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We investigate the influence of abrupt changes on boundary-layer instability and transi-
tion. Such changes can take different forms including local porous wall, suction/injection
and surface roughness as well as junctions between rigid and porous walls. They may
modify the boundary conditions and/or the mean flow, and their effects on transition
have usually been assessed by performing stability analysis for the modified base flow
and/or boundary conditions. However, such a conventional local linear stability theory
(LST) becomes invalid if the change occurs over a relatively short scale comparable with,
or even shorter than, the characteristic wavelength of the instability. In this case, the
influence on transition is through scattering with the abrupt change acting as a local
scatter, that is, an instability mode propagating through the region of abrupt change is
scattered by the strong streamwise inhomogeneity to acquire a different amplitude. A
local scattering approach (LSA) should be formulated instead, in which a transmission
coefficient, defined as the ratio of the amplitude of the instability wave after the scatter
to that before, is introduced to characterize the effect on instability and transition. In
the present study, we present a finite-Reynolds-number formulation of LSA for isolated
changes including a rigid plate interspersed by a local porous panel and a wall suction
through a narrow slot. When the weak non-parallelism of the unperturbed base flow is
ignored, the local scattering problem can be cast as an eigenvalue problem, in which the
transmission coefficient appears as the eigenvalue. We also improved the method to take
into account the non-parallelism of the unperturbed base flow, while it is found that the
weak non-parallelism has a rather minor effect. The general formulation is specialized
to two-dimensional Tollmien-Schlichting (T-S) waves. The resulting eigenvalue problem
is solved, and full direct numerical simulations (DNS) are performed to verify some of
the predictions by LSA. A parametric study indicates that conventional LST is valid
only when the change is sufficiently gradual, and becomes either inaccurate or invalid
when the scale of the local distortion is short. A local porous panel enhances T-S waves,
while a local suction with a moderate mass flux significantly inhibits T-S waves. In the
latter case, a comprehensive comparison is made between the theoretical predictions and
experimental data, and a satisfactory quantitative agreement was observed.
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1. Introduction

Instability and laminar-turbulent transition of boundary-layer flows remain an area
of extensive research due to their fundamental importance in fluid physics and practical
relevance for many technological applications. A boundary layer typically develops in the
streamwise direction, giving rise to nonparallel-flow effects, which are weak in canonic
situations. However, non-parallelism can be strong when the flow is subject to abrupt
changes. Besides experimental methods, three main approaches have been taken to study
instability and transition in boundary layers subject to different degree of non-parallelism,
and these include: (i) Linear Stability Theory (LST), which amounts to solving eigenvalue
problems (Reed et al. 1996), (ii) Method of Parabolized Stability Equations (PSE),
which involves solving initial-boundary-value problems through marching downstream
(Herbert 1997), and (iii) Direct Numerical Simulations (DNS), where one solves the full
Navier-Stokes (N-S) equations as a time-dependent boundary-value problem. Recently,
a local scattering approach (Wu & Dong 2016) was proposed to deal with strong non-
parallelism that cannot be handled by either LST or PSE method. In order to put this
relatively new approach in an appropriate context, we illustrate the key concepts and
ideas of each approach using, for simplicity, a planar instability mode in a two-dimensional
incompressible boundary layer as an example.

1.1. Linear stability theory (LST)

In LST, the base flow Q̄ is perturbed by a small disturbance Q′ such that the
instantaneous flow field Q is decomposed as

Q(x, y, t) = Q̄(x, y) +Q′(x, y, t), (1.1)

where x and y denote the coordinates in the streamwise and wall-normal directions
respectively in the Cartesian system (x, y), and t is the time variable. Q and Q̄ sep-
arately satisfy the N-S equations. On the assumption that the disturbance is of small
amplitude, the linearized N-S equations are derived for Q′. By making the local parallel-
flow approximation, the disturbance Q′ can be written in the form of a normal mode
(Reshotko 1976),

Q′(x, y, t) = q(y) exp[i(αx − ωt)] + c.c., (1.2)

where ω and α denote the frequency and wavenumber of the perturbation respectively, the
vector q characterizes its shape, and c.c. stands for complex conjugate. The disturbance
equations can be simplified to the Orr-Sommerfeld (O-S) equation, which can be written
as

L0(α, ω;x)q = 0, (1.3)

where the operator L0 contains differentiation with respect to y only; the dependence
on x is parametric and may alternatively be viewed as on the local Reynolds number,
R = U∗

∞
δ∗/ν∗, based on the boundary-layer (displacement) thickness δ∗ with U∗

∞
being

the free-stream velocity and ν∗ the kinematic viscosity. Equation (1.3) forms, along with
the homogenous boundary conditions at the wall and infinity, an eigenvalue problem.
A spatial stability problem is to find a complex eigenvalue α(ω, x) = αr + iαi with a
corresponding eigenfunction q for a given real ω and at a streamwise location x. For
boundary layers, solutions of the O-S equation are referred to as Tollmien-Schlichting
(T-S) waves, in which −αi represents the spatial growth rate in the flow direction. A
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disturbance is referred to as an amplifying (damped) mode if −αi > 0 (< 0). The flow
is stable when −αi < 0 for all ω, and unstable when −αi > 0 for one or more ω. The
condition αi(ω, x) = 0 defines a neutral curve in the parameter space.

