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Abstract

We provide a self-contained formulation of the BPHZ theorem in the Euclidean
context, which yields a systematic procedure to “renormalise” otherwise diver-
gent integrals appearing in generalised convolutions of functions with a singu-
larity of prescribed order at their origin. We hope that the formulation given in
this article will appeal to an analytically minded audience and that it will help to
clarify to what extent such renormalisations are arbitrary (or not). In particular,
we do not assume any background whatsoever in quantum field theory and we
stay away from any discussion of the physical context in which such problems
typically arise.
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Introduction 2

1 Introduction

The BPHZ renormalisation procedure named after Bogoliubov, Parasiuk, Hepp
and Zimmerman [BP57, Hep66, Zim69] (but see also the foundational results
by Dyson and Salam [Dys49a, Dys49b, Sal51b, Sal51a]) provides a consistent
way to renormalise probability amplitudes associated to Feynman diagrams in
perturbative quantum field theory (pQFT). The main aim of this article is to provide
an analytical result, Theorem 3.1 below, which is a general form of the “BPHZ
theorem” in the Euclidean context. To a large extent, this theorem has been part of
the folklore of mathematical physics since the publication of the abovementioned
works (see for example the article [FMRS85] which gives rather sharp analytical
bounds and is close in formulation to our statement, as well as the series of
articles [CK98, CK00, CK01] which elucidate some of the algebraic aspects of
the theory, but focus on dimensional regularisation which is not available in the
general context considered here), but it seems difficult to find precise analytical
statements in the literature that go beyond the specific context of pQFT. One reason
seems to be that, in the context of the perturbative expansions arising in pQFT,
there are three related problems. The first is to control the small-scale behaviour of
the integrands appearing in Feynman diagrams (the “ultraviolet behaviour”), the
second is to control their large scale (“infrared”) behaviour, and the final problem
is to show that the renormalisation required to deal with the first problem can be
implemented by modifying (in a scale-dependent way) the finitely many coupling
constants appearing in the Lagrangian of the theory at hand, so that one still has a
physical theory.

The approach we take in the present article is purely analytic and completely
unrelated to any physical theory, so we do not worry about the potential physical
interpretation of the renormalisation procedure. We do however show in Sec-
tion 3.3 that it has a number of very nice mathematical properties so that the
renormalised integrals inherit many natural properties from their unrenormalised
counterparts. We also completely discard the infrared problem by assuming that
all the kernels (“propagators”) under consideration are compactly supported. For
the reader who might worry that this could render our main result all but useless,
we give a simple separate argument showing how kernels with algebraic decay at
infinity can be dealt with as well. Note also, that contrary to much of the related
theoretical and mathematical physics literature, all of our arguments take place
in configuration space, rather than in Fourier space. In particular, the analysis
presented in this article shares similarities with a number of previous works, see
for example [EG73, dCR82, FMRS85] and references therein.

The approach taken here is informed by some results recently obtained in the
context of the analysis of rough stochastic PDEs in [Hai16, BHZ16, CH16]. Indeed,
the algebraic structure described in Sections 2.3 and 2.4 below is very similar to
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the one described in [Hai16, BHZ16], with the exception that there is no “positive
renormalisation” in the present context. In this sense, this article can be seen as a
perhaps gentler introduction to these results, with the content of Section 2 roughly
parallel to [BHZ16], while the content of Section 3 is rather close to that of [CH16].
In particular, Section 2 is rather algebraic in nature and allows to conceptualise the
structure of the counterterms appearing in the renormalisation procedure, while
Section 3 is rather analytical in nature and contains the multiscale analysis un-
derpinning our main continuity result, Theorem 3.1. Finally, in Section 4, we
deal with kernels exhibiting only algebraic decay at infinity. While the conditions
given in this section are sharp in the absence of any cancellations in the large-scale
behaviour, we do not introduce an analogue of the “positive renormalisation” of
[CH16], so that the argument remains relatively concise.
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2 An analytical form of the BPHZ theorem

Fix a countable set L of labels, a map deg : L → R, and an integer dimension
d > 0. We assume that the set of labels has a distinguished element which we
denote by δ ∈ L satisfying deg δ = −d and that, for every multiindex k, there is
an injective map t 7→ t(k) on L with t(0) = t and such that

(t(k))(ℓ) = t
(k+ℓ) , deg t(k) = deg t− |k| . (2.1)

We also set L⋆ = L \ {δ(k) : k ∈ Nd} and we assume that there is a finite set
L0 ⊂ L such that every element of L is of the form t

(k) for some k ∈ Nd and some
t ∈ L0. We then give the following definition.

Definition 2.1 A Feynman diagram is a finite directed graphΓ = (V, E) endowed
with the following additional data:

• An ordered set of distinct vertices L= {[1], . . . , [k]} ⊂ V such that each
vertex in Lhas exactly one outgoing edge (called a “leg”) and no incoming
edge, and such that each connected component of Γ contains at least one
leg. We will frequently use the notation V⋆ = V\ L, as well as E⋆ ⊂ E

for the edges that are not legs.

• A decoration t : E→ L of the edges of Γ such that t(e) ∈ L⋆ if and only if
e ∈ E⋆.
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Figure 1: A Feynman diagram.

We will always use the convention of [HQ15]
that e− and e+ are the source and target of an edge
e, so that e = (e− → e+). We also label legs in
the same way as the corresponding element in L,
i.e. we call the unique edge incident to the vertex
[j] the jth leg of Γ. The way we usually think of
Feynman diagrams is as labelled graphs (V⋆, E⋆)

with a number of legs attached to them, where the legs are ordered and each leg
is assigned a d-dimensional multiindex. An example of Feynman diagram with 3
legs is shown in Figure 1, with legs drawn in red and decorations suppressed. We
do not draw the arrows on the legs since they are always incoming by definition.
In this example, |V| = 7 and |V⋆| = 4.

Write now S = Rd, and assume that we are given a kernel Kt : S → S for every
t ∈ L⋆, such that Kt exhibits a behaviour of order deg t at the origin but is smooth
otherwise. For simplicity, we also assume that these kernels are all compactly
supported, say in the unit ball. More precisely, we assume that for every t ∈ L⋆

and every d-dimensional multiindex k there exists a constant C such that one has
the bound

|DkKt(x)| ≤ C|x|deg t−|k|
1|x|≤1 , ∀x ∈ S . (2.2)

We also extend K to all of L by using the convention that Kδ = δ, a Dirac mass
at the origin, and we impose that for every multiindex k and label t ∈ L, one has

Kt(k) = DkKt . (2.3)

Note that (2.2) is compatible with (2.1) so that non-trivial (i.e. not just vanishing
or smooth near the origin) kernel assignments do actually exist. To some extent
it is also compatible with the convention Kδ = δ and deg δ = −d since the
“delta function” on Rd is obtained as a distributional limit of functions satisfying
a uniform bound of the type (2.2) with deg t = −d. Given all this data, we would
now like to associate to each Feynman diagram Γ with k legs a distribution ΠΓ on
S
k by setting

(ΠΓ)(ϕ) =

∫

SV

∏

e∈E

Kt(e)(xe+ − xe−)ϕ(x[1], . . . , x[k]) dx . (2.4)

Note that of course ΠΓ does not just depend on the combinatorial data Γ =
(V, E,L, t), but also on the analytical data (Kt)t∈L⋆ . We sometimes suppress
the latter dependency on our notation in order to keep it light, but it will be very
useful later on to also allow ourselves to vary the kernels Kt. We call the map Π a
“valuation”.

The problem is that on the face of it, the definition (2.4) does not always make
sense. The presence of the (derivatives of) delta functions is not a problem: writing
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vi ∈ V⋆ for the unique vertex such that ([i] → vi) ∈ E and ℓi for the multiindex
such that the label of this leg is δ(ℓi), we can rewrite (2.4) as

(ΠΓ)(ϕ) =

∫

SV⋆

∏

e∈E⋆

Kt(e)(xe+ − xe−)(Dℓ1
1 · · ·Dℓk

k ϕ)(xv1 , . . . , xvk) dx . (2.5)

The problem instead is the possible lack of integrability of the integrand appearing
in (2.5). For example, the simplest nontrivial Feynman diagram with two legs is
given by Γ = t0 0 which, by (2.5), should be associated to the distribution

(ΠΓ)(ϕ) =

∫

S2

Kt(y1 − y0)ϕ(y0, y1) dy . (2.6)

If it happens that deg t < −d, then Kt is non-integrable in general, so that this
integral may not converge. It is then natural to modify our definition, but “as little
as possible”. In this case, we note that if the test function ϕ happens to vanish near
the diagonal y1 = y0, then the singularity of Kt does not matter and (2.6) makes
perfect sense. We would therefore like to find a distributionΠΓ which agrees with
(2.6) on such test functions but still yields finite values for every test function ϕ.
One way of achieving this is to set

(ΠΓ)(ϕ) =

∫

S2

Kt(y1 − y0)
(

ϕ(y0, y1) −
∑

|k|+deg t≤−d

(y1 − y0)
k

k!
Dk

2ϕ(y0, y0)
)

dy .

(2.7)
At first glance, this doesn’t look very canonical since it seems that the variables y0
and y1 no longer play a symmetric role in this expression. However, it is an easy
exercise to see that the same distribution can alternatively also be written as

(ΠΓ)(ϕ) =

∫

S2

Kt(y1 − y0)
(

ϕ(y0, y1) −
∑

|k|+deg t≤−d

(y0 − y1)
k

k!
Dk

1ϕ(y1, y1)
)

dy .

The BPHZ theorem is a far-reaching generalisation of this construction. To for-
malise what we mean by this, write K−∞ for the space of all smooth kernel assign-
ments as above (compactly supported in the unit ball and satisfying (2.3)). When
endowed with the system of seminorms given by the minimal constants in (2.2),
its completion K−0 is a Fréchet space.

With these notations, a “renormalisation procedure” is a map K 7→ ΠK turning
a kernel assignment K ∈ K−0 into a valuation ΠK . The purpose of the BPHZ
theorem is to argue that the following question can be answered positively.

Main question: Is there a consistent renormalisation procedure such that, for
every Feynman diagram, ΠΓ can be interpreted as a “renormalised version” of
(2.4)?
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As stated, this is a very loose question since we have not specified what we mean
by a “consistent” renormalisation procedure and what properties we would like a
valuation to have in order to be a candidate for an interpretation of (2.4). One
important property we would like a good renormalisation procedure to have is the
continuity of the map K 7→ ΠK . In this way, we can always reason on smooth
kernel assignments K ∈ K−∞ and then “only” need to show that the procedure
under consideration extends continuously to all of K−0 . Furthermore, we would
like ΠK to inherit as many properties as possible from its interpretation as the
formal expression (2.4). Of course, as already seen, the “naïve” renormalisation
procedure given by (2.4) itself does not have the required continuity property, so
we will have to modify it.

2.1 Consistent renormalisation procedures

The aim of this section is to collect and formalise a number of properties of
(2.4) which then allows us to formulate precisely what we mean by a “consistent”
renormalisation procedure. Let us write Tfor the free (real) vector space generated
by all Feynman diagrams. This space comes with a natural grading and we write
Tk ⊂ T for the subspace generated by diagrams with k legs. Note that T0 ≈ R

since there is exactly one Feynman diagram with 0 legs, which is the empty one.
Write Sk for the space of all distributions on S

k that are translation invariant in
the sense that, for η ∈ Sk, h ∈ S, and any test function ϕ, one has η(ϕ) = η(ϕ ◦ τh)

where τh(y1, . . . , yk) = (y1+h, . . . , yk+h). We will write S(c)
k ⊂ Sk for the subset

of “compactly supported” distributions in the sense that there exists a compact set
K ⊂ S

k/S such that η(ϕ) = 0 as soon as suppϕ ∩ K = 6#.

Remark 2.2 Compactly supported distributions can be tested against any smooth
function ϕ with the property that for any x ∈ S

k, the set {h ∈ S : ϕ(τh(x)) 6= 0}
is compact.

Note that S1 ≈ R since translation invariant distributions in one variable are
naturally identified with constant functions. We will use the convention S0 ≈ R

by identifying “functions in 0 variables” with R. We also set S =
⊕

k≥0Sk, so
that a valuation Π can be viewed as a linear map Π: T→ Swhich respects the
respective graduations of these spaces.

Note that the symmetric group Sk in k elements acts naturally on Tk by simply
permuting the order of the legs. Similarly, Sk acts on Sk by permuting the
arguments of the test functions. Given two Feynman diagrams Γ1 ∈ Tk and
Γ2 ∈ Tℓ, we then write Γ1 • Γ2 ∈ Tk+ℓ for the Feynman diagram given by the
disjoint union of Γ1 and Γ2. Here, we renumber the ℓ legs of Γ2 in an order-
preserving way from k+ 1 to k+ ℓ, so that although Γ1 • Γ2 6= Γ2 •Γ1 in general,
one has Γ1 • Γ2 = σk,ℓ(Γ2 • Γ1), where σk,ℓ ∈ Sk+ℓ is the permutation that swaps
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(1, . . . , ℓ) and (ℓ + 1, . . . , ℓ + k). Given distributions η1 ∈ Sk and η2 ∈ Sℓ, we
write η1 • η2 ∈ Sk+ℓ for the distribution such that

(η1 • η2)(ϕ1 ⊗ ϕ2) = η1(ϕ1)η2(ϕ2) .

Similarly to above, one has η1•η2 = σk,ℓ(η2•η1). We extend • by linearity to all of
T and S respectively, thus turning these spaces into (non-commutative) algebras.
This allows us to formulate the first property we would like to retain.

Property 1 A consistent renormalisation procedure should produce valuations Π
that are graded algebra morphisms from T to Sand such that, for every Feynman

diagram Γ with k legs and every σ ∈ Sk, one has Πσ(Γ) = σ(ΠΓ). Furthermore

ΠΓ ∈ S
(c)
k if Γ is connected with k legs.

Similarly, consider a Feynman diagram Γ with k ≥ 2 legs such that the label
of the kth leg is δ and such that the connected component of Γ containing [k]

contains at least one other leg. Let Delk Γ be the Feynman diagram identical to
Γ, but with the kth leg removed. If the label of the kth leg is δ(m) with m 6= 0,
we set Delk Γ = 0. If we write ιk for the natural injection of smooth functions on
S
k−1 to functions on S

k given by (ιkϕ)(x1, . . . , xk) = ϕ(x1, . . . , xk−1), we have
the following property for (2.4) which is very natural to impose on our valuations..

Property 2 A consistent renormalisation procedure should produce valuations Π
such that for any connected Γ with k legs, one has (ΠDelk Γ)(ϕ) = (ΠΓ)(ιkϕ) for

all compactly supported test functions ϕ on S
k−1.

