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Abstract

In Bachmann’s Aufbau der Geometrie aus dem Spiegelungsbegriff (1959), it was shown that a finite metric plane is a
Desarguesian affine plane of odd order equipped with a perpendicularity relation on lines, and conversely. Sherk (1967)
generalised this result to characterise the finite affine planes of odd order by removing the ‘three reflections axioms’ from
a metric plane. We show that one can obtain a larger class of natural finite geometries, the so-called Bruck nets of even
degree, by weakening Sherk’s axioms to allow non-collinear points.
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1. Introduction

Bruck nets generalise the notion of parallelism in affine planes by extending parallelism to partial
linear spaces (a definition is given in Section 2), and they are of great interest due to their application
to the study of mutually orthogonal latin squares. An affine plane with some parallel classes removed is
an example of a Bruck net, but there exist Bruck nets that do not arise this way (see, for example, [4]).
Sherk characterised affine planes of odd order as finite linear spaces with perpendicularity [6], generalising
the work of Bachmann who characterised finite Desarguesian affine planes of odd order as finite metric
planes [1]. In this paper we further generalise the work of Sherk and Bachmann by characterising Bruck
nets of even degree as finite partial linear spaces with perpendicularity. Thus there is a sense in which
the concepts of parallelism and perpendicularity are equivalent in finite partial linear spaces. Indeed, we
prove that two lines are parallel precisely when they have a common perpendicular.

Let G be a geometry consisting of a set of points, a set of lines, a binary relation incidence between
points and lines, denoted by I, and a binary relation perpendicularity between lines, denoted by ⊥. Two
lines are said to intersect if they are each incident with a common point. We call G a Sherk plane after
Sherk [6] if it satisfies the following six axioms.

A. Two distinct points are incident with a unique line.

B1. For lines ℓ and m, if ℓ ⊥ m then m ⊥ ℓ.
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B2. Perpendicular lines intersect in at least one point.

B3. Given a point P and line ℓ, there exists at least one line m such that m IP and m ⊥ ℓ.

B4. Given a point P and line ℓ such that ℓ IP , there exists a unique line m such that m IP and m ⊥ ℓ.

B5. There exist lines x, y and z such that x ⊥ y, x ̸⊥ z, y ̸⊥ z and x, y and z do not intersect at a
common point.

These axioms are equivalent to the incidence and perpendicularity axioms of a metric plane [1]. Thus
a Sherk plane generalises the notion of a metric plane by removing the powerful three reflections axioms.
Any geometry (with a non-empty point set) satisfying Axiom A is a linear space. This concept can be
generalised to that of a partial linear space by weakening Axiom A to the following.

A*. Two distinct points are incident with at most one line.

We can similarly generalise Sherk planes from a linear space equipped with perpendicularity to a
partial linear space equipped with perpendicularity. We call a geometry G satisfying Axiom A* and
Axioms B1 - B5 a partial Sherk plane. Such a geometry is finite if it possesses only finitely many points.
A point of G is thick if it is incident with at least three lines, and thin otherwise.

We now state the main result of this paper.

Theorem 1.1. The following are equivalent.

1. A finite partial Sherk plane in which some line is incident only with thick points.

2. A finite Bruck net of degree r where r is even and r > 2.

In fact, we prove in Lemmas 2.3 and 3.27 that perpendicularity can only have the form of Defini-
tion 2.2. Further, the thickness condition cannot be removed from Theorem 1.1(1), as there are infinitely
many examples of finite partial Sherk planes in which every line is incident with a thin point.

The format of this paper is as follows. In Section 2, we define Bruck nets and give some of their
fundamental properties. In Section 3, we prove Theorem 1.1, and in Section 4, we give a method for
constructing partial Sherk planes that do not satisfy the thickness condition of Theorem 1.1(1).

2. Bruck nets

A (Bruck) net is a partial linear space satisfying the following three axioms.

N1: For a line ℓ and point P not incident with ℓ, there exists a unique line m such that m IP and m
and ℓ do not intersect.

N2: For every line, there exist two points not incident with it.

N3: For every point, there exist two lines not incident with it.