Once the local growth rate −αi(ω, x) is obtained by solving the eigenvalue problem
at each location x, the so-called N-factor, which measures the accumulated growth of an
instability mode with a given frequency ω, is calculated by integrating the growth rate
with respect to x,

N = ln
A(x;ω)

A0
= −

∫ x

x0

αi(ω, ξ)dξ, (1.4)

where A(x;ω) denotes the disturbance amplitude at an arbitrary downstream location
x, whereas A0 is the amplitude at the onset position x0 of the instability, and its value
is related to external disturbances and receptivity mechanisms. Without studying the
latter, a commonly practiced engineering prediction tool is the so-called eN -method, in
which transition is deemed to occur when N reaches some critical value Nc, which is
usually determined on an empirical basis.

Nonparallel-flow effects on linear stability have often been accounted for by a pertur-
bative approach (Gaster 1974), which is applicable only when non-parallelism causes a
small correction to the growth rate. Recently, a non-perturbative approach, free from
this restriction, was proposed by Huang & Wu (2015).

1.2. Method of the parabolized stability equations (PSE)

An alternative, and now popular, method for studying instabilities in weakly nonpar-
allel flows is the so-called PSE approach. By introducing a small parameter ǫ = O(R−1)
and a slow variable ξ = ǫx, the disturbance Q′ can be written as (Bertolotti et al. 1992)

Q′(x, y, t) = q(ξ, y) exp[i(αx− ωt)] + c.c., (1.5)

where q(ξ, y) is the shape function that varies slowly in the streamwise direction.
Substitution of (1.5) into the disturbance equations yields, up to and including O(ǫ),
the equations,

(

L0(α, ω) + ǫL′

0(α, ω)
)

q+ ǫL1(α, ω)
∂q

∂ξ
= 0, (1.6)

where the operators L0, L
′

0 and L1 consist of derivatives with respect to y only, among
which L0 is the operator in LST, and L′

0 and L1 represent the contributions of the slow
variations of the base flow and shape function respectively. Equations (1.6) are parabolic
and are referred to as the Parabolized Stability Equations (PSE) since they involve
only the first-order derivative with respect to the streamwise variable ξ. Nonlinear PSE
approach, in which (1.5) consists of high harmonics, has also been developed. In addition
to the boundary conditions at y = 0 and y → ∞, the solution requires an initial condition
at a starting position, which is often chosen to be a local eigen mode. The solution can
be found by downstream marching.

The method of PSE accounts for the history of the disturbance (Herbert 1997). It has
been developed into a fairly mature tool for predicting linear and nonlinear evolutions of
two- and three-dimensional instability modes in weakly nonparallel shear flows including
two- and three-dimensional, incompressible and compressible, boundary layers (Chang &
Malik 1994; Malik et al. 1994; Herbert 1997). The predicted N-factor, or the amplitude A,
may be used to estimate transition location by adopting a criterion based on a threshold
N-factor Nc, or on a threshold amplitude Ac.
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1.3. Direct numerical simulation (DNS)

DNS is another computational approach for studying instability and transition of
boundary-layer flows (Kleiser & Zang 1991; Zhong & Wang 2012). The instantaneous
flow field Q, or the perturbation Q′, is computed by numerically solving the full N-S
equations. DNS resolves all time and length scales of the flow by using high-accuracy
numerical methods and fine enough meshes. Computations could only be performed in
a domain, which is a truncation of the flow field. Appropriate boundary conditions must
be specified on the boundaries of the computational domain. Usually a collection of
instability waves are imposed at the inlet to study their interactions and evolution. For
boundary layers, an artificial numerical boundary condition at the outlet of the domain
is specified in such a way that the upstream influence is prevented or kept minimal
(Colonius 2004). Several such boundary conditions have been proposed including, e.g.
the radiative boundary condition (Fasel 1976; Rist & Fasel 1995) and the absorbing
boundary conditions (Kloker et al. 1993; Meitz & Fasel 2000; Bertolotti et al. 1992).
Using DNS, Worner et al. (2003) and Edelmann & Rist (2013) studied the effects

of a step on an oncoming instability wave in an incompressible boundary layer, and
Marxen et al. (2010) and Fong et al. (2013) investigated the impact of isolated roughness
on first and second modes in a supersonic boundary layer. Xu et al. (2016) simulated
the scattering of T-S waves on an incompressible boundary layer by isolated roughness
elements, and quantified the destabilization effect in terms of the transmission coefficient
first introduced by Wu & Hogg (2006).

1.4. Local scattering problem (LSP) and local scattering approach (LSA)

A canonical boundary layer may be subject to a certain local distortion, which may
be caused, for example, by surface roughness/waviness, local suction or change of wall
porosity or rigidity. If the distortion occurs over a length scale much longer than the
wavelength of the inherent instability modes, a local stability analysis for the distorted
mean flow and/or modified boundary conditions may still be justified. This is the
approach that most previous studies took. Calculations of this kind were performed
for local suction (Nayfeh & Reed 1985; Reed & Nayfeh 1986; Masad & Nayfeh 1992)
and isolated roughness (Nayfeh et al. 1988; Cebeci & Egan 1989; Nayfeh & Abu-Khajeel
1996). The former is found to be stabilizing while the latter destabilizing. Linear and
nonlinear PSE methods have been used to study effects of distributed roughness in the
form of a wavy wall (Wie & Malik 1998; Park & Park 2013).
Local stability theory is valid provided that the distortion is gradual, i.e. it takes place