(Note that the right hand side is well-defined by Remark 2.2 even though ιkϕ
is no longer compactly supported.) To formulate our third property, it will be
useful to have a notation for our test functions. We write Dk for the set of all
C∞ functions on S

k with compact support. It will be convenient to consider the
following subspaces of Dk. Let A be a collection of subsets of {1, . . . , k} such
that every setA ∈ Acontains at least two elements. Then, we write D

(A)
k ⊂ Dk for

the set of such functions ϕ which vanish in a neighbourhood of the set ∆(A)
k ⊂ S

k

given by
∆(A)

k = {y ∈ S
k : ∃A ∈ Awith yi = yj ∀i, j ∈ A} . (2.8)

Because of this definition, we also call a collection A as above a “collision set”.
Note that in particular one has D

(6#)

k = Dk.
A first important question to address then concerns the conditions under which

the expression (2.4) converges. A natural notion then is that of the degree of a
subgraph of a Feynman diagram. In this article, we define a subgraph Γ̄ ⊂ Γ to
be a subset Ē of the collection E⋆ of internal edges and a subset V̄⊂ V⋆ of the
internal vertices such that V̄consists precisely of those vertices incident to at least
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one edge in Ē. (In particular, isolated nodes are not allowed in Γ̄.) Given such a
subgraph Γ̄, we then set

deg Γ̄
def
=

∑

e∈Ē

deg t(e) + d(|V̄| − 1) . (2.9)

We define the degree of the full Feynman diagram Γ in exactly the same way, with
Ē and V̄ replaced by E⋆ and V⋆. One then has the following result initially due
to Weinberg [Wei60]. See also [HQ15, Thm A.3] for the proof of a slightly more
general statement which is also notationally closer to the setting considered here.

Proposition 2.3 If Γ is a Feynman diagram with k legs such that deg Γ̄ > 0 for

every subgraph Γ̄ ⊂ Γ, then the integral in (2.5) is absolutely convergent for every

ϕ ∈ Dk.

We will henceforth call a subgraph Γ̄ ⊂ Γ divergent if deg Γ̄ ≤ 0. A virtually
identical proof actually yields the following refined statement which tells us very
precisely where exactly there is a need for renormalisation.

Proposition 2.4 Let Γ be a Feynman diagram with k legs and let Abe a collision

set such that, for every connected divergent subgraph Γ̄ ⊂ Γ, there exists A ∈ A

such that every leg in A is adjacent to Γ̄. Then (2.5) is absolutely convergent for

every ϕ ∈ D
(A)
k .

Remark 2.5 Here and below we say that an edge e is adjacent to a subgraph Γ̄ ⊂ Γ
(possibly itself consisting only of a single edge) if e is not an edge of Γ̄, but shares
a vertex with such an edge.

Proof. Since the main idea will be useful in the general result, we sketch it here.
Note first that we can assume without loss of generality that, for every A ∈ A, the
vertices of V⋆ to which the legs in A are attached are all distinct, since otherwise
(2.5) vanishes identically for ϕ ∈ D

(A)
k .

The key remark is that, for every configuration of points x ∈ S
V⋆ we can find a

binary tree T with leaves given by V⋆ and a label nu ∈ N for every inner vertex u
of T in such a way that n is increasing when going from the root to the leaves of
T and, for any v, v̄ ∈ V⋆, one has

C−12−nu ≤ ‖xv − xv̄‖ ≤ C2−nu , (2.10)

where u = v ∧ v̄ is the least common ancestor of v and v̄ in T . Here, the constant
C only depends on the size of V⋆. (Simply take for T the minimal spanning tree of
the point configuration.) Writing T = (T, n) for this data, we then let DT ⊂ S

V⋆ be
the set of configurations giving rise to the data T. By analogy with the construction
of [Hep66], we call DT a “Hepp sector”.
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Remark 2.6 While the type of combinatorial data (T, n) used to index Hepp
sectors is identical to that appearing in “Gallavotti-Nicolo trees” [?, ?] and the
meaning of the index n is similar in both cases, there does not appear to be a direct
analogy between the terms indexed by this data in both cases.

Remark 2.7 Thanks to the tree structure of T , the quantity dT given by dT(v, v̄) =
2−nu as above is an ultrametric.

Writing n(e) for the value of ne↑ , with e↑ = e− ∧ e+, the integrand of (2.5) is
then bounded by some constant times

∏

e∈E⋆
2−n(e) deg t(e). Identifying T with its

set of internal nodes, one can also show that the measure of DT is bounded by
∏

u∈T 2−dnu . Finally, by the definition of D(A)
k , there exists a constant N0 such that

the integrand vanishes on sets DT such that supA∈AnA↑ ≥ N0, where A↑ is the
least common ancestor in T of the collection of elements of V⋆ incident to the legs
in A. Writing

TA = {(T, n) : sup
A∈A

nA↑ < N0} ,

we conclude that (2.5) is bounded by some constant multiple of

∑

T∈TA

∏

u∈T

2−ηu , η = d+
∑

e∈E⋆

1e↑ deg t(e) . (2.11)

We now note that the assumption on Aguarantees that, for every node u ∈ T , one
has either

∑

v≥u ηv > 0, or there exists some A ∈ Asuch that u ≤ A↑. In the latter
case, nu is bounded from above by N0. Furthermore, as a consequence of the fact
that each connected component of Γ has at least one leg and the kernels Kt are
compactly supported, (2.5) vanishes on all Hepp sectors with some nu sufficiently
negative. Combining these facts, and performing the sum in (2.11) “from the
leaves inwards” as in [HQ15, Lem. A.10], it is then straightforward to see that it
does indeed converge, as claimed.

In other words, Proposition 2.4 tells us that the only region in which the integrand
of (2.5) diverges in a non-integrable way consists of an arbitrarily small neighbour-
hood of those points x for which there exists a divergent subgraph Γ̄ = (V̄, Ē)

such that xu = xv for all vertices u, v ∈ V̄. It is therefore very natural to impose
the following.

Property 3 A consistent renormalisation procedure should produce valuations

Π that agree with (2.4) for test functions and Feynman diagrams satisfying the

assumptions of Proposition 2.4.

Finally, a natural set of relations of the canonical valuation Π given by (2.4)
which we would like to retain is those given by integration by parts. In order
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to formulate this, it is convenient to introduce the notion of a half-edge. A half-
edge is a pair (e, v) with e ∈ E and v ∈ {e+, e−}. It is said to be incoming if
v = e+ and outgoing if v = e−. Given an edge e, we also write e← and e→ for
the two half-edges (e, e−) and (e, e+). Given a Feynman diagram Γ, a half-edge
(e, v), and k ∈ Nd, we then write ∂k

(e,v)Γ for the element of Tobtained from Γ by
replacing the decoration t of the edge e by t(k) and then multiplying the resulting
Feynman diagram by (−1)|k| if the half-edge (e, v) is outgoing. We then write
∂T for the smallest subspace of Tsuch that, for every Feynman diagram Γ, every
i ∈ {1, . . . , d} and every inner vertex v ∈ V⋆ of Γ, one has

∑

e∼v

∂δi
(e,v)Γ ∈ ∂T , (2.12)

where e ∼ v signifies that the edge e is incident to the vertex v and δi is the
ith canonical element of Nd. By integration by parts, it is immediate that if the
kernels Kt are all smooth, then the canonical valuation (2.4) satisfies Π∂T = 0.
It is therefore natural to impose the following.

Property 4 A consistent renormalisation procedure should produce valuations Π
that vanish on ∂T.

Setting H= T/∂T, we can therefore consider a valuation as a map Π: H→ S.
Note that since ∂Tis an ideal of Twhich respects its grading, H is again a graded
algebra. Furthermore, since ∂T is invariant under the action of the symmetric
group, Sk acts naturally on Hk. In particular, Property 1 can be formulated in H

rather than Tand it is not difficult to see that the deletion operation Delk introduced
in Property 2 also makes sense on H. This motivates the following definition.

Definition 2.8 A valuation Π: H→ S is consistent for the kernel assignment K
if it satisfies Properties 1, 2 and 3.

2.2 Some algebraic operations on Feynman diagrams

In order to satisfy Property 3, we will consider valuations that differ from the
canonical one only by counterterms of the same form, but with some of the factors
of (2.4) corresponding to divergent subgraphs replaced by a suitable derivative of
a delta function, just like what we did in (2.7).

These counterterms can again be encoded into Feynman diagrams with the
same number of legs as the original diagram, multiplied by a suitable weight. We
are therefore looking for a procedure which, given a smooth kernel assignment
K ∈ K−∞, builds a linear mapMK : T→ Tsuch that if we define a “renormalised”
valuation Π̂K by

Π̂KΓ = ΠKMKΓ , (2.13)
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withΠK the canonical valuation given by (2.4), thenK 7→ Π̂K is a renormalisation
procedure which extends continuously to all of K−0 . We would furthermore like
MK to differ from the identity only by terms of the form described above, obtained
by contracting divergent subgraphs to a derivative of a delta function.

The procedure (2.7) is exactly of this form with

MK
t

0

0

= t

0

0

−
∑

|k|+deg t≤−d

ck · 0 k , ck =
1

k!

∫

S

xkKt(x) dx .

(2.14)
Note that the condition deg t ≤ −d which is required for MK to differ from the
identity is precisely the condition that the subgraph t is divergent, which
then guarantees that this example satisfies Property 3.

It is natural to index the constants appearing in the terms of such a renormalisa-
tion map by the corresponding subgraphs that were contracted. These subgraphs
then have no legs anymore, but may require additional decorations describing the
powers of x appearing in the expression for ck above. We therefore give the fol-
lowing definition, where the choice of terminology is chosen to be consistent with
the QFT literature.

Definition 2.9 A vacuum diagram consists of a Feynman diagram Γ = (V, E)

with exactly one leg per connected component, endowed additionally with a node
decoration n : V⋆ → Nd. We also impose that each leg has label δ. We say that a
connected vacuum diagram is divergent if degΓ ≤ 0, where

degΓ =
∑

e∈E

t(e) +
∑

v∈V

|n(v)|+ d(|V| − 1) .

We extend this to arbitrary vacuum diagrams by imposing that deg(Γ1 • Γ2) =
degΓ1 + degΓ2.

One should think of a connected vacuum diagram Γ as encoding the constant

ΠK
−Γ

def
=

∫

SV⋆\{v⋆}

∏

e∈E⋆

Kt(e)(xe+ − xe−)
∏

w∈V⋆

(xw − xv⋆)n(w) dx (2.15)

where v⋆ is the element of V⋆ that has the unique leg attached to it. This is then
extended multiplicatively to all vacuum diagrams. In view of this, it is also natural
to ignore the ordering of the legs for vacuum diagrams, and we will always do this
from now on.

Write now T̂− for the algebra of all vacuum diagrams such that each connected
component has at least one internal edge and by T− ⊂ T̂− for the subalgebra
generated by those diagrams such that each connected components is divergent.
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Since we ignored the labelling of legs, the product • turns T̂− into a commutative
algebra. Note that if we write J+ ⊂ T̂− for the ideal generated by all vacuum
diagrams Γ with degΓ > 0, then we have a natural isomorphism

T− ≈ T̂−/J+ .

Similarly to above, it is natural to identify vacuum diagrams related to each other
by integration by parts, but also those related by changing the location of the leg(s).
In order to formalise this, we reinterpret a connected vacuum diagram as above as
a Feynman diagram “with 0 legs”, but with one of the vertices being distinguished,
which is of course completely equivalent, and we write it as (Γ, v⋆, n). With this
notation, we define ∂T̂− as the smallest ideal of T̂− such that, for every connected
(Γ, v⋆, n) one has the following.

• For every vertex v ∈ V\ {v⋆} and every i ∈ {1, . . . , d}, one has

∑

e∼v

(∂δi
(e,v)Γ, v⋆, n) + n(v)i(Γ, v⋆, n− δi1v) ∈ ∂T̂− , (2.16)

where 1v denotes the indicator function of {v}.

• One has
∑

e∼v⋆

(∂δi
(e,v⋆)Γ, v⋆, n) −

∑

v∈V̄

n(v)i(Γ, v⋆, n− δi1v) ∈ ∂T̂− , (2.17)

• For every vertex v ∈ V, one has

(Γ, v⋆, n) −
∑

m : V→Nd

(−1)|m|
(

n

m

)

(Γ, v, n−m+ Σm1v⋆) ∈ ∂T̂− , (2.18)

where Σm =
∑

um(u) and we use the conventionm! =
∏

u∈V

∏d
i=1

m(u)i!
to define the binomial coefficients, with the additional convention that the
coefficient vanishes unless m ≤ n everywhere.

Remark 2.10 One can verify that if K ∈ K−∞ and ΠK
− is given by (2.15), then

∂T̂− ∈ kerΠK
− . In the case of (2.16) and (2.17), this is because the integrand is

then a total derivative with respect to (xv)i and (xv⋆ )i respectively. In the case of
(2.18), this can be seen by writing (xw − xv⋆)n(w) = ((xw − xv) − (xv⋆ − xv))n(w)

and applying the multinomial theorem.

Remark 2.11 The expressions (2.16) and (2.17) are consistent with (2.12) in the
special case n = 0. Considering the case v = v⋆ in (2.18), it is also straightforward
to verify that (Γ, v⋆, n) ∈ ∂T̂− as soon as n(v⋆) 6= 0.
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As before, we then write Ĥ− as a shorthand for T̂−/∂T̂− and similarly for H−.
(This is well-defined since ∂T̂− does not mix elements of different degree.) As a
consequence of Remark 2.10, we see that every K ∈ K−∞ yields a character ΠK

−

of Ĥ− and therefore also of H−.

1 1

1

Figure 2: Example of a subgraph
(shaded) and its boundary (green).

Given a Feynman diagram Γ and a subgraph
Γ̄ ⊂ Γ, we can (and will) identify Γ̄ with an ele-
ment of Ĥ−, obtained by setting all the node dec-
orations to 0. By (2.18) we do not need to specify
where we attach leg(s) to Γ̄ since these elements
are all identified in Ĥ−. We furthermore write ∂Γ̄
for the set of all half-edges adjacent to Γ̄. Figure 2
shows an example of a Feynman diagram with a
subgraph Γ̄ shaded in grey and ∂Γ̄ indicated in
green. Legs can also be part of ∂Γ̄ as is the case
in our example, but they can not be part of Γ̄ by our definition of a subgraph.
Note also that the edge joining the two vertices at the top appears as two distinct
half-edges in ∂Γ̄. Given furthermore a map ℓ : ∂Γ̄ → Nd (canonically extended to
vanish on all other half-edges of Γ), we then define the following two objects.

• A vacuum diagram (Γ̄, πℓ) which consists of the graph Γ̄ endowed with the
edge decoration inherited from Γ, as well as the node decoration n = πℓ
given by (πℓ)(v) =

∑

e : (e,v)∈∂Γ ℓ(e, v).

• A Feynman diagram Γ/(Γ̄, ℓ) obtained by contracting the connected com-
ponents of Γ̄ to nodes and applying ℓ to the resulting diagram in the sense
that, for edges e ∈ E\ Ē adjacent to ∂Γ̄ and with label (in Γ) given by t,
we replace their label by t(ℓ(e←)+ℓ(e→)).

In the example of Figure 2, where non-zero values of ℓ are indicated by small
labels, we have

(Γ̄, ℓ) =
1

1 1

, Γ/(Γ̄, ℓ) =

2

1

where a label k on an edge means that if it had a decoration t in Γ, then it now has
a decoration t(k). Given a map ℓ : ∂Γ̄ → Nd as above, we also write “out ℓ” as a
shorthand for the restriction of ℓ to outgoing half-edges. With these notations at
hand, we define a map ∆: T→ H− ⊗ Hby

∆Γ =
∑

Γ̄⊂Γ

∑

ℓ : ∂Γ̄→Nd

(−1)| out ℓ|

ℓ!
(Γ̄, πℓ) ⊗ Γ/(Γ̄, ℓ) , (2.19)
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where we use the same conventions for factorials as in (2.18). Note that since
the right hand side is identified with an element of H− ⊗ H, this sum is finite.
Indeed, unless (Γ̄, πℓ) ∈ T−, which only happens for finitely many choices of ℓ,
the corresponding factor is identified with 0 in H−.

