi-block wiretap coding

scheme C(Λb,Λe) in Section V-B, and suppose that

lim inf
k→∞

δ(Λ∗
e)

2
k ≥ de, lim inf

k→∞
δ(Λb)

2
k ≥ db (62)

for some positive constants de, db.
If the main channel and the eavesdropper’s channel verify the

conditions (58) and (59) respectively, then C(Λb,Λe) achieves

strong secrecy for any message distribution pM (and thus

semantic security) if

R′ > Ce + n ln
(ne
π

)
− ln de, (63)

R+R′ < Cb − n ln

(
4n

πe

)
+ ln db. (64)

Thus, any strong secrecy rate

R < Cb − Ce − 2n ln

(
2n

π

)
+ ln dbde (65)

is achievable with the proposed lattice codes.

Corollary 5.3: If the main channel and the eavesdropper’s

channel verify the conditions (58) and (59) respectively,

then the multi-block wiretap coding scheme C(Λ(n,k), R,R′)
achieves strong secrecy and semantic security if

R′ > Ce + n ln

(
neβ

n−1
n G

2π

)
,

R+R′ < Cb − n ln

(
2nβ

n−1
n G

πe

)
,

where G = rdFC ≈ 92.368. Thus, any strong secrecy rate

R < Cb − Ce − 2n ln

(
nGβ

n−1
n

π

)

is achievable with the proposed lattice codes.

Proof of the Corollary: From Theorem 4.14 we get

δ(Λb)
2
k = δ(Λ(n,k))

2
k =

2n

β(n−1)Gn

On the other side, for the dual lattice we have

pdet((Λ(n,k))∗)
(a)
=
√
ND/Q(2ψ(Γ

∨
k )

(b)
=

1

d(Γk/Z)
1
2n

(c)
=

2nk

βk(n−1)Gkn
,

where (a) follows from (52), (b) follows from (53) and (c)

from Theorem 4.14. The normalized minimum determinant of

Λ∗
e is

δ(Λ∗
e) = δ((Λ(n,k))∗) =

pdet((Λ(n,k))∗)

V ((Λ(n,k))∗)
1
2n

= pdet((Λ(n,k))∗)V (Λ(n,k))
1
n =

2
kn
2

β
k(n−1)

2 G
kn2

2

,

and so we find that

δ(Λ∗
e)

2
k =

2n

β(n−1)Gn
.

Remark 5.4: Let S(Cb, Ce) denote the set of all ergodic

stationary isotropically invariant fading processes {(Hb, He)}
such that (58) and (59) hold. Similarly to the single antenna

case, a fixed lattice code sequence C(Λ(n,k), R,R′) with rates

satisfying (63) and (64) universally achieves strong secrecy

and semantic security over all channels in the set S(C′
b, C

′
e)

for all C′
b ≥ Cb and for all C′

e ≤ Ce.

Finally, the condition (59) can be relaxed if only weak

secrecy is required:

Proposition 5.5: If the condition (58) holds for the main

channel and ∀γ′ > 0 we have

lim
k→∞

P

{∣∣∣∣∣
1

k

k∑

i=1

ln det
(
I + ρeH

†
e,iHe,i

)
− Ce

∣∣∣∣∣ > γ′
}

= 0

for the eavesdropper’s channel, then the wiretap coding

scheme C(Λb,Λe) achieves weak secrecy if conditions (62),

(63) and (64) hold. In particular, any weak secrecy rate

R < Cb−Ce−2n ln
(

nGβ(n−1)

π

)
is achievable with the lattice

codes C(Λ(n,k), R,R′).
The proof of Proposition 5.5 is very similar to the proof of

Theorem 5.2 and is omitted.
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D. Proof of Theorem 5.2: Secrecy

The proof follows the same steps as in the single antenna

case (Section III-D).

1) Fixed channel. First, we prove an upper bound for the

finite-length leakage when the eavesdropper’s channel He is

fixed.

Proposition 5.6 (Bound for the leakage): Suppose that

δ(Λ∗
e)

2
k ≥ de for the 2n2k-dimensional lattice Λe, and that

He is fixed and such that 1
k

∑k
i=1 ln det(I + ρeH

†
eHe) ≤ C̄e.

Then if R′ > C̄e− ln de+2n ln(c
√
2ne), for sufficiently large

k ≥ k̄(c), the leakage is bounded by

I(pM ; pZ|He
) ≤ 8n2kεkR− 8εk ln 8εk, (66)

where εk = C2n2k

1−C2n2k
, and C = c

√
2πee−πc2 .