over a length scale much longer than the characteristic length of the instability. However,
when the distortion is abrupt in the sense that the former is comparable with, or even
shorter than, the latter, the disturbance can no longer be expressed as a product of a
slowly varying shape function and a fast carrier wave of the exponential form, that is,
the normal mode assumption, which forms the very basis of LST and PSE, does not
hold any more. Neither of them could be used to assess the influence of abrupt changes
on instability and transition, which ”needs to be investigated with more sophisticated
methods” as Wie & Malik (1998) remarked. The appropriate methodology is to approach
the problem from the perspective of a local scattering rather than local stability, as
was first pointed out by Wu & Hogg (2006). In a Local Scattering Problem (LSP),
an oncoming instability mode is scattered by the local inhomogeneity caused by the
distortion, and the wave transmitted downstream acquires a different amplitude from
what would be attained in the absence of the distortion. The ratio of the two is defined
as the transmission coefficient, which provides a natural characterization of the overall
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effect of the distortion on instability and transition. For the case of isolated roughness,
a Local Scattering Approach (LSA) was formulated by Wu & Hogg (2006) using triple
deck formalism, which assumes the Reynolds number to be asymptotically large.
While the physical concepts of local scattering and transmission coefficient are fairly

general, the formulation and analysis of Wu & Hogg (2006) were restricted to a local
roughness with a very small height that the local mean-flow distortion can be linearized.
The case of a roughness with a height causing a nonlinear mean-flow distortion was
considered by Wu & Dong (2016). They demonstrated that when the boundary-value
problem governing the LSP is suitably discretized, the transmission coefficient appears
as a generalized eigenvalue.
This paper presents a finite-Reynolds-number formulation of the local scattering ap-

proach. Compared with its high-Reynolds-number counterpart, a finite-Reynolds-number
formulation is likely to be more accurate quantitatively and more accessible to investi-
gators and users. The abrupt changes to be investigated are in the form of a finite
porous panel interspersing a rigid wall and of a steady suction imposed through a
narrow slot on the wall, but the formulation can easily be modified and extended to
study other forms of abrupt distortions to two- and three-dimensional boundary layers.
The length of the porous panel and suction slot is assumed to be comparable with
the characteristic wavelength of the instability, and the length scale characterizing the
adjustment of the porosity or the suction velocity is even shorter, leading to strong non-
parallelism or inhomogeneity. Porosity influences only the unsteady disturbance through
modifying the boundary condition, but not the base flow. In contrast, a suction causes an
abrupt distortion to the base flow. The non-parallelism of the unperturbed base flow is
weak, and is thus neglected in this investigation in order to focuss on the much stronger
inhomogeneity associated with the local porosity and suction.
The rest of the paper is organized as follows. In §2, we give a general, but more detailed,

description of LSP and LSA. A finite-Reynolds-number version of LSA is then formulated
by specifying appropriate upstream and downstream conditions as well as the boundary
conditions on the wall and at infinity. A simple dynamical model for a porous wall is
described. This leads to a boundary-value problem governing the LSP. The numerical
method for solving the boundary-value problem is described in §3. We show that when
the weak non-parallelism is neglected, the problem leads to an eigenvalue problem, in
which the transmission coefficient appears as the eigenvalue. The eigenvalue problem is
solved to predict the disturbance development through the scattering zone as well as the
transmission coefficient, and the results are presented in §4. We summarizes in §5 the
main conclusions.

2. Problem description and formulation

2.1. Description of the local scattering problem

A typical local scattering problem is illustrated in figure 1 for the specific case of
an isolated roughness element on an otherwise flat plate (Wu & Hogg 2006; Wu &
Dong 2016). In general, the two flat portions of the boundaries are punctuated by a
relatively small region of rapid variation, which causes short streamwise inhomogeneity.
An oncoming (incident) instability mode, originated from the flat portion upstream
(referred to as BC1), approaches the site of the local change, and is scattered by the
streamwise inhomogeneity. In the region far downstream of the scatter (referred to as
BC2), the disturbance relaxes to a local eigen mode, which will be referred to as the
transmitted wave. Typical scatters include the following.
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Figure 1. A diagrammatic illustration of a local scattering problem (LSP)

(i) Local roughness/wavy surface (Fujii 2006; Nayfeh et al. 1988; Cebeci & Egan 1989)
BC1/BC2 before/after the scatter are both rigid flat walls, between which a local
roughness element is present. The shape of the roughness, y = hF

(

(x− xc)/d
)

, changes
over on the scale d, which is assumed to be comparable with the wavelength, where xc

denotes the location of the roughness centre.
(ii) Local suction/injection or heating/cooling on the wall (Nayfeh & Reed 1985;

Reynolds & Saric 1986; Reed & Nayfeh 1986; Masad & Nayfeh 1992; Masad 1995)
BC1 and BC2 are both rigid walls, and a steady suction/injection with a wall-normal
velocity v̄

(

(x− xc)/d
)

, or surface heating/cooling with a temperature T̄
(

(x− xc)/d
)

, is
applied on a finite section, whose length d is comparable with the wavelength.
(iii) Local porous/flexible surfaces (Wang & Zhong 2012)

BC1 and BC2 are both rigid walls, and they are joined by a porous or compliant section,
where the unsteady normal velocity v′, or the wall displacement f ′, is related to the
pressure fluctuation p′ on the surface.
(iv) Junction of a rigid wall with a semi-infinite porous/flexible surface

BC1 is a rigid wall, while BC2 is a porous/flexible surface, or vice versa. Here BC2
extends to infinity so that the junction acts a scatter.
We shall assume that (i) the base flow is steady, and the unsteady fluctuation is of small

amplitude so that the linearized disturbance equations are valid in the whole domain,
and (ii) the scatter is local, whose width d in the streamwise direction is comparable
with the characteristic wavelength of the instability of the unperturbed flow. It follows
that even though the disturbances far upstream and downstream are local eigen modes,
the fluctuation near the scatter is not and can indeed be rather complex.