Remark 2.12 For any fixed Γ this sum is actually finite since there are only finitely
many subgraphs and since, for large enough ℓ, (Γ̄, πℓ) is no longer in T−.

Remark 2.13 The factor (−1)| out ℓ| appearing here encodes the fact that for an edge
e, having ℓ(e, u) = k means that in the resulting Feynman diagram Γ/(Γ̄, ℓ), one
would like to replace the factor Kt(xe+ − xe−) by its kth derivative with respect
to xu, which is precisely what happens when one replaces the corresponding
connected component of Γ̄ by a derivative of a delta function. In the case when
u = e−, namely when the half-edge is outgoing, this is indeed the same as
(−1)|k|(DkKt)(xe+ − xe−), while the factor (−1)|k| is absent for incoming half-
edges.

It turns out that one has the following.

Proposition 2.14 The map ∆ is well-defined as a map from H to H− ⊗ H.

Before we start our proof, recall the following version of the Chu-Vandermonde
identity

Lemma 2.15 Given finite sets S, S̄ and maps π : S → S̄ and ℓ : S → N, we define

π⋆ℓ : S̄ → N by π⋆ℓ(x) =
∑

y∈π−1(x) ℓ(y).

Then, for every finite set S and every k : S → N, one has the identity

∑

ℓ :π⋆ℓ

(

k

ℓ

)

=

(

π⋆k

π⋆ℓ

)

,

where the sum runs over all possible choices of ℓ such that π⋆ℓ is fixed.

Proof of Proposition 2.14. We first show that for Γ ∈ T the right hand side of
(2.19) is well-defined as an element of H−⊗H, which is a priori not obvious since
we did not specify where the legs of (Γ̄, ℓ) are attached. Our aim therefore is to
show that, for any fixed L ∈ Nd, the expression

∑

ℓ : ∂Γ̄→Nd

Σℓ=L

(−1)| out ℓ|

ℓ!
(Γ̄, v, πℓ) ⊗ Γ/(Γ̄, ℓ) (2.20)

is independent of v ∈ V̄ in H− ⊗ H. By Remark 2.11, we can restrict the sum
over ℓ to those values such that ℓ vanishes on the set Av of all half-edges incident
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to v since (Γ̄, v, ℓ) = 0 in H− for those ℓ for which this is not the case. Fixing
some arbitrary u 6= v and using (2.18) as well as Lemma 2.15, we then see that
(2.20) equals

∑

ℓ : ∂Γ̄\Av→Nd

Σℓ=L

∑

m : ∂Γ̄→Nd

(−1)| out ℓ|+|m|

ℓ!

(

ℓ

m

)

(Γ̄, u, πℓ− πm+ Σm1v) ⊗ Γ/(Γ̄, ℓ) .

Writing k = ℓ−m, we rewrite this expression as

∑

k : ∂Γ̄\Av→Nd

Σk≤L

∑

m : ∂Γ̄\Av→Nd

Σm=L−Σk

(−1)| out k|+| out m|+|m|

k!m!
(Γ̄, u, πk + Σm1v) ⊗ Γ/(Γ̄, k +m) .

At this stage we note that, as a consequence of (2.12), we have for every subset
A ⊂ ∂Γ̄ and every M ∈ Nd the identity

∑

m : ∂Γ̄\A→Nd

Σm=M

(−1)| out m|

m!
Γ/(Γ̄, k +m) =

∑

n : A→Nd

Σn=M

(−1)|n|+| outn|

n!
Γ/(Γ̄, k + n) .

Inserting this into the above expression and noting that for functions n supported
on Av one has πn = Σn1v, we conclude that it equals

∑

k : ∂Γ̄\Av→Nd

Σk≤L

∑

n : Av→Nd

Σn=L−Σk

(−1)| out k|+| out n|

k!n!
(Γ̄, u, πk + πn) ⊗ Γ/(Γ̄, k + n) .

Setting ℓ = k + n and noting that k!n! = (k + n)! since k and n have disjoint
support, we see that this is indeed equal to (2.20) with v replaced by u, as claimed.

It remains to show that ∆ is well-defined on H, namely that ∆τ = 0 in H−⊗H

for τ ∈ ∂T. Choose a Feynman diagram Γ, an inner vertex v ∈ V⋆, an index
i ∈ {1, . . . , d}, and a subgraph Γ̄ ⊂ Γ. Writing Āv for the half-edges in Γ̄ adjacent
to v andAv for the remaining half-edges adjacent to v (so thatAv ⊂ ∂Γ̄), it suffices
to show that

∑

h∈Av

∑

ℓ : ∂Γ̄→Nd

(Γ̄,ℓ)∈T−

(−1)| out ℓ|

ℓ!
(Γ̄, πℓ) ⊗ ∂δi

h Γ/(Γ̄, ℓ)

+
∑

h∈Āv

∑

ℓ : ∂Γ̄→Nd

∂i,v (Γ̄,ℓ)∈T−

(−1)| out ℓ|

ℓ!
∂δi
h (Γ̄, πℓ) ⊗ Γ/(Γ̄, ℓ) = 0

(2.21)

in H−×H, where we used the shorthand notation ∂i,v(Γ̄, ℓ) ∈ T− for the condition
∂δi
h (Γ̄, ℓ) ∈ T−, which is acceptable since this condition does not depend on which
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half-edge h one considers. If v is not contained in Γ̄, then the second term vanishes
and Av consists exactly of all edges adjacent to v in Γ/(Γ̄, ℓ), so that the first term
vanishes as well by (2.12). If v is contained in Γ̄, then we attach the leg of the
corresponding connected component Γ̄0 of Γ̄ to v itself, so that in particular the
sum over ℓ can be restricted to values supported on ∂Γ̄ \Av. By (2.17), the second
term is then equal to

∑

h∈∂Γ̄0\Av

∑

ℓ : ∂Γ̄\Av→Nd

∂i,v (Γ̄,ℓ)∈T−

(−1)| out ℓ|

ℓ!
ℓ(h)i(Γ̄, v, π(ℓ− δi1h)) ⊗ Γ/(Γ̄, ℓ) ,

which can be rewritten as
∑

h∈∂Γ̄0\Av

∑

ℓ : ∂Γ̄→Nd

(Γ̄,ℓ)∈T−

(−1)| out ℓ|+δh∈out

ℓ!
(Γ̄, v, πℓ) ⊗ Γ/(Γ̄, ℓ+ δi1h) .

Inserting this into (2.21), we conclude that this expression equals

∑

h∈∂Γ̄0

∑

ℓ : ∂Γ̄→Nd

(Γ̄,ℓ)∈T−

(−1)| out ℓ|

ℓ!
(Γ̄, πℓ) ⊗ ∂δi

h Γ/(Γ̄, ℓ)

which vanishes in H− ⊗ Hby (2.12) since the half-edges in ∂Γ̄0 are precisely all
the half-edges adjacent in Γ/(Γ̄, ℓ) to the node that Γ̄0 was contracted to.

For any element g : H− → R of the dual of H−, we now have a linear map
Mg : H→ Hby

MgΓ = (g ⊗ id)∆Γ ,

which leads to a valuation ΠK
g : H→ Sby setting

ΠK
g = ΠK ◦Mg (2.22)

as in (2.13), with ΠK the canonical valuation (2.4). Note that this is well-defined
since ΠK∂T= 0, as already remarked. In particular, we can also view ΠK

g as a
map from T to S.

For any choice of g (depending on the kernel assignment K), such a valuation
then automatically satisfies Properties 3 and 4, since these were encoded in the
definition of the space H, as well as Property 2 since the action of ∆ commutes
with the operation of “amputation of the kth leg” on the subspace on which the
latter is defined. In general, such a valuation may fail to satisfy Property 1, but if
we restrict ourselves to elements g : H− → R that are also characters, one has

Mg(Γ1 • Γ2) = (MgΓ1) • (MgΓ2) .

Since ∂T is an ideal, this implies that the valuation ΠK
g is multiplicative as a map

from T to S, as required by Property 1. We have therefore shown the following.
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Proposition 2.16 For every character g : H− → R, the valuationΠK
g is consistent

for K in the sense of Definition 2.8.

Writing G− for the space of characters of T−, it is therefore natural to define a
“consistent renormalisation procedure” as a map R: K−∞ → G− such that the map

K 7→ Π̂K = ΠK ◦MR(K) , (2.23)

where ΠK denotes the canonical valuation given by (2.4), extends continuously to
all of K−0 . Our question now turns into the question whether such a map exists.

Remark 2.17 We do certainly not want to impose that R extends continuously
to all of K−0 since this would then imply that ΠK extends to all of K−0 which is
obviously false.

2.3 A Hopf algebra

In this subsection, we address the following point. We have seen that every
character g of H− allow us to build a new valuationΠg from the canonical valuation
Π associated to a smooth kernel assignment. We can then take a second character
h and build a new valuation Πg ◦M

h. It is natural to ask whether this would give
us a genuinely new valuation or whether this valuation is again of the form Πḡ for
some character ḡ. In other words, does G− have a group structure, so that g 7→ Mg

is a left action of this group on the space of all valuations?
In order to answer this question, we first define a map ∆− : T̂− → H− ⊗ Ĥ− in

a way very similar to the map ∆, but taking into account the additional labels n:

∆−(Γ, v⋆, n) =
∑

Γ̄⊂Γ

∑

ℓ̄ : ∂Γ̄→Nd

n̄ : V̄→Nd

(−1)| out ℓ̄|

ℓ̄!

(

n

n̄

)

(Γ̄, n̄+ πℓ̄) ⊗ (Γ, v⋆, n− n̄)/(Γ̄, ℓ̄) .

(2.24)
Here, we define (Γ, v⋆, n)/(Γ̄, ℓ̄) similarly to before, with the node-label of the
quotient graph obtained by summing over the labels of all the nodes that get
contracted to the same node. If Γ̄ completely contains one (or several) connected
components of Γ, then this definition could create graphs that contain isolated
nodes, which is forbidden by our definition of T̂−. Given (2.15), it is natural to
identify isolated nodes with vanishing node-label with the empty diagram 1, while
we identify those with non-vanishing node-labels with 0. In particular, it follows
that

∆−τ = τ ⊗ 1 + 1 ⊗ τ +∆′τ ,

where each of the terms appearing in ∆′τ is such that both factors contain at least
one edge.

Note the strong similarity with [BHZ16, Def. 3.3] which looks formally almost
identical, but with graphs replaced by trees. As before, one then has
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Proposition 2.18 The map ∆− is well-defined both as a map Ĥ− → H− ⊗ Ĥ−
and a map H− → H− ⊗ H−.

It follows immediately from the definitions that ∆− is multiplicative. What is
slightly less obvious is that it also has a nice coassociativity property as follows.

Proposition 2.19 The identities

(∆− ⊗ id)∆ = (id ⊗∆)∆ , (∆− ⊗ id)∆− = (id ⊗∆−)∆− (2.25)

hold between maps B→ H− ⊗B⊗B for B= H in the case of the first identity

and for B∈ {H−, Ĥ−} in the case of the second one.

Proof. We only verify the second identity since the first one is essentially a special
case of the second one. The difference is the presence of legs, which are never
part of the subgraphs appearing in the definition of ∆, but otherwise play the same
role as a “normal” edge.

Fix now a Feynman diagram Γ as well as two subgraphs Γ1 and Γ2 with the
property that each connected component of Γ1 is either contained in Γ2 or vertex-
disjoint from it. We also write Γ̄ = Γ1 ∪ Γ2 and Γ1,2 = Γ1 ∩ Γ2. There is then a
natural bijection between the terms appearing in (∆−⊗ id)∆− and those appearing
in (id⊗∆−)∆− obtained by noting that first extracting Γ̄ from Γ and then extracting
Γ1 from Γ̄ is the same as first extracting Γ1 from Γ and then extracting Γ2/Γ1,2

from Γ/Γ1. It therefore remains to show that the labellings and combinatorial
factors appearing for these terms are also the same. This in turn is a consequence
from a generalisation of the Chu-Vandermonde identity and can be obtained in
almost exactly the same way as [BHZ16, Prop. 3.9].

If we write 1 for the empty vacuum diagram and 1
∗ for the element of G−

that vanishes on all non-empty diagrams, then we see that (H−,∆
−, •, 1, 1

∗) is
a bialgebra. Since it also graded (by the number of edges of a diagram) and
connected (the only diagram with 0 edges is the empty one), it is a Hopf algebra
so that G− is indeed a group with product

f ◦ g
def
= (f ⊗ g)∆− ,

and inverse g−1 = gA, where A is the antipode. The first identity in (2.25) then
implies that the map g 7→ Mg = (g ⊗ id)∆ does indeed yield a group action on
the space of valuations, thus answering positively the question asked at the start of
this section.
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2.4 Twisted antipodes and the BPHZ theorem

An arbitrary character g of H− is uniquely determined by its value on connected
vacuum diagrams Γ with degΓ ≤ 0. Comparing (2.14) with (2.19), this would
suggest that a natural choice of renormalisation procedure R is given by simply
setting

R(K)Γ = −ΠK
−Γ ,

as this would indeed reproduce the expression (2.7). Unfortunately, while this
choice does yield valuations that extend continuously to all kernel assignments in
K−0 for a class of “simple” Feynman diagrams, it fails to do so for all of them.

Following [CK00, CK01], a more sophisticated guess would be to set R(K)Γ =
ΠK
−AΓ, for A the antipode of H− endowed with the Hopf algebra structure de-

scribed in the previous section. The reason why this identity also fails to do the
trick can be illustrated with the following example. Consider the case d = 1 and
two labels with |t1| = −1/3 and |t2| = −4/3. Drawing edges decorated with t1 in
black and edges decorated with t2 in blue, we then consider

Γ = ,

which has degree degΓ = 0. Since Γ has only one leg, the naive valuation ΠKΓ
can be identified with the real number

ΠKΓ = (K1 ∗K2 ∗K1)(0) ,

where we wrote Ki
def
= Kti

and ∗ denotes convolution. Since this might diverge
for a generic kernel assignment in K−0 , even if K2 is replaced by its renormalised
version, there appears to be no good canonical renormalised value for Π̂KΓ, so we
would expect to just have Π̂KΓ = 0.

Let’s see what happens instead if we choose the renormalisation procedure
R(K)Γ = ΠK

−AΓ. It follows from the definition of ∆ that

∆Γ = 1 ⊗ + ⊗ + ⊗ , (2.26)

since and are the only subgraphs of negative degree, but their degree
remains above −1 so that no node-decorations are added. Note furthermore that
in H− one has the identities

∆− = ⊗ 1 + 1 ⊗ , ∆− = ⊗ 1 + 1 ⊗ .

The reason why there is no additional term analogous to the middle term of (2.26)
appearing in the second identity is that the corresponding factor would be of
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positive degree and therefore vanishes when viewed as an element of H−. As a
consequence, we have Aτ = −τ in both cases, so that the first and last terms of
(2.26) cancel out and we are eventually left with

Π̂KΓ = −(K1 ∗K1)(0) ·K2(0) ,

which is certainly not desirable since it might diverge as well.
The way out of this conundrum is to define a twisted antipode Â: H− → Ĥ−

which is defined by a relation very similar to that defining the antipode, but this
time guaranteeing that the renormalised valuation vanishes on those diagrams
that encode “potentially diverging constants” as above. Here, the renormalised
valuation is defined by setting

R(K)Γ = ΠK
− ÂΓ , (2.27)

where ΠK
− is defined by (2.15). Writing M: Ĥ− ⊗ Ĥ− → Ĥ− for the product, we

define Â to be such that
M(Â⊗ id)∆−Γ = 0 , (2.28)

for every non-empty connected vacuum diagram Γ ∈ Ĥ− with degΓ ≤ 0. At
first sight, this looks exactly like the definition of the antipode. The difference is
that the map ∆− in the above expression goes from Ĥ− to H− ⊗ Ĥ−, so that no
projection onto diverging diagrams takes place on the right factor. If we view H−
as a subspace of Ĥ−, then the antipode satisfies the identity

M(A⊗ π−)∆−Γ = 0 ,

where π− : Ĥ− → H− is the projection given by quotienting by the ideal J+
generated by diagrams with strictly positive degree. We have the following simple
lemma.