Proof: We distinguish two cases: the symmetric case

(ne = n) and the asymmetric case (ne > n).

a) Case ne = n. The received signal at Eve’s end is

Z = HeX + We. As in equation (29), the leakage can be

written as

I(M ;Z,He) = EHe

[
I(pM ; pZ|He

)
]

For a fixed realization He = diag(He,1, . . . , He,k), we have

HeX ∼ D
HeΛe+HeX(m),

√
HeH

†
eσs

,

recalling the notation in Remark 4.15. Using Lemma 2.4 with

Σ1 = HeH
†
eσ

2
s , Σ2 = σ2

eInk, we have

V(pZ|He,M=m, f√Σ0
) ≤ 4εk (67)

provided that

ǫHeΛe(
√
Σ) = ǫ√

Σ
−1

HeΛe
(1) ≤ εk ≤ 1

2
, (68)

where we define Σ0 = HeH
†
eσ

2
s + σ2

eInk, Σ−1 =
(HeH

†
e )

−1

σ2
s

+ Ink

σ2
e
. Note that Σ = σ2

sσ
2
e(σ

2
eInk +

σ2
sHeH

†
e )

−1HeH
†
e .

Using (6), for εk = C2n2k

1−C2n2k
, the smoothing parameter of

the faded lattice is upper bounded by

ηεk(
√
Σ−1HeΛe) ≤

2cn
√
k

λ1(
√
Σ(H†

e )−1(Λe)∗)
. (69)

Using Remark 4.2, we find

λ1(
√
Σ(H†

e )
−1Λ∗

e) ≥ nk

k∏

i=1

(σ2
s )

1
k pdet(Λ∗

e)
2

nk

det(I+ ρeHe,iH
†
e,i)

1
nk

Replacing in the bound (69), we have

ηεk(
√
Σ−1HeΛe)≤

2c
√
n

pdet(Λ∗
e)

1
nk σs

k∏

i=1

det
(
I+ ρeHe,iH

†
e,i

)
1

2nk

≤ 2c
√
n

pdet(Λ∗
e)

1
nk σs

e
C̄e
2n .

Suppose that

1√
2π

2c
√
ne

C̄e
2n

pdet(Λ∗
e)

1
nk σs

≤ 1. (70)

Then (68) holds for sufficiently large k (depending only on

c), and it follows from [6, Lemma 2] that

I(pM ; pZ|He
) ≤ 8n2kεkR− 8εk ln 8εk.

Recalling the definition of normalized minimum determi-

nant and the scaling condition (60),

pdet(Λ∗
e)

1
nk =

(
δ(Λ∗

e)V (Λ∗
e)

1
2n

) 1
nk

=
δ(Λ∗

e)
1
nk

V (Λe)
1

2n2k

=
δ(Λ∗

e)
1
nk e

R′

2n√
πeσs

.

In particular if δ(Λ∗
e)

2
k ≥ de, the sufficient condition (70)

for secrecy is satisfied if

R′ > C̄e + 2n ln(c
√
2ne)− ln de.

b) Case ne > n. As before, the received signal is Z =
HeX + We ∈ HeΛe + HeX

(m) + We. If He is full rank,

the lattice HeΛe is a 2n2k-dimensional lattice contained in a

2nnek-dimensional space. Consider the QR decomposition

He = QeRe

where Qe ∈ Mnek×nk(C) is unitary and Re ∈ Mnk×nk(C)
is upper triangular. We have Qe = [Q′

eQ
′′
e ], where Q′

e ∈
Mnek×nk(C) is such that (Q′

e)
†Q′

e = Ink, and Re =

[
R′

e

0

]
,

R′
e = diag(R′

e,1, . . . , R
′
e,k) ∈Mnk×nk(C). Multiplying Eve’s

channel equation in (56) by Q†
e, we obtain

Q†
eZ = ReX +Q†

eWe =

[
R′

eX + (Q′
e)

†We

(Q′′
e )

†We

]
=

[
Z ′

Z ′′

]

Therefore, the second component is pure noise and contains

no information about the message. Since Q′
e is unitary, W ′

e =
(Q′

e)
†We has the same distribution as We and is independent

of X and He. Consequently, we can rewrite the leakage as

I(M ;Z|He) = I(M ;Z ′|He) = I(M ;Z ′|R′
e).

The rest of the proof then proceeds exactly as in the case

ne = n, by replacing Z with Z ′ and He with R′
e. Observe

that H†
eHe = (R′

e)
†R′

e and so

k∏

i=1

det
(
I + ρe(R

′
e,i)

†R′
e,i

) 1
k = det

(
I + ρe(R

′
e)

†R′
e

) 1
k

= det
(
I+ρe(He)

†He

) 1
k =

k∏

i=1

det
(
I+ρe(He,i)

†He,i

) 1
k .

2) Random channel. Thanks to Proposition 5.6, we can now

bound the average leakage for random fading He when k →
∞. Due to the law of large numbers (59), ∀η > 0

P

{
k∏

i=1

det
(
I + ρeHe,iH

†
e,i

) 1
k

> eCe+η

}
→ 0.
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The average leakage is bounded as follows:

EHe

[
I(pM ; pZ|He

)
]
≤

≤ P

{ k∏

i=1

det
(
I + ρeHe,iH

†
e,i

) 1
k

> eCe+η
}
(n2kR)+

+ EHe

[
I(pM ; pZ|He

)
∣∣∣

k∏

i=1

det
(
I+ρeHe,iH

†
e,i

) 1
k≤ eCe+η

]
(71)

The first term vanishes when k → ∞ due to the condition

(59).