The impact of these abrupt distortions on instability and transition will be investigated
in the framework of LSA, the key concept of which is the transmission coefficient (Wu &
Hogg 2006). Its definition is illustrated in figure 2. Suppose that an incident instability
wave, with an initial amplitude A0 at position x0 say, propagates downstream. Sufficiently
upstream of the roughness element centred at xc, the amplitude As of the instability wave
evolves according to LST (as indicated by the dotted line), but in the vicinity of the
roughness As deviates from that predicted by LST, and follows instead the solid curve
in the figure. Sufficiently downstream, the disturbance relaxes to a local instability mode
and is thus referred to as the transmitted instability wave. Let An denote the amplitude
at position xn and αT denote the local eigenvalue in the far downstream region in the
absence of the scatter (a region of rapid variation or a junction). Using An and αT , one
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Figure 2. A diagrammatic illustration of local scattering and transmission coefficient
Tr = AT (xc)/AI(xc), where xc is the center of the scatter, As the amplitude of disturbance in
the presence of the scatter, whereas AI and AT represent the evolution and extrapolation of the
incident and transmitted waves respectively in the absence of a scatter.

may extrapolate an effective initial amplitude AT (xc) at xc,

AT (xc) = An exp{−i

∫ xn

xc

αT (x)dx}, (2.1)

which is referred to as the amplitude of the transmitted wave. Note however that AT (xc)
is not the amplitude of the physical disturbance at xc, i.e. AT (xc) 6= As(xc), but it is
AT (xc) that is important and relevant as will become clear later. On the other hand, if
the scatter were absent, the upstream instability mode would have evolved according to
LST (indicated by the dotted line in figure 2 ) to acquire an amplitude at xc,

AI(xc) = A0 exp{i
∫ xc

x0

αI(x)dx}, (2.2)

where αI denotes the local eigenvalue in the far upstream region in the absence of the
scatter, and AI(xc) defines the ‘amplitude of the incident wave’.
The transmission coefficient is then defined as (Wu & Hogg 2006)

Tr = AT (xc)/AI(xc). (2.3)

In the absence of a scatter, AT (xc) = AI(xc). It follows that the transmission coefficient
provides a natural characterization of the impact of the scatter on stability and transition:
the scatter suppresses the instability wave and hence delays transition if |Tr| < 1, but
enhances the instability wave and boosts transition if |Tr| > 1.
The introduction of Tr based on AT (xc) is convenient because it encapsulates the

effect of the scatter and thereby allows LSA to be linked naturally with existing transition
prediction methods for canonical boundary layers as follows. Use LST or PSE to describe
the evolution of the instability wave upstream of the scatter and to obtain AI(xc). Then
using Tr, one finds AT (xc) = TrAI(xc). With this AT (xc) as the initial condition, LST
or PSE can again be employed to predict the equivalent development far downstream of
the scatter. With the aid of Tr, the development of the disturbance in the presence of a
scatter is converted into an equivalent one without the scatter.
Before presenting a detailed mathematical formulation of LSA, we first highlight its

key features and the main difference from LST and PSE. As in previous studies (Wu &
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Hogg 2006; Wu & Dong 2016), it suffices to consider a wave with a given frequency ω
since the disturbance is assumed to be small. We may write Q′ in the form

Q′(x, y, t) = q(x, y) exp(−iωt) + c.c. (2.4)

It is important to point out that unlike the shape function (1.2) or (1.5) in LST and
PSE respectively, the streamwise variation of q in (2.4) is on the short scale, comparable
with the wavelength of the oncoming instability mode. Substituting (2.4) into the N-
S equations and linearizing about the steady base flow, we obtain the equations for
q(x, y), which form, along with appropriate boundary conditions including the upstream
and downstream conditions, a boundary-value problem that is elliptic in its nature. The
ansatz (2.4) looks similar to that in global stability analysis in that both allow for fast
variation with x. The differences and relation between the two are worth noting. The first
difference is that the frequency ω in the present work is real and given, as opposed to
being a generally complex-valued eigenvalue to be found in the global stability problem.
The second difference is that discrete global modes are usually assumed to be localized,
i.e. attenuate in both the upstream and downstream directions, while the disturbances in
the present scattering problem amplify downstream. On the basis of the last observation,
the disturbance in the scattering problem may be viewed as a continuous neutral global
mode.
For instability modes of the T-S type, the frequency ω 6= 0. However, we may set

ω = 0 in the formulation if time-independent instability waves are considered, such as
stationary crossflow vortices arising in three-dimensional boundary layers subject to a
pressure gradient. Scattering of pre-existing vortices by two- and/or three-dimensional
scatters can be analyzed in the same framework. Furthermore, by setting the amplitude
of the upstream mode to zero (AI = 0), the mathematical framework may also be used
to compute the amplitude of the crossflow vortices excited by streamwise compact and
spanwise periodic roughness elements (Choudhari & Duck 1996; Kurz & Kloker 2014).