Lemma 2.20 There exists a unique map Â: H− → Ĥ− satisfying (2.28). Fur-

thermore, the map ΠK
bphz

given by (2.23) with R(K) = ΠK
− Â is indeed a valuation.

Proof. The existence and uniqueness of Âis immediate by performing an induction
over the number of edges. Defining ∆′ (k) : H− → Ĥ

⊗(k+1)
− inductively by∆′ (0) = ι

and then
∆′ (k+1) = (∆′ (k) ⊗ id)∆′ι ,

where ι : H− → Ĥ− is the canonical injection, one obtains the (locally finite)
Neumann series

Â=
∑

k≥0

(−1)k+1M(k)∆′ (k) , (2.29)
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where M(k) : Ĥ⊗(k+1)
− → Ĥ− is the multiplication operator. The uniqueness also

immediately implies that Â is multiplicative, so that R(K) as defined above is
indeed a character for every K ∈ K−∞.

Definition 2.21 We call the renormalisation procedure defined by R(K) = ΠK
− Â

the “BPHZ renormalisation”.

It follows from (2.29) that in the above example the twisted antipode satisfies

Â = − + ,

so that

(Â⊗ id)∆Γ = 1 ⊗ − ⊗ − ⊗ + ⊗ ,

which makes it straightforward to verify that indeed ΠK
bphz

Γ = 0. The following
general statement should make it clear that this is indeed the “correct” way of
renormalising Feynman diagrams.

Proposition 2.22 The BPHZ renormalisation is characterised by the fact that, for

every k ≥ 1 and every connected Feynman diagram Γ with k legs and degΓ ≤ 0,

there exists a constantC such that ifϕ is a test function on S
k of the formϕ = ϕ0 ·ϕ1

such that ϕ1 depends only on x1 + . . .+ xk, ϕ0 depends only on the differences of

the xi, and there exists a polynomial P with degP + degΓ ≤ 0 and

ϕ0(x1, . . . , xk) = P (x2 − x1, . . . , xk − x1) , |x| ≤ C , (2.30)

then (ΠK
bphz

Γ)(ϕ) = 0.

Remark 2.23 One way to interpret this statement is that, once we have defined
ΠK

bphz
Γ for test functions in D

(A)
k with A = {{1, . . . , k}}, the canonical way of

extending it to all test functions is to subtract from it the linear combination of
derivatives of delta functions which has precisely the same effect when testing it
against all polynomials of degree at most − degΓ.

Proof. The statement follows more or less immediately from the following obser-
vation. Take a valuation of the form ΠK

g as in (2.22) for some K ∈ K−∞ and
some g ∈ G−. Fixing the Feynman diagram Γ from the statement, we write
∂Γ = {[1], . . . , [k]} for its k legs, and we fix a function n : ∂Γ → Nd with
|n|+ degΓ ≤ 0. Write furthermore n̄ : ∂Γ → Nd for the function such that the ℓth
leg has label δ(n̄([ℓ])). We assume without loss of generality that n̄([1]) = 0 since
we can always reduce ourselves to this case by (2.12).
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Let then P be given by

P (x) = Pn(x) =

[k]
∏

i=[2]

(xi − x[1])
n(i) ,

let ϕ0 be as in (2.30), and let ϕ1 be a test function depending only on the sums
of the coordinates and integrating to 1. We then claim that, writing Γ̄ ⊂ Γ for
the maximal subgraph where we only discarded the legs and v⋆ for the vertex of Γ
incident to the first leg, one has

(ΠK
g Γ)(ϕ) =

(

n

n̄

)

(g ⊗ ΠK
− )∆−(Γ̄, v⋆, π(n− n̄)) .

(In particular (ΠK
g Γ)(ϕ) = 0 unless n̄ ≤ n.) Indeed, comparing (2.5) to (2.15), it

is clear that this is the case when g = 1
∗, noting that

Dn̄([2])
2 · · ·Dn̄([k])

k Pn =

(

n

n̄

)

Pn−n̄ . (2.31)

The general case then follows by comparing the definitions of ∆ and ∆−, noting
that by (2.31) the effect of the label n̄ in (2.24) is exactly the same of that of
the components of ℓ supported on the “legs” in (2.19). In other words, when
comparing the two expressions one should set ℓ̄(h) = ℓ(h) for the half-edges h
that are not legs and n̄(v) =

∑

ℓ(e, v), where the sum runs over all legs (if any)
adjacent to v.

The claim now follows immediately from the definition of the twisted antipode
and the BPHZ renormalisation:

(ΠK
bphz

Γ)(ϕ) =

(

n

n̄

)

(ΠK
− Â⊗ΠK

− )∆−(Γ̄, v⋆, π(n− n̄))

=

(

n

n̄

)

ΠK
−M(Â⊗ id)∆−(Γ̄, v⋆, π(n− n̄)) = 0 ,

since the degrees of Γ and of (Γ̄, v⋆, π(n−n̄)) agree (and are negative) by definition.

3 Statement and proof of the main theorem

We now have all the definitions in place in order to be able to state the BPHZ
theorem.

Theorem 3.1 The valuation ΠK
bphz

is consistent for K and extends continuously to

all K ∈ K−0 .
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By Proposition 2.16, we only need to show the continuity part of the state-
ment. Before we turn to the proof, we give an explicit formula for the valuation
ΠK

bphz
instead of the implicit characterisation given by (2.28). This is nothing but

Zimmermann’s celebrated “forest formula”.

3.1 Zimmermann’s forest formula

So what are these “forests” appearing in the eponymous formula? Given any
Feynman diagram Γ, the set G−Γ of all connected vacuum diagrams Γ̄ ⊂ Γ with
deg Γ̄ ≤ 0 is endowed with a natural partial order given by inclusion. A subset
F⊂ G−Γ is called a “forest” if any two elements of Fare either comparable in G−Γ
or vertex-disjoint as subgraphs of Γ.

Given a forest Fand a subgraph Γ̄ ∈ F, we say that Γ̄1 is a child of Γ̄ if Γ̄1 < Γ̄
and there exists no Γ̄2 ∈ Fwith Γ̄1 < Γ̄2 < Γ̄. Conversely, we then say that Γ̄ is
Γ̄1’s parent. (The forest structure of Fguarantees that its elements have at most
one parent.) An element without children is called a leaf and one without parent a
root. If we connect parents to their children in F, then it does indeed form a forest
with arrows pointing away from the roots and towards the leaves. We henceforth
write F−Γ for the set of all forests for Γ.

Given a diagram Γ, we now consider the space TΓ generated by all diagrams Γ̂
such that each connected component has either at least one leg or a distinguished
vertex v⋆, but not both. We furthermore endow Γ̂ with an Nd-valued vertex
decoration n supported on the leg-less components and, most importantly, with
a bijection τ : Ê → E between the edges of Γ̂ and those of Γ, such that legs
get mapped to legs. The operation of discarding τ yields a natural injection
TΓ →֒ T̂− ⊗ Tby keeping the components with a distinguished vertex in the first
factor and those with legs in the second factor. (The space TΓ itself however is
not a tensor product due to the constraint that τ is a bijection, which exchanges
information between the two factors.) We can also define ∂TΓ analogously to
(2.12) and (2.16)–(2.18), so that HΓ = TΓ/∂TΓ naturally injects into Ĥ− ⊗ H.

Given a connected subgraph γ ⊂ Γ, we then define a contraction operator Cγ

acting on HΓ in the following way. Given an element (Γ̂, n) ∈ TΓ, we write γ̂ for
the subgraph of Γ̂ such that τ is a bijection between the edges of γ̂ and those of γ.
If γ̂ is not connected, then we set Cγ(Γ̂, n) = 0. Otherwise, we set as in (2.24)

Cγ(Γ̂, n) =
∑

ℓ̄ : ∂γ→Nd

n̄ : Vγ→Nd

(−1)| out ℓ̄|

ℓ̄!
1deg(γ̂,n̄+πℓ̄)≤0

(

n

n̄

)

(γ̂, n̄+ πℓ̄) · (Γ̂, n− n̄)/(γ̂, ℓ̄) ,

(3.1)
with the obvious bijections between the edges of γ̂ · Γ̂/γ̂ and those of Γ. This time
we explicitly include the restriction to terms such that deg(γ̂, n̄ + πℓ̄) ≤ 0, which
replaces the projection to H− in (2.24). An important fact is then the following.
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Lemma 3.2 Let γ1, γ2 be two subgraphs ofΓ that are vertex-disjoint and let Γ̂ ∈ TΓ

be such that γ̂1 and γ̂2 are vertex disjoint. Then Cγ1 Cγ2Γ̂ = Cγ2 Cγ1Γ̂.

We will use the natural convention that 6# ∈ F−Γ . For any F ∈ F−Γ , we then
write CFΓ for the element of HΓ defined recursively in the following way. For
F= 6#, we set C6#Γ = Γ. For non-empty F, we write ̺(F) ⊂ F for the set of
roots of Fand we set recursively

CFΓ = CF\̺(F)

∏

γ∈̺(F)

CγΓ .

The order of the product doesn’t matter by Lemma 3.2, since the roots of F are
all vertex-disjoint. With these notations at hand, Zimmermann’s forest formula
[Zim69] then reads

Proposition 3.3 The BPHZ renormalisation procedure is given by the identity

(Â⊗ id)∆Γ = RΓ
def
=

∑

F∈F−
Γ

(−1)|F|CFΓ , (3.2)

where we implicitly use the injection HΓ →֒ Ĥ− ⊗ H for the right hand side.

Proof. This follows from the representation (2.29). Another way of seeing it is
to first note that R is indeed of the form (B⊗ id)∆Γ for some B: H− → Ĥ−
and to then make use of the characterisation (2.28) of the twisted antipode Â.
This implies that it suffices to show that RΓ = 0 for every connected Γ with a
distinguished vertex and a node-labelling such that degΓ ≤ 0.

The idea is to observe that F−Γ can be partitioned into two disjoint sets that are
in bijection with each other: those that contain Γ itself and the complement F̂−Γ of
those forest that don’t. Furthermore, it follows from the definition that CΓΓ = Γ,
so that
∑

F∈F−
Γ

(−1)|F|CFΓ =
∑

F∈F̂−
Γ

(−1)|F|(CFΓ−CF∪{Γ}Γ) =
∑

F∈F̂−
Γ

(−1)|F|(CFΓ−CFΓ) ,

which vanishes thus completing the proof.

In order to analyse (3.2), it will be very convenient to have ways of resumming
its terms in order to make cancellations more explicit. These resummations are
based on the following trivial identity. Given a finite set A and operators Xi with
i ∈ A, one has

∏

i∈A

(id −Xi) =
∑

B⊂A

(−1)B
∏

j∈B

Xj , (3.3)
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provided that the order in which the operators are composed is the same in each
term and that the empty product is interpreted as the identity. The right hand side
of this expression is clearly reminiscent of (3.2) while the left hand side encodes
cancellations if the Xi are close to the identity in some sense. If G−Γ itself happens
to be a forest, then F−Γ consists simply of all subsets of G−Γ , so that one can indeed
write

(Â⊗ id)∆Γ = RG−
Γ
Γ , (3.4)

where RFΓ is defined by R6#Γ = Γ and then via the recursion

RFΓ = RF\̺(F)

∏

γ∈̺(F)

(id − Cγ)Γ . (3.5)

In general however this is not the case, and this is precisely the problem of
“overlapping divergences”. In order to deal with this, we introduce the following
variant of (3.4) which still works in the general case. To formulate it, we introduce
the notion of a “forest interval” M for Γ which is a subset of F−Γ of the form
[M,M] in the sense that it consists precisely of all those forests F ∈ F−Γ such
that M ⊂ F ⊂ M. An alternative description of M is that there is a forest
δ(M) = M \M disjoint from M and such that M consists of all forests of the type
M∪Fwith F⊂ δ(M). Given a forest interval, we define an operation RM which
renormalises all subgraphs in δ(M) and contracts those subgraphs in M. In other
words, we set RM = RM

M
, where RF

M
is defined recursively by

RF
M
Γ = R

F\̺(F)

M

∏

γ∈̺(F)

C♯
γΓ , C♯

γ =

{

id − Cγ if γ ∈ δ(M),
−Cγ otherwise.

This definition is consistent with (3.5) in the sense that one has RF = RM for
M = [ 6#,F]. Combining Proposition 3.3 with (3.3), we then obtain the following
alternative characterisation of our renormalisation map.

Lemma 3.4 LetΓ be a Feynman diagram and letPbe a partition of F−Γ consisting

of forest intervals. Then, one has the identity (Â⊗ id)∆Γ =
∑

M∈PRMΓ.

3.2 Proof of the BPHZ theorem, Theorem 3.1

We now have all the ingredients in place to prove Theorem 3.1. We only need to
show that for every (connected) Feynman diagram Γ there are constants CΓ and
NΓ such that for every test function ϕ with compact support in the ball of radius 1
one has the bound

|(ΠK
bphz

Γ)(ϕ)| ≤ CΓ

∏

e∈E

|Kt(e)|NΓ
sup
|k|≤NΓ

‖D(k)ϕ‖L∞ , (3.6)
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where |Kt|N denotes the smallest constant C such that (2.2) holds for all |k| ≤ N .
The proof of (3.6) follows the same lines as that of the main result in [CH16],

but with a number of considerable simplifications:

• There is no “positive renormalisation” in the present context so that we do
not need to worry about overlaps between positive and negative renormali-
sations. As a consequence, we also do not make any claim on the behaviour
of (3.6) when rescaling the test function. In general, it is false that (3.6)
obeys the naive power-counting when ϕ is replaced by ϕλ and λ → 0 as in
[HQ15, Lem. A.7].

• The BPHZ renormalisation procedure studied in the present article is di-
rectly formulated at the level of graphs. In [BHZ16, CH16] on the other
hand, it is formulated at the level of trees (which are the objects indexing
a suitable family of stochastic processes) and then has to be translated into
a renormalisation procedure on graphs which, depending on how trees are
glued together in order to form these graphs, creates additional “useless”
terms.

• We only consider kernels with a single argument, corresponding to “normal”
edges in our graphs, while [CH16] deals with non-Gaussian processes which
then gives rise to Feynman diagrams containing some “multiedges”.

We therefore only give an overview of the main steps, but we hope that the style
of our exposition is such that the interested reader will find it possible to fill in the
missing details without undue effort.

As in the proof of Proposition 2.4, we break the domain of integration into
Hepp sectors DT and we estimate terms separately on each sector. The main trick
is then to resum the terms as in Lemma 3.4, but by using a partition PT that is
adapted to the Hepp sector T in such a way that the occurrences of (id− Cγ) create
cancellations that are useful on DT.

In order to formulate this, it is convenient to write all the terms appearing in
the definition of ΠK

bphz
Γ as integrals over the same set of variables. For this, we

henceforth fix a connected Feynman diagram Γ once and for all, together with an
arbitrary total order for its vertices.