The line m in Axiom N1 is the parallel to ℓ at the point P . Two lines are parallel to each other if they
do not intersect. Parallelism is an equivalence relation, and the equivalence classes of parallel lines are
called parallel classes [5, p.141]. We denote the parallel class of ℓ by [ℓ]. A finite net has the following
properties [3], [5, p.141].

Lemma 2.1. In a finite Bruck net, there exist integers r and n such that the following are true.
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1. There are r lines incident with every point.

2. There are r parallel classes.

3. There are n points on every line.

4. There are n lines in each parallel class.

5. There are n2 points in total.

6. There are rn lines in total.

7. Two lines from distinct parallel classes intersect in a unique point.

8. Every point is incident with exactly one line of each parallel class.

We call a finite Bruck net with r lines through any point and n points on any line an (n, r)-net and
say it has order n and degree r. We extend Sherk’s definition [6] of perpendicularity for finite affine
planes of odd order as follows.

Definition 2.2. Let N be an (n, r)-net where r is even and r > 2. Since N has an even number of parallel
classes by Lemma 2.1(2), we may choose an involution τ that acts fixed-point-freely on the set of parallel
classes. For lines ℓ and m, define ℓ ⊥ m if and only if [ℓ]τ = [m].

Lemma 2.3. Let N be an (n, r)-net with r even, r > 2 and perpendicularity as in Definition 2.2. Then
N is a partial Sherk plane in which every point is incident with r lines.

Proof. Axiom A* holds by definition. Axiom B1 holds since τ is an involution. By Lemma 2.1(7), any
two lines in different parallel classes meet in a point, so Axiom B2 holds. Let ℓ be a line and P a point.
By Lemma 2.1(8), there exists m in [ℓ]τ such that m IP . Now [ℓ]τ = [m], so ℓ ⊥ m and Axiom B3
holds. Moreover, any such m is unique by Lemma 2.1(8), so Axiom B4 holds. There are at least four
parallel classes by Lemma 2.1(2). Let ℓ be a line and choose m in [ℓ]τ . Now ℓ and m are perpendicular
by definition, and they intersect in a unique point P by Lemma 2.1(7). Furthermore, n > 1 by Lemma
2.1(5) and Axiom N2, so by Lemma 2.1(4) and (8), there exists a line g not in [ℓ]∪ [m] such that g is not
incident with P . Thus B5 holds. By Lemma 2.1(1), there are exactly r lines incident with any point.

3. Proof of Theorem 1.1

If Theorem 1.1(2) holds, then Theorem 1.1(1) holds by Lemma 2.3. We assume for the remainder of
the section that G is a partial Sherk plane. Let v be the total number of points, and b the total number
of lines. Since v > 0 and b > 0 by Axioms B5 and B2, it follows from Axiom B3 that there is at least one
line on every point, and from Axioms B3 and B2 that every line is incident with some point. We denote
the number of lines through a point P by rP , and the number of points on a line ℓ by nℓ. Note that
Lemmas 3.2, 3.3, 3.7 and 3.13 are similar to results in [6] but their proofs are included for completeness;
in addition, the proofs of Lemmas 3.6 and 3.20 contain arguments from [6]. In Section 3.1, we prove
some basic results that do not require the assumption that some line is incident only with thick points,
and in Section 3.2, we assume this thickness condition and prove that Theorem 1.1(2) holds.
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3.1. The basics.

Lemma 3.1. There exist three non-collinear points, and some line has at least three points.

Proof. Let x, y and z be lines as in Axiom B5. Then x and y intersect at a point P by Axiom B2. By
Axiom B3, there exists a perpendicular1 g from P to z. Clearly g is not x or y as z is not perpendicular
to either of these lines. Let Q be the point of intersection of z and g. Now Q ̸= P since z is not
incident with P by Axiom B5. Let h be a perpendicular from Q to y. Note that h ̸= z as z is not
perpendicular to y, nor is h equal to x as this would imply that Q Ix and therefore that g = x by Axiom
A*, a contradiction. Furthermore h ̸= g or else P Ih, in which case h = x by Axiom B4. Denote the
intersection of h and y by R. Now R and P are distinct since g and h are distinct, and R and Q are
distinct since g and y are distinct. Moreover, P , Q and R are non-collinear by Axiom A* since g ̸= y.
Thus there exist three non-collinear points. Let k be a perpendicular from R to g, and let S be the
intersection of k and g. Now S ̸= P or else k = y by Axiom A*, which would imply that g = x by
Axiom B4, a contradiction. Furthermore, S ̸= Q or else k = z since g is perpendicular to z at Q and
perpendicular to k at S, but then R and Q are on z, so z = h, a contradiction. Thus P , Q and S are
pairwise distinct points on the line g.