2.2. Governing equations

The formulation of LSA will be given for a general three-dimensional incompressible
boundary layer that develops over a nominally flat surface. The flow is described in
the Cartesian coordinates (x∗, y∗, z∗), in which the surface is located at y∗ = 0 with its
leading edge at x∗ = 0 and the x∗ axis pointing to the downstream direction, while z∗ is in
the spanwise direction. Let U∗

∞
, ρ∗

∞
and µ∗

∞
denote the free-scream velocity, density and

viscous coefficient respectively with the superscript ∗ indicating a dimensional quantity.
The reference length and time are taken to be δ∗ and δ∗/U∗

∞
respectively, where δ∗ is

the displacement thickness of the boundary layer at a typical streamwise location. The
resulting dimensionless coordinates and time variable will be denoted as (x, y, z) and t
respectively. The velocity and pressure are normalized by U∗

∞
and ρ∗

∞
U∗2
∞

respectively,
and the corresponding non-dimensional quantities are denoted by (u, v, w) and p. The
dimensionless three-dimensional incompressible N-S equations read

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.5)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − ∂p

∂x
+

1

R

(∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

, (2.6)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1

R

(∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)

, (2.7)
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∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1

R

(∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)

, (2.8)

where R is the Reynolds number, defined as

R = ρ∗
∞
U∗

∞
δ∗/µ∗

∞
. (2.9)

2.3. Linearized perturbation equations

Let Q̄(x, y) denote the three-dimensional base flow field. When it is perturbed by a
small-amplitude disturbance Q′(x, y, z, t), the total flow field Q(x, y, z, t) is written as

Q = (u, v, w, p) =
(

ū(x, y), v̄(x, y), w̄(x, y), p̄(x, y)
)

+ (u′, v′, w′, p′)

≡ Q̄(x, y) +Q′(x, y, z, t).
(2.10)

Substituting (2.10) into (2.5)-(2.8), and linearizing about the base flow, we obtain the
linear N-S equations for the perturbation. For the ensuing analysis, it is convenient to
cast them into the matrix form,

[

Ã+ B̃1
∂

∂x
+ B̃2

∂

∂y
+ B̃3

∂

∂z
+ C̃(−R

∂

∂t
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)
]

Q′ = 0, (2.11)

where we have put

Ã(x, y) =









0 0 0 0
∂ū/∂x ∂ū/∂y 0 0
∂v̄/∂x ∂v̄/∂y 0 0
∂w̄/∂x ∂w̄/∂y 0 0









, B̃1(x, y) =









1 0 0 0
ū 0 0 1
0 ū 0 0
0 0 ū 0









, (2.12)

B̃2 =









0 1 0 0
v̄ 0 0 0
0 v̄ 0 1
0 0 v̄ 0









, B̃3 =









0 0 1 0
w̄ 0 0 0
0 w̄ 0 0
0 0 w̄ 1









, C̃ = − 1

R









0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0









. (2.13)

Since the base flow is steady and uniform in the spanwise direction, the perturbation
Q′(x, y, z, t) can be written as

Q′(x, y, z, t) = φ(x, y) exp[i(βz − ωt)] + c.c., (2.14)

where ω and β are real constants, but the shape function φ(x, y) depends on x and y.
Substitution of (2.14) into (2.11) yields the equations governing φ,

Âφ+ B̂
∂φ

∂x
+ Ĉ

∂2φ

∂x2
= 0, (2.15)

where

φ(x, y) =









û
v̂
ŵ
p̂









, Â(x, y) =









0 D iβ 0
∂ū/∂x+ s ∂ū/∂y 0 0
∂v̄/∂x ∂v̄/∂y + s 0 D
∂w̄/∂x ∂w̄/∂y s iβ









, (2.16)

B̂(x, y) =









1 0 0 0
ū 0 0 1
0 ū 0 0
0 0 ū 0









, Ĉ = − 1

R









0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0









, (2.17)

with

s = v̄D + iβw̄ − iω − [D2 + (iβ)2]/R, D = ∂/∂y. (2.18)
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Note that no assumption is made of the slow variation with x of either the base flow or
the perturbation.

2.4. Boundary conditions

2.4.1. Boundary conditions on the wall and at infinity

The abrupt change is created through the boundary conditions at the wall. We consider
first the case associated with an abrupt change of wall porosity: a finite section of porous
plate joining two rigid sections. A general theory for the flow through a porous medium
does not exist. We shall adopt the model based on the Darcy’s law (Darcy 1856), which
asserts that the velocity v∗ is proportional to the pressure gradient driving the flow,
namely,

v∗ = − κ∗

µ∗b∗
(p∗+ − p∗

−
), (2.19)

where κ∗ is the permeability of the medium, µ∗ the dynamic viscosity of the
fluid, b∗ the thickness of the layer of the porous medium and (p∗+ − p∗

−
) repre-

sents the pressure difference across the medium. Typical intrinsic permeability κ∗

ranges, in the unit of m2, from 10−10 to 10−7 for pervious media, from 10−14

to 10−11 for semi-pervious media and from 10−19 to 10−15 for impervious media
(http://en.wikipedia.org/wiki/Permeability (fluid)).
The fluid motion may not respond to the pressure instantaneously as is implied

in equation (2.19). A simple model that accounts for this inertial effect results from
adding an extra term λ∗

2∂v
∗/∂t∗ to (2.19) with λ∗

2 being the relaxation time. When
non-dimensionalized, the model for a porous wall reads

λ2
∂v

∂t
+ v = −λ1p, (2.20)

where we have set p∗
−
= 0 without losing generality, and the dimensionless parameters

λ1 =
κ∗

µ∗b∗
ρ∗
∞
U∗

∞
=

κ∗

b∗
Re∗, λ2 = λ∗

2U∞/δ∗. (2.21)

For a unit Reynolds number Re∗ ≈ 106m−1 and a thickness b∗ ≈ 10−2m, the range of λ1

for pervious media is from 10−2 to 10. In spectral space, equation (2.20) can be written
as −iωλ2v̂ + v̂ = −λ1p̂, or

v̂ = −λp̂ with λ =
λ1

1− iωλ2
, (2.22)

indicating that λ2 can be absorbed into λ by allowing the latter to take complex values.
At the wall (y = 0), three boundary conditions are therefore imposed, namely,

