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Abstract 

A new methodology for the statistical inference of the Equivalent Initial Flaw Size Distribution 

(EIFSD) using the Dual Boundary Element Method (DBEM) is proposed. As part of the inference, 

Bayesian updating is used to calibrate the EIFS based on data obtained from simulated routine 

inspections of a structural component from a fleet of aircraft. An incremental crack growth procedure 

making use of the DBEM is employed for the modelling of the simultaneous growth of cracks in the 

structure due to fatigue. Multi-fidelity modelling, in the form of Co-Kriging, is used to create 

surrogate models that act in place of the DBEM model for the expensive Monte Carlo sampling 

procedure required for the statistical inference of the EIFSD. The proposed methodology is applied to 

a numerical example featuring a long fuselage lap joint splice in presence of Multiple Site Damage 

(MSD). Results show that the EIFSD can be accurately estimated within 10% error with data from 

just 50 inspections. The employed Co-Kriging models proved to be effective substitutes for the 

DBEM model, providing significant reductions in the computational cost associated with the 

implementation of the proposed statistical inference methodology.   

Keywords: Equivalent Initial Flaw Size Distribution; Fatigue crack growth; Multiple Site Damage; 
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1. Introduction 

Fatigue is the leading cause of structural failure in aircraft, and is among the most common causes of 

failure in other engineering structures [1]. By better understanding the mechanics behind fatigue crack 

growth, the fatigue life of a structure can be more accurately estimated. The timing of inspections can 

therefore be more accurately determined, providing improvements in both the efficiency of 

maintenance and safety. Current damage tolerance specifications state that the designer should assume 

that the initial cracks in the structure are of a size that is the maximum that could remain undetected 

after the use of a non-destructive inspection (NDI) technique [2]. However, because this is based on 

the upper limit of sizes that are undetectable, this approach can lead to conservative estimates for 

fatigue life [3].  

An ideal means to determine fatigue life would be to grow a crack from an actual initial flaw size 

(IFS) to a maximum permissible crack size with the use of a crack growth model accurate for very 

short cracks. However, this is difficult since the IFS would be smaller than the minimum detectable 

flaw size, and so too small to determine. The behaviour of such small cracks is also heavily influenced 

by the material’s microstructure [4], and so the accurate application of a crack growth model would be 

difficult. Also, the structure’s microstructure is likely to contain many small flaws, and so accurately 

determining which of these is likely to become a crack is difficult. An approach that would avoid the 

above problems would involve the use of an equivalent initial flaw size (EIFS). The EIFS is not an 

actual physical quantity, but can be thought of as a model calibration parameter for which a long-

crack growth model can be used [5]. The EIFS provides a helpful starting point for determining the 

fatigue life of the structure, and of other similar structures under similar conditions. 

One of the most common techniques that has been used in the past to determine EIFS is back-

extrapolation [6-16], which involves extrapolating inspected cracks backwards to some initial time 

through the use of a crack growth model. However, its application is limited due to the large amount 

of fatigue crack growth data needed and the required use of fractography techniques to ensure a high 

degree of accuracy. 

An approach that avoids back-extrapolation involves the use of the El-Haddad model [17] with the 

Kitagawa-Takahashi diagram [15, 18-21]. In this approach, the calculated EIFS is independent of load 

history, and only depends on the material properties, fatigue limit and threshold stress intensity factor. 

One limitation of this approach is that it involves the use of the geometry factor Y, which may be 

difficult to calculate for complex geometries or multiple cracks  [5]. 

Statistical approaches [5, 22-24], involving the use of Bayesian updating [5, 23, 24] or maximum 

likelihood estimation (MLE) [5, 22], treat the EIFS as a model calibration parameter. In this method, 

the most likely EIFS Distribution (EIFSD), given inspection data, is determined. One drawback of the 

procedures used in [5, 22, 23] is that the combined uncertainty from multiple different sources is 

represented by a single noise term with an arbitrarily assumed distribution (normal or lognormal). A 

more robust approach would involve taking into account individual sources of uncertainty [24]. By 

taking into account individual sources of uncertainty, which can be individually quantified, a more 

accurate estimate for the EIFSD can be obtained. 

One example of a previous work concerning the estimation of the EIFS for Multiple Site Damage 

(MSD) is Kim et al. [12], where the back extrapolation technique coupled with the Extended Finite 

Element Method (XFEM) was used to obtain the EIFSD for a specimen with multiple simultaneous 

cracks emanating from fastener holes. Renaud et al. [13] used the back extrapolation method with an 

optimization based methodology to determine the EIFS for MSD in the CC-130 aircraft. It was found 

that results matched well with in-service findings. Kim et al. [14] built on their previous work in [12] 

by interfacing Kriging with XFEM to develop a probabilistic approach to the EIFS for MSD, 

involving the consideration of multiple sources of uncertainty. Although back extrapolation has found 

a great deal of use in the calculation of the EIFSD for MSD, the employment of statistical methods 

such as Bayesian updating has not been considered. Statistical methods are able to provide an EIFSD 

independent of load history, making the resulting EIFSD more applicable to the fatigue life analysis 
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of other similar structures. This work aims to employ Bayesian updating for the purpose of obtaining 

the EIFSD of a structural component in the presence of MSD.  

A Dual Boundary Element Method (DBEM) model can be computationally expensive to run if there 

are many cracks to consider, as is the case in this work. In order to ensure that the proposed 

methodology for the statistical inference of the EIFSD can be practically applied, multi-fidelity 

modelling, a form of surrogate modelling that makes use of low-fidelity and high-fidelity model data, 

is used in this work to create computationally-cheap substitute models that act in place of the 

expensive DBEM models for the statistical inference of the EIFSD. In this work, low-fidelity and 

high-fidelity models refer to models which have coarse and fine meshes respectively. Multi-fidelity 

modelling has found a great deal of use in the field of structural analysis due to the significant 

improvements in efficiency that it can provide. A past example of multi-fidelity modelling is Morse et 

al. [25] where multi-fidelity models, in the form of response surfaces, were used in place of a 

Boundary Element Method (BEM) model for the structural reliability analysis of a thin plate. Results 

showed the multi-fidelity models matched the high-fidelity BEM model in terms of accuracy but 

provided much lower computational costs. Lefebvre at al. [26] employed a more sophisticated 

approach involving the use of Co-Kriging to create multi-fidelity models for the reliability analysis of 

a cracked cylinder. Results showed that Co-Kriging could obtain similar levels of accuracy to regular 

Kriging, but at reduced computational cost. 

The main objective of this work concerns the development of a new methodology for the statistical 

inference, via Bayesian updating, of the EIFSD for a structural component using the Dual Boundary 

Element Method (DBEM). Bayesian updating is an established technique in the field of reliability 

engineering [27-29]. It enables new information, such as in the form of data from routine inspections, 

to be used to update the inferred EIFSD, allowing for the continual improvement of the estimated 

EIFSD over time. The DBEM is used for the first time for a topic involving the EIFS. The main 

benefit of the DBEM is that little or no remeshing is required. This benefit, in addition to the inherent 

benefits of the BEM, such as the reduced dimensionality of the problem and its high accuracy, enables 

crack growth to be modelled in a highly efficient manner. The application of multi-fidelity modelling 

for reducing the computational cost of the estimation of the EIFSD is also investigated for the first 

time. Multi-fidelity modelling, via the surrogate modelling technique Co-Kriging, is used in place of 

the DBEM model for the computationally-expensive Monte Carlo sampling required for the inference 

of the EIFSD and could prove to be a more efficient alternative to single-fidelity surrogate modelling 

techniques used in the past, such as Kriging. In summary, the novel contributions of this work are: 

• The DBEM is used for the first time to estimate the EIFSD for a structure. A DBEM-based 

automatic incremental crack growth procedure, that requires little or no remeshing, is employed 

for the statistical inference of the EIFSD. It offers a very efficient means to simulate fatigue crack 

growth. 

• Multi-fidelity modelling, via Co-Kriging, is employed for the first time for an application 

involving determining the EIFSD of a structure. It is used in place of the expensive DBEM model 

for the statistical inference of the EIFSD and has the potential to provide significant 

improvements in efficiency. Allowing for more complicated crack configurations to be 

investigated. 