We then define the space T̂Γ generated by connected Feynman diagrams Γ̄ with
edges and vertices in bijection with those of Γ via a map τ : (Ē, V̄) → (E, V),
together with a vertex labelling n, as well as a map d : Ē→ N which vanishes on
all legs of Γ̄. The goal of this map is to allow us to keep track on which parts of Γ
were contracted, as well as the structure of nested contractions: d measures how
“deep” a given edge lies within nested contractions. In particular, it is natural to
impose that d vanishes on legs since they are never contracted. We furthermore
impose that for every j > 0, every connected component γ̂ of d−1(j) has the
following two properties.
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• The highest vertex v⋆(γ̂) of γ̂ has an incident edge e with d(e) < j. (Here,
“highest” refers to the total order we fixed on vertices of Γ, which is trans-
ported to Γ̄ by the bijection between vertices of Γ and Γ̄.)

• All edges e incident to a vertex of γ̂ other than v⋆(γ̂) satisfy d(e) ≥ j.

Writing V̄c ⊂ V̄ for those vertices v with at least one edge e incident to v such
that d(e) > 0, we also impose that n(v) = 0 for v 6∈ V̄c. We view Γ itself as an
element of T̂Γ by setting d ≡ 0. Note that this data defines a map v 7→ v⋆ from
V̄c to V̄c such that v 7→ v⋆(γ̂) for γ̂ the connected component of d−1(j) with the
lowest possible value of j containing v.

For γ ⊂ Γ as above, we then define maps Ĉγ on T̂Γ similarly to (3.1). This time
however, we set ĈγΓ̄ = 0 unless the following conditions are met.

• The graph τ−1(γ) ⊂ Γ̄ is connected.

• For every edge e adjacent to τ−1(γ), one has d(e) ≤ infê∈Êd(ê).

We also restrict the sum over labels ℓ supported on edges with d(e) = infê∈Êd(ê).

In order to remain in T̂Γ, instead of extracting γ̂ = τ−1(γ), we reconnect the edges
of Γ̄ adjacent to γ̂ to the highest vertex v̂ of γ̂ and we increase d(e) by 1 on all
edges e of γ̂. We similarly define elements R̂MΓ as above with every instance of
Cγ replaced by Ĉγ . We also view Γ itself as an element of T̂Γ by setting both d

and n to 0.
Let us illustrate this by taking for Γ the diagram of Figure 2 and for γ the triangle

shaded in grey. In this case, assuming that the order on our vertices is such that
the first vertex is the leftmost one and that the degree of γ is above −1 so that no
node-decorations are needed, we have

Ĉγ =

with d(v) equal to 1 in the shaded region of the diagram on the right. The green
node then denotes the element v⋆ for all the nodes v in that region. This time, it
follows in virtually the same way as the proof of Proposition 2.19 that if γ1 and γ2
are either vertex disjoint or such that one is included in the other, then the operators
Ĉγ1 and Ĉγ2 commute. In particular, we can simply write

R̂MΓ =
(

∏

γ∈δ(M)

(id − Ĉγ)
∏

γ̄∈M

(− Ĉ̄γ)
)

Γ , (3.7)

without having to worry about the order of the operations as in (3.5).



Statement and proof of the main theorem 28

For every K ∈ K−∞ and every test function ϕ, we then have a linear map
WK : T̂Γ → C∞(SV⋆) given by

(WKΓ̄)(x) =
∏

e∈Ē⋆

Kt(e)(xτ (e+) − xτ (e−))
∏

v∈V̄⋆

(xτ (v) − xτ (v⋆))
n(v)

× (Dℓ1
1 · · ·Dℓk

k ϕ)(xv1 , . . . , xvk) ,

where τ : V̄∪ Ē→ V∪ E is the bijection between edges and vertices of Γ̄ and
those of Γ, vi are the vertices to which the k legs of Γ are attached, and ℓi are the
corresponding multiindices as in (2.5). With this notation, our definitions show
that, for every partition P of F−Γ into forest intervals, one has

(ΠK
bphz

Γ)(ϕ) =
∑

M∈P

∫

SV⋆

(WKR̂MΓ)(x) dx .

We bound this rather brutally by

|(ΠK
bphz

Γ)(ϕ)| ≤
∑

T

∑

M∈PT

∫

DT

|(WKR̂MΓ)(x)| dx

≤
∑

T

∑

M∈PT

sup
x∈DT

|(WKR̂MΓ)(x)|
∏

u∈T

2−dnu .
(3.8)

At this stage, we would like to make a smart choice for the partition PT which
allows us to obtain a summable bound for this expression. In order to do this,
we would like to guarantee that a cancellation (id − Ĉγ) appears for all of the
subgraphs γ that are such that the length of all adjacent edges (as measured by the
quantity |xτ (e+) − xτ (e−)|) is much greater than the diameter of γ (measured in the
same way).

In order to achieve this, we first note that by Proposition 3.11 and (3.25) below,
we can restrict ourselves in (3.8) to the case where PT is a partition of the subset
F̂−Γ ⊂ F−Γ of all forests containing only subgraphs that are full in Γ. (Recall that
a subgraph γ̄ ⊂ Γ is full in Γ if it is induced by a subset of the vertices of Γ in
the sense that it consists of all edges of Γ connecting two vertices of the subset in
question.) We then consider the following construction. For any forest F∈ F̂−Γ ,
write KFΓ for the Feynman diagram obtained by performing the contractions of
ĈFΓ. (So that ĈFΓ is a linear combination of terms obtained from KFΓ by adding
node-labels n and the corresponding derivatives on incident edges.) As above,
write τ for the corresponding bijection between edges and vertices of KFΓ and
those of Γ. Given a Hepp sector T = (T, n) for Γ and an edge e of Γ, we then write
scaleF

T
(e) = n(ve), where ve = τ (τ−1(e)−) ∧ τ (τ−1(e)+) is the common ancestor

in T of the two vertices incident to e, but when viewed as an edge of KFΓ. (Since
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we only consider forests consisting of full subgraphs, τ−1(e)− and τ−1(e)+ are
distinct, so this is well-defined.) Given γ ∈ F, we then set

intF
T

(γ) = inf
e∈EF

γ

scaleF
T

(e) , extF
T

(γ) = sup
e∈∂EF

γ

scaleF
T

(e) ,

where EF
γ denotes the edges belonging to γ, but not to any of the children of γ in

F, while ∂EF
γ denotes the edges adjacent to γ and belonging to the parent A(γ) of

γ in F (with the convention that if γ has no parent, then A(γ) = Γ). With these
notations, we then make the following definition.

Definition 3.5 Fix a Hepp sector T. Given a forest F∈ F̂−Γ , we say that γ ∈ F is
safe in F if extF

T
(γ) ≥ intF

T
(γ) and that it is unsafe in Fotherwise. Given a forest

Fand a subgraph γ ∈ G−Γ , we say that γ is safe / unsafe for F if F∪ {γ} ∈ F̂−Γ
and γ is safe / unsafe in F∪ {γ}. Finally, we say that a forest F is safe if every
γ ∈ F is safe in F.

The following remark is then crucial.

Lemma 3.6 Let Fs ∈ F̂−Γ be a safe forest and write Fu for the collection of all

γ ∈ G−Γ that are unsafe for Fs. Then, one has Fs ∪ Fu ∈ F̂−Γ and furthermore

every γ in Fs / Fu is safe / unsafe in Fs ∪ Fu.

Proof. Fix Fs and write again τ for the corresponding bijection between edges and
vertices of KFsΓ and those of Γ. For each γ ∈ Fs, write VFs

γ ⊂ V for the set of
vertices of the form τ (τ−1(e)±) for e ∈ EFs

γ , as well as vFs
⋆,γ ∈ VFs

γ for the highest
one of these vertices. (This is the vertex that edges outside of γ were reconnected
to by the operation KFs .) We also write ∂VFs

γ ⊂ V for all vertices of the form
τ (τ−1(e)±) for e ∈ ∂EFs

γ that are not in VFs
γ .

With this notation, intF
T

(γ) = n((VFs
γ )↑) and there exists a vertex w ∈ ∂VFs

γ

for A(γ) the parent of γ in Fs (with the convention as above) such that extF
T

(γ) =
n(vFs

⋆,γ ∧ w). Since both (VFs
γ )↑ and vFs

⋆,γ ∧ w lie on the path connecting the root
of T to v⋆,γ , it follows from the definition of a safe forest that one necessarily has
vFs
⋆,γ ∧ w > (VFs

γ )↑.

Let now γ̄ ∈ G−Γ \ Fs be such that Fs ∪ {γ̄} ∈ F̂−Γ and set V̄γ = V
Fs∪{γ̄}
γ̄

as well as ∂ V̄γ = ∂V
Fs∪{γ̄}
γ̄ . It follows from the definitions that γ̄ ∈ Fu if and

only if none of the descendants of V
↑
γ̄ in T belongs to ∂ V̄γ . As a consequence

of this characterisation, any two graphs γ1, γ2 ∈ Fu are either vertex-disjoint, or
one of them is included in the other one. Indeed, assume by contradiction that
neither is included in the other one and that their intersection γ∩ contains at least
one vertex. Writing γ̂∩ for one of the connected components of γ∩, there exist
edges ei in γi that are adjacent to γ̂∩: otherwise, since the γi are connected, one
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of them would be contained in γ̂∩. Write vi for the vertex of ei that does not
belong to γ̂∩. Such a vertex exists since otherwise it would not be the case that
γ̂∩ is full in γ↑ = A(γ1) = A(γ2). Since γ1 is unsafe, it follows that v2 is not a
descendent of (V̂γ∩ ∪ {v1})↑, so that in particular, for every vertex v ∈ γ̂∩, one has
v1 ∧ v > v2 ∧ v. The same argument with the roles of γ1 and γ2 reversed then
leads to a contradiction.

This shows that Fs ∪ Fu is indeed again a forest so that it remains to show the
last statement. We will show a slightly stronger statement namely that, given an
arbitrary forest F, the property of γ ∈ F being safe or unsafe does not change
under the operation of adding to F a graph γ̄ that is unsafe for F. Given the
definitions, there are three potential cases that could affect the “safety” of γ: either
γ̄ ⊂ γ, or γ ⊂ γ̄, or γ̄ ⊂ A(γ) and there exists an edge e adjacent to both γ and γ̄.
We consider these three cases separately and we write F̄= F∪ {γ̄}.

In the case γ̄ ⊂ γ, it follows from the ultrametric property and the fact that γ̄
is unsafe that intF̄

T
(γ) = intF

T
(γ) whence the desired property follows. In the case

γ ⊂ γ̄, it is extF
T

(γ) which could potentially change since ∂EF
γ becomes smaller

when adding γ̄. Note however that by the ultrametric property, combined with
the fact that γ̄ is unsafe, the edges e in ∂EF

γ \ ∂EF̄
γ satisfy scaleF

T
(e) = scaleF̄

T
(e).

Furthermore, again as a consequence of γ̄ being unsafe, one has scaleF̄
T

(e) <

scaleF̄
T

(ē) for every edge ē in γ̄ which is not in γ, so in particular for ē ∈ ∂EF̄
γ .

This shows again that extF
T

(γ) = extF̄
T

(γ) as required. The last case can be dealt
with in a very similar way, thus concluding the proof.

As a corollary of the proof, we see that the definition of the notion of “safe
forest” as well as the construction of Fu given a safe forest Fs only depend on
the topology of the tree T and not on the specific scale assignment n. It also
follows that, given an arbitrary F ∈ F̂−Γ , there exists a unique way of writing
F= Fs ∪ Fu with Fs a safe forest and Fu being unsafe for Fs (and equivalently
for F). In particular, writing F

(s)
Γ (T ) for the collection of safe forests for the tree

T , the collection PT = {[Fs,Fs ∪ Fu] : Fs ∈ F
(s)
Γ (T )} where, for any Fs, the

forest Fu is defined as in Lemma 3.6, forms a partition of F̂−Γ into forest intervals.
It then follows from (3.8) that

|(ΠK
bphz

Γ)(ϕ)| ≤
∑

T

∑

Fs∈F
(s)
Γ

(T )

∑

n

sup
x∈DT

|(WKR̂[Fs,Fs∪Fu]Γ)(x)|
∏

v∈T

2−dnv ,

where n runs over all monotone integer labels for T and the construction of Fu

given Fs and T is as above. We note that the first two sums are finite, so that as
in the proof of Proposition 2.4 it is sufficient, for any given choice of T and safe
forest Fs, to find a collection real-valued function {ηi}i∈I (for some finite index
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set I) on the interior vertices of T such that
∑

n

sup
x∈DT

|(WKR̂[Fs,Fs∪Fu]Γ)(x)|
∏

v∈T

2−dnv ≤
∑

i∈I

∑

n

∏

v∈T

2−ηi(v)nv , (3.9)

and such that
∑

w≥v

ηi(w) > 0 , ∀v ∈ T , ∀i ∈ I , (3.10)

which then guarantees that the above expression converges.

Figure 3: Structure of KFΓ.

Before we turn to the construction of the ηi,
let us examine in a bit more detail the structure
of the graph KFΓ = (VF, EF). Writing τ for
the bijection between KFΓ and Γ, every γ ∈ F

yields a subgraph K(γ) = (Vγ, Eγ) of KFΓ whose
edge set is given by the preimage under τ of the
edge set of γ \

⋃

C(γ), where C(γ) denotes the
set of all children of γ in F. Furthermore, K(γ)

is connected by exactly one vertex to K(γ̄), for
γ̄ ∈ C(γ)∪{A(γ)}, and it is disconnected from K(γ̄) for all other elements γ ∈ F.
This is also the case if γ is a root of F, so that A(γ) = Γ by our usual convention,
if we set K(Γ) to be the preimage in KFΓ of the complement of all roots of F. We
henceforth write v⋆(γ) for the unique vertex connecting K(γ) to K(A(γ)) and we
write V⋆

γ = Vγ \ {v⋆(γ)}, so that one has a partition VF = VΓ ⊔
⊔

γ∈F V⋆
γ .

In this way, the tree structure of F is reflected in the topology of KFΓ, as
illustrated in Figure 3, where each K(γ) is stylised by a coloured shape, with
parents having lighter shades than their children and connecting vertices drawn in
red. Recall that we also fixed a total order on the vertices of Γ (and therefore those
of KFΓ) and that the construction of KFΓ implies that the corresponding order
on {v⋆(γ)}γ∈F is compatible with the partial order on Fgiven by inclusion. For
e ∈ EF, write Me ⊂ {+,−} for those ends such that τ (e)• 6= τ (e•) for • ∈ Me

and set
E•F= {(e, •) : e ∈ Em

F, • ∈ Me} .

Then, by the construction ofKFΓ, for every • ∈ Me there exists a unique γ•(e) ∈ F

and vertex e◦ ∈ VF such that

e• = v⋆(γ•(e)) , e◦ = τ−1(τ (e)•) ∈ Vγ•(e) , e ∈ EA(γ•(e)) . (3.11)

Given ℓ : E•F→ Nd, we then define a canonical basis element Dℓ
FΓ ∈ T̂Γ by

Dℓ
FΓ = (KFΓ, t

(ℓ), πℓ) ,

where t
(ℓ) is the edge-labelling given by t

(ℓ)(e) = t(τ (e)) +
∑

•∈Me
ℓ(e, •), with t

the original edge-labelling of Γ, and πℓ is the node-labelling given by πℓ(v) =
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∑

{ℓ(e, •) : e◦ = v}. Given γ ∈ F and ℓ as above, we also set ℓ(γ) =
∑

{|ℓ(e, •)| : γ•(e) = γ}.
We now return to the bound (3.9) and first consider the special case when Fs is

a safe forest such that Fu = 6#. By (3.1) and (3.7), R̂FsΓ can then be written as

R̂FsΓ = (−1)|Fs|
∑

ℓ : E•
Fs
→Nd

(−1)ℓout

ℓ!
Dℓ

Fs
Γ , (3.12)

where ℓout =
∑

{|ℓ(e, •)| : • = −} and the sum in (3.12) is restricted to those
choices of ℓ such that, for every γ ∈ Fs, one has deg γ + ℓ(γ) ≤ 0.