û(x, 0) = ŵ(x, 0) = 0, v̂(x, 0) =

{

−λp̂ xs < x < xe,

0 otherwise,
(2.23)

where the first two correspond to the non-slip condition, and (xs, xe) indicates the extent
of the porous panel.
For the case of a local steady suction, an inhomogeneous boundary condition is imposed

on the steady transverse velocity (see later), but the unsteady perturbation satisfies
homogeneous boundary conditions, û = ŵ = 0 and v̂ = 0, with inhomogeneity appearing
in the coefficients of its governing equations. The condition v̂ = 0 can be considered as
corresponding to λ1(x) = λ2(x) = 0, and it follows that the boundary conditions are also
given by equation (2.23) provided that we set λ = 0. Note that the suction of interest for
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us is completely different from that considered in some previous studies (Pralits et al.
2002; Pralits & Hanifi 2003; Airiau et al. 2003), where the suction is imposed over the long
length scale comparable with the distances to the leading edge, and its magnitude is of
O(R−1U∞∗). There the resulting steady flow is described by the classical boundary layer
theory, and the instability waves developing on the slowly evolving base flow are described
by PSE or LST. The local suction in the present paper occurs on a sufficiently short scale
that both the steady base flow and unsteady disturbances exhibit full ellipticity. The aim
of our work is to develop an approach that would supersede LST and PSE.
It should be stressed that while the oncoming instability wave is assumed to be of

small amplitude, the sudden variations have not been assumed small at all. They either
alter the base flow by O(1) amount as in the case of a local suction, or produce an O(1)
abrupt change of the boundary conditions as in the cases of a finite porous panel and a
rigid-porous junction. In either form, the rapid variation exerts an O(1) influence on the
amplitude of the oncoming instability wave.
At infinity, the perturbation vanishes, namely

(û, v̂, ŵ, p̂) → (0, 0, 0, 0) as y → ∞. (2.24)

2.4.2. The upstream and downstream conditions: incident and transmitted waves

In this paper, we will formulate LSA for abrupt isolated distortions neglecting the
much weaker non-parallelism of the unperturbed base flow, an approximation consistent
with that made in the high-Reynolds-number theory (Wu & Dong 2016) and justifiable
by the latter.
In LSP, an incident wave is imposed upstream. For a localized scatter at xc, the

disturbance far upstream and downstream takes the form of a local eigen mode, that is,

φ → φ̃(x, y) exp
{

i

∫ x

α(x)dx
}

+ c.c. as x− xc → ±∞, (2.25)

where α(x) is the local streamwise wavenumber and φ̃(x, y) the corresponding eigenfunc-
tion. Under the local parallel-flow assumption, the streamwise variations of the base flow
Q̄ and the eigenfunction φ̃ are treated as being parametric. Then introducing (2.25) to
(2.15) leads to

L φ̃ ≡
[

Â+ iαB̂+ (iα)2Ĉ
]

φ̃ = 0, (2.26)

which forms, along with the boundary conditions, an eigenvalue problem in LST.
The eigenvalue problem of LST for a parallel flow can be solved for a given ω at

locations far upstream (x − xc → −∞) and downstream (x − xc → +∞) of xc. The
upstream condition is written as

φ → φI = A0φ̃I(x, y) exp
{

i

∫ x

x0

αI(x)dx
}

as x− xc → −∞, (2.27)

where αI and φ̃I denote the wavenumber and eigenfunction of the incident wave, respec-
tively, and A0 is the amplitude at a reference location x0 ≪ xc (and can be set to unity
without losing generality). Similarly, the far downstream condition is (see figure 2)

φ → φT = AT φ̃T (x, y) exp
{

i

∫ x

xc

αT (x)dx
}

as x− xc → +∞, (2.28)

in which the wavenumber αT of the transmitted wave can be obtained by solving the
local eigenvalue problem, but its amplitude AT and eigenfunction φ̃T are to be computed
as part of the solution to the LSP.
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For an isolated distortion and with the non-parallelism of the unperturbed base flow
being neglected, the steady flows far upstream and downstream of the distortion are the
same, and thus the incident instability mode and the transmitted wave have the same
wavenumber and shape, that is,

αT (x) = αI(x) ≡ α(0), φ̃T (x, y) = φ̃I(x, y) ≡ φ̃(0)(y), (2.29)

where α(0) and φ̃(0)(y) denote the eigenvalue and eigenfunction of the unperturbed base
flow Q̄(y).
When the non-parallelism of base flow is taken into account, (2.29) does not hold on.

Nevertheless, a relation may be established between φ̃I and φ̃T by supposing that the
porous plate and/or the downstream base flow is established from a rigid plate and/or
the upstream base flow through a gradual variation of the porosity and the base state.
Based on this idea, we show in the appendix that a matrix T can be introduced such
that

φ̃T = Tφ̃I . (2.30)

Since T links the eigenvector of the transmitted wave to that of the incident wave, it will
be referred to as a transfer matrix. The details of its calculation is given in the appendix.