• A methodology for the statistical inference of the EIFSD in a structural component in the 

presence of MSD, and multiple sources of uncertainty, has been developed for the first time. 

Previous work on this topic has exclusively involved the use of the back-extrapolation method. 

One drawback of the back-extrapolation approach is that a large amount of data is required. The 

proposed statistical inference methodology avoids this problem by treating the EIFS as a model 

calibration parameter, whereby the most likely EIFSD is determined based on simulated 

inspection data from a fleet of aircraft. 
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1.1. Incremental Crack Growth Procedure 

The dual boundary element method (DBEM) developed in [30] is employed here for modelling crack 

problems. The discretised equations for the DBEM can be written in a compact form as: 

 𝑪𝒖 + ∑ ( ∫ 𝑻𝛙𝑻𝒅Γ

Γ𝑛

)

𝑁𝑒

𝑛=1

𝒖𝑛 + ∑ ( ∫ 𝑻𝛙𝑻𝒅Γ

Γ𝑛

)

𝑁𝑐

𝑛=1

Δ𝒖𝑛 = ∑ ( ∫ 𝑼𝛙𝑻𝒅Γ
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)

𝑁𝑐

𝑛=1

𝒕𝑛 (1) 

for the displacement boundary integral equation, and: 
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)
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Δ𝒖𝑛 = ∑ 𝒏 ( ∫ 𝑫𝛙𝑻𝒅Γ
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)

𝑁𝑐

𝑛=1

𝒕𝑛 (2) 

for the traction equation. In these equations 𝑁𝑒 and 𝑁𝑐 are the number of elements on the external and 

crack surfaces respectively, the boundary of the domain is denoted by Γ, and the free term 𝑪 denotes 

2 × 2 submatrices. The fundamental solutions (important equations used in the BEM) are denoted as 

𝑻, 𝑼, 𝑺, and 𝑫. The vectors 𝒖, 𝒕, and Δ𝒖𝑛 denote displacements and tractions on the boundary and 

displacement discontinuity across the crack surfaces, respectively. The vector 𝛙 contains either the 

isoparametric quadratic shape functions on the boundary or the discontinuous quadratic shape 

functions on the crack surfaces [31]. When modelling cracks both the upper and lower surfaces of the 

crack are considered co-planar. Therefore, when the lower and upper surfaces are discretised, the 

nodes of an element on the lower surface will share the same coordinates as the nodes on the opposing 

element on the upper surface. This can lead to mathematical degeneration. The DBEM avoids the 

issues associated with co-planar crack surfaces by applying the displacement integral equation for 

collocation on the upper crack surface, and the traction integral equation for collocation on the lower 

surface. This enables crack problems to be solved with a single-region formulation. 

The simulation of fatigue crack growth involves an incremental crack extension analysis. In this 

procedure cracks are automatically grown in an incremental manner from a specified initial crack size 

to a specified final crack size. The mode I and mode II stress intensity factors for the crack tips are 

calculated using the mixed-mode J-integral. Because the BEM provides a continuous modelling of the 

interior of the structure, with no discretisation required, the use of the J-integral is especially effective. 

The direction of the incremental extensions are determined using the maximum principal stress 

criterion, while the Paris law in [32] is used to calculate the size of the extension and the number of 

loading cycles required for the crack to grow this amount. The incremental extension of the crack is 

modelled by adding new elements (i.e. 2 elements) at the crack tip(s). This automatic incremental 

crack growth procedure [33] requires little or no remeshing. For conciseness, a short introduction to 

the procedure is given. More detailed descriptions can be found in [31, 33, 34]. The incremental 

growth of a crack using this method can be seen in Figure 1.1 
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Figure 1.1 here 

The system of equations used in the BEM is of the form 𝑯𝒖 = 𝑮𝒕, where 𝑯 and 𝑮 are matrices of 

coefficients, and 𝒖 and 𝒕 are vectors containing boundary displacements and tractions respectively. 

This system of equations can be rearranged in the form 𝑨𝑿 = 𝑭, where 𝑿 is a vector that contains all 

the unknown boundary displacements and tractions, 𝑨 is a matrix of known coefficients, and 𝑭 is a 

vector containing known coefficients multiplied by known tractions. The vector 𝑿 can be calculated 

by LU decomposition. The rows and columns of 𝑨, 𝑿, and 𝑭 correspond to elements used to discretise 

the boundary of a structure. To model the growth of a crack, new elements are added to the tip of the 

crack, this results in new rows and columns being added to the already existing system of equations. 

This process is demonstrated in Figure 1.2. For each increment, only the newly added rows and 

columns need to be LU-decomposed since the already LU-decomposed rows and columns are carried 

over from one growth increment to another. This approach therefore offers a very efficient means to 

model crack growth. 

 

Figure 1.2 here 

 

Figure 1.2. Automatic updating of the system of equations 𝑨𝑿 = 𝑭. New 

rows and columns are added for each crack growth increment. 

× = 

Initial geometry 

1st growth increment 

2nd growth increment 

3rd growth increment 

4th growth increment 

Figure 1.1. Incremental growth of an edge crack in a square plate. Quadratic elements 

are used. The upper and lower surfaces of the crack are assumed to be coplanar. 
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The number of cycles 𝑁 required for a crack to grow one increment ∆𝑎 is given by: 

 𝑁 = ∫
1

𝑑𝑎 𝑑𝑁⁄
𝑑𝑎

𝑎1

𝑎0

 (3) 

where 𝑎0 and 𝑎1 are the lengths of the crack before and after the current growth increment, and 

𝑑𝑎 𝑑𝑁⁄  is the crack growth rate. The size of the crack growth increment (∆𝑎 = 𝑎1 − 𝑎0) can be 

specified. The integration in Eq. (3) was performed using Simpson’s rule with 8 subdivisions, as this 

number was found to provide sufficiently accurate results during preliminary testing. If a structure 

contains a total of 𝑀 (𝑀 > 1) simultaneous cracks, the critical crack will grow the prescribed amount 

∆𝑎 for each increment while the sub-critical cracks will each grow by different smaller amounts given 

by 𝜑𝑖∆𝑎 (𝑖 = 1,2, … , 𝑀), where 𝜑𝑖 (𝜑𝑖 ≤ 1) is the scaling factor for the 𝑖’th crack. This scaling factor 

is determined by comparing the growth rates of the individual cracks with the growth rate of the 

critical crack. In this approach, the stress intensity factors are determined for each of the 𝑀 cracks, 

then the number of cycles required for each crack to grow an incremental amount ∆𝑎 is determined. 

The critical crack is identified as the crack which requires the least amount of cycles (𝑁𝑚𝑖𝑛) to grow 

by the amount ∆𝑎. The crack growth increments 𝜑𝑖∆𝑎 for the sub-critical cracks are then determined 

by calculating the amount each crack will grow in 𝑁𝑚𝑖𝑛 cycles. This process is repeated for each 

increment of growth. The direction of growth for each increment is determined using the maximum 

principal stress criterion. Once the number of cycles corresponding to each increment has been 

calculated, they are summed up to provide the total number of cycles required to grow the cracks from 

their specified initial sizes to their specified final sizes.  

Using Paris’s law, the crack growth rate is: 

 
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾𝑒𝑓𝑓)

𝑚
 (4) 

where 𝐶 and 𝑚 are the Paris law constants. The effective stress intensity factor range ∆𝐾𝑒𝑓𝑓 =

𝐾𝑒𝑓𝑓
𝑚𝑎𝑥 − 𝐾𝑒𝑓𝑓

𝑚𝑖𝑛 (where the superscripts 𝑚𝑎𝑥 and 𝑚𝑖𝑛 refer to 𝐾𝑒𝑓𝑓 evaluated at the maximum and 

minimum stress levels respectively) was experimentally derived by Tanaka [35], and takes into 

account the effects of both mode I and mode II crack deformation: 

 ∆𝐾𝑒𝑓𝑓 = √∆𝐾𝐼
2 + 2∆𝐾𝐼𝐼

2 (5) 

where ∆𝐾𝐼 and ∆𝐾𝐼𝐼 are the stress intensity factor ranges for mode I and mode II crack deformation 

respectively and are calculated using the J-integral method [31]. 