Lemma 3.2. No line is perpendicular to itself.

Proof. Let ℓ be a line. By Lemma 3.1, there exists a point P not on ℓ. By Axiom B3, there exists a
perpendicular g from P to ℓ. By Axiom B2, there exists a point Q at the intersection of ℓ and g. Now g
is the unique line incident with Q and perpendicular to ℓ by Axiom B4. Clearly g ̸= ℓ, as g is incident
with P and ℓ is not. Thus ℓ cannot be perpendicular to ℓ.

Lemma 3.3. The number of lines on any point is even.

Proof. Let P be a point. By Axiom B4, every line incident with P has a unique perpendicular at P . It
then follows from Lemma 3.2 that rP is even.

Lemma 3.4. Let ℓ and m be lines that are not perpendicular. Let P and Q be distinct points that are
incident with ℓ, and let g and h be perpendiculars from P and Q respectively to m. Then g ̸= h, and g
and h intersect m in distinct points.

Proof. If g = h, then both P and Q are incident with g. Thus g = ℓ by Axiom A*, so ℓ ⊥ m, a
contradiction. Hence g and h are distinct. It then follows from Axioms B2 and B4 that g and h meet m
in distinct points.

Lemma 3.5. Given any line ℓ, there are exactly nℓ lines that are perpendicular to ℓ.

Proof. By Axiom B4, each of the nℓ points of ℓ has a unique perpendicular to ℓ, and these perpendiculars
are pairwise distinct by Axiom A* and Lemma 3.2. By Axiom B2, no other lines are perpendicular to
ℓ. Thus there are exactly nℓ lines that are perpendicular to ℓ.

Lemma 3.6. Let ℓ and m be lines that are not perpendicular. Then nℓ = nm.

Proof. Assume without loss of generality that nℓ ⩾ nm. There are at least nℓ lines intersecting ℓ that are
perpendicular to m by Axiom B3 and Lemma 3.4, and there are exactly nm lines that are perpendicular
to m by Lemma 3.5, so nℓ = nm.

1For a point P and line ℓ, a perpendicular from P to ℓ is a line incident with P and perpendicular to ℓ.
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Lemma 3.7. Let ℓ and m be perpendicular lines. Then ℓ intersects all lines of G except possibly the
lines that are perpendicular to m.

Proof. Let g be a line that is not perpendicular to m. Then ng = nm by Lemma 3.6. By Axiom B3
and Lemmas 3.4 and 3.5, there are exactly ng perpendiculars from the ng points of g to m, and every
perpendicular to m arises in this way. Since ℓ is perpendicular to m, the line ℓ intersects g.

Lemma 3.8. For a point P and line ℓ such that P is not incident with ℓ, either every line incident with
P is perpendicular to ℓ, or there is a unique perpendicular from P to ℓ.

Proof. Suppose that some line m is incident with P but not perpendicular to ℓ. By Lemma 3.6, nℓ = nm.
Write n = nℓ. Let P1, . . . , Pn be the points on m, and let hi be a perpendicular from Pi to ℓ for 1 ⩽ i ⩽ n.
Then for all i ̸= j, the lines hi and hj are distinct and meet ℓ in distinct points by Lemma 3.4. Say
P = Pi. If hi is the unique perpendicular from P to ℓ, then we are done, so suppose that g is another
perpendicular from P to ℓ. Since ℓ has n points, Axiom B4 implies that g = hj for some j ̸= i. Then Pi

and Pj are both incident with g and m, so g = m by Axiom A*, in which case m is perpendicular to ℓ,
a contradiction.

In the case where a point P is not incident with a line ℓ and there is more than one perpendicular
from P to ℓ, we say that P is a pole of ℓ and ℓ is a polar of P .