It follows from (2.2)-(2.3) and (2.29) that

AT = TrA0 exp{iα(0)(xc − x0)},

and the upstream and downstream conditions, (2.27) and (2.28), can be rewritten as

φ → φI = A0φ̃
(0)(y) exp

[

iα(0)(x− x0)
]

as x− xc → −∞, (2.31)

φ → φT = TrA0φ̃
(0)(y) exp

[

iα(0)(x− x0)
]

as x− xc → +∞, (2.32)

which imply that the upstream and downstream conditions are related to each other (see
below).
In summary, the LSP is described by the boundary-value problem consisting of the

partial differential equations (2.15), the boundary conditions (2.23)-(2.24) as well as the
upstream and downstream conditions (2.31)-(2.32). This problem can be solved with
the input of ω and α(0) only without the need of specifying φ̃(0)(y). Treated this way,
the formulation poses an eigenvalue problem, in which the transmission coefficient Tr
appears as the eigenvalue, and φ̃(0)(y) is to be obtained as the far-field asymptote of
φ(x, y), a fact that will transpire when the system is discretized.

2.5. Disturbance characteristics

In the presence of a scatter, the disturbance in its vicinity may be rather complex.
Nevertheless, for a given disturbance quality φ(x, y), it is useful for interpretation and
diagnostic purpose to define its local amplitude A(x) and phase θ(x) at each location x
as

A(x) = max
y

|φ(x, y)|, θ(x) = arg
(

φ(x, ys)
)

, (2.33)

where ys denotes the position at which |φ| attains its maximum. Using A(x) and θ(x),
we can define the local growth rate G(x) and wavenumber K(x) as

G(x) =
d lnA(x)

dx
, K(x) =

dθ(x)

dx
. (2.34)
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Far away from the scatter, the perturbation is an instability mode and so it is expected
that

G → −α
(0)
i , K → α(0)

r as x− xc → ±∞, (2.35)

where α(0) = α
(0)
r + iα

(0)
i is the local wavenumber obtained by LST.

3. Numerical method

The general formulation presented in the previous section is now specialized to T-S
instability waves in the Blasius boundary layer. The boundary-value problem governing
the LSP is to be discretized and solved in the computational domain [x0, xn]× [0, yJ ]. In
the streamwise direction, the domain [x0, xn] is discretized into n intervals by n+1 mesh
points xi with i ∈ [0, n]. The value of a variable at a mesh point xi will be indicated
by the subscript i. The derivatives of φ in (2.15) with respect to x are approximated by
using a series of five-point finite-difference schemes with fourth-order accuracy, namely

∂φi

∂x
≈

2
∑

l=−2

ai,lφi+l,
∂2φi

∂x2
≈

2
∑

l=−2

bi,lφi+l, (3.1)

where ai,l and bi,l are the approximation coefficients.
After replacing the partial derivatives with respect to x by the corresponding finite-

difference approximations, equation (2.15) can be rewritten as

Aiφi−2 +Biφi−1 +Ciφi +Diφi+1 +Eiφi+2 = 0, (3.2)

where we have put


























Ai = bi,−2Ĉi + ai,−2B̂i,

Bi = bi,−1Ĉi + ai,−1B̂i,

Ci = bi,0Ĉi + ai,0B̂i + Âi,

Di = bi,1Ĉi + ai,1B̂i,

Ei = bi,2Ĉi + ai,2B̂i.

(3.3)

The operator D = ∂/∂y in (2.15) can be discretized by a fourth-order Malik scheme
(Malik 1990) taking into account the boundary conditions (2.23)-(2.24). The absence of
a boundary condition for p̂ at the wall is, as usual, remedied by discretizing the normal
pressure gradient, ∂p̂/∂y, on a staggered grid, i.e. at the centre of each interval between
two adjacent mesh points.
The mesh in the x-direction is uniform with grid points xi = x0 + i∆x (0 6 i 6 n),

where ∆x = (xn − x0)/n. In the y-direction, a non-uniform mesh is used with its size
being gradually stretched with the distance according to

yj = yJ
4η

4 + (
√
1 + 8k1 − 3)(1− η2)

, η =
j

J
− k2 − 1

π(k2 + 1)
sin(π

j

J
) (0 6 j 6 J), (3.4)

where k1 and k2 are constants controlling the stretching since ∆yJ/∆y0 = k1 × k2. The
default parameters are selected as yJ = 100, k1 = 100, k2 = 60 and J = 200.
At the inlet x0, which we take as the reference location, the perturbation is of the

form,

φ0 = A0φ̃
(0), (3.5)

as indicated by (2.31), from which it also follows that for x−1 = x0 − ∆x and x−2 =
x0 − 2∆x,

φ−1 = φ0 exp
[

−iα(0)∆x
]

, φ−2 = φ0 exp
[

−2iα(0)∆x
]

. (3.6)



14 Z. F. Huang and X. Wu

Inserting (3.6) into (3.2) for i = 0 and i = 1 yields

Č0φ0 +D1φ1 +E1φ2 = 0, (3.7)

B̌1φ0 +C1φ1 +D1φ2 +E1φ3 = 0, (3.8)

where










Č0 = C0 +B0 exp
[

−iα(0)∆x
]

+A0 exp
[

−2iα(0)∆x
]

,

B̌1 = B1 +A1 exp
[

−iα(0)∆x
]

.
(3.9)

Similarly, the perturbation at the outlet x = xn, representing the transmitted insta-
bility wave, can be written as

φn = TrA0φ̃
(0)(y) exp

[

iα(0)(xn − x0)
]

(3.10)

according to (2.32), which also implies that the perturbation in the vicinity of the outlet
can be expressed as

φ(x, y) = φn exp
[

iα(0)(x − xn)
]

, (3.11)

and specifically for xn+1 = xn +∆x and xn+2 = xn + 2∆x,

φn+1 = φn exp
[

iα(0)∆x
]