If the bound (62) holds, then ∀γ > 0, for sufficiently large

k, δ(Λ∗
e)

2
k > de − γ. Using Proposition 5.6, the second term

in (71) tends to zero when k → ∞ and the scheme achieves

strong secrecy provided that

R′ > Ce + η + 2n ln(c
√
2ne)− ln(de − γ).

Since η, γ > 0 and c > 1√
2π

are arbitrary, any rate

R′ > Ce + n ln
(ne
π

)
− ln de (72)

is sufficient for strong secrecy.

3) Power constraint and entropy of auxiliary message. We

still need to check that the flatness factor condition (61) holds,

so that the power constraint is verified asymptotically and R′

is the rate of the auxiliary message.

Proposition 5.7 (Bound for the flatness factor): Suppose

that the δ(Λ∗
e)

2
k ≥ de for the 2n2k dimensional lattice Λe. Let

0 < t < π and θt =
π−t
π . If R′ ≥ n ln(2nec2)−ln de−n ln θt,

then ǫΛe(
√
θtσs) ≤ εk = C2n2k

1−C2n2k
, where C = c

√
2πee−πc2 .

Proof: Using Remark 4.2, we have

λ1(Λ
∗
e) ≥

√
nk pdet(Λ∗

e)
1
nk =

√
nkδ(Λ∗

e)
1
nk e

R′

2n√
πeσs

≥
√
nkd

1
2n
e e

R′

2n√
πeσs

.

Then for εk = C2n2k

1−C2n2k
we have

ηεk(Λe) ≤
2cn

√
k

λ1(Λ∗
e)

≤ 2c
√
nπeσs

d
1
2n
e e

R′

2n

Therefore ǫΛe(σs) ≤ εk
provided that

√
θtσs ≥

2c
√
n
√
πeσs

d
1
2n
e e

R′

2n

√
2π

or equivalently R′ ≥ n ln(2nec2)− ln de−n ln θt, as desired.

In particular when c→ 1√
2π

and t→ 0, θt → 1, we obtain

the condition

R′ > n ln
(ne
π

)
− ln de, (73)

which is weaker than (72).

E. Proof of Theorem 5.2: Reliability

Recall that the received signal at Bob is Y = HbX +Wb.

1) Fixed channel. First of all, we prove the following

uniform upper bound for the finite-length error probability of

the code in the case of a fixed channel realization Hb:

Proposition 5.8 (Bound for the error probability): Sup-

pose that δ(Λb)
2
k ≥ db, δ(Λ∗

e)
2
k ≥ de for the 2n2k-

dimensional lattices Λb and Λe, and that Hb is fixed with
1
k

∑k
i=1 ln det(I + ρbH

†
b,iHb,i) ≥ C̄b. Then for code rates

R+R′ < C̄b−n ln
(

8c2n
e

)
+ln db, R′ ≥ n ln

(
2nec2

)
− ln de,

the ML error probability for Bob is bounded by

Pe ≤
1 + εk
1− εk

εk,

where εk = C2n2k

1−C2n2k
and C = c

√
2πee−πc2 .

Proof: Let ρb =
σ2
s

σ2
b

, and consider the “thin” QR decom-

position

H̃b =

(
Hb
1√
ρb
Ink

)
= QRb =

(
Q1

Q2

)
Rb,

where H̃b, Q ∈ Mk(nb+n)×kn(C), Q1 ∈ Mknb×kn(C). Note

that Q has orthonormal columns, Rb ∈ Mkn(C) is upper

triangular and square block-diagonal, and

R†
bRb = H̃†

b H̃b = H†
bHb +

1

ρb
I.

For the sake of simplicity, we consider the vectorized version

of the received message: let x = ξ(X), y = ξ(Y ), wb =
ξ(Wb). Then

y = Hbx+wb,

where Hb = Hb ⊗ In. Note that if we set Q1 = Q1 ⊗ In,

R = Rb ⊗ In, we also have Hb = Q1R.

Similarly to the single antenna case (Section III-E), Bob can

compute

y′ = Q†
1y = Rx+ v,

where v = Q†
1wb − 1

ρb
(R−1)†x [60].

Recall that x is sampled from Dξ(Λe)+ξ(X(m)),σs
. Using

Lemma 2.7, x is δk-subgaussian with parameter σs for

δk = ln
(

1+εk
1−εk

)
provided that ǫΛe(σs) ≤ εk < 1, which is

guaranteed by Proposition 5.7. With the same argument as

in Section III-E, we can show that the equivalent noise v is

δk-subgaussian with parameter σb.

Following the same steps as in Section III-E, we have the

union bound on the error probability for fixed R:

Pe(R) ≤ eδk
∑

λ∈RΛb\{0}
e
−‖λ‖2

4σ2
b =

1 + εk
1− εk

∑

λ∈RΛb\{0}
e
− ‖λ‖2

4σ2
b .