Both 𝐶 and 𝑚 are dependent on the material used. 𝐶 is also dependent on the stress ratio 𝑅 (𝑅 =
𝜎𝑚𝑖𝑛 𝜎𝑚𝑎𝑥⁄ ). This relationship was modelled using Walker’s equation [36]: 

 𝐶 =
𝐶0

(1 − 𝑅)𝑚(1−𝛾)
 (6) 

where 𝐶0 is the value of 𝐶 when 𝑅 = 0, and 𝛾 is a material constant. 

1.2. Statistical Inference of the EIFSD for MSD 

In this work, Bayesian updating is used to infer the EIFSD of a structure in the presence of MSD. 

Bayesian updating involves using new information, such as data obtained from inspections, to update 

prior assumptions regarding the probability of an event. Bayes’s rule is: 

  𝑃(𝐻|𝐷) =
𝑃(𝐷|𝐻)𝑃(𝐻)

𝑃(𝐷)
 (7) 

where 𝑃(𝐻|𝐷) is the posterior probability of a hypothesis 𝐻 being true given some data 𝐷, 𝑃(𝐷|𝐻) is 

the likelihood of 𝐷 given 𝐻, 𝑃(𝐻) is the prior probability of 𝐻 or the probability that 𝐻 is true before 

being given 𝐷, and 𝑃(𝐷) is a normalising factor that ensures the integral of 𝑃(𝐻|𝐷) over the 

predefined domain is equal to 1. In this work, Bayesian updating is used to infer the statistical 
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parameters (mean and standard deviation) of the EIFSD in the presence of multiple sources of 

uncertainty. EIFS is denoted as 𝜃. 

Given that lognormal distributions are commonly used to model distributions for parameters such as 

fatigue life and crack sizes [37], it is assumed for the EIFSD and the likelihood function in this work. 

Given that a total of 𝑀𝑖𝑛𝑠 inspections were carried out, and given that the 𝑖’th inspection (𝑖 =

1,2, … , 𝑀𝑖𝑛𝑠) occurred at 𝑁𝑖
𝑖𝑛𝑠 cycles, and that the inspection detected a total of 𝑀𝑖

𝑐𝑟𝑘 cracks, the 

likelihood that some guess 𝜃 for the EIFS is the true EIFS for the 𝑗’th crack of the 𝑖’th inspection 

(𝑗 = 1,2, … , 𝑀𝑖
𝑐𝑟𝑘) of size 𝑎𝑖𝑗 is:  

 

𝐿(𝜃|𝑁𝑖
𝑖𝑛𝑠, 𝑎𝑖𝑗 , 𝒀) = 𝑓𝑁|𝜃̂,𝑎𝑖𝑗,𝒀(𝑁𝑖

𝑖𝑛𝑠|𝜃, 𝑎𝑖𝑗 , 𝒀) 

=
1

𝑁𝑖
𝑖𝑛𝑠√2𝜋𝛽2

exp (−
[log(𝑁𝑖

𝑖𝑛𝑠) − 𝛼]
2

2𝛽2
) 

(8) 

The number of cycles required to grow the 𝑗’th crack of the 𝑖’th inspection from 𝜃 to 𝑎𝑖𝑗 is 

represented by the distribution 𝑓𝑁|𝜃̂,𝑎𝑖𝑗,𝒀. This is because there is uncertainty in the parameters that 

influence crack growth, namely: 𝐶, 𝑚, 𝜎𝑚𝑎𝑥, and 𝑅. The uncertainty in these parameters is 

represented by the vector 𝒀. The distribution 𝑓𝑁|𝜃̂,𝑎𝑖𝑗,𝒀 was found to closely resemble a lognormal 

distribution and has a mean 𝛼 and standard deviation 𝛽. This distribution can be estimated using 

Monte Carlo sampling by considering the uncertainty in 𝐶, 𝑚, 𝜎𝑚𝑎𝑥, and 𝑅. The number of cycles 𝑁𝑖𝑗 

required to grow the 𝑗’th crack of the 𝑖’th inspection from 𝜃 to 𝑎𝑖𝑗 in the presence of the other cracks 

found during the inspection can be estimated using some crack growth model: 𝐹𝑖𝑗(𝐶, 𝑚, 𝜎𝑚𝑎𝑥, 𝑅, 𝜃). 

For each Monte Carlo sample, the values of 𝐶, 𝑚, 𝜎𝑚𝑎𝑥, and 𝑅 are chosen randomly per their 

probability distributions. To accurately estimate a probability distribution using Monte Carlo 

sampling, thousands of simulations are often required. Once the distribution has been estimated, 𝛼 

and 𝛽 can be calculated and the likelihood shown in Eq. (8) can be obtained. A diagram showing this 

procedure can be seen in Figure 1.3. 

Figure 1.3 here 

Because of the many runs of the crack growth model 𝐹𝑖𝑗 required for Monte Carlo sampling, it would 

be computationally expensive to use a DBEM model as 𝐹𝑖𝑗. Therefore, Co-Kriging models are used in 

this work in place of DBEM models for this sampling. These Co-Kriging models will be created 

based on DBEM models. 

The likelihood that 𝜃 is the true EIFS for all of the cracks in the 𝑖’th inspection is given by the 

assumption: 

Figure 1.3. The distribution 𝑓𝑁|𝜃̂,𝑎𝑖𝑗,𝒀. 
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 𝐿(𝜃|𝑫𝑖, 𝒀) = ∏ 𝐿(𝜃|𝑁𝑖
𝑖𝑛𝑠, 𝑎𝑖𝑗 , 𝒀)

𝑀𝑖
𝑐𝑟𝑘

𝑗=1

 (9) 

where 𝑫𝑖 = (𝑁𝑖
𝑖𝑛𝑠, 𝒂𝒊) is a vector containing the data from the 𝑖’th inspection, where the row vector 

𝒂𝑖 = (𝑎𝑖1, 𝑎𝑖2, … , 𝑎
𝑖𝑀𝑖

𝑐𝑟𝑘). The likelihood that some combination of guesses mean 𝜇̂ and standard 

deviation 𝜎̂ are the actual values, 𝜇 and 𝜎, of the true EIFSD, given the data from the 𝑖’th inspection 

is: 

 𝐿(𝜇̂, 𝜎̂|𝑫𝑖 , 𝒀) = ∫ 𝐿(𝜃|𝐷𝑖, 𝒀)𝑓𝜃(𝜃̂|𝜇̂, 𝜎̂)𝑑𝜃 (10) 

where 𝑓𝜃(𝜃̂|𝜇̂, 𝜎̂) is an EIFSD with parameters 𝜇̂ and 𝜎̂ evaluated at 𝜃. The individual likelihood 

functions are: 

 𝐿(𝜇̂|𝑫𝑖 , 𝒀) = ∫ 𝐿(𝜇̂, 𝜎̂|𝑫𝑖, 𝒀)𝑑𝜎̂ (11) 

 𝐿(𝜎̂|𝑫𝑖, 𝒀) = ∫ 𝐿(𝜇̂, 𝜎̂|𝑫𝑖, 𝒀)𝑑𝜇̂ (12) 

Posterior estimates for the actual probability distributions of 𝜇 and 𝜎 are: 

 𝑓𝜇|𝑫𝑖,𝒀(𝜇̂|𝑫𝑖, 𝒀) =
𝐿(𝜇̂|𝑫𝑖, 𝒀)𝑓𝜇|𝑫𝑖−1,𝒀(𝜇̂|𝑫𝑖−1, 𝒀)

∫ 𝐿(𝜇̂|𝑫𝑖, 𝒀)𝑓𝜇|𝑫𝑖−1,𝒀(𝜇̂|𝑫𝑖−1, 𝒀)𝑑𝜇̂
 (13) 

 𝑓𝜎|𝑫𝑖,𝒀(𝜎̂|𝑫𝑖, 𝒀) =
𝐿(𝜎̂|𝑫𝑖, 𝒀)𝑓𝜎|𝑫𝑖−1,𝒀(𝜎̂|𝑫𝑖−1, 𝒀)

∫ 𝐿(𝜎̂|𝑫𝑖, 𝒀)𝑓𝜎|𝑫𝑖−1,𝒀(𝜎̂|𝑫𝑖−1, 𝒀)𝑑𝜎̂
 (14) 

where 𝑓𝜇|𝐷𝑖,𝒀(𝜇̂|𝑫𝑖, 𝒀) denotes a posterior estimate for the distribution of 𝜇 given 𝑫𝑖 and 𝒀, evaluated 

at 𝜇̂. The integrations seen in equations (10)-(14) were carried out with the Trapezoidal rule. A total 

of 50 evenly spaced integration points/guesses were used for each of the variables 𝜃, 𝜇̂, and 𝜎̂. 

Once the data from a new inspection is available, the process repeats through equations (8) to (14), 

and the posterior distributions 𝑓𝜇|𝑫𝑖,𝒀 and 𝑓𝜎|𝑫𝑖,𝒀 are updated using Baye’s rule (equations (13) and 

(14)). The posterior distributions from the previous inspection are used as the prior distributions, 

𝑓𝜇|𝑫𝑖−1,𝒀 and 𝑓𝜎|𝑫𝑖−1,𝒀, for the new inspection. Once 𝑓𝜇|𝑫𝑖,𝒀 and 𝑓𝜎|𝑫𝑖,𝒀 have been obtained after the 

𝑖’th inspection, the mean of these distributions 𝜇𝜃,𝑖 = 𝐸(𝜇) and 𝜎𝜃,𝑖 = 𝐸(𝜎) are calculated. This is 

demonstrated in Figure 1.4. 

Figure 1.4 here 

After 𝜇𝜃,𝑖 and 𝜎𝜃,𝑖 have been obtained for the 𝑖’th inspection, the average of these values and the 

previous values is calculated: 

Figure 1.4. The posterior distributions 𝑓𝜇|𝑫𝑖,𝒀 and 𝑓𝜎|𝑫𝑖,𝒀 and their mean values 

𝜇𝜃,𝑖 and 𝜎𝜃,𝑖. 
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 𝜇̅𝜃,𝑖 =
1

𝑖
∑ 𝜇𝜃,𝑘

𝑖
𝑘=1                𝜎̅𝜃,𝑖 =

1

𝑖
∑ 𝜎𝜃,𝑘

𝑖
𝑘=1  (15) 

These two values are then used as the mean and standard deviation of our estimate for the EIFSD after 

the 𝑖’th inspection. This is demonstrated in Figure 1.5. As mentioned earlier the EIFSD is assumed to 

follow a lognormal distribution. 

Figure 1.5 here 

A flowchart showing the steps of the proposed methodology is shown in Figure 1.6. The procedure 

for Bayesian updating can be stopped after a certain number of inspections have been carried out. This 

number can be determined by the engineer. Generally, more inspections lead to a more accurate 

estimate for the EIFSD. The initial prior distributions, 𝑓𝜇|𝑫0,𝒀 and 𝑓𝜎|𝑫0,𝒀, can be chosen based on 

hypothetical prior experience or knowledge regarding the EIFSD on behalf of the engineer. If no prior 

experience or knowledge is available, then uniform distributions can be chosen for these initial prior 

distributions. 

Figure 1.5. Estimate for the EIFSD after the 𝑖’th inspection. 
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Figure 1.6. Flowchart of the proposed methodology for the statistical inference of the EIFSD. 

Figure 1.6 here 

Conduct the 𝑖’th inspection obtaining 𝑁𝑖
𝑖𝑛𝑠 and 𝒂𝑖 = (𝑎𝑖1, 𝑎𝑖2, … , 𝑎

𝑖𝑀𝑖
𝑐𝑟𝑘) 

Create a Co-Kriging model for each crack of this inspection.  

Use the Co-Kriging models with Monte Carlo simulation to determine the 

distribution 𝑓𝑁|𝜃̂,𝑎𝑖𝑗,𝒀 for each crack 𝑎𝑖𝑗 and each integration point 𝜃 (Eq. (8) 

Evaluate 𝑓𝜇|𝑫𝑖,𝒀(𝜇̂|𝑫𝑖, 𝒀)and 𝑓𝜎|𝑫𝑖,𝒀(𝜎̂|𝑫𝑖, 𝒀) for each integration point 𝜇̂ and 𝜎̂ 

respectively to obtain the posterior distributions 𝑓𝜇|𝑫𝑖,𝒀 and 𝑓𝜎|𝑫𝑖,𝒀 (Eqs. (13(11 and 

(14(8) 

Estimate the prior distributions 𝑓𝜇|𝑫0,𝒀 and 𝑓𝜎|𝑫0,𝒀 

based on prior knowledge or experience.  

Stop? 

Choose the ranges for the integration points 𝜃, 𝜇̂, 
and 𝜎̂ based on prior knowledge or experience. 

Determine the likelihood 𝐿(𝜃|𝑫𝑖, 𝒀) for each integration point 𝜃 (Eq. 

(9(8) 

Determine 𝐿(𝜇̂, 𝜎̂|𝑫𝑖, 𝒀) for each combination of integration points 𝜇̂ and 𝜎̂ (Eq. 

(10(8) 

Determine 𝐿(𝜇̂|𝑫𝑖, 𝒀) and 𝐿(𝜎̂|𝑫𝑖, 𝒀) for each integration 

point 𝜇̂ and 𝜎̂ respectively (Eqs. (11 and(8 (12) 

Use 𝜇̅𝜃,𝑖 and 𝜎𝜃,𝑖 as the mean and standard deviation of our estimate 

for the EIFSD after having used the data from 𝑖 inspections 

Calculate the means of these distributions to obtain 𝜇𝜃,𝑖 and 𝜎𝜃,𝑖. Take the average 

of these values and the previous values to obtain 𝜇̅𝜃,𝑖 and 𝜎𝜃,𝑖 (Eq. (15) 

Stop the procedure 
𝑖 = 𝑖 + 1 No Yes 
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1.3. Multi-Fidelity Modelling with Co-Kriging 

Co-Kriging is an advanced form of Kriging; an interpolation method that involves modelling 

interpolated values as a Gaussian process. Kriging has proven to be very effective for the creation of 

surrogate models; cheap models that are used in place of expensive models but can achieve similar 

levels of accuracy. Since Kriging interpolates the data points used in the creation of the surrogate 

model, it is ideally suited for use with computer programs since they are deterministic in nature. Co-

Kriging takes into account not only expensive/high-fidelity model data when creating the surrogate 

model, but also cheap/low-fidelity model data. By also taking into account low-fidelity data, it is 

expected that a smaller amount of high-fidelity data is required to achieve the same accuracy as a 

Kriging model using a larger amount of high-fidelity data, leading to less CPU-time required to create 

the Co-Kriging model overall compared to the Kriging model.  

To create a surrogate model, deign data is required. This is typically composed of a matrix of design 

sites and a column vector of outputs. The matrix of design sites 𝑺 contains 𝑛 combinations of the 𝑚 

input variables. The vector of outputs 𝒀 of length 𝑛 contains the responses of a computer model to the 

𝑛 combination in 𝑺. 𝑺 and 𝒀 are: 

 𝑺 = [

𝒔1

𝒔2

⋮
𝒔𝑛

] = [

𝑠11 𝑠12 ⋯ 𝑠1𝑚

𝑠21 𝑠22 ⋯ 𝑠2𝑚

⋮ ⋮ ⋱ ⋮
𝑠𝑛1 𝑠𝑛2 ⋯ 𝑠𝑛𝑚

] (16) 

 𝒀 = [

𝑦(𝒔1)

𝑦(𝒔2)
⋮

𝑦(𝒔𝑛)

] = [

𝑌1

𝑌2

⋮
𝑌𝑛

] (17) 

The methodology involved in determining the combinations of design sites in 𝑺 is known as the 

Design and Analysis of Computer Experiments (DACE). There are three main types of designs that 

are used with DACE, these are random sampling, stratified sampling, and quasi-random sequences 

[38]. In the third type, quasi-random sequences, the design sites are chosen in consideration of 

previous design sites, ensuring that they are evenly spread, thereby preventing the occurrence of 

clusters and gaps. Therefore, surrogate models created using this technique could prove to be more 

accurate than those created with other techniques such as Latin Hypercube sampling [39], while also 

requiring less design sites in their creation. Therefore, in this work, a type of quasi-random sequence 

known as Sobol sequences [38] are used to generate the design sites in 𝑺. 