Lemma 3.9. Let ℓ and h be perpendicular lines intersecting at a point P . Then the number of poles of
ℓ on h equals the number of polars of P .

Proof. By Lemma 3.8, every polar g of P is perpendicular to ℓ and h, so g intersects h in a point Qg,
and Qg is a pole of ℓ. Thus we have a map from the set of polars of P to the set of poles of ℓ on h
defined by g 7→ Qg, and this map is injective by Axiom B4. Now for a pole Q of ℓ on h, the unique
perpendicular to h at Q is a polar of P by Lemma 3.8, so this map is a bijection.

Lemma 3.10. Let P and Q be two distinct points such that P is not a pole for any line through Q, and
Q is not a pole for any line through P . Then rP = rQ.

Proof. Let m be a line through P . Since Q is not a pole of m, there is a unique perpendicular ℓm from
Q to m. Thus we have a map from the set of lines on P to the set of lines on Q defined by m 7→ ℓm. If
ℓm1 = ℓm2 for lines m1 and m2 on P , then ℓm1 is perpendicular to m1 and m2, so either m1 = m2, or P
is a pole of ℓm1 . This latter possibility contradicts our assumption, so the map is injective and rP ⩽ rQ.
By reversing the roles of P and Q, we also have that rQ ⩽ rP .

Lemma 3.11. Let P and Q be distinct points on a line ℓ, and let mP and mQ be the perpendiculars to
ℓ at P and Q respectively. If mP and mQ are not perpendicular, then rP = rQ.

Proof. Suppose that Q is a pole of a line m through P . Now every line through Q is perpendicular to m
by Lemma 3.8; in particular, ℓ is perpendicular to m. Since mP and m are both perpendicular to ℓ at
P , it follows that mP = m. Now mQ is a line through Q, so mQ is perpendicular to m = mP by Lemma
3.8, a contradiction. Thus Q is not the pole of any line through P , and by symmetry, P is not the pole
of any line through Q. By Lemma 3.10, rP = rQ.
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3.2. Assuming the thickness condition. We now assume that some line is incident only with
thick points.

Lemma 3.12. Every point is thick.

Proof. Let ℓ be the line that is incident only with thick points. Suppose for a contradiction that there
exists a point P such that rP = 2. Let g and h be the two lines incident with P . By Axiom B3, every
line other than g and h must be perpendicular to at least one of g or h. Without loss of generality,
suppose that ℓ is perpendicular to g, and let R be the intersection point of ℓ and g. Since rR ⩾ 3, there
is some other line x on R, and by Axiom B4, x is not perpendicular to g, so x must be perpendicular to
h; let S be the intersection point of x and h. Since x and g are both perpendicular to h, R is a pole of h.
By Lemma 3.8, ℓ must be perpendicular to h at a point Q. Since g is the perpendicular to h at P and x
is the perpendicular to h at S, Lemma 3.11 implies that rP = rS = rQ, but rQ ⩾ 3, a contradiction.

Lemma 3.13. The number of points incident with any line is constant.

Proof. Let ℓ and m be lines. If ℓ is not perpendicular to m, then nℓ = nm by Lemma 3.6. Otherwise, ℓ
is perpendicular to m, in which case ℓ and m intersect at a point P . Since rP ⩾ 3 by Lemma 3.12, there
exists a line g that is incident with P and distinct from ℓ and m. Now g is not perpendicular to ℓ or m
by Axiom B4, so nℓ = ng = nm by Lemma 3.6.

Let n denote the number of points on any line. We have the following consequence of Lemmas 3.1
and 3.13.

Corollary 3.14. n ⩾ 3.

Lemma 3.15. Axioms N2 and N3 hold.

Proof. Let ℓ be a line. There exists a point P on ℓ, and there is another line g incident with P . By
Corollary 3.14, there are at least two additional points on g, and by Axiom A* they are not on ℓ. Thus
Axiom N2 holds. Let P ′ be a point. There exists a line ℓ′ incident with P ′. By Corollary 3.14, there
exists a point Q on ℓ′ not equal to P ′, and since rQ ⩾ 3 by Lemma 3.12, there are two lines other than
ℓ′ incident with Q, which by Axiom A* are not incident with P ′. Thus Axiom N3 holds.