Using Lemma 2.3, Pe(R) ≤ 1+εk
1−εk

εk if

τ2 =
1

4πσ2
b

>
2c2n2k

λ1(RΛb)2
. (74)

The minimum distance in the received lattice is lower bounded

as follows:

λ1(RΛb)
2 = min

X̄∈Λb\{0}

∥∥Rξ(X̄)
∥∥2 = min

X̄∈Λb\{0}

∥∥RbX̄
∥∥2
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(a)

≥ min
X̄∈Λb\{0}

nk

k∏

i=1

∣∣det(Rb,iX̄i)
∣∣ 2
nk

= min
X̄∈Λb\{0}

nk
k∏

i=1

∣∣∣det(H̃†
b,iH̃b,i)

∣∣∣
1

nk
k∏

i=1

∣∣det X̄i

∣∣ 2
nk

= nk

k∏

i=1

∣∣∣det(H̃†
b,iH̃b,i)

∣∣∣
1

nk

pdet(Λb)
2
nk ,

where (a) follows from Remark 4.2. From the scaling condi-

tion (60), we get

pdet(Λb)
2
nk =

δ(Λb)
2
nk πeσ2

s

e
R+R′

n

.

Replacing in the condition (74), we have that Pe(R) ≤ 1+εk
1−εk

εk
if

e
R+R′

n <

k∏

i=1

det

(
In
ρb

+H†
b,iHb,i

) 1
nk δ(Λb)

2
nk eσ2

s

8c2nσ2
b

.

In particular, recalling the assumption δ(Λb)
2
k ≥ db, a suffi-

cient condition is

e
R+R′

n <

k∏

i=1

det
(
In + ρbH

†
b,iHb,i

) 1
nk d

1
n

b e

8c2n
.

or equivalently R+R′ < C̄b − n ln
(

8c2n
e

)
+ ln db.

2) Random channel. Using the previous proposition, we

now consider the behavior of the error probability for random

channels Hb when k → ∞. By the law of total probability,

∀η > 0,

Pe ≤ P

{ k∏

i=1

det
(
I + ρbH

†
b,iHb,i

)1/nk
< e

Cb−η

n

}

+ P

{
x̂ 6= x

∣∣
k∏

i=1

det
(
I + ρbH

†
b,iHb,i

)1/nk
≥ e

Cb−η

n

}
.

Due to the law of large numbers (58), the first term vanishes

when k → ∞.

If (62) holds, then ∀γ > 0, for sufficiently large k, we have

δ(Λb)
2
k ≥ db − γ, δ(Λe)

2
k ≥ de − γ. Then using Proposition

5.8, the error probability in the second term tends to 0 if

R+R′ < Cb − η − n ln

(
8c2n

e

)
+ ln(db − γ) (75)

where R′ > n ln(2nec2)− ln(de − γ).

Since η, γ > 0 and c > 1√
2π

are arbitrary, from equations

(72) and (75), the proposed coding scheme achieves strong

secrecy and semantic security rates

R < Cb − Ce − 2n ln

(
2n

π

)
+ ln dbde.

This concludes the proof of Theorem 5.2.

VI. COMPOUND MIMO CHANNEL

In this section, instead of assuming that fading is distributed

according to a certain probability density function, we consider

a setting where the main channel and eavesdropper’s channel

are unknown at the transmitter and are only known to belong

to a certain uncertainty set S.

As in Section V-A, we consider a MIMO wiretap channel

where Alice has n antennas, and Bob and Eve have nb and ne

antennas respectively. The received signals at Bob and Eve’s

end are given by
{
Y = HbX +Wb,

Z = HeX +We,

where Hb = diag(Hb,1, . . . , Hb,k) ∈ Mnbk×nk(C), He =
diag(He,1, . . . , He,k) ∈ Mnek×nk(C), Wb and We have i.i.d.

Gaussian entries with zero mean and variance σ2
b , σ2

e , and

X satisfies the average power constraint (57). As before, the

average power per symbol is σ2
s = P

n , and ρb =
σ2
s

σ2
b

and

ρe =
σ2
s

σ2
e

are the signal-to-noise ratios for Bob and Eve.

We suppose that Bob has perfect CSI of his own channel, Eve

has perfect CSI of both channels, and Alice only knows that

(Hb, He) ∈ S, where S is the uncertainty set.

We say that a coding scheme achieves strong secrecy if

∀(Hb, He) ∈ S,

Pe,k = sup
(Hb,He)∈S

max
m∈M

P

{
M̂ 6= m|Hb, He,M = m

}
→ 0,

Lk = sup
(Hb,He)∈S

I(M ;Z,He) → 0

as k → ∞.