, φn+2 = φn exp
[

2iα(0)∆x
]

. (3.12)

On the other hand, it follows from (3.5) and(3.10) that the perturbations at the inlet
and outlet are related via the equation

φn = Trφ0 exp
[

iα(0)(xn − x0)
]

. (3.13)

Inserting (3.12) into (3.2) for i = n− 1 and i = n, and making use of (3.13), we obtain
the relations,

An−1φn−3 +Bn−1φn−2 +Cn−1φn−1 = TrĚn−1φ0, (3.14)

φn = TrĎnφ0, (3.15)

which describe the behaviour of the disturbance near the outlet, where we have put

Ěn−1 = −
{

Dn−1 +En−1 exp
[

iα(0)∆x
]}

exp
[

iα(0)(xn − x0)
]

, (3.16)

Ďn = I exp
[

iα(0)(xn − x0)
]

. (3.17)

When the non-parallelism of base flow is taken into account, a transfer matrix T will
appear in (3.16) and (3.17), and the eigenvalue α(0) will be replaced by αI at inlet and
αT at outlet, respectively.

The system of the linear algebraic equations, consisting of the inlet conditions (3.7)-
(3.8), the outlet conditions (3.14)-(3.15) and the equations at interior points, (3.2), can
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be written in the matrix form as












Č0 D0 E0 0 0

B̌1 C1 D1 E1 0

Ai Bi Ci Di Ei

0 An−1 Bn−1 Cn−1 0

0 0 0 0 I



































φ0

φ1

φi

φn−1

φn























= Tr













0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Ěn−1 0 0 0 0

Ďn 0 0 0 0



































φ0

φ1

φi

φn−1

φn























, (3.18)

which poses a generalized eigenvalue problem with Tr being the eigenvalue and
(φ0, φ1, φi, φn−1, φn)

T the eigenvector. The matrix in the eigenvalue problem (3.18)
is much larger than that of LST. Fortunately, since the coefficient matrix is block
pentadiagonal, the system (3.18) can be reduced first, at little computation cost by using
the block Gaussian elimination with partial or complete pivoting, to













I 0 0 0 0

B̆1 I 0 0 0

Ăi B̆i I 0 0

0 Ăn−1 B̆n−1 I 0

0 0 Ăn B̆n I



































φ0

φ1

φi

φn−1

φn























= Tr















Ĕ0 0 0 0 0

Ĕ1 0 0 0 0

Ĕi 0 0 0 0

Ĕn−1 0 0 0 0

D̆n 0 0 0 0





































φ0

φ1

φi

φn−1

φn























, (3.19)

which in turn reduces farther to
[

I+ TrĔ0

]

φ0 = 0, (3.20)

where Tr is the eigenvalue and φ0 the eigenvector. Obviously, the amount of computation
to solve the eigenvalue problem (3.20) is comparable with that for solving LST, and so is
the computation cost of solving the original eigenvalue problem (3.18) since the operation
count of the block Gaussian elimination is a small fraction of the overall calculation. As
alluded to earlier, the eigenfunction of the incident and transmitted waves is calculated
rather than being imposed.
The influence of a local change on transition has also been studied by performing a

local stability analysis for the distorted mean flow and/or modified boundary conditions.
This amounts to assuming that the perturbation in the whole domain is of a normal-mode
form, which is not true when the local change takes place over a length scale comparable
with, or smaller than, the wavelength of the instability. In order to assess the validity
of that approach, we also solve the local stability problem at each xi ∈ [x0, xn]. Let
αs(x) and α(x) denote the local wavenumber in the presence and absence of the scatter
respectively. Then the amplitude evolves according to

ALST (x) = A0 exp
{

i

∫ x

x0

αs(x)dx
}

. (3.21)

It follows that the transmission coefficient can be expressed as

Tr = exp
{

i

∫ xn

x0

[

αs(x) − α(x)
]

dx
}

. (3.22)

The LST predictions, (3.21) and (3.22), will be referred to as LST, and comparisons with
LSA will be made.
Compared with LST, PSE and DNS, the advantages of LSA are as follows. (i) The

disturbance is governed by the linearized N-S equations without making the local parallel-
flow approximation of the distorted flow in LST or parabolization in PSE. As a result, the
solution can describe the rapid change in the streamwise direction, which is not possible
with either LST or PSE. On the other hand, LSA remains valid wherever LST or PSE
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is applicable. (ii) The inlet and outlet boundary conditions are specified properly and
easily, whereas it is rather problematic to impose initial boundary conditions in PSE
and inlet/outlet boundary conditions in DNS. (iii) The linear algebraic equations can
be solved by block Gaussian elimination with the time and complexity involved being
equivalent to those in PSE and LST. Due to the frequency-domain formulation and
linearization, the algebraic system and computational time are much reduced compared
with usual DNS in time domain. LSA provides a new and appropriate perspective to
study and quantify the effect of an abrupt change on instability and transition. The
transmission coefficient describes the overall effect of the scatter. While the behavior
of the disturbance near the scatter can be studied in detail using LSA, it is, in many
practical applications, of less a concern than the relationship between the incident and
transmitted waves. In such cases, it is useful to compute and document the transmission
coefficients systematically for various parameters characterizing the scatter. The resulting
data can be used with LST or PSE methods, which remain applicable in the regions far
up- and down-stream of the scatter, to predict the global evolution of the disturbance.
By using the transmission coefficient, the traditional eN -method may be extended to
correlate transition in the presence of sudden variations, namely, if transition is deemed
to occur where N = Nc in the smooth case, the criterion then becomes N = