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Abstract High-frequency (HF) radars can provide high-resolution and frequent ocean surface currents
observations during tropical cyclone (TC) landfall. We describe the first assimilation of such potential
observations using idealized twin experiments with and without these observations. The data assimilation
system consists of the Ensemble Adjustment Kalman Filter and a coupled ocean-atmosphere model. In this
system, synthetic HF radar-observed coastal currents are assimilated, and the 24-, 48- and 72-hr forecast
performances are examined for TCs with various intensities, sizes, and translation speeds. Assimilating
coastal surface currents improves the intensity forecast. The errors of the maximum wind speed reduce
by 2.7 (33%) and 1.9 m/s (60%) in the 72-hr forecast and 2.8 (40%) and 1.4 m/s (62%) in the 48-hr forecast,
for Category 4 and 2 cyclones, respectively. These improvements are similar to the current operational TC
forecast errors, so that assimilating HF radar observations could be a substantial benefit.

Plain Language Summary Tropical cyclones (TC) cause great loss but the forecast of the intensity
has not improved significantly for a long time. High-frequency radar systems measure the coastal (up to
200 km from the coast) surface currents with high resolution, even during TC landfall. In this study, we
assimilate the synthetic observations in an idealized coupled tropical cyclone forecast system. By using
strongly coupled data assimilation, the ocean observations update the atmospheric state and produce
significant improvements. For instance, the errors of the maximum wind speed reduce by 2.7 (33%) and
1.9 m/s (60%) in 72-hr forecast and 2.8 (40%) and 1.4 m/s (62%) in 48-hr forecast, for Category 4 and 2
cyclones, respectively. These improvements are similar to the magnitude of the current operational TC
forecast error (7 and 6 m/s for 72- and 48-hr forecast), so that assimilating the radar observations could be a
substantial benefit.

1. Introduction

The predictions of tropical cyclone (TC) intensity and track are of great importance. TCs affect many popu-
lous coastal regions frequently, causing casualties as well as economic and societal losses. However, the errors
in the TC intensity forecasts have not decreased significantly over the past decades (e.g., Goni et al., 2017;
Zhang & Weng, 2015), possibly due to error in the initial wind field (Emanuel & Zhang, 2016) or inner-core
moisture (Emanuel & Zhang, 2017). The upper ocean is influenced by TCs (e.g., Price, 1981, 1983; Price et al.,
1994), and the feedback affects the TC development (e.g., Bruneau et al., 2018; D’Asaro et al., 2007; Halliwell
et al., 2015; Schade & Emanuel, 1999). Thus, oceanic observations have been assimilated in the TC forecast sys-
tems, including both in situ (e.g., Dong et al., 2017; Goni et al., 2017) and satellite (e.g., Halliwell, Mehari, Shay
et al., 2017) observations. However, the spatial coverage of in situ observations is quite limited, especially in
the coastal regions, and the satellite observations can be infrequent, impacted by clouds, and are of coarse
resolution.

Here we explore the potential of high-frequency (HF) radar for tropical cyclone prediction. HF radar systems
are capable of mapping coastal surface currents hourly to ranges approaching 200 km with a horizontal reso-
lution of a few kilometers (e.g., Paduan & Washburn, 2013). The observations have been assimilated into ocean
circulation models (e.g., Breivik & Sætra, 2001). It has also been shown that HF radars can produce reliable
observations as tropical cyclones approach (e.g., Glenn et al., 2016; Li et al., 2017).

Data assimilation fuses the information from both observations and numerical modeling and is widely
used for providing initial conditions for short-term forecasts. Coupled data assimilation systems are divided
into two categories: weakly coupled and strongly coupled. The weakly coupled data assimilation updates
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Figure 1. (upper panel) Schematic illustration of the strongly coupled DA system. At the beginning of the first cycle, the
system starts from the top (blue rectangle) in which the initial state (including both oceanic (horizontal currents,
temperature, salinity, and sea surface height) and atmospheric variables (horizontal wind speeds, geopotential height,
temperature, surface pressure, and humidity)) is created and observed surface currents are assimilated. The posterior is
used as initial condition for the 1-hr integration, whose output is used as prior state (red rectangle) in the next cycle and
new observations are assimilated. This process repeats for three cycles. (lower panel) Snapshots of the surface wind
speed and surface ocean currents speed at Hour T0 (i.e., 28 hr before landfall) in the TC3 case. COAWST = the
Coupled-Ocean-Atmosphere-Wave-Sediment Transport modeling system; DART = Data Assimilation Research Testbed.

the states of different domains (here ocean and atmosphere) separately during the assimilation stage and
integrate the numerical forecast model to exchange the information. The strongly coupled data assimilation
updates the states of both domains together in the assimilation stage through the cross-domain covariance.
It has been shown that strongly coupled data assimilation is superior, using either the variational (e.g., Smith
et al., 2015) or the ensemble approaches (e.g., Sluka et al., 2016). Here we assimilate synthetic surface currents
(observed by HF radar) in an idealized model using strongly coupled data assimilation.