Compound channel model. In this model the channels are

assumed to be held constant during transmission, i.e. Hb,i =
H̄b ∈ Mnb×n(C), He,i = H̄e ∈ Mne×n(C) ∀i = 1, . . . , k,

and (H̄b, H̄e) ∈ S̄ ⊆ S̄b × S̄e, where

S̄b =
{
H̄b ∈Mnb×n : ln det(I + ρbH̄bH̄

†
b ) ≥ Cb

}
,

S̄e =
{
H̄e ∈Mne×n : ln det(I + ρeH̄eH̄

†
e ) ≤ Ce

}
.

for some 0 ≤ Ce ≤ Cb.

Note that in this model, Eve’s channel is not necessarily

degraded with respect to Bob’s channel.

Remark 6.1: The compound secrecy capacity for an uncer-

tainty set S̄ ⊆ S̄b × S̄e is not known in general, but has been

computed in some special cases in [68]. In particular if S̄
is compact, it follows from [68, Corollary 2] that the (strong)

compound secrecy capacity is lower bounded as Cc ≥ Cb−Ce.

Arbitrarily varying channel model. In this model, the real-

izations {Hb,i} and {He,i} may change at each channel use in

an arbitrary and unknown way [69], and (Hb, He) ∈ S(k) =

S(k)
b × S(k)

e , where

S(k)
b =

{
Hb∈Mnbk×nk :

1

k

k∑

i=1

ln det(I+ρbHb,iH
†
b,i) ≥ Cb

}
,

S(k)
e =

{
He∈Mnek×nk :

1

k

k∑

i=1

ln det(I+ρeHe,iH
†
e,i) ≤ Ce

}
.
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Theorem 6.2: Consider the multi-block wiretap coding

scheme C(Λb,Λe) in Section V-B, and suppose that ∀k,

lim infk→∞ δ(Λb)
2
k ≥ db, lim infk→∞ δ(Λ∗

e)
2
k ≥ de. Then

any strong secrecy rate

R < Cb − Ce − 2n ln

(
2n

π

)
+ ln dbde

is achievable both over the compound MIMO channel with

uncertainty set S̄ ⊆ S̄b × S̄e and over the arbitrarily varying

MIMO channel with uncertainty set S(k) ⊆ S(k)
b × S(k)

e .

Proof: Let c > 1√
2π

be a fixed parameter. Note that ∀γ >
0, for sufficiently large k, we have δ(Λb)

2
k > db−γ, δ(Λe)

2
k >

de − γ.

Secrecy. It follows from Proposition 5.6 that as long as

R′ > Ce − ln(de − γ) + 2n ln(c
√
2ne), for sufficiently large

k ≥ k̄(c), for all channels He ∈ S(k)
e , the leakage is uniformly

bounded by I(pM ; pZ|He
) ≤ 8n2kεkR − 8εk ln 8εk, where

εk = C2n2k

1−C2n2k
, and C = c

√
2πee−πc2 .

Reliability. It follows from Proposition 5.8 that as long as

R + R′ < Cb − n ln
(

8c2n
e

)
+ ln(db − γ), for all channels

Hb ∈ S(k)
b , the ML error probability for Bob is uniformly

bounded by Pe ≤ 1+εk
1−εk

εk.

Since the previous rates are achievable for all c >
1√
2π
, ∀γ > 0, this concludes the proof.

VII. CODE DESIGN CRITERIA FOR FADING AND MIMO

WIRETAP CHANNELS

We will now discuss the implications of our results in terms

of design of wiretap lattice codes.

A. Single antenna fading and Gaussian wiretap channels

Although in Corollary 3.7 we focused on a particular

sequence of nested lattices Λe ⊂ Λb that were scaled versions

of the same lattice Λ(k), Theorem 3.6 suggests a more general

design criterion for building promising lattice codes for fading

channels. Namely, we should consider pairs of nested lattices

Λe ⊂ Λb for which the product

Np(Λb)Np(Λ
∗
e)

is maximized. As shown earlier, ideals from number fields

with small discriminants give us promising candidates.

Here the term tb = Np(Λb)
2
k can be seen as providing

reliability for the communication between Alice and Bob while

te = Np(Λ∗
e)

2
k provides security against the wiretapper.

While we mainly targeted general fading channels in this

work, we also gained some intuition on code design in

Gaussian wiretap channels. Proposition 3.19 suggests that in

the Gaussian case one should maximize the product of the

Hermite invariants

h(Λb)h(Λ
∗
e). (76)

Rather than using number field lattices, in this particular

case one might optimize (76) for example by considering the

densest self dual lattices.

B. Code design for MIMO wiretap channels

An analogous code design criterion can be given also in

the MIMO case using the concept of normalized minimum

determinant δ(Λ) of a matrix lattice, which was defined in

Section IV-A.

Using this concept, Theorem 5.2 suggests that for MIMO

channels we should maximize δ(Λ∗
e)δ(Λb).

C. Comparison with earlier code design

The earliest work on lattice code design for the AWGN

channel is based on an error probability approach [32]. The

main criterion for maximizing the confusion of the eavesdrop-

per is that the theta function of Λe should be minimized.