Lemma 3.16. The number of lines through any point is constant.

Proof. Let P and Q be distinct points on a line ℓ. Let mP and mQ be the perpendiculars to ℓ at P
and Q respectively. If mP and mQ are not perpendicular, then rP = rQ by Lemma 3.11, so we assume
otherwise. Let R be the point of intersection of mP and mQ. Since rR ⩾ 3 by Lemma 3.12 and R is a
pole of the line ℓ, Lemma 3.8 implies that there exists a point S on ℓ and a line mS on R and S such that
mS is perpendicular to ℓ, and mS is not perpendicular to mP or mQ. By Lemma 3.11, rP = rS = rQ.

Now suppose that P and Q are non-collinear points. There exists a line m through Q, and by Axiom
B3, there is a point R and line ℓ such that P and R are incident with ℓ and R is incident with m. Then
rP = rR = rQ by the above argument.

Let r denote the number of lines through any point.

Lemma 3.17. Every line has exactly (n2 − v)/(r − 1) poles.

Proof. Let ℓ be a line, and let N be the number of poles of ℓ. Let t be the number of pairs (P,m) such
that P is a point not on ℓ, and m is a line incident with P and perpendicular to ℓ. Recall that v is the
total number of points in G. There are N poles of ℓ, each incident with r lines, and all such lines are
perpendicular to ℓ by Lemma 3.8. Moreover, there are v−n−N points not incident with ℓ that are not

6



poles of ℓ, each with exactly one perpendicular to ℓ by Lemma 3.8. Thus t = Nr+ (v− n−N). On the
other hand, there are n lines perpendicular to ℓ, each with n− 1 points not on ℓ, so t = n(n− 1). Hence
N = (n2 − v)/(r − 1).

We shall denote the number of poles of a line by N .

Lemma 3.18. Every point has exactly (nr − b)/(r − 1) polars.

Proof. Let P be a point, and let M be the number of polars of P . Let t be the number of pairs (Q, ℓ)
such that ℓ is a line not incident with P , and Q is a point incident with ℓ such that the perpendicular
from Q to ℓ is incident with P . Recall that b is the total number of lines in G. There are M polars of P ,
and each such polar ℓ is incident with r points Q such that the perpendicular from Q to ℓ is incident with
P by Lemma 3.8. Moreover, there are b− r−M lines not incident with P that are not polars of P , and
for each such line ℓ, there is a unique point Q incident with ℓ such that the perpendicular from Q to ℓ is
incident with P by Lemma 3.8. Thus t = Mr+(b−r−M). On the other hand, there are r lines incident
with P , each of which is incident with n− 1 points besides P , and each such line and point determines
a unique perpendicular line not incident with P , so t = r(n− 1). Hence M = (nr − b)/(r − 1).

We shall denote the number of polars of a point by M .

Lemma 3.19. Nr = Mn.

Proof. Every point is incident with r lines and every line is incident with n points, so vr = bn. Similarly,
every line has N poles and every point has M polars, so bN = vM . Thus Nr = Mn.

Lemma 3.20. Suppose that a line ℓ has a pole P . Then r < n.

Proof. Suppose (by way of contradiction) that r ⩾ n. By Lemma 3.8, the r lines incident with P are all
perpendicular to ℓ, so r = n. By Lemma 3.5, every line that is perpendicular to ℓ is incident with P . By
Axiom B3, every point of G lies on a perpendicular to ℓ. Each of the n perpendiculars to ℓ is incident
with n − 1 points other than P . Thus there are n(n − 1) points collinear with P , and therefore any
point, and we conclude that G is a linear space. Moreover, G has v = n(n− 1) + 1 points, so G is what
is known as a ‘2− (n(n− 1)+ 1, n, 1) design’ and hence a projective plane (c.f., [5, p. 138]). Further, by
Lemmas 3.17 and 3.19, N = M = 1. Therefore, every point P has a unique polar and every line has a
unique pole, so G is equipped with a polarity2 that maps each point to its polar, and this polarity has
no absolute points. However, this contradicts Baer’s Theorem on polarities of finite projective planes [2,
p. 82] since our projective plane G has at least three points on every line. Hence r < n.