In this case, we take as the index set I appearing in (3.10) all those functions ℓ
appearing in the sum (3.12) (recall that the sum is restricted to finitely many such
functions) and we set

ηℓ(u) = d+
∑

e∈EFs

t
(ℓ)(e)1e↑(u) +

∑

(e,•)∈E•
Fs

|ℓ(e)|1(e,•)↑(u) ,

where, for e ∈ EFs, e
↑ denotes the node of T given by τ (e−) ∧ τ (e+) and, for

(e, •) ∈ E•Fs
, (e, •)↑ denotes the node τ (e◦) ∧ τ (e•).

It follows from the definition of WK that this choice does indeed satisfy (3.9).
We now claim that as a consequence of the fact that Fs is such that Fu = 6#, it
also satisfies (3.10). Assume by contradiction that there exists a node u of T and a
labelling ℓ such that a

def
=

∑

v≥u ηℓ(v) ≤ 0. Write V0 ⊂ VFs for the vertices v such
that τ (v) ≥ u in T and Γ0 = (E0, V0) ⊂ KFsΓ for the corresponding subgraph. In
general, Γ0 does not need to be connected, so we write Γ(i)

0 = (E
(i)
0 , V(i)

0 ) for its
connected components. We then set

ai
def
= |V(i)

0 | − 1 +
∑

e∈E(i)
0

t
(ℓ)(e) +

∑

(e,•)∈E•
Fs

|ℓ(e)|1{e•,e◦}⊂V
(i)
0

,

so that
∑

i ai ≤ a, with equality if Γ0 happens to be connected. Since a ≤ 0, there
exists i such that ai ≤ 0. Furthermore, i can be chosen such that |V(i)

0 | ≥ 2, since
|V0| ≥ 2 and we would otherwise have a = |V0| − 1 ≥ 1.

Set V0,γ = V0 ∩ Vγ and let F(i)
s ⊂ Fs ∪ {Γ} be the subtree consisting of those

γ such that either Eγ ∩ E
(i)
0 6= 6# or v⋆(γ) ∈ V

(i)
0 (or both). We also break ai into

contributions coming from each γ ∈ F(i)
s by setting

ai,γ
def
= |V0,γ| − 1 +

∑

e∈Eγ∩E0

t
(ℓ)(e) +

∑

(e,•)∈E•
Fs

1γ•(e)=γ|ℓ(e)|1{e•,e◦}⊂V
(i)
0

. (3.13)

We claim that
∑

γ ai,γ = ai: recalling that one always has Γ ∈ F(i)
s by definition,

the only part which is not immediate is that
∑

γ(|V0,γ| − 1) = |V(i)
0 | − 1. This is
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a consequence of the fact that in the sum
∑

γ |V0,γ|, each “connecting vertex” is
counted double. Since F(i)

s is a tree, the number of these equals |F(i)
s | − 1, whence

the claim follows.
We introduce the following terminology. An element γ ∈ Fs∪{Γ} is said to be

“full” if Eγ ∩ E
(i)
0 = Eγ, “empty” if Eγ ∩ E

(i)
0 = 6#, and “normal” otherwise. We

also set ai,γ = 0 for all empty γ with V0,γ = 6#. Recall furthermore the definition
of deg γ for γ ∈ Fs given in (2.9) and the definition of ℓ(γ) given above. With this
terminology, we then have the following.

Lemma 3.7 A full subgraph γ cannot have an empty parent and one has

ai,γ = deg γ + ℓ(γ) −
∑

γ̄∈C(γ)

(deg γ̄ + ℓ(γ̄)) if γ is full,

ai,γ = 0 if γ is empty, (3.14)

ai,γ > −
∑

γ̄∈C⋆(γ)

(deg γ̄ + ℓ(γ̄)) if γ is normal,

where C⋆(γ) consists of those children γ̄ of γ such that v⋆(γ̄) ∈ V
(i)
0 .

Before we proceed to prove Lemma 3.7, let us see how this leads to a contradic-
tion. By (3.12), one has deg γ̄+ℓ(γ̄) ≤ 0 for every γ ∈ Fs and a fortiori deg γ̄ < 0.
Furthermore, since |V(i)

0 | ≥ 2, there exists at least one subgraph γ which is either
full or normal. Since full subgraphs can only have parents that are either full or
normal and since Γ itself cannot be full (since legs are never contained in E

(i)
0 ), we

have at least one normal subgraph. Since each of the negative terms deg γ + ℓ(γ)

appearing in the right hand side of the bound of ai,γ for γ full is compensated by
a corresponding term in its parent, and since we use the strict inequality appear-
ing for normal γ at least once, we conclude that one has indeed

∑

γ ai,γ > 0 as
required.

Proof of Lemma 3.7. Let us first show that the bounds (3.14) hold. If γ is empty,
one has either γ 6∈ F(i)

s in which case V0,γ = 6# and ai,γ = 0 by definition, or V0,γ =
v⋆(γ) in which case ai,γ = 0 by (3.13). If γ is full, then it follows immediately
from the definition of deg γ that one would have ai,γ = deg γ −

∑

γ̄∈C(γ) deg γ̄ if
it weren’t for the presence of the labels ℓ. If γ is full then, whenever (e, •) is such
that γ•(e) = γ, one also has {e•, e◦} ⊂ V

(i)
0 by (3.11) and the definition of being

full. Similarly, one has e ∈ Eγ ∩ E0 whenever γ•(e) ∈ C(γ). The first identity in
(3.14) then follows from the fact that each edge with γ•(e) = γ contributes |ℓ(e)|
to the last term in (3.13) while each edge with γ•(e) ∈ C(γ) contributes −|ℓ(e)| to
the penultimate term.
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Regarding the last identity in (3.14), given a normal subgraph γ, write γ̂ for the
subgraph of Γ with edge set given by

Ê= τ (Eγ ∩ E
(i)
0 ) ∪

⋃

γ̄∈C⋆(γ)

E(γ̄) . (3.15)

In exactly the same way as for a full subgraph, one then has ai,γ ≥ deg γ̂ −
∑

γ̄∈C⋆(γ)(deg γ̄ + ℓ(γ̄)). The reason why this is an inequality and not an equality
is that we may have additional positive contributions coming from those ℓ(e) with
γm(e) = γ and such that e◦ ∈ V

(i)
0 , while we do not have any negative contributions

from those ℓ(e) with γm(e) ∈ C⋆(γ) but e 6∈ E
(i)
0 . The claim then follows from the

fact that one necessarily has deg γ̂ > 0 by the assumption that Fu = 6#. Indeed,
it follows from its definition and the construction of the Hepp sector T that the
subgraph Γ0 satisfies that scaleFs

T
(e) > scaleFs

T
(e) for every edge e ∈ E0 and every

edge ē adjacent to Γ0 in KFsΓ, so that one would have γ̂ ∈ Fu otherwise.
It remains to show that if γ is a full subgraph, then it cannot have empty parents.

This follows in essentially the same way as above, noting that if it were the case
that γ has an empty parent, then it would be unsafe in Fs, in direct contradiction
with the fact that Fs is a safe forest.

In order to complete the proof of Theorem 3.1, it remains to consider the general
case when Fu 6= 6#. In this case, setting M = [Fs,Fs ∪ Fu], we have

R̂MΓ = (−1)|Fs|
∑

ℓ : Em
Fs
→Nd

(−1)ℓout

ℓ!

(

∏

γ∈Fu

(id − Ĉγ)
)

Dℓ
Fs
Γ , (3.16)

with the sum over ℓ restricted in the same ways as before. Again, we bound each
term in this sum separately, so that our index set I consists again of the subset of
functions ℓ : Em

Fs
→ Nd such that deg γ + ℓ(γ) < 0 for every γ ∈ Fs, but this time

each of these summands is still comprised of several terms generated by the action
of the operators Ĉγ for the “unsafe” graphs γ.

For any γ ∈ Fu, we define a subgraph K(γ) of KFsΓ as before, with the
children of γ being those in Fs ∪ {γ} not in all of Fs ∪ Fu. The definition
of γ being “unsafe” then guarantees that there exists a vertex γ↑ in T such that
τ (Vγ) = {v ∈ V : v ≥ γ↑}. We furthermore define

γ↑↑ = sup{e↑ : e ∈ EA(γ) & e ∼ K(γ)} ,

with “∼” meaning “adjacent to”, which is well-defined since all of the elements
appearing under the sup lie on the path joining γ↑ to the root of T . In particular,
one has γ↑ > γ↑↑. We also set N(γ) = 1 + ⌊− deg γ⌋ with the convention that
N(γ) = 0 for γ 6∈ Fu.
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We claim that this time, if we set

ηℓ(u) = d+
∑

e∈EFs

t
(ℓ)(e)1e↑(u)+

∑

e∈Em
Fs

|ℓ(e)|1
e
↑
m

(u)+
∑

γ∈Fu

N(γ)(1γ↑(u)−1γ↑↑(u)) ,

(3.17)
then ηℓ does indeed satisfy the required properties, which then concludes the proof.
As before, we assume by contradiction that there is u such that a =

∑

v≥u ηℓ(v) ≤ 0

and we define, for each connected component Γ(i)
0 of Γ0,

ai
def
= |V(i)

0 |−1+
∑

e∈E(i)
0

t
(ℓ)(e)+

∑

e∈Em
Fs

|ℓ(e)|1{e•,e◦}⊂V
(i)
0

+
∑

γ∈Fu

N(γ)1
K(γ)=Γ

(i)
0
∩K(A(γ))

.

It is less obvious than before to see that
∑

ai ≤ a because of the presence of the
last term. Given γ ∈ Fu, there are two possibilities regarding the corresponding
term in (3.17). If γ↑ < u in T , then it does not contribute to a at all. Otherwise,
τ−1(γ) is included in Γ0 and we distinguish two cases. In the first case, one has
K(γ) = K(A(γ)) ∩ Γ0. In this case, since the inclusion γ ⊂ A(γ) is strict, there is
at least one edge in K(A(γ)) adjacent to K(γ). Since this edge is also adjacent to
Γ0, it follows that in this case γ↑↑ < u so that we have indeed a contribution N(γ)

to a. In the remaining case, the corresponding term may or may not contribute to
a, but if it does, then its contribution is necessarily positive, so we can discard it
and still have

∑

ai ≤ a as required.
As before, we then write ai =

∑

γ∈F(i)
s
aγ,i with

ai,γ
def
= |V0,γ| − 1 +

∑

e∈Eγ∩E0

t
(ℓ)(e) +

∑

e∈Em
Fs

1γm(e)=γ|ℓ(e)|1{e•,e◦}⊂V
(i)
0

+
∑

γ̄∈Fu

N(γ̄)1
K(γ̄)=Γ

(i)
0
∩K(γ)

. (3.18)

We claim that the statement of Lemma 3.7 still holds in this case. Indeed, the only
case that requires a slightly different argument is that when γ is “normal”. In this
case, defining again γ̂ as in (3.15), we have

ai,γ ≥ deg γ̂ +N(γ̂) −
∑

γ̄∈C⋆(γ)

(deg γ̄ + ℓ(γ̄)) ,

since the last term in (3.18) contributes precisely when γ̂ ∈ Fu and then only
the term with γ̄ = γ̂ is selected by the indicator function. The remainder of
the argument, including the fact that this then yields a contradiction with the
assumption that a ≤ 0, is then identical to before since one always has deg γ̂ +
N(γ̂) > 0.
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In order to complete the proof of our main theorem, it thus remains to show that
the choice of ηℓ given in (3.17) allows to bound from above the contribution of
the Hepp sector indexed by T , in the sense that the bound (3.9) holds. The only
non-trivial part of this is the presence of a term

N(γ)(1γ↑(u) − 1γ↑↑(u))

for each factor of (1− Ĉγ) in (3.16). This will be a consequence of the following
bound.

Lemma 3.8 Let Ki : S → R be kernels satisfying the bound (2.2) with deg t =
−αi < 0 for i ∈ I with I a finite index set, and write I⋆ = I⊔{⋆}. Let furthermore

xi, yi ∈ S such that |xi − xj | ≤ δ < ∆ ≤ |xi − yj| for all i, j ∈ I⋆ and let N ≥ 0
be an integer. Then, one has the bound

∣

∣

∣

∏

i∈I

Ki(xi − yi) −
∑

|ℓ|<N

1

ℓ!

∏

i∈I

(xi − x⋆)ℓi(DℓiKi)(x⋆ − yi)
∣

∣

∣
(3.19)

. δN∆−N
∏

i∈I

|yi − xi|
−αi .

Proof. The proof is a straightforward application of Taylor’s theorem to the func-
tion x 7→

∏

i∈I Ki(xi) defined on S
I . For example, the version given in [Hai14,

Prop. A.1] shows that for every ℓ̃ : I → Nd with |ℓ̃| = N , there exist measures Qℓ̃

on S
I with total variation 1

ℓ̃!

∏

i |(xi − x⋆)ℓ̃i| . δN and support in the ball of radius
Kδ around (x⋆, . . . , x⋆) (for some K depending only on |I| and d) such that

∏

i∈I

Ki(xi − yi) −
∑

|ℓ|<N

1

ℓ!

∏

i∈I

(xi − x⋆)ℓi(DℓiKi)(x⋆ − yi) (3.20)

=
∑

|ℓ̃|=N

∫

∏

i∈I

(Dℓ̃iKi)(zi − yi) Qℓ̃(dz)

If ∆ > (K + 1)δ, then the claim follows at once from the fact that

|(Dℓ̃iKi)(zi − yi)| . |zi − yi|
−αi−|ℓ̃i| . ∆−|ℓ̃i||xi − yi|

−αi .

If ∆ ≤ (K+1)δ on the other hand, each term in the left hand side of (3.19) already
satisfies the required bound individually.

It now remains to note that each occurence of (1 − Ĉγ) in (3.16) produces
precisely one factor of the type considered in Lemma 3.8, with the set I consisting
of the edges in A(γ) adjacent to γ, δ = 2−n(γ↑) and ∆ = 2−n(γ↑↑). The additional
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factor δN (γ)∆−N (Γ) produced in this way precisely corresponds to the additional
term N(γ)(1γ↑(u) − 1γ↑↑(u)) in our definition of η. The only potential problem
that could arise is when some edges are involved in the renormalisation of more
than one different subgraph. The explicit formula (3.20) however shows that this
is not a problem. The proof of Theorem 3.1 is complete.

3.3 Properties of the BPHZ valuation

In this section, we collect a few properties of the BPHZ valuation ΠK
bphz

. In order to
formulate the main tool for this, we first introduce a “gluing operator”G : T̂− → T̂−
such that GΓ is the connected vacuum diagram obtained by identifying all the
marked vertices of Γ, for example

G

( )

= ,

where the marked vertices are indicated in green. It follows from the definition
(2.15) that the linear map ΠK

− satisfies the identity

ΠK
−Gτ = ΠK

− τ , τ ∈ T̂− . (3.21)

We claim that the same also holds for ΠK
− Âπ, where π : T̂− → H− is the canonical

projection.

Lemma 3.9 One has ΠK
− ÂπGτ = ΠK

− Âπτ for all τ ∈ T̂−.

Proof. By induction on the number of connected components and since ΠK
− , Â

and π are all multiplicative, it suffices to show that, for every element τ of the form
τ = γ1γ2 where the γi are connected and non-empty, one has the identity

ΠK
− ÂπGτ = ΠK

− Âπγ1 ·Π
K
− Âπγ2 = ΠK

− (Âπγ1 · Âπγ2) .

In particular, one has ΠK
− Âτ = 0 for every τ with deg τ ≤ 0 of the form G(γ1γ2),

as soon as one of the factors has strictly positive degree.
We will use the fact that, as a consequence of (2.28) combined with the definition

of ∆−, one has for connected σ = (Γ, v⋆, n) with degσ ≤ 0 the identity

Âσ = −σ −
∑

Γ̄⊂Γ

Γ̄ 6∈{6#,Γ}

M(Âπ ⊗ id)X̄Γσ , (3.22)

where we made use of the operators

X̄Γσ =
∑

ℓ̄ : ∂Γ̄→Nd

n̄ : V̄→Nd

(−1)| out ℓ̄|

ℓ̄!

(

n

n̄

)

(Γ̄, ⋆, n̄+ πℓ̄) ⊗ (Γ, v⋆, n− n̄)/(Γ̄, ℓ̄)
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and ⋆ denotes some arbitrary choice of distinguished vertex. (Here, X stands for
“extract”.) Note that the nonvanishing terms in (3.22) are always such that the
degree of Γ̄ (not counting node-decorations) is negative.

The proof of the lemma now goes by induction on the number of edges of
τ = γ1γ2. In the base case, each of the γi has one edge and there are two non-
trivial cases. In the first case, deg γi ≤ 0 for both values of i. In this case, it
follows from the above formula that, since v⋆ is the vertex in Gτ at which both
edges are connected and since Âγ1 = −γi, one has

ÂGτ = −Gτ + 2τ ,

so that the claim follows from (3.21), combined with the fact that Âπγi = −γi. In
the second case, one has deg γ1 ≤ 0 and deg γ2 > 0, but deg γ1 + deg γ2 ≤ 0 so
that πGτ = Gτ . In this case, the only subgraph of Gτ of negative degree is γ1, so
that

ÂGτ = −Gτ + τ ,

thus yielding ΠK
− ÂGτ = 0 as required.

We now write Γ for the graph associated to Gτ and Γi ⊂ Γ for the subgraphs
associated to each of the factors γi. Writing UΓ for the set of all non-empty proper
subgraphs of Γ, we then have a natural bijection

UΓ = UΓ1
⊔ {γ̄1 ⊔ Γ2 : γ̄1 ∈ UΓ1

} ⊔ UΓ2
⊔ {γ̄2 ⊔ Γ1 : γ̄2 ∈ UΓ2

}

⊔ {γ̄1 ⊔ γ̄2 : γ̄1 ∈ UΓ1
, γ̄2 ∈ UΓ2

} ⊔ {Γ1,Γ2} . (3.23)

Take now an element of the form γ̄1 ⊔ Γ2 from the first set above. As before, there
are no edges in Γ adjacent to Γ1 other than those incident to v⋆. Furthermore,
γ̄1 ⊔ Γ2 has strictly less edges than Γ, so we can apply our induction hypothesis,
yielding

ΠK
−M(Âπ ⊗ id)X̄γ1⊔Γ2

Gτ = ΠK
−M(ÂπMγ2 ⊗ id)X̄γ1γ1

= ΠK
− (Âπγ2 ·M(Âπ ⊗ id)X̄γ1γ1) ,

where Mγ2 : γ 7→ G(γ · γ2). In a similar way, we obtain the identities

ΠK
−M(Âπ ⊗ id)X̄γ1Gτ = ΠK

− (γ2 ·M(Âπ ⊗ id)X̄γ1γ1) ,

ΠK
−M(Âπ ⊗ id)X̄γ1⊔γ̄2Gτ = ΠK

− (M(Âπ ⊗ id)X̄γ1γ1 ·M(Âπ ⊗ id)X̄γ2γ2) ,

ΠK
−M(Âπ ⊗ id)Xγ1Gτ = ΠK

− (γ2 · Âπγ1) ,

as well as the corresponding identities with 1 and 2 exchanged. Inserting these
identities into (3.22) (with the sum broken up according to (3.23)), we obtain

ΠK
− ÂGτ = −ΠK

−Gτ −
∑

γ̄1∈UΓ1

ΠK
− ((γ2 + Âπγ2) ·M(Âπ ⊗ id)X̄γ1γ1)
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−
∑

γ̄2∈UΓ2

ΠK
− ((γ1 + Âπγ1) ·M(Âπ ⊗ id)X̄γ2γ2)

−
∑

γ̄1∈UΓ1

∑

γ̄2∈UΓ2

ΠK
− (M(Âπ ⊗ id)X̄γ1γ1 ·M(Âπ ⊗ id)X̄γ2γ2)

−ΠK
− (γ2 · Âπγ1)−ΠK

− (γ1 · Âπγ2) .

At this stage, we differentiate again between the case in which deg γi ≤ 0 for both
i and the case in which one of the two has positive degree. (The case in which
both have positive degree is again trivial.) In the former case, πγi = γi and one
has

γ2 + Âπγ2 = −
∑

γ̄2∈UΓ2

M(Âπ ⊗ id)X̄γ2γ2 .

In particular, the second and third terms are the same as the fourth, but with
opposite sign and one has

ΠK
− ÂGτ =

∑

γ̄1∈UΓ1

∑

γ̄2∈UΓ2

ΠK
− (M(Âπ ⊗ id)X̄γ1γ1 ·M(Âπ ⊗ id)X̄γ2γ2)

−ΠK
− (γ1 · γ2) − ΠK

− (γ2 · Âγ1)− ΠK
− (γ1 · Âγ2)

= ΠK
− ((Âγ1 + γ1) · (Âγ2 + γ2))

−ΠK
− (γ1 · γ2) − ΠK

− (γ2 · Âγ1)− ΠK
− (γ1 · Âγ2)

= ΠK
− (Âγ1 · Âγ2) ,

as claimed. Consider now the case deg γ1 > 0. Then, the two terms containing
Âπγ1 vanish and we obtain similarly

ΠK
− ÂGτ = −ΠK

−Gτ −
∑

γ̄1∈UΓ1

ΠK
− (γ1 ·M(Âπ ⊗ id)X̄γ2γ2)− ΠK

− (γ1 · Âγ2)

= −ΠK
− (γ1 · γ2) +ΠK

− (γ1 · (Âγ2 + γ2))− ΠK
− (γ1 · Âγ2) = 0 ,

as claimed, thus concluding the proof.

As a consequence of this result, we have the following. Recall that S
(c)
k

is the space of translation invariant compactly supported (modulo translations)
distributions in k variables. Given x ∈ S

k, y ∈ S
ℓ, we also write x ⊔ y =

(x1, . . . , xk, y1, . . . , yℓ) ∈ S
k+ℓ. For any k, ℓ ≥ 1, we then have a bilinear “convo-

lution operator” ⋆ : S(c)
k × S

(c)
ℓ → S

(c)
k+ℓ−2 obtained by setting

(η ⋆ ζ)(x ⊔ y) =

∫

S

η(x ⊔ z)ζ(z ⊔ y) dz , x ∈ S
k−1, y ∈ S

ℓ−1 ,
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whenever η and ζ are represented by continuous functions. It is straightforward to
see that this extends continuously to all of S(c)

k ×S
(c)
ℓ , and that it coincides with the

usual convolution in the special case k = ℓ = 2.
Similarly, we have a convolution operator ⋆ : Hk × Hℓ → Hk+ℓ−2 obtained in

the following way. Let Γ ∈ Tk and Γ̄ ∈ Tℓ be Feynman diagrams such that the
label of the kth leg of Γ and the first leg of Γ̄ are both given by δ. We then
define Γ ⋆ Γ̄ ∈ Tk+ℓ−2 to be the Feynman diagram with k + ℓ − 2 legs obtained
by removing the kth leg of Γ as well as the first leg of Γ̄, and identifying the
two vertices these legs were connected to. (We also need to relabel the legs of
Γ̄ accordingly.) This operation extends to all of Hk × Hℓ by noting that given a
Feynman diagram Γ ∈ Tk, there always exists Γn ∈ Tk with Γn = Γ in Hk which
is a linear combination of diagrams with label δ on the nth leg: if the nth leg of
Γ has label δ(m) with m 6= 0, one obtains Γn by performing |m| “integrations by

parts” using (2.12). We then define in general Γ ⋆ Γ̄ by setting Γ ⋆ Γ̄
def
= Γk ⋆ Γ̄0

and we can check that this is indeed well-defined in Hk+ℓ−2. We then have the
following consequence of Lemma 3.9.

Proposition 3.10 The BPHZ valuation satisfies Πbphz(Γ ⋆ Γ̄) = ΠbphzΓ ⋆ ΠbphzΓ̄.

Proof. Write M⋆ : H⊗ H → H for the convolution operator introduced above
and note that the canonical valuation Π (we suppress the dependence on K) does
satisfy the property of the statement. It therefore suffices to show that one has the
identity

(Π−Â⊗ id)∆M⋆ = M⋆((Π−Â⊗ id)∆⊗ (Π−Â⊗ id)∆) (3.24)

between maps H⊗ H→ H.
Suppose that Γ ∈ Tk and Γ̄ ∈ Tℓ, write v for the vertex of Γ adjacent to the

kth leg, and let v̄ be the vertex of Γ̄ adjacent to its first leg. Fix furthermore an
arbitrary map σ : (V⋆ ⊔ V̄⋆)/{v, v̄} → N which is injective and such that σ(v) = 0.
Since internal edges of Γ ⋆ Γ̄ are in bijection with the disjoint union of the internal
edges of Γ and those of Γ̄, we have an obvious bijection between subgraphs γ of
Γ ⋆ Γ̄ and pairs (γ1, γ2) of subgraphs of Γ and Γ̄. We also have a natural choice
of distinguished vertex for each connected subgraph of Γ, Γ̄ or Γ ⋆ Γ̄ by choosing
the vertex with the lowest value of σ. If we then write ∆̂τ ∈ T̂− ⊗H for the right
hand side of (2.19) with this choice of distinguished vertices, then we see that

(G⊗ id)∆̂(Γ ⋆ Γ̄) = (GM⊗M⋆)(id ⊗ τ ⊗ id)(∆̂Γ⊗ ∆̂Γ̄) ,

where τ : T̂−⊗H→ H⊗ T̂− is the map that exchanges the two factors. Applying
Π−Âπ to both sides and making use of Lemma 3.9, the required identity (3.24)
follows at once.
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Γ0

γ

Figure 4: Generalised self-loop.

Consider the situation of a Feynman diagram Γ
containing a vertex v and a subgraph γ which is a
“generalised self-loop at v” in the sense that

• The vertex v is the only vertex of γ that is
adjacent to any edge not in γ.

• No leg of Γ is adjacent to any vertex of γ,
except possibly for v.

We then obtain a new diagram Γ0 by collapsing all
of γ onto the vertex v, as illustrated in Figure 4,
where the vertex v is indicated in green and legs
are drawn in red.

As a consequence of Proposition 3.10, we conclude that in such a situation there
exists a constant cγ ∈ R such that

ΠbphzΓ = cγΠbphzΓ0 ,

and that furthermore cγ = 0 as soon as deg γ ≤ 0 as a consequence of Proposi-
tion 2.22. One particularly important special case is that of actual self-loops, where
γ consists of a single edge connecting v to itself, thus showing that ΠbphzΓ = 0 for
every Γ containing self-loops since the degree of a self-loop of type t is given by
deg t, which is always negative.

Finally, it would also appear natural to restrict the sums in (2.19) and (2.24) to
subgraphs Γ̄ that are c-full in Γ (in the sense that each connected component of
Γ̄ is a full subgraph of Γ), especially in view of the proof of the BPHZ theorem
where we saw that the “dangerous” connected subgraphs are always the full ones.
We can then perform the exact same steps as before, including the construction of a
corresponding twisted antipode and the verification of the forest formula. Writing
F̂−Γ for the subset of F−Γ consisting of forests F such that each γ ∈ F is a full
subgraph of its parent A(γ) (as usual with the convention that the parent of the
maximal elements is Γ itself), it is therefore natural in view of (3.2) to define a
valuation

Πfull
bphz

Γ = (Π− ⊗ Π)
∑

F∈F̂−
Γ

(−1)|F|CFΓ , (3.25)

where Π and Π− are the canonical valuations associated to some K ∈ K−∞. It
turns out that, maybe not so surprisingly in view of Proposition 2.22, this actually
yields the exact same valuation:

Proposition 3.11 One has Πfull
bphz

= Πbphz.
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Proof. In order to show that

(Π− ⊗ Π)
∑

F∈F−
Γ
\F̂−

Γ

(−1)|F|CFΓ = 0 ,

we will partition F−Γ \ F̂−Γ into sets such that the above sum vanishes, when
restricted to any of the sets in the partition. In order to formulate our construction,
given γ ∈ G−Γ , we write γcl ∈ G−Γ for the “closure” of γ in Γ, i.e. the full subgraph
of Γ with the same vertex set as γ. For F ∈ F−Γ \ F̂−Γ , we then have a unique
decomposition F= Ffull ∪ Fp such that each γ ∈ Ffull is full in Γ, no element of
Ffull is contained in an element of Fp, and no root of Fp is full in Γ.

Write Fp
max for the set of roots of Fp and set

Fp = {γcl : γ ∈ Fp
max} .

In general, one may have Ffull ∩ Fp 6= 6#, so we also set Ffull
◦ = Ffull \ Fp. If we

write N : F 7→ (Fp,Ffull
◦ ), then we see that the preimage of (Fp,Ffull

◦ ) under N
consists of all forests of the form Fp ∪Ffull

◦ ∪B, where B is an arbitrary subset of
Fp. Furthermore, F−Γ \ F̂−Γ consists precisely of those forests Fsuch that Fp 6= 6#.
Since

∑

B⊂Fp(−1)|B| = 0, it thus remains to show that the quantity

(Π− ⊗ Π)CFp∪Ffull
◦ ∪B

Γ (3.26)

is independent of B⊂ Fp.
To see that this is the case, consider the space T̂Γ and the operators ĈF as in

the proof of the BPHZ theorem and denote by Π̂ : T̂Γ → S the composition of
Π: T̂→ Swith the natural injection T̂Γ →֒ T̂. One then has for every forest G
the identity

(Π− ⊗Π)CGΓ = Π̂ ĈGΓ , ĈG
def
=

∏

γ∈G

Ĉγ .

(As already pointed out before, the order of the operations does not matter here.)
Let now γ ∈ G−Γ and consider the elements ĈγΓ and Ĉγ ĈγclΓ. It follows from

the definition of the operators Ĉγ that all the terms appearing in both expressions
consist of the same graph where edges in Γ \ γcl adjacent to γcl are reconnected
to the distinguished vertex v⋆ of γ and the edges in γcl that are not in γ are turned
into self-loops for v⋆.

Regarding the edge and vertex-labels ℓ and n generated by these operations,
a straightforward application of the Chu-Vandermonde theorem shows that they
yield the exact same terms in both cases. The only difference is that the function d

is equal to 1 on γ in the first case, while it equals 2 on γ and 1 on edges of γcl that are
not in γ in the second case. This however would only make a difference if we were
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to compose this with an operator of the type Ĉ̄γ for some γ̄ with γ ⊂ γ̄ ⊂ γcl. In
our case however, we only use this in order to compare CFp∪Ffull

◦ ∪B
to CFp∪Ffull

◦
, so

that we consider the situation γ ∈ Fp
max. Since these graphs are all vertex-disjoint,

it follows that (
∏

γ∈Fp
max

Ĉγ)Γ and (
∏

γ∈Fp
max∪B

Ĉγ)Γ only differ by the value of d in
the way described above.

Our construction of the sets Ffull
◦ and Fp then guarantees that this discrepancy

is irrelevant when further applying Ĉ̄γ for γ̄ ∈ Ffull
◦ ∪ (Fp \ Fp

max), so that (3.26) is
indeed independent of B as claimed.

4 Large-scale behaviour

We now consider the case of kernels Kt that don’t have compact support. In
order to encode their behaviour at infinity, we assign to each label t ∈ L a second
degree deg∞ : L → R− ∪ {−∞} with deg∞ δ(k) = −∞ and satisfying this time
the consistency condition deg∞ t

(k) = deg∞ t.1 We furthermore assume that we
are given a collection of smooth kernels Rt : Rd → R for t ∈ L⋆ satisfying the
bounds

|DkRt(x)| . (2 + |x|)deg∞ t , (4.1)

for all multiindices k, uniformly over all x ∈ Rd, and such that

Rt(k) = DkRt . (4.2)

Similarly to before, we extend this to L by using the convention Rδ(m) ≡ 0 and
we write K+

∞ for the set of all smooth compactly supported kernel assignments
t 7→ Rt, as well as K+

0 for its closure under the system of seminorms defined by
(4.1).

Consider then the formal expression (2.5), but with each instance of Kt replaced
by Gt = Kt + Rt. The aim of this section is to exhibit a sufficient condition on
Γ which guarantees that this expression can also be renormalised, using the same
procedure as in the previous sections. The conditions we require in Theorem 4.3
below can be viewed as a large-scale analogue to the conditions of Weinberg’s
theorem. They are required because, unlike in [BHZ16, CH16], we do not perform
any “positive renormalisation” in the present article.

To formulate our main result, we introduce the following construction. Given
a Feynman diagram Γ with at least one edge, consider a partition PΓ of its inner

1It would have looked more natural to impose the stronger condition deg
∞

t(k)
= deg

∞
t− |k|

as before. One may further think that in this case one would be able to extend Theorem 4.3 to
all diagrams Γ, not just those in H+. This is wrong in general, although we expect it to be true
after performing a suitable form of positive renormalisation as in [BHZ16, CH16]. This is not
performed here, and as a consequence we are unable to take advantage of the additional large-scale
cancellations that the stronger condition deg

∞
t
(k)

= deg
∞

t− |k| would offer.
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vertex set, i.e. elements of PΓ are non-empty subsets of V⋆ and
⋃

PΓ = V⋆. We
always consider the case where the partition PΓ consists of at least two subsets, in
other words |PΓ| ≥ 2. Given such a partition, we then set

deg∞PΓ

def
=

∑

e∈E(PΓ)

t(e) + d(|PΓ| − 1) ,

where E(PΓ) consists of all internal edges e ∈ E⋆ such that both ends e+ and
e− are contained in different elements of PΓ. Note the strong similarity to (2.9),
which is of course not a coincidence. We will call a partition PΓ “tight” if there
exists one single element A ∈ PΓ containing all of the vertices vi,⋆ ∈ V⋆ that are
connected to legs of Γ.

Given K and R in K−∞ and K+
∞ respectively, we furthermore define a valuation

ΠK,R by setting as in (2.5)

(ΠK,RΓ)(ϕ) =

∫

SV⋆

∏

e∈E⋆

Gt(e)(xe+ − xe−)(Dℓ1
1 · · ·Dℓk

k ϕ)(xv1 , . . . , xvk ) dx , (4.3)

where we used again the notationGt = Kt+Rt. We then have the following result
which is the analogue in this context of Proposition 2.4.

Proposition 4.1 Let Γ be such that every tight partition PΓ of its inner vertices

satisfies deg∞PΓ < 0. Then, the map (K,R) 7→ ΠK,RΓ extends continuously to

all of (K,R) ∈ K−∞ ×K+
0 .

Proof. This is a corollary of Theorem 4.3 below: given (4.3) and given that we
restrict ourselves to K ∈ K−∞, it suffices to note that ΠK,R = Π0,K+R

bphz
.

Remark 4.2 The reason why it is natural to restrict oneself to tight partitions can
best be seen with the following very simple example. Consider the case

Γ =
v1 v2 v3

t1 t20 0 .

Writing Gi = Kti
+ Rti

and identifying functions with distributions as usual,
one then has (ΠK,RΓ)(x, y) = (G1 ⋆ G2)(y − x). If the Gi are smooth functions,
then this is of course well-defined as soon as their combined decay at infinity is
integrable, which naturally leads to the condition deg∞ t1 + deg∞ t1 < −d, which
corresponds indeed to the condition deg∞PΓ < 0 for PΓ = {{v1, v3}, {v2}}, the
only tight partition of the inner vertices of Γ. Considering instead all partitions
would lead to the condition deg∞ ti < −d for i = 1, 2, which is much stronger
than necessary.

Note now the following two facts.
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• The condition of Proposition 4.1 is compatible with the definition of the
space H in the sense that if it is satisfied for one of the summands in the left
hand side of (2.12), then it is also satisfied for all the others, as an immediate
consequence of the fact that deg∞ t(k) = deg∞ t. In particular, we have a
well-defined subspace H+ ⊂ H on which the condition of Proposition 4.1
holds and therefore ΠK,RΓ is well-defined for (K,R) ∈ K−∞ ×K+

0 .

• If Γ satisfies the assumption of Proposition 4.1, then it is also satisfied for all
of the Feynman diagrams appearing in the second factor of the summands
of ∆Γ, so that H+ is invariant under the action of G− on H.

This suggests that if we define a BPHZ renormalised valuation on H+ by

ΠK,R
bphz

= (ΠK
− Â⊗ΠK,R)∆ , (4.4)

then it should be possible to extend it to kernel assignments exhibiting self-similar
behaviour both at the origin and at infinity. This is indeed the case, as demonstrated
by the main theorem of this section.

Theorem 4.3 The map (K,R) 7→ ΠK,R
bphz

Γ extends continuously to (K,R) ∈ K−0 ×
K+

0 for all Γ ∈ H+.

Proof. Consider the space T̃ defined as the vector space generated by the set
of pairs (Γ, Ẽ), where Γ is a Feynman diagram as before and Ẽ ⊂ E⋆ is a
subset of its internal edges. We furthermore define a linear map X: T→ T̃ by
XΓ =

∑

Ẽ⊂E⋆
(Γ, Ẽ), and we define a valuation on T̃by setting

(Π̃K,R(Γ, Ẽ))(ϕ) =

∫

SV⋆

∏

e∈E⋆\Ẽ

Kt(e)(xe+ − xe−)
∏

e∈Ẽ

Rt(e)(xe+ − xe−)

× (Dℓ1
1 · · ·Dℓk

k ϕ)(xv1 , . . . , xvk ) dx , (4.5)

so that ΠK,R = Π̃K,RX. Similarly to before, we define ∂T̃ by the analogue of
(2.12) and we set H̃= T̃/∂T̃, noting that Π̃K,R is well-defined on H̃.

We also define a map ∆̃ : H̃→ H− ⊗ H̃ in the same way as (2.19), but with
the sum restricted to subgraphs γ whose edge sets are subsets of E⋆ \ Ẽ. (This
condition guarantees that Ẽcan naturally be identified with a subset of the quotient
graph Γ/γ.) With this definition, one has the identity

∆̃X= (id ⊗X)∆ ,

as a consequence of the fact that the set of pairs (Ẽ, γ) such that Ẽ⊂ E⋆ and γ is a
subgraph of Γ containing only edges in E⋆ \ E is the same as the set of pairs such
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that γ is an arbitrary subgraph of Γ and Ẽ is a subset of the edges of Γ/γ. This in
turn implies that one has the identity

ΠK,R
bphz

Γ = (ΠK
− Â⊗ΠK,R)∆Γ = (ΠK

− Â⊗ Π̃K,R)∆̃XΓ . (4.6)

Let now T̃+ be the subspace of T̃consisting of pairs (Γ, Ẽ) such that deg∞P< 0
for every tight partitionPwith E(P) ⊂ Ẽ. Again, this defines a subspace H̃+ ⊂ H̃

invariant under the action of G− by ∆̃ and Xmaps H+ (defined as in the statement
of the theorem) into H̃+, so that it remains to show that (ΠK

− Â⊗ Π̃K,R)∆̃ extends
to kernels (K,R) ∈ K−0 ×K+

0 on all of H̃+.
For this, we now fix τ = (Γ, Ẽ) ∈ T̃+ and we remark that for R ∈ K+

∞ we can
interpret the factor

∏

e∈ẼRt(e)(xe+ −xe−) in (4.5) as being part of the test function.
More precisely, we set

ϕ⊗τ R = ϕ(x1, . . . , xk)
∏

e∈Ẽ

Rt(e)(x[e]+ − x[e]−) ,

where [·]± : Ẽ→ {k+1, . . . , k+2|Ẽ|} is an arbitrary but fixed numbering of the
half-edges of Ẽ. We then have (Π̃K,Rτ )(ϕ) = (ΠK Uτ )(ϕ⊗τR), where Uτ ∈ T+ is
the Feynman diagram obtained by cutting each of the edges e ∈ Ẽopen, replacing
them by two legs with label δ and numbers given by [e]±. It is immediate from
the definitions and the condition (4.2) that this is compatible with the actions of ∆̃
and ∆ in the sense that one has

((g ⊗ Π̃K,R)∆̃τ )(ϕ) = ((g ⊗ΠK)∆Uτ )(ϕ⊗τ R) , ∀g ∈ G− .

Inserting this into (4.6), we conclude that

(ΠK,R
bphz

Γ)(ϕ) =
∑

Ẽ⊂E⋆

(ΠK
bphz

U(Γ, Ẽ))(ϕ⊗(Γ,Ẽ) R) ,

so that it remains to bound separately each of the terms in this sum.
For this, we write Sd = Zd for the discrete analogue of our state space S = Rd,

we set N = k+2|Ẽ|, and we write 1 =
∑

x∈SN
d
Ψx for a partition of unity with the

property that Ψx(y) = Ψ0(y − x) and that Ψ0 is supported in a cube of sidelength
2 centred at the origin, so that it remains to show that

∑

x∈SN
d

Sx , Sx
def
= (ΠK

bphz
U(Γ, Ẽ))((ϕ⊗(Γ,Ẽ) R)Ψx) ,

is absolutely summable. It then follows from Theorem 3.1 that the summand in
the above expression is bounded by

|Sx| .
∏

e∈Ẽ

(1 + |x[e]+ − x[e]− |)
deg∞ t(e) ,
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for all (K,R) ∈ K−0 × K+
0 . This expression is not summable in general, so we

need to exploit the fact that there are many terms that vanish. For instance, since
the test function ϕ is compactly supported, there exists C such that Sx = 0 as
soon as |xi| ≥ C for some i ≤ k. Similarly, since the kernels Kt are compactly
supported, there exists C such that Sx = 0 as soon as there are two legs [i] and [j]

of Uτ attached to the same connected component and such that |xi − xj | ≥ C.
Let now P be the finest tight partition for Γ with E(P) ⊂ Ẽ and let L ∈ P

denote the (unique) set which contains all the vertices adjacent to the legs of Γ.
We conclude from the above consideration that one has

∑

x∈SN
d

|Sx| .
∑

y∈SP
d

1{yL=0}

∏

e∈E(P)

(1 + |y[e+] − y[e−]|)
deg∞ t(e) , (4.7)

where [v] ∈ P denotes the element of P containing the vertex v. At this stage, the
proof is virtually identical to that of Weinberg’s theorem, with the difference that
we need to control the large-scale behaviour instead of the small-scale behaviour.
We define Hepp sectors DT ⊂ S

P
d for T = (T, n) in exactly the same way as before,

the difference being that this time no two elements can be at distance less than 1,
so that we can restrict ourselves to scale assignments with nv ≤ 0 for every inner
vertex of T . Also, in view of (4.7), the leaves of T are this time given by elements
of P. In the same way as before, the number of elements of DT is of the order of
∏

u∈T 2−dnu so that one has again a bound of the type

∑

x∈SN
d

|Sx| .
∑

T

∏

u∈T

2−nuηu , ηu = d+
∑

e∈E(P)

1e↑ deg∞ t(e) , (4.8)

where e↑ denotes the common ancestor inT of the two elements ofPcontaining the
two endpoints of e. Our assumption onΓ now implies that for every initial segment
Ti of T 2, one has

∑

u∈Ti
ηu < 0. This is because one has

∑

u∈Ti
ηu = degPTi

,
where PTi

is the coarsest coarsening of P such that for every edge e ∈ E(PTi
),

one has e↑ 6∈ PTi
.

We claim that any such η satisfies

S(T, η)
def
=

∑

n

∏

u∈T

2−nuηu < ∞ ,

where again the sum is restricted to negative n that are monotone on T . This can
be shown by induction over the number of leaves of T . If T has only two leaves,
then this is a converging geometric series and the claim is trivial. Let now T be a
tree with m ≥ 3 leaves and assume that the claim holds for all trees with m − 1
leaves. Pick an inner vertex u of T which has exactly two descendants (such a

2i.e. Ti is such that if u ∈ Ti and v ≤ u, then v ∈ Ti.
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vertex always exists since T is binary) and write T̃ for the new tree obtained from
T by deleting u and coalescing its two descendants into one single leaf. Write
furthermore u↑ for the parent of u in T , which exists since T has at least three
leaves. The following example illustrates this construction:

T =

u↑

u ⇒ T̃ =

u↑

Since the condition on η is open and since Sη increases when increasing ηu, we
can assume without loss of generality that ηu 6= 0. There are then two cases:

• If ηu < 0, we have
∑

nu>n
u↑
2−nuηu ≈ 1, so that

S(T, η) ≈ S(T̃ , η̃) , (4.9)

where η̃v is just the restriction of ηv to the tree T̃ . Since initial segments of
T̃ are also initial segments of T and since η̃ = η on them, we can make use
of the induction hypothesis to conclude.

• If ηu > 0, we have
∑

nu>n
u↑
2−nuηu ≈ 2−n

u↑
ηu , so that (4.9) holds again,

but this time η̃u↑ = ηu↑ + ηu and η̃v = ηv otherwise. We conclude in
the same way as before since the only “dangerous” case is that of initial
segments T̃i containing u↑, but these are in bijection with the initial segment
Ti = T̃i ∪ {u} of T such that

∑

v∈T̃i
η̃v =

∑

v∈Ti
ηv, so that the induction

hypothesis still holds.

Applying this to (4.8) completes the proof of the theorem.

Remark 4.4 While the definition of ΠK,R
bphz

is rather canonical, given kernel as-
signments K and R, the decomposition G = K + R is not. Using the fact
that G− is a group, it is however not difficult to see that, for any two choices
(K,R), (K̄, R̄) ∈ K−0 ×K+

0 such that

Kt +Rt = K̄t + R̄t , ∀t ∈ L⋆ ,

there exists an element g ∈ G− such that ΠK̄,R̄
bphz

= (g ⊗ ΠK,R
bphz

)∆.
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