As this function is hard to analyze, the authors discussed a

simplified criterion where one should maximize the Hermite

invariant of Λe [32, eq. (48)].

In comparison, our criterion differs in two ways. First, we

prove that following our design principles the information

leakage will be minimized. Second, our study emphasizes that

the code design criterion for secrecy should be stated in terms

of Λ∗
e and not of Λe.

The work [6] concentrates on achieving strong secrecy

over the Gaussian wiretap channel. Its results suggest that

the theta function of Λ∗
e should be minimized for secrecy.

Maximizing the Hermite invariant of Λ∗
e can be seen as a

first-order approximation of this criterion, which we now

make rigorous in Proposition 3.19. When considering random

lattices, this first order approximation yields slightly worse

achievable strong secrecy rates (1.24 nats per complex channel

use from secrecy capacity, versus 1 nat per complex channel

use in [6], see Section III-F).

Lattice code design for the fading wiretap channel was pi-

oneered in [33] and [34] where the error probability approach

led the authors to consider certain inverse determinant sums

over the lattice Λe; both of these works suggest the use of

number fields for wiretap coding. Similar conditions were

derived also in [38, 70] to minimize the information leakage.

Compared to earlier works on fading wiretap channels, our

criterion is the first which guarantees positive strong secrecy

rates, in the sense that we prove that by maximizing Np(Λ∗
e)

or δ(Λ∗
e) one can indeed push the leaked information to zero.

Also similarly to the Gaussian case it seems to be better to

state the design criterion for Λ∗
e instead of Λe.

Remark 7.1: We point out that in the derivation of the code

design criterion for Λe in [32, p. 5706] the authors first obtain

a condition for the theta function of Λ∗
e and only after using

Poisson summation they end up with a condition for Λe. So

the authors could also have stated their criterion for Λ∗
e .

Obviously for lattices that are isodual or even self-dual it is

irrelevant whether the condition is given for Λe or for Λ∗
e. It is

interesting to note that the authors in [32] were concentrating

on the analysis of iso-dual or self dual lattices with large

Hermite invariants. For such lattices our criterion agrees with

theirs. In the fading case, [33] and [34] focused on number

field and division algebra lattices. Therefore their code design

principles automatically lead to lattices for which δ(Λ∗
e) is non

zero.
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VIII. CONCLUSIONS AND PERSPECTIVES

In this work, we have shown that algebraic lattice construc-

tions based on number fields and division algebras can achieve

strong secrecy and semantic security universally over a wide

range of fading and MIMO wiretap channels. Universality is

a very desirable property for practical applications, since the

eavesdropper’s channel is not known at the transmitter.
Relevance and limitations of the channel model. Our

model assumes perfect CSI of the legitimate channel at the

receiver. This assumption is not realistic for a fast fading

channel, since in practice most of the available time slots

would have to be used to transmit training symbols for channel

estimation.

However, our channel model is not limited to fast fading,

but only assumes the weak law of large numbers for the

channel statistics. This includes for example a block fading

model, where some fraction of each block can be used for

channel estimation and the rest is left for data transmission.

We have also provided some results for the arbitrarily varying

fading model in Section VI, where Bob’s channel oscillates

most of the time above a certain threshold and Eve’s channel

oscillates mostly below another threshold, without necessarily

converging in mean.

In such slow fading models a long code spanning many

fading blocks is required to approach capacity. Our codes

readily work in such a scenario due to their universality;

decoding will succeed as long as the sum capacity of the fading

blocks exceeds the target rate (up to a constant gap).

We also note that even in the stationary ergodic case we

require fast convergence in the law of large numbers only

for the eavesdropper, while the rate of convergence can be

slower for the legitimate channel. Here perfect CSI at the

eavesdropper is assumed as a worst-case scenario.

A more realistic wiretap channel model with imperfect CSI

at the receiver under a secrecy outage metric is left for future

work.
Technical improvements. Several technical improvements

are needed before our lattice code construction can be im-

plemented in practice. In particular, although the proposed

families of lattices are deterministic, their construction is not

explicit since it requires the computation of Hilbert class fields

of high degree, for which efficient algorithms are currently not

available.

Moreover, our construction incurs a large gap to the secrecy

capacity. This gap might be reduced by improving the nested

lattice construction, for example by taking suitable ideals of

the ring of integers in the number field case10, or ideals of

orders in the division algebra case, in order to optimize the

code design according to the criteria proposed in Section VII.
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APPENDIX

A. Proof of Lemma 2.4

We need the following elementary fact characterizing the

product of two Gaussian functions (see, e.g., [49, Fact 1]):

Let Σ1,Σ2 ≻ 0 be positive definite matrices, let Σ0 = Σ1+
Σ2 ≻ 0 and Σ−1 = Σ−1

1 + Σ−1
2 ≻ 0, let X, c1, c2 ∈ Ck be

arbitrary, and let c3 ∈ Ck such that Σ−1c3 = Σ−1
1 c1+Σ−1

2 c2.