2. Methods
2.1. Model Description
The strongly coupled data assimilation system (Figure 1) consists of an atmosphere-ocean coupled model
and an ensemble-based data assimilation algorithm. The coupled model is a ROMS (Regional Ocean Mod-
eling System) and WRF (Weather Research and Forecasting model) coupled model within the COAWST
(Coupled-Ocean-Atmosphere-Wave-Sediment Transport modeling system [svn 830], Warner et al., 2010)
framework. The domain is a 2,500-km (in x direction) × 2,000-km (in y direction) rectangle. The horizon-
tal resolutions are set to 5 km for both ROMS and WRF. There are 31 and 27 vertical layers in WRF and
ROMS, respectively. A constant Coriolis parameter of 5 × 10−5 s−1 is used. WRF provides a wide range of

LI AND TOUMI 10,020



Geophysical Research Letters 10.1029/2018GL079677

Table 1
The Mean Translation Speed (Uh), Maximum Wind Speed (Vmax ), Minimum
Pressure (Pmin) and Azimuthal Mean Radius of the Gale-Force Wind (18 m/s,
R18) of the True States at the Start of the Forecast (Hour T0)

Uh Vmax Pmin R18

(m/s) (m/s) (hPa) (km)

TC1 2.8 62.7 901 160

TC2 3.7 69.5 875 220

TC3 5.3 67.2 903 215

TC4 2.8 44.1 952 100

TC5 3.7 42.0 954 100

TC6 5.3 42.6 956 120

TC7 5.3 47.2 949 80

parameterization options, and the combination is important for the success of TC simulation. The same WRF
physics schemes as in Bruneau et al. (2018) are implemented.

The initial TC conditions are specified using the 𝜆model proposed by Wang et al. (2015) and the WRF model is
integrated for 3 days as spin-up without steering flow, before it is coupled with ROMS and the steering flow is
added. The initial vortex is located at the center of the domain and is 1,000 km from the coastline. Seven cases
are tested in this study, covering a range of sizes, intensities, and translation speeds, Uh (Table 1). In ROMS the
depth is set to 1,500 m and the land is located in the west of the domain with 250-km (50 grid points) width
(Figure 1). The initial subsurface temperature and salinity profiles are based on the World Ocean Atlas (WOA)
climatological data set in the topical western Pacific (with the sea surface temperature (SST) of 28.5 ∘C and
mixing layer depth (MLD) of 70 m). The initial vortices in WRF and SST and MLD in ROMS are tuned so that the
TC intensities and sizes differ. We take these seven runs as the true states and calculate the errors against them.

The seven cases can be categorized into two sets. The maximum wind speed (Vmax) of TC1, TC2, and TC3 main-
tains approximately 60–70 m/s (Category 4 by the Saffir Simpson scale, hereafter Cat4) during the lifetime,
while TC4, TC5, TC6, and TC7 have Vmax of 40–50 m/s (Category 2, hereafter Cat2). The minimum pressure (Pmin)
of Cat4 TCs is around 900 hPa, while Cat2 TCs is approximately 950 hPa. Generally, stronger TCs are larger. The
azimuthal mean radius of the gale-force wind (18 m/s, R18) in the Cat4 set is 160–220 km at T0, and TC4 and
TC5 are 100 km, while TC6 is 120 km. TC7 is particularly small and its R18 is 80 km at T0. The forecasts start at
Hour T0 (1 day after the spin-up), and the cyclones make landfall at Hour T +75, T +52, and T +28 with trans-
lation speeds of 2.8, 3.7, and 5.3 m/s, respectively. During the period of data assimilation (Hour T-3 to T0), the
TC centers are about 600–800 km from the coastline. We study Hour T0 to T + 24, T0 to T + 48, and T0 to
T + 72 as the period of forecast.

2.2. Data Assimilation
The data assimilation algorithm used in this study is a variety of ensemble Kalman filter, the Ensemble Adjust-
ment Kalman Filter (EAKF) algorithm (Anderson, 2001), provided by the Data Assimilation Research Testbed
(DART) package (Version Lanai, https://www.image.ucar.edu/DAReS/DART/Lanai/index.html; Anderson
et al., 2009).

OSSEs are often used to estimate the value of potential observations or the benefit of data assimilation (e.g.,
Halliwell, Mehari, Shay et al., 2017; Sluka et al., 2016). OSSEs are based on twin experiments where synthetic
observations are assimilated in different ways. Here we design the twin experiments that one ensemble
assimilates the synthetic ocean currents (hereafter DA) and the other does not (hereafter NoDA) for each case.

The initial ensembles play an important role in the success of a data assimilation system. In this study
we generate the ensembles by perturbing the model truth. For all the cases, the coupled models are per-
turbed at Hour T-12, using the CV3 background error covariance option (Barker et al., 2004) in the WRF
three-dimensional variational data assimilation (3D-Var) package. Then the perturbed ensembles are inte-
grated with the ROMS model for 9 hr to develop realistic, physically balanced states, which are used as the
initial ensembles for DA and initial conditions for the NoDA runs (Zhang et al., 2006, 2009).

In all the cases, the observations are created from the corresponding model truth by extracting the top layer
(about 28 cm) ocean currents located 5 km to 200 km (1 to 40 grid points) away from the coastline with 5-km
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spatial resolution and hourly temporal resolution, similar to what HF radar systems can achieve. The data
within 600 km from the south and north boundaries are discarded. The data assimilation systems are sensitive
to several parameters (e.g., Houtekamer & Zhang, 2016), including the localization schemes, ensemble sizes,
the assumptions regarding the observation errors. In this study, we assume that the observations have inde-
pendent, Gaussian random errors of 0 mean and variance of 10 cm/s (Paduan & Washburn, 2013). Sensitivity
tests (shown in the supporting information) confirm that 10 cm/s is an optimal value. In real cases the currents
are influenced by bathymetry and background flow and more tests (e.g., reforecast experiments) are needed.
The observations are assimilated using EAKF provided by DART, which supports many geophysical models
including ROMS (Li & Toumi, 2017) and WRF (Anderson et al., 2009). In the strongly coupled data assimilation
system, the error covariance matrix is calculated using the variables of both models. Forty ensemble members
are used in this study, and the oceanic variables included are horizontal currents, temperature, salinity, and sea
surface height, and the atmospheric variables are horizontal wind speeds, geopotential height, temperature,
surface pressure, and humidity. The localization technique is needed in the ensemble data assimilation with
limited ensemble size to reduce the spurious covariance between distant points (e.g., Houtekamer & Mitchell,
2001; Miyoshi et al., 2014). The Gaspari-Cohn localization function (Gaspari & Cohn, 1999) is used with the
half-width radius of 700 km. The horizontal localization scale is selected after several sensitivity experiments
(shown in the supporting information). Successive covariance localization methods (e.g., Zhang et al., 2009)
have shown advantages to any single localization in WRF simulations and may provide potential improve-
ments, but in this proof-of-concept study, only single localization is used. Vertically, the localization is five
layers for WRF and no vertical localization is used for ROMS. The correlations between atmospheric vertical
profiles (temperature, humidity, and wind) with the local surface ocean currents are computed (shown in the
supporting information) and the correlations are high below 940 hPa (the bottom five layers), thus the verti-
cal localization scale of 5 is chosen (Fowler & Lawless, 2016; Smith et al., 2017). In this study, we perform 24-,
48- and 72-hr forecast experiments. In each of the experiments, three cycles of assimilation with 1-hr window
are performed and then the forecasts are made.

2.3. Forecast Evaluation
Conventionally, the maximum wind speed (Vmax) is used to estimate the destructiveness of TCs. However,
Vmax does not reflect the size and structure of TCs and therefore can be misleading for some large cyclones.
For example, Hurricane Sandy (2012) caused great damage in the Caribbean islands and the United States
although its peak Vmax was just 100 kt (51 m/s, Category 3). Thus, other metrics are needed to approximate the
damage potential. Studies have shown that the integrated power dissipation (IPD; Emanuel, 2005) is superior
to Vmax in describing the damage potential (e.g., Wang & Toumi, 2016). In this study, Vmax, the minimum pres-
sure (Pmin), and IPD are used as metrics of TC intensity. The metrics of each ensemble member are calculated
separately and the error is the difference between the truth and the ensemble mean.

3. Results
3.1. The Truth and Synthetic Observations
As described above, seven cases are created as the true states, with varying intensities, sizes, and translation
speeds (Table 1). In the Cat4 set (TC1, TC2, and TC3), the maximum wind speed decreases to 58–63 m/s as
the cyclones move toward the land. In the Cat2 set (TC4, TC5, TC6, and TC7), the Vmax is 43–50 m/s when the
cyclones make landfall. The R18 in the Cat4 set increases to 180–220 km at the landfall and TC4 and TC5 grow
to 150–160 km while TC6 remains 120 km. TC7 decreases to 60 km at landfall. Stronger TCs are also more
destructive. The IPD at landfall is 11–12 TW in the Cat4 set, while TC4 and TC5 have IPD of 6–7 TW and TC6 and
TC7 are even weaker (2–3 TW). We use the currents generated from these cases as the synthetic observations
and assimilate them.

3.2. The Data Assimilation and Forecast
The influence of TCs on coastal currents is well known (e.g., Keen & Glenn, 1999), but the quantitative rela-
tionship between coastal currents and TC intensity and location is complex. In the strongly coupled data
assimilation, the observation in the ocean affects the atmosphere directly via the cross covariance. Therefore,
the high correlations between the oceanic and atmospheric states are desired for a successful assimilation.
For a strongly coupled phenomenon such as a TC, the oceanic and atmospheric states are highly correlated
and the surface coastal currents change significantly ahead of the TC center (Figure 1; e.g., Bruneau et al.,
2018; Glenn et al., 2016). Here we take the DA run of TC3 as an example. Figure 2 shows the ensemble correla-
tion of the coastal surface currents with the tracks and IPD of the cyclone. The correlations are shown instead
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Figure 2. The spatial distribution of the error correlations between the coastal (left panel) u, (right panel) v currents in
ROMS with (a, b) IPD and (c, d) longitude and (e, f ) latitude of the TC center. The correlations are calculated from the
posterior states of the DA ensemble in the TC3 case during the period of data assimilation. The region is from 5 to
200 km from coast in the x direction and along the coast from 500 to 1,500 km in the y direction. The TC is moving to
the left (westward). Each box in each subplot represent a time point (from right to left, Hour T-2 to T0). The x axis in
each box is distance (km) the from 5 to 200 km from the coast. The y axis is the distance (km) in the y direction.

of the covariances because the covariances of the coupled state vector are dominated by the variables with
large variances. At the beginning of the data assimilation (Hour T-2), the TC center is 30-hr (approximately
600 km) away from the coastline, the correlations between the currents and TC location is about 0.5 and
0.2–0.3 between currents and IPD. As the cyclone moves toward the coastline, the correlations between cur-
rents and IPD increase to 0.3–0.4 two hours later. Other cases depict similar correlation pattern but in the Cat2
set the values are smaller (figure not shown).

Twenty-four-, 48-, and 72-hr forecasts are conducted in this study, for the cyclones with different translation
speeds (e.g., 24-, 48-, and 72-hr forecasts for TC1 and TC4 with translation speed of 2.8 m/s and 24-hr forecasts
for TC3 and TC6). Assimilating the synthetic ocean currents observations improve the TC forecasts in all cases
(Figure 3). The benefit is higher for the stronger cyclones and increases with the lead time for each case, the
relative error displays similar trends (figure not shown). For the 72-hr forecast, the error of Vmax reduces by
2.7 m/s (33%) for TC1 (Category 4) and 1.9 m/s (60%) for TC4 (Category 2). For the 48-hr forecast, the average
improvement is 2.8 m/s (40%) for the stronger cyclones and 1.4 m/s (62%) for the weaker ones. At the lead
time of 24 hr, the improvements are around 1 m/s (25%) for the TCs that move slower than 4 m/s but is as high
as 3.7 m/s (50%) for the fast one (TC3). However, the improvement is marginal for TC7, which is much smaller
than other cyclones.

Higher forecast skill is also seen for the minimum pressure. The error decreases by 7 hPa (over 50%) for the
72-hr forecast in the Category 4 case (TC1). When the cyclone is weaker (TC4), the 72-hr forecast improves by
4 hPa (45%). The error reduces by 3–6 hPa for the 48-hr forecast. As for the 24-hr forecast, the error falls by over
3 hPa, on average. Similar with the Vmax, the improvement for the small and weak case (TC7) is insignificant.
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Figure 3. The difference (NoDA − DA) of errors in Vmax, Pmin, and IPD. The units are m/s, hPa, and TW, respectively.
IPD = integrated power dissipation.

IPD is not currently an operational verifiable error metric but has shown great potential on describing the
destructiveness (e.g., Wang & Toumi, 2016). Here assimilating the synthetic ocean currents observations
reduces the error of IPD dramatically, especially for the stronger cases, in which the improvement is as high
as over 0.6 TW for the 48- and 72-hr forecasts. The 24-hr forecast for the Cat4 cases is also promising, but the
results diverge and more benefit is shown for the fast-moving cyclones. The error for TC3, with translation
speed of 5.3 m/s, reduces by 0.7 TW (50%), and the reduction for TC2 (3.7 m/s) and TC1 (2.8 m/s) is 0.4 and
0.2 TW, respectively. For the Cat2 set, the error of the 72-hr forecast reduces by 0.4 TW (50%), but the benefit
for the 24- and 48-hr forecast is less than 0.2 TW (30%).

4. Discussion and Conclusion

It has been well known that the coastal surface currents respond to the approaching cyclones, and this can be
monitored by HF radars (e.g., Bruneau et al., 2018; Glenn et al., 2016). However, this potentially useful obser-
vation is not assimilated in TC forecast systems. In this study we develop a strongly coupled data assimilation
system using the EAKF and the COAWST and assimilate synthetic surface coastal currents in an idealized OSSE.
The effects are evaluated in both weak (Category 2) and strong (Category 4) TC cases, with various sizes and
translation speeds. By performing strongly coupled data assimilation, the ocean observations update the
atmosphere state directly via the cross-covariance matrix and lead to substantial benefit for TC forecasts.

Higher forecast skills are shown for almost all the cases, with different intensities, sizes, and translation speeds.
For instance, the error of maximum wind speed (Vmax) reduces by 2.7 m/s (33%) for the 72-hr forecast of a
Category 4 TC, the 48-hr forecast is also improved significantly (2.8 m/s, 40%). For the weaker cyclones (Cate-
gory 2), the error also decreases by 1.4–1.9 m/s (60%). These reductions are of similar order with the current
real-time forecast of 7, 6, and 5 m/s for the 72-, 48-, and 24-hr (e.g., Goni et al., 2017). These improvements are
achieved mainly by adjusting the initial atmospheric conditions because of the strong correlation between
the coastal currents and the TC wind field (Figure 2). In the case of weakly coupled data assimilation, where
assimilating ocean variables do not update the atmospheric states, the forecast skill is worse than the strongly
coupled and control cases (shown in the supporting information). When other traditional observations, espe-
cially the atmospheric variables, are also assimilated, the benefit of assimilating ocean currents would be
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expected to be smaller. However, weather radar or satellite data do not give direct or frequent boundary layer
state information, which the HF radar can potentially provide.

Assimilating the synthetic observations also improves the forecast of TC tracks by around 10% but it is note-
worthy that in these idealized experiments, the errors of TC tracks (order of 10 km) are much lower than the
real-time forecast errors (order of 50 km; e.g., Yamaguchi et al., 2017). However, the benefit is marginal for
a weak and small cyclone (with R18 of 60–80 km) although the track forecast improves in this case. This is
because the assimilation of coastal currents adjusts the large-scale circulation and can improve the structure
of the large TC and the steering flow. Therefore, the assimilation works better for the intensity of large TCs and
tracks of small ones. The typical value of R18 in real cases is 150–250 km (e.g., Chan & Chan, 2015; Sampson
et al., 2017), similar with the larger cases in this study, and thus, we anticipate that the actual benefit in practice
would be substantial.

HF radars can produce accurate measurements during TC landfall while much of other ocean observing sys-
tems (e.g., Argo floats and gliders) are usually unavailable or impacted. Halliwell, Mehari, Shay, et al. (2017)
and Halliwell, Mehari, Le Henaff, et al. (2017) pointed out that assimilating standard ocean observations (e.g.,
sea surface temperature and sea level anomaly) produced a better ocean state and could potentially improve
TC forecast but the actual benefit was not demonstrated. In a real case study of Hurricane Gonzalo (2014, Cat-
egory 4 with Vmax over 60 m/s), Dong et al. (2017) found that underwater glider observations had no effect
on the TC forecast. The potential benefit of HF radar is demonstrated here. However, more studies are needed
to estimate the influence of other factors in real cases and settings, including the combination of different
observations, background ocean currents, and bathymetry.

Ensemble data assimilation can generate the cross-domain background error covariance automatically, and
the implementation of strongly coupled data assimilation is feasible. In addition, unlike other observations
such as airborne profilers, which need to be deployed, the typical HF radar network is already immedi-
ately available to gather observations. This work suggests potential benefits of assimilating coastal current
observations in coupled TC forecast systems.
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