Due to the use of random variables in this work, a form of importance sampling is used to ensure that 

the design sites are more concentrated in the most likely regions of each variable’s domain. By 

default, the design points obtained from a Sobol sequence lie in the range (0,1). The inverse 

Cumulative Distribution Function (CDF) of these design points are taken for each variable to obtain 

new design points. The new design points are therefore more concentrated in the most-likely regions 

of each variable’s domain, and less concentrated in the least-likely regions. 

 Kriging  

For conciseness, a brief introduction to Kriging is provided. A comprehensive introduction to Kriging 

can be found in [40].  

A Kriging model is of the form: 

 𝑦̂(𝒙) = 𝒇T(𝒙)𝜷 + 𝑍(𝒙) (18) 

where 𝑦̂(𝒙) is termed the Kriging predictor and is the output of the Kriging model at some trial point 

𝒙 (𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑚]), 𝐟 and 𝜷 are column vectors of length 𝑝 containing regression functions and 

regression coefficients respectively, and 𝑍 is a stationary Gaussian process that models the 

interpolated values. The covariance of 𝑍 is: 
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 cov[𝑍(𝒔𝑖), 𝑍(𝒙)] = E[𝑍(𝒔𝑖)𝑍(𝒙)] = 𝜎2ℛ(𝜽, 𝒔𝑖, 𝒙) (19) 

where 𝐸 denotes expectation, and 𝜎2 is the process variance. The correlation function ℛ represents 

the correlation between the design points 𝒔𝑖, 𝑠𝑖𝑗 ∈ ℝ𝑛×𝑚, and the trial point 𝒙. The hyperparameters 

𝜽, 𝜃𝑗 ∈ ℝ𝑚, describe the level of influence that the distance between the design points 𝒔𝑖 and 𝒙 have 

on ℛ. The most commonly used correlation function ℛ is the Gaussian correlation function due to its 

ability to provide an approximation surface that is smooth and infinitely differentiable [40]. It is used 

in this work and is given by: 

 ℛ(𝜽, 𝒔𝑖 , 𝒙) = ∏ ℛ(𝜃𝑗 , 𝑠𝑖𝑗 , 𝑥𝑗)

𝑚

𝑗=1

= ∏ exp (−𝜃𝑗|𝑠𝑖𝑗 − 𝑥𝑗|
2

)

𝑚

𝑗=1

= exp (∑(−𝜃𝑗𝑑𝑗
2)

𝑛

𝑗=1

) (20) 

where 𝑑𝑗 = |𝑠𝑖𝑗 − 𝑥𝑗|. 

  Co-Kriging 

A Co-Kriging model exploits the correlation between the response of a cheap/low-fidelity model and 

an expensive/high-fidelity model. Two sets of design data are used in Co-Kriging, the set of the 

cheap/low-fidelity data (𝑺𝑐 , 𝒀𝑐) where 𝑺𝑐 is a 𝑛𝑐 × 𝑚 matrix and 𝒀𝑐 is a column vector of length 𝑛𝑐, 

and an expensive/high-fidelity set (𝑺𝑒 , 𝒀𝑒) where 𝑺𝑒 is a 𝑛𝑒 × 𝑚 matrix and 𝒀𝑒 is a column vector of 

length 𝑛𝑒. A brief introduction to the formulations for Co-Kriging is provided here. A more detailed 

description of the formulations can be found in [41]. 

Co-Kriging can be thought of as involving the creation of two Kriging models in sequence, one that 

approximates the output of the cheap/low-fidelity model 𝒀𝑐, and one that approximates the residuals 

𝒀𝑑 between the expensive/high-fidelity output 𝒀𝑒 and the output of the cheap Kriging model 𝑦̂𝑐. This 

can be presented as: 

 𝒀𝑑 = 𝒀𝑒 − 𝜌𝑦̂𝑐(𝑺𝑒) (21) 

where 𝜌 is a scaling parameter estimated using Maximum Likelihood Estimation (MLE). The 

relationship between the Gaussian processes evaluated at some trial point 𝒙 is: 

 𝑍𝑒(𝒙) = 𝑍𝑑(𝒙) + 𝜌𝑍𝑐(𝒙) (22) 

Similar to the covariance seen in Eq. (19), the elements of the covariance matrix in this case are: 

 cov[𝑍𝑐(𝑺𝑐), 𝑍𝑐(𝑺𝑐)] = 𝜎𝑐
2ℛ(𝜽𝑐 , 𝑺𝑐 , 𝑺𝑐) (23) 

 cov[𝑍𝑐(𝑺𝑐), 𝑍𝑒(𝑺𝑒)] = 𝜌𝜎𝑐
2ℛ(𝜽𝑐 , 𝑺𝑐 , 𝑺𝑒) (24) 

 cov[𝑍𝑒(𝑺𝑒), 𝑍𝑒(𝑺𝑒)] = 𝜌2𝜎𝑐
2ℛ(𝜽𝑐 , 𝑺𝑒 , 𝑺𝑒) + 𝜎𝑑

2ℛ(𝜽𝑑 , 𝑺𝑒 , 𝑺𝑒) (25) 

The covariance matrix (dimensions: (𝑛𝑐 + 𝑛𝑒) × (𝑛𝑐 + 𝑛𝑒)) is: 

 𝑪 = [
𝜎𝑐

2ℛ(𝜽𝑐 , 𝑺𝑐 , 𝑺𝑐) 𝜌𝜎𝑐
2ℛ(𝜽𝑐 , 𝑺𝑐 , 𝑺𝑒)

𝜌𝜎𝑐
2ℛ(𝜽𝑐 , 𝑺𝑒 , 𝑺𝑐) 𝜌2𝜎𝑐

2ℛ(𝜽𝑐 , 𝑺𝑒 , 𝑺𝑒) + 𝜎𝑑
2ℛ(𝜽𝑑 , 𝑺𝑒 , 𝑺𝑒)

] (26) 

where 𝜎𝑐
2 and 𝜎𝑑

2 are the process variances, and 𝜽𝑐 and 𝜽𝑑 are the hyperparameters corresponding to 

the Kriging models for the cheap and residual data respectively. The optimal values of these 

parameters, and 𝜌, can be found using MLE [41]. 

The Co-Kriging approximation of the expensive model is: 

  𝑦̂𝑒(𝒙) = 𝒇T(𝒙)𝜷̂ + 𝒄T𝜸∗ (27) 
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where 𝜸∗ = 𝑪−1(𝒀 − 𝑭𝜷̂), and 𝜷̂ = (𝑭T𝑪−𝟏𝑭)
−𝟏

𝑭T𝑪−𝟏𝒀 are the estimated regression coefficients 

from MLE, and 𝒀 and 𝑭 are: 

 𝒀 = [
𝒀𝑐

𝒀𝑒
] (28) 

 𝑭 = [
𝑭𝑐

𝑭𝑒
] (29) 

where 𝑭𝑐 and 𝑭𝑒 are matrices of dimensions (𝑛𝑐 × 𝑝) and (𝑛𝑒 × 𝑝) respectively that contain the 

design sites 𝑺𝑐 and 𝑺𝑒 evaluated with the regression functions in 𝒇. The column vector 𝒄 of length 
(𝑛𝑐 + 𝑛𝑒)  is: 

 𝒄 = [
𝜌̂𝜎̂𝑐

2ℛ(𝜽̂𝑐 , 𝑺𝑐 , 𝒙)

𝜌̂2𝜎̂𝑐
2ℛ(𝜽̂𝑐 , 𝑺𝑒 , 𝒙) + 𝜎̂𝑑

2ℛ(𝜽̂𝑑 , 𝑺𝑒 , 𝒙)
] (30) 

where the symbol ^ denotes estimates obtained from MLE. In this work, Co-Kriging models are used 

to replace the expensive DBEM model in the Monte Carlo simulation required to estimate the 

distribution 𝑓𝑁|𝜃̂,𝑎𝑖𝑗,𝒀 in Eq. (8). The Kriging and Co-Kriging models used in this work are created 

using the Matlab Kriging toolbox ooDACE [42]. 