Then ∀x ∈ Ck,

f√Σ1
(x−c1)f√Σ2

(x−c2) = f√Σ0
(c1−c2)f√Σ(x−c3) (77)

Now, we are ready to generalize Regev’s lemma to corre-

lated Gaussian distributions. Let c3 = ΣΣ−1
2 x. We have

g(x) =
∑

x1∈Λ+c

f√Σ1
(x1)

f√Σ1
(Λ + c)

f√Σ2
(x− x1)

(a)
=

∑

x1∈Λ+c

f√Σ0
(x)

f√Σ1
(Λ + c)

f√Σ(x1 − c3)

= f√Σ0
(x)

Σx1∈Λ+cf√Σ(x1 − c3)

f√Σ1
(Λ + c)

= f√Σ0
(x)

f√Σ(Λ + c− c3)

f√Σ1
(Λ + c)

(b)
∈ f√Σ0

(x)

[
1− ε

1 + ε
,
1 + ε

1− ε

]

(c)
= f√Σ0

(x) [1− 4ε, 1 + 4ε]

where (a) is due to (77), (b) follows from the definition of

the flatness factor for correlated Gaussian distributions, and

(c) is because ε ≤ 1
2 . More precisely, since

√
Σ3 � ηε(Λ),

f√Σ3
(Λ + c− c3) ∈ [ 1−ε

V (Λ) ,
1+ε
V (Λ) ]; moreover, since Σ1 ≻ Σ3,

we also have f√Σ1
(Λ + c) ∈ [ 1−ε

V (Λ) ,
1+ε
V (Λ) ].

B. Proof of Lemma 2.5

Let µ ∈ A(Λ + c). Then

P {Y = µ} = P
{
X = A−1µ

}
=
f√Σ(A

−1µ)

f√Σ(Λ + c)

=
e−µ†(A−1)†Σ−1A−1µ

∑
z∈Λ+c

e−z†Σ−1z
.

The thesis follows since by definition

D
A(Λ+c),

√
AΣA†(µ) =

f√AΣA†(µ)∑
µ′∈A(Λ+c) f

√
AΣA†(µ′)

=
e−µ†(A−1)†Σ−1A−1µ

∑
z∈Λ+c

e−(Az)†(A−1)†Σ−1A−1(Az)

=
e−µ†(A−1)†Σ−1A−1µ

∑
z∈Λ+c

e−z†Σ−1z
.

http://arxiv.org/abs/1411.4591v2


21

C. Proof of Lemma 2.7

We have

E

[
e2ℜ(t†Ax)

]
=

∑

x∈Λ+c

DΛ+c,σ(x)e
2ℜ(t†Ax)

=
∑

x∈Λ+c

fσ(x)

fσ(Λ + c)
eℜ(t†Ax).

Therefore we can write

fσ(Λ + c)E
[
e2ℜ(t†Ax)

]
=

∑

x∈Λ+c

1

(πσ2)k
e−

‖x‖2

σ2 +2ℜ(t†Ax).

Using the identity

∥∥∥
x

σ
− σA†t

∥∥∥
2

=
‖x‖2
σ2

− 2ℜ(t†Ax) + σ2
∥∥A†t

∥∥2 ,

we can rewrite the last expression as

∑

x∈Λ+c

1

(πσ2)k
e−‖ x

σ−σA†
t‖2

+σ2‖A†
t‖2

= eσ
2‖A†

t‖2

fσ(Λ + c− σ2A†t).

Thus we have

E

[
e2ℜ(t†Ax)

]
= eσ

2‖A†
t‖2 fσ(Λ + c− σ2A†t)

fσ(Λ + c)

Adapting [6, Lemma 4] to the complex case, we find that

∀c ∈ Ck

fσ,c(Λ)

fσ(Λ)
∈
[
1− ǫΛ(σ)

1 + ǫΛ(σ)
, 1

]
.

Replacing t by t/2, we obtain

E

[
eℜ(t†Ax)

]
=

1 + ǫΛ(σ)

1− ǫΛ(σ)
e

σ2

4 ‖A†
t‖2

.

D. Proof of Lemma 2.10

Before giving the proof we need some notation.

Given an ideal I of F , the complementary ideal of I is

defined as I∨ = {x ∈ F : TrF/Q(xI) ⊆ Z}. It is always an

ideal of F .

With this notation we have that

ψ(I)∗ = 2ψ(I∨F ), (78)

where overline means complex conjugation element wise11.

Proof: Let us first assume that I is an integral ideal. In

this case a classical result from algebraic number theory states

that

V (ψ(I)) = [OF : I]2−k
√
|dF |.

Noticing that
√
|NF/Q(x)| = |p(ψ(x))| and using the defini-

tion of the product distance we have that

δ(ψ(I)) = 2
k
2

|dF | 14
min(I),

where min(I) := min
x∈I\{0}

√
|NF/Q(x)|

N(I) and N(I) = [OF : I] is

the norm of the ideal I. From basic algebraic number theory

11This result is well known but we do prove a more general version of it
in Appendix E.

we have that for any element of a ∈ I, |NF/Q(a)| | N(I)
and the first claim follows.