Lemma 3.21. Suppose that a line ℓ has a pole P . Then n− r + 1 ⩽ N .

Proof. By Lemma 3.20, we have r < n. Then there are pairwise distinct lines h1, . . . , hm where m = n−r
such that hi is not incident with P and hi is perpendicular to ℓ. For 1 ⩽ i ⩽ m, there exists a
perpendicular ai from P to hi. Let Qi be the intersection of ai and hi. Then P,Q1, . . . , Qm are pairwise
distinct points, none of which are incident with ℓ (by Axiom B4). Moreover, ai and hi are distinct lines
that are incident with Qi and perpendicular to ℓ for 1 ⩽ i ⩽ m, so Q1, . . . , Qm are poles of ℓ. Hence
n− r + 1 ⩽ N .

Theorem 3.22. No line has a pole.

2A polarity is an involutary map from points to lines that preserves incidence. A point Q is absolute with respect to a
polarity ρ if Q is incident with Qρ.
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Proof. Suppose for a contradiction that some line ℓ has a pole P . Then r < n by Lemma 3.20. Let
W be the number of poles of ℓ that are not equal to or collinear with P . Each of the r lines on P is
perpendicular to ℓ by Lemma 3.8, so by Lemma 3.9,

W = N − 1− (M − 1)r.

Let t be the number of pairs (Q,h) where Q is a pole of ℓ not equal to or collinear with P , and h is a
line perpendicular to ℓ that is incident with Q but not P . Each of the n − r points of ℓ not collinear
with P has a unique perpendicular to ℓ, and each such perpendicular is incident with M poles of ℓ by
Lemma 3.9, so t = M(n− r). By another count for t,

Wr = M(n− r).

The two equations above yield (N − 1 − (M − 1)r)r = M(n − r). Now Nr = Mn by Lemma 3.19,
so Mr(r − 1) = r(r − 1). Since r > 1, it follows that M = 1 and N = n/r. By Lemma 3.21,
n− r + 1 ⩽ N = n/r. Thus (n− r)(r − 1) ⩽ 0, so n ⩽ r, a contradiction.

The following extension of Axiom B3 is a consequence of Theorem 3.22.

Corollary 3.23. For a line ℓ and point P , there exists a unique line that is perpendicular to ℓ and
incident with P .

Lemma 3.24. Two lines are parallel if and only if they have a common perpendicular.

Proof. If two lines do not have a common perpendicular, then by Lemma 3.7 they must intersect.
Conversely, if two lines do have a common perpendicular, then they cannot intersect by Theorem 3.22.

Lemma 3.25. Axiom N1 holds.

Proof. Let ℓ be a line and P a point not incident with ℓ. By Corollary 3.23, there exists a unique per-
pendicular g from P to ℓ. By Axiom B4, there exists a unique line m incident with P and perpendicular
to g. Clearly m ̸= ℓ as m is incident with P but ℓ is not, so m is a line that is incident with P and
parallel to ℓ by Lemma 3.24. Say m′ is another line that is incident with P and parallel to ℓ. Since g
and ℓ are perpendicular, so are m′ and g by Lemma 3.7. But now m and m′ are both perpendicular to
ℓ at P , so m = m′ by Axiom B4.

The result of Lemmas 3.3, 3.15 and 3.25 is the following.

Corollary 3.26. G is a finite Bruck net of degree r where r is even and r > 2.

Now that Theorem 1.1(2) holds, we prove that perpendicularity has the form of Definition 2.2.

Lemma 3.27. There exists a fixed-point-free involution τ on the set of parallel classes such that ℓ ⊥ m
if and only if [ℓ]τ = [m].

Proof. Let ℓ be a line. Denote the set of perpendiculars to ℓ by Xℓ. Now Xℓ has size n, and any two
lines in Xℓ are parallel by Lemma 3.24, so Xℓ is a parallel class by Lemma 2.1(4). Define a map τ on the
set of parallel classes of G by mapping [ℓ] to Xℓ for all lines ℓ. If [ℓ] = [ℓ′], then ℓ and ℓ′ have a common
perpendicular, say m, by Lemma 3.24, so Xℓ = [m] = Xℓ′ . Hence τ is well defined. If ℓ and ℓ′ are lines
such that Xℓ = Xℓ′ , then ℓ and ℓ′ have a common perpendicular, so [ℓ] = [ℓ′] by Lemma 3.24. Thus τ is
a bijection. Moreover, τ has no fixed points since no line is perpendicular to itself by Lemma 3.2, and τ
is clearly an involution. Lastly, two lines ℓ and m are perpendicular if and only if m ∈ Xℓ. This occurs
precisely when [m] = [ℓ]τ , as desired.
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Finally, we note that Sherk’s theorem follows from Theorem 1.1 (and Lemma 3.1) upon assuming
that G is a linear space.

Corollary 3.28. The following are equivalent.

1. A finite Sherk plane.

2. A finite affine plane of odd order.

4. Partial Sherk planes that do not satisfy Theorem 1.1(1)

In this section, we give two methods for constructing partial Sherk planes in which every line is
incident with a thin point. This is done by adding points and lines to a given partial Sherk plane.

Let G be any partial Sherk plane, and let k be a positive integer. Let Gk denote the geometry defined
as follows. For each line ℓ of G and integer i ∈ {1, . . . , k}, we add a new point Pℓ,i to G, and we extend
the incidence relation of G so that Pℓ,i is incident with ℓ but no other lines of G. Now add lines g1, . . . , gk
such that, for each i ∈ {1, . . . , k}, gi is incident with Pℓ,i for all lines ℓ of G, and no other points. Lastly,
extend the perpendicularity relation of G so that, for each i ∈ {1, . . . , k}, gi is perpendicular to every
line of G, every line of G is perpendicular to gi, and gi is not perpendicular to gj for j ∈ {1, . . . , k}.

Next, suppose that k is even, and let G∗
k denote the geometry defined as follows. Add a new point Q

to Gk, and extend the incidence relation of Gk so that Q is incident with g1, . . . , gk and no other lines of
Gk. Lastly, change the perpendicularity relation of Gk so that gi is perpendicular to gk−i+1 for 1 ⩽ i ⩽ k.
See Figure 1 for the case where k = 4 and G is the affine plane of order 3.

Figure 1. The partial Sherk plane G∗
4 (right) where G is the affine plane of order 3 (left).

Lemma 4.1. Let G be a (finite) partial Sherk plane, and let k be a positive integer. Then Gk is a (finite)
partial Sherk plane. Further, if k is even, then G∗

k is a (finite) partial Sherk plane.

Proof. By construction, Gk and G∗
k (k even) satisfy Axioms A∗, B1 and B2, and since Axiom B5 holds

for G, it also holds for Gk and G∗
k . It remains to show that Axioms B3 and B4 hold.
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Let P and ℓ be a point and line of Gk or G∗
k respectively. We claim that there exists a line m such

that m IP and m ⊥ ℓ, and that m is the unique such line when P I ℓ. This claim holds in G∗
k if P = Q, so

we assume otherwise. If ℓ ̸= gi for 1 ⩽ i ⩽ n, then since G satisfies Axioms B3 and B4, we may assume
that P = Ph,j for some line h of G and integer j, in which case the claim holds with m = gj . Thus we
may assume that ℓ = gi for some i. If P = Ph,j for some line h of G and integer j, then the claim holds
with m = h. Otherwise, P must be a point of G, in which case we may take m to be any line on P (and
such a line always exists). Thus Axioms B3 and B4 hold in Gk and G∗

k .

Every line of Gk and G∗
k is incident with a thin point, so there are infinitely many finite partial Sherk

planes in which every line is incident with a thin point. Moreover, Gk has the property that some line is
incident only with thin points. On the other hand, if every line of G is incident with a thick point (which
is the case for a Bruck net of degree r where r is even and r > 2), then every line of G∗

k is incident with
a thick point. In fact, if G is an (n, r)-net where r is even and r > 2, then for k = n(r − 1), Gk has the
property that every line is incident with a constant number of points, namely nr = n+ k; similarly, if n
is odd and k = n(r− 1)+1, then G∗

k has the property that every line is incident with a constant number
of points, namely nr + 1 = n+ k.
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