2. Numerical Example – Fuselage Lap Joint Splice 

The above methodology was applied to estimate the EIFSD for a fuselage lap joint splice in the 

presence of Multiple Site Damage (MSD) subjected to constant-amplitude cyclic loading. The splice 

is composed of Aluminium 2024-T3, with Young’s modulus 𝐸 = 68.9 Gpa and Poisson’s ratio 𝜈 =
0.33. The lap joint has two rows of fastener holes of diameter 5 mm, and pitch 50 mm. The splice is 

420 mm in length and 100 mm in width. Quadratic elements were used to model the splice in the 

BEM. Four elements were used on each of the four outer sides, 12 elements were used for each of the 

holes on the upper row, and 4 elements were used for each of the holes on the lower row. It is 

assumed that cracks are more likely to appear on the first row, as seen in the Aloha airlines accident 

[43]. The holes on this critical row are therefore given more elements to improve accuracy. The BEM 

model used can be seen in Figure 2.1.  

Figure 2.1 here 

Cracks in the structure are assumed to be radial cracks emanating from either side of each hole. This 

gives a possibility of having, at most, 16 cracks in the structure. Therefore, the EIFSD obtained will 

be the EIFSD for a single type of crack i.e. radial cracks emanating from fastener holes. 

Figure 2.1. The BEM model of the lap joint. 



13 

 

 

 

The statistical inference was undertaken in the presence of uncertainties in the fatigue model 

parameters 𝐶0 and 𝑚, and in the loading condition parameters 𝜎𝑚𝑎𝑥 and 𝑅. These four variables can 

be modelled as random variables, their statistics can be seen in Table 1. The statistics of 𝐶, one of the 

Paris law constants, can be calculated using the statistics in Table 1 with the Walker equation (Eq. 

(6)). 

Table 1. Random variables and their statistics. 

Variable Distribution Mean Coefficient of variation (CoV) 

𝐶0 Lognormal 1.42 × 10−8 
mm/cycle

(MPa√m)
𝑚 0.05 

𝑚 Lognormal 3.59 0.02 

𝜎𝑚𝑎𝑥 Lognormal 100 MPa 0.05 

𝑅 Lognormal 0.20 0.05 

 

Table 1 here 

2.1. Simulation of Inspection Data 

For Bayesian updating, new information is required in order to update prior estimates regarding the 

parameters of the EIFSD. In the current work, this information is in the form of routine inspection 

simulations carried out on the fuselage lap joint model from a virtual fleet of aircraft. It is assumed 

that the aircraft are of the same model, subjected to similar loading conditions, and that this particular 

lap joint is manufactured in the same way for each aircraft. This inspection data includes the number 

of cycles at which each inspection was carried out, the location of each crack, and the size of each 

crack. A total of 200 inspections were simulated (𝑀𝑖𝑛𝑠 = 200). 

To create the inspection data, an actual EIFSD was chosen. This was chosen to be a lognormal 

distribution with mean 0.5 mm and standard deviation 0.05 mm. These values were chosen based on 

EIFS values found in the literature, in which EIFS is typically of the order of several tenths of a 

millimetre [11, 18, 24]. The size of the critical crack for each inspection 𝑎𝑐 (the crack which grows at 

the fastest rate, and therefore the largest crack present in an inspection and the most likely to be 

detected) was chosen from a lognormal distribution with mean 5 mm and standard deviation 0.5 mm. 

This ensures that the difference in crack sizes observed between different inspections is not too great.  

It is intuitive that a smaller initial crack leads to a smaller final crack, and vice-versa. Therefore, the 

actual EIFS for the critical crack, 𝜃𝑐, and 𝑎𝑐 were assumed to be correlated, with an arbitrary 

correlation coefficient of 0.9. The combination of 𝜃𝑐 and 𝑎𝑐 for each inspection was chosen randomly 

from their corresponding distributions while considering this correlation. The chosen combinations 

can be seen in Figure 2.2 for the first 100 inspections. The actual EIFS values for the rest of the cracks 

in each inspection were chosen randomly from the actual EIFSD described earlier. 
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Figure 2.2 here 

 

1The number of cycles required to grow the critical crack from 𝜃𝑐 to 𝑎𝑐, in the presence of all of the 

other cracks in the inspection, was calculated using the DBEM model with the methodology described 

in section 1.1. The uncertainties shown in Table 1 were considered in this calculation. This data can 

be seen in Figure 2.3 for the first 100 inspections. 

 

 

 

 

 

 

Figure 2.2. Correlation between the actual EIFS θc of the critical crack and the inspected size ac 

of the critical crack for the first 100 inspections. Each data point represents an inspection. 
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Figure 2.3 here 

 

It can be seen in Figure 2.3 that there is a significant amount of variation in the number of cycles for 

similar critical crack sizes 𝑎𝑖𝑛𝑠. This suggests that the number of cracks, as well as their locations, 

significantly influences the rate of crack growth in the lap joint. 

An example of the crack distribution in the structure obtained from an inspection can be seen in 

Figure 2.4.  

 

 

 

 

Figure 2.3. Critical crack sizes and number of cycles for each inspection for the first 100 

inspections. 
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Figure 2.4 here 

 

 

2.2. Multi-Fidelity Modelling 

  Monte Carlo sampling 

Co-Kriging models are used to replace the expensive DBEM models for the Monte Carlo sampling 

required to estimate the distribution 𝑓𝑁|𝜃̂,𝑎𝑖𝑗,𝒀 in Eq. (8). This Monte Carlo sampling takes into 

account uncertainties in the fatigue model parameters 𝐶0 and 𝑚, and in the loading condition 

parameters 𝜎𝑚𝑎𝑥 and 𝑅. 

The model 𝐹𝑖𝑗 discussed in section 1.2, as well as being a function of an initial crack size and a final 

size, is also a function of the four variables in Table 1. A Co-Kriging model 𝐹𝑖𝑗 can be created for 

each of the cracks in the 𝑖’th inspection, 𝑖 = 1,2, … , 𝑀𝑖𝑛𝑠 (where 𝑀𝑖𝑛𝑠 is the total number of 

inspections carried out). For the 𝑗’th crack, 𝑗 = 1,2, … , 𝑀𝑖
𝑐𝑟𝑘 (where 𝑀𝑖

𝑐𝑟𝑘 is the total number of 

cracks in inspection 𝑖), of inspection 𝑖, a Co-Kriging model 𝐹𝑖𝑗 can be created which calculates the 

number of cycles 𝑁𝑖𝑗 required to grow crack 𝑖𝑗 from 𝜃 to its measured size from the inspection, 𝑎𝑖𝑗, 

for different values of 𝐶, 𝑚, 𝜎𝑚𝑎𝑥, and 𝑅: 

 𝐹𝑖𝑗(𝐶, 𝑚, 𝜎𝑚𝑎𝑥, 𝑅, 𝜃) = 𝑁𝑖𝑗 (31) 

For a fixed value of 𝜃, Monte Caro sampling is carried out using equation (31) with the uncertainties 

in Table 1 (represented by the vector 𝒀). In this approach, the distribution 𝑓𝑁|𝜃̂,𝑎𝑖𝑗,𝒀 can be obtained 

for a particular value of 𝜃. 

To accurately determine the distribution 𝑓𝑁|𝜃̂,𝑎𝑖𝑗,𝒀, many thousands of Monte Carlo samples are 

required. Given that it would be computationally expensive to carry out this many samples using 

DBEM models, surrogate models in the form of Co-Kriging models are used instead. These Co-

Kriging models are created based on a small number of runs of a low-fidelity and high-fidelity DBEM 

models.  

Figure 2.4. A DBEM model showing an example of the crack distribution in the structure 

obtained from an inspection. There are a total of 10 cracks in this inspection. 
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In both the low-fidelity and high-fidelity DBEM models, the number of elements present prior to 

crack growth is identical, however, the low-fidelity model uses half the number of elements when 

growing the cracks from an initial size to a final size. This results in the low-fidelity model only 

requiring about 30% of the time required by the high-fidelity model to evaluate Eq. (31), but at the 

cost of reduced accuracy. The increased number of elements used to model the growth of the cracks in 

the high-fidelity models results in more accurate estimates for the stress intensity factors at the crack 

tips, and therefore improves the accuracy of the number of cycles required for growth 𝑁𝑖𝑗. To reduce 

the number of calls to the Co-Kriging models, Sobol sampling was used. A total of 10,000 Sobol 

samples were used to determine each distribution 𝑓𝑁|𝜃̂,𝑎𝑖𝑗,𝒀 as this number was found to provide 

accurate results during preliminary testing. 

  Kriging vs. Co-Kriging 

A total of 200 simulated inspections were carried out for the lap joint seen in Figure 2.1. In order to 

compare the performance of Kriging with Co-Kriging, both a Kriging model and a Co-Kriging model 

were created for each inspected crack. The average number of cracks per inspection was 8.14 with a 

standard deviation of 1.90. Over the 200 inspections there were a total of 1628 cracks, therefore, 1628 

Kriging and Co-Kriging models were created. Optimal performance was achieved with Kriging 

models that were created using 120 high-fidelity design points, while the optimal Co-Kriging models 

were created using 120 high-fidelity design points and 40 low-fidelity design points. If a lower 

number of design points were used it was found that the models had poor performance over the 

required domain, while if a higher number of design points were used the models suffered from poor 

performance due to over-fitting. On average, the CPU time required to create a Kriging model was 

about 19.6 CPU minutes, while for a Co-Kriging model is was about 23.0 CPU minutes. This increase 

of 17.6% can be attributed to the need to calculate the extra 40 low-fidelity design points. 

The type regression function and correlation function were chosen to be the same for Kriging and Co-

Kriging. The regression function was chosen to be composed of unknown constants (also known as 

ordinary Kriging). The correlation function was of the Matérn class of correlation functions [44]. It 

was found that these choices for the regression and correlation functions provided the most accurate 

models.  

The time required to run a Co-Kriging model is significantly less than the time required to run a 

DBEM model. A Co-Kriging model requires on average 0.58 CPU seconds to obtain the 10,000 Sobol 

samples required by Monte Carlo sampling to estimate the distribution 𝑓𝑁|𝜃̂,𝑎𝑖𝑗,𝒀, while around 249.4 

CPU hours are required on average for a DBEM model. The total time required to obtain the final 

posterior EIFSD using the data from 200 inspections with DBEM models is estimated to be around 

3.92 × 107 CPU hours. In comparison, the time associated with the Co-Kriging models, including 

their creation and use, was around 637.2 CPU hours. This represents a reduction in overall 

computational cost by a factor of over 61,000. 

To test the accuracy of the Kriging and Co-Kriging models, a test dataset was created for each model 

that was comprised of 1,000 high-fidelity test points that were not used during the design of the 

model. The creation of each test dataset required 2.84 CPU hours on average. The average error 

statistics of the 1628 Kriging and Co-Kriging models when run with their test datasets are shown in 

Table 2. In order to ensure a fair comparison between the Kriging and Co-Kriging models, the 120 

high-fidelity design points used to create each Kriging model were also used as the high-fidelity 

design points for the corresponding Co-Kriging model. Also, for each crack, both types of models had 

the same test dataset. Therefore, the only difference is the additional 40 low-fidelity design points for 

each model. 

Table 2. Average error statistics for the 1628 Kriging and Co-Kriging models when run with their test 

datasets.  
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Error statistic Kriging Co-Kriging 

Mean Absolute Percentage Error (MAPE) (%) 4.09 3.85 

Mean Absolute Error (MAE) (cycles) 3.34× 103 1.79× 103 

Root Mean Squared Error (RMSE) (cycles) 1.05× 104 5.79 × 103 

Coefficient of determination 𝑅2 0.987 0.997 

Table 2 here 

The results in Table 2 show that the Co-Kriging models are, on average, more accurate than the 

Kriging models. Each error statistic is lower for Co-Kriging than Kriging. The error statistic Root 

Mean Squared Error (RMSE) gives a higher weight to large errors, while Mean Absolute Error 

(MAE) and Mean Absolute Percentage Error (MAPE) both give the same weight large errors and 

small errors. Therefore, a high RMSE indicates the presence of relatively large errors/outliers, 

suggesting poor reliability on behalf of the surrogate model. Given that RMSE for Co-Kriging is 45% 

lower than for Kriging, this indicates that Co-Kriging provides more reliable results. This is also 

supported by the fact that Coefficient of determination is higher for Co-Kriging. The lower values of 

MAPE and MAE for Co-Kriging further demonstrate its good performance. 

As stated previously, for each crack the corresponding Kriging and Co-Kriging models were created 

using the same 120 high-fidelity design points, however, an additional 40 low-fidelity design points 

were used in the creation of the Co-Kriging models. It was found during the creation of these models 

and subsequent testing these numbers of design points provided Kriging and Co-Kriging models of 

optimal performance; minimizing the error statistics seen in Table 2. Using numbers of design points 

significantly lower or higher than these numbers worsened the performance of the models. It was 

found during preliminary testing that for the Co-Kriging models to obtain similar levels of error to 

Kriging with 120 high-fidelity design points, that 80 to 100 high-fidelity design points and an 

additional 20 to 40 low-fidelity design points needed to be used. This suggests that Co-Kriging is 

more efficient than Kriging if the same level of error is desired.  

The greater reliability of the Co-Kriging models over the Kriging models, even though they both use 

the same 120 high-fidelity design points, can be explained by the fact that Co-Kriging involves the 

use of two Kriging models in sequence. One that approximates the low-fidelity model, and a second 

that approximates the residuals between the high-fidelity model and the output of the low-fidelity 

Kriging model. The benefit of this is that the Co-Kriging models provide smoother outputs with less 

outliers. This can be seen in the error statistics shown in Table 2. 

The Co-Kriging models require on average 17.6% more time to create than the Kriging models due to 

the additional 40 low-fidelity design points. However, it has been shown that the addition of these 

low-fidelity points can provide a significant improvement in accuracy and reliability, making their 

addition worthwhile. Overall, the Co-Kriging models provided levels of error less than those provided 

by the Kriging models and at the same time demonstrated a similar level of computational cost. 

Therefore, they are more effective substitutes for the DBEM model. 

2.3. Results and Discussion 

As seen in the flowchart shown in Figure 1.6, Bayesian updating requires an initial guess for the prior 

distributions 𝑓𝜇|𝑫0,𝒀 and 𝑓𝜎|𝑫0,𝒀. These prior distributions can be chosen based on the knowledge or 

experience of the engineer. In this work, three different types of distributions are investigated for 

𝑓𝜇|𝑫0,𝒀 and 𝑓𝜎|𝑫0,𝒀: 

1) Lognormal distributions with statistics far off from the actual statistics (representing poor 

knowledge on behalf of the engineer). 

2) Lognormal distributions with statistics close to the actual statistics (representing good 

knowledge on behalf of the engineer). 

3) Uniform distributions (representing an absence of knowledge on behalf of the engineer). 
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Bayesian updating is used with each of these three types of initial distributions. The posterior 

estimates of the EIFSD from Bayesian updating after 25, 50, 100, and 200 inspections have been 

obtained and are shown in Figures 2.5-2.7. Animations showing the posterior distributions after each 

inspection can be seen in Figures 2.8-2.10. The values for the mean and standard deviation of the 

posterior distributions are shown in Tables 3 and 4 respectively.  

It can be seen from these figures and tables that for each type of initial distribution the posterior 

distributions converge towards the actual distribution as the number of inspections carried out 

increases. It can be said that convergence has been achieved after 100 inspections for each type of 

initial distribution because the posterior distributions after 100 inspections and after 200 inspections 

are similar for each of the 3 initial distributions. When an initial distribution of type 2 is used, the 

posterior distributions converge more quickly, and the converged distribution is closer to the actual 

distribution. When initial distributions of types 1 & 3 are used the opposite is seen and convergence 

occurs more slowly, and the converged distributions, although they are very close to the actual 

distribution, are not as close compared to when an initial distribution of type 2 is used. How close the 

converged distribution is to the actual distribution is largely dependent on the quality of the initial 

distribution chosen. It seems that the most effective type of initial distribution is that which is closest 

to the actual distribution. Uniform distributions seem to be more effective than a poor guess. This 

suggests that unless the engineer has good knowledge regarding the EIFSD, a uniform distribution 

should be used. This is intuitive and makes sense. However, even with a poor guess for the initial 

distribution an accurate estimate for the actual EIFSD can be obtained. This demonstrates the 

robustness of the proposed methodology for the inference of the EIFSD. 

It should be noted that this inspection data would most likely be obtained from a fleet of aircraft of the 

same model and which experience similar flight conditions. Also, when it is considered that aircraft 

typically undergo several inspections during their lifetimes, and that there will be many lap-joints 

present in the aircraft, the collection of data from the inspection of 100 lap joints would not be an 

overly difficult task. If it is not possible to obtain data from 100 inspections, the data from just 50 

inspections would be sufficient to provide posterior distributions with statistics close (within 10 % 

error) to those of the actual distribution as long as a poor guess is not made for the initial distributions. 

In conclusion, the good performance of Bayesian updating with each type of initial distribution 

suggests that the proposed methodology is accurate and robust when used for the inference of the 

EIFSD. The proposed methodology was able to approximate the actual distribution within 10% error 

after the data from 50-100 inspections had been used. 
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Figure 2.5 here 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Posterior distributions 𝑓𝜃|𝑫𝑖,𝒀 for EIFS after 25, 50, 100, and 200 inspections. The actual 

EIFSD is shown. The initial guess for the EIFSD is a lognormal distribution with a mean of 0.90 mm 

and a standard deviation of 0.18 mm. This initial guess for the EIFSD is considered a ‘poor’ guess 

since it is far away from the actual EIFSD. 
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Figure 2.6 here 

 

 

 

 

 

 

 

 

 

Figure 2.6. Posterior distributions 𝑓𝜃|𝑫𝑖,𝒀 for EIFS after 25, 50, 100, and 200 inspections. The actual 

EIFSD is shown. The initial guess for the EIFSD is a lognormal distribution with a mean of 0.60 mm 

and a standard deviation of 0.080 mm. This initial guess for the EIFSD is considered a ’good’ guess 

since it is close to the actual EIFSD. 
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Figure 2.7 here 

 

 

 

 

Figure 2.8 (EIFSD_poor.gif) here 

 

Figure 2.9 (EIFSD_good.gif) here 

Figure 2.9. Animation showing the posterior distributions 𝑓𝜃|𝑫𝑖,𝒀 for EIFS after the data from each 

inspection has been used. The actual EIFSD is shown. The initial guess for the EIFSD is a lognormal 

distribution with a mean of 0.60 mm and a standard deviation of 0.080 mm. This initial guess for the 

EIFSD is considered a ’good’ guess since it is close to the actual EIFSD. 

 

Figure 2.10 (EIFSD_uniform.gif) here 

Figure 2.10. Animation showing the posterior distributions 𝑓𝜃|𝑫𝑖,𝒀 for EIFS after the data from each 

inspection has been used. The actual EIFSD is shown. The initial guess for the EIFSD is a uniform 

distribution with a mean of 0.70 mm and a standard deviation of 0.29 mm.  

 

 

Figure 2.7. Posterior distributions 𝑓𝜃|𝑫𝑖,𝒀 for EIFS after 25, 50, 100, and 200 inspections. The actual 

EIFSD is shown. The initial guess for the EIFSD is a uniform distribution with a mean of 0.70 mm 

and a standard deviation of 0.29 mm.  

Figure 2.8. Animation showing the posterior distributions 𝑓𝜃|𝑫𝑖,𝒀 for EIFS after the data from each 

inspection has been used. The actual EIFSD is shown. The initial guess for the EIFSD is a lognormal 

distribution with a mean of 0.90 mm and a standard deviation of 0.18 mm. This initial guess for the 

EIFSD is considered a ‘poor’ guess since it is far away from the actual EIFSD. 
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Table 3. Actual mean of the EIFSD and those predicted from Bayesian updating (BU) after 25, 50, 

100, and 200 inspections. Also shown are the initial values. Three different types of initial distribution 

were investigated. 

 Mean 𝝁 (mm) 

Type of initial distribution Initial value BU 25 BU 50 BU 100 BU 200 Actual value 

1) Lognormal (poor guess) 0.90 0.58 0.56 0.52 0.51 0.50 

2) Lognormal (good guess) 0.60 0.56 0.54 0.50 0.50 0.50 

3) Uniform  0.70 0.53 0.52 0.48 0.49 0.50 

 

Table 3 here 

 

Table 4. Actual standard deviation of the EIFSD and those predicted from Bayesian updating (BU) 

after 25, 50, 100, and 200 inspections. Also shown are the initial values. Three different types of 

initial distribution were investigated. 

 Standard deviation 𝝈 (mm) 

Type of initial distribution Initial value BU 25 BU 50 BU 100 BU 200 Actual value 

1) Lognormal (poor guess) 0.18 0.070 0.057 0.052 0.056 0.050 

2) Lognormal (good guess) 0.080 0.054 0.048 0.046 0.052 0.050 

3) Uniform  0.29 0.064 0.053 0.049 0.053 0.050 

 

Table 4 here 

 

2.4. Uses of an Equivalent Initial Flaw Size Distribution 

Once a EIFSD 𝑓𝜃 for a particular type of flaw has been found (in this case for edge cracks emanating 

from fastener holes) it can be used to determine the fatigue life distribution of the structure or to 

determine the distribution of cracks at a certain time, provided that the structure has similar geometry 

to the structure that EIFSD was created from, as well as similar loading conditions, and that the same 

long-crack growth model is used. For a particular combination of cracks, the distribution for the 

number of cycles required to grow the cracks to some maximum permissible crack size 𝑎𝑝 can be 

estimated using Monte Carlo sampling by considering the uncertainties in the fatigue crack model 

parameters (represented by 𝒀 in this work). This distribution represents the fatigue life of the 

structure. This procedure can be seen in Figure 2.11. 
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Figure 2.8 here 

 

A distribution for crack size after some number of cycles 𝑁1 can be determined in a similar manner. 

This is demonstrated in Figure 2.12. 

 

Figure 2.9 here 

 

 

 

 

 

 

 

 

Figure 2.11. Estimation of the fatigue life distribution of a 

structure using an EIFSD 𝑓𝜃. 

Figure 2.12 Estimation of the crack size distribution after 

some number of cycles 𝑁1. 
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3. Conclusions 

In conclusion, a new methodology is presented for the statistical inference of the Equivalent Initial 

Flaw Size Distribution (EIFSD) for a structure in the presence of Multiple Site Damage (MSD). 

Bayesian updating is used to update the posterior distributions for the statistical parameters of the 

EIFSD when new information, in the form of routine inspections, is obtained. An automatic crack 

extension procedure making use of the Dual Boundary Element Method (DBEM) is used for the 

efficient analysis of the simultaneous growth of many cracks due to fatigue. Multi-fidelity models, 

making use of both low-fidelity data and high-fidelity data, are employed via Co-Kriging to act in 

place of the DBEM model for the Monte Carlo sampling required in the statistical inference of the 

EIFSD. The application of the proposed methodology is demonstrated for an example featuring a long 

lap-joint splice commonly found in aircraft fuselages. It was found that the actual EIFSD could be 

accurately determined with the data from 50 inspections, with both the mean and standard deviation 

being estimated within about 10% their actual values. If higher quality prior information was available 

regarding the EIFSD, accurate estimation of the EIFSD could be obtained with the data from a smaller 

number of inspections. The multi-fidelity models proved to be very effective substitutes for the 

DBEM model, reducing the total CPU time by a factor of 61,000 while providing an average 

percentage error of 3.85% when compared to the DBEM model. 
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