Let us now assume that I is a genuine fractional ideal. In

this case we can choose an integer n such that nI is an integral

ideal. The extension to fractional ideals now follows as for any

lattice Λ we have δ(nΛ) = δ(Λ).
In (78) we saw that ψ(I)∗ is just a complex conjugated

version of fractional ideal lattice 2ψ(I∨). Therefore the last

claim follows from the first one.

E. Proof of Lemma 4.11

Let x, y ∈ D. Then we have

trD/Q(xy) = trF/Q(trD/F (xy)) = trF/Q(Tr(φ(xy))) =

=

2k∑

i=1

αi(Tr(φ(xy))) =

2k∑

i=1

Tr(αi(φ(xy))) =

= Tr
( 2k∑

i=1

αi(φ(xy))
)
= 2ℜTr

( k∑

i=1

αi(φ(xy))
)

= 2ℜTr
( k∑

i=1

αi(φ(x))αi(φ(y))
)
= 2ℜTr((ψ(x)h)†ψ(y)).

By definition,

ψ(Γ)∗ = {X ∈Mnk×n(C) : ∀y ∈ Γ, ℜ(Tr(X†ψ(y))) ∈ Z}
and so 2ψ(Γ∨)h ⊆ ψ(Γ)∗. We would like to show that

2ψ(Γ∨)h = ψ(Γ)∗.

The trace form trD/Q : D×D → Q is a non-degenerate bilin-

ear form on the Q-vector space D. Then, any full Z-module in

D has a dual basis in D [53]. In particular, if {w1, . . . , w2n2k}
is a basis of Γ as Z-module, then there exists a dual basis

{w′
1, . . . , w

′
2n2k} in D such that ∀i, j ∈ {1, . . . , 2n2k}, we

have trD/Q(w
′
iwj) = δij . Therefore,

ℜTr(2(ψ(w′
i)

h)†ψ(wj)) = trD/Q(w
′
iwj) = δij

and by definition of the codifferent, this implies that ψ(w′
i)

h ∈
ψ(Γ∨). Since 2ψ(Γ∨)h ⊆ ψ(Γ)∗ and it contains a dual basis

for ψ(Γ)∗, we can conclude that 2ψ(Γ∨)h = ψ(Γ)∗.

F. Sketch of the proof of Proposition 3.9

The proof follows the same steps as the proof of Theorem

3.7. Note that the bound (35) still holds and

EHe

[
1

k
I(pM ; pz|He

)

]
≤ RP

{ k∏

i=1

(
1 +

P |he,i|2
σ2
e

) 1
k

> eCe+δ
}

+
1

k
EHe

[
I(pM ; pz|He

)
∣∣∣

k∏

i=1

(
1 +

P |he,i|2
σ2
e

) 1
k≤ eCe+δ

]

The first term vanishes because of (28) and the second term

vanishes using Proposition 3.11 as before.

The proof of reliability is unchanged.

G. Sketch of the proof of Proposition 3.19

The proof is very similar to the proof of Theorem 3.6. We

only outline the main steps. Note that ∀γ > 0, for sufficiently

large k, we have
h(Λb)

k > h2b − γ and
h(Λe)

k > h2e − γ.
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Secrecy. With the same notation as in Section III-D, we have

He = I and Σ =
Pσ2

e

P+σ2
e

. With the same scaling as in equation

(23), we can replace the bound (32) with the following:

ηεk(Λe) ≤
2
√
kc

λ1(Λ∗
e)

=
2
√
kc

h(Λ∗
e)V (Λ∗

e)
1
2k

=
2
√
kcV (Λe)

1
2k

h(Λ∗
e)

=
2
√
kc
√
πeP

h(Λ∗
e)e

R′

2

≤ 2c
√
πeP

(he − γ)e
R′

2

.

We find that ǫΛe(
√
Σ) → 0 as long as

√
Σ =

√
Pσe√
P + σ2

e

>
2c
√
πeP

(he − γ)
√
2πe

R′

2

.

This condition is equivalent to

R′ > ln
e

π(he − γ)
+ ln

(
1 +

P

σ2
e

)
. (79)

Reliability. With the same notation as in Section III-E, we

have R =
√

1+ρb

ρb
I . With the scaling (23), the error probability

tends to zero if (42) holds, that is

1

4πσ2
b

>
2c2kρb

(1 + ρb)λ1(Λb)2
=

2c2kρb

h(Λb)2V (Λb)
1
k

=
2c2ρbe

R+R′

(1 + ρb)(hb − γ)πeP
.

Recalling that ρb = P/σ2
b , after some elementary calculations

we find

R +R′ < ln

(
1 +

P

σ2
b

)
− ln

(
4

πe

)
+ ln(hb − γ). (80)

Combining equations (79) and (80), and taking γ → 0, we get

the desired result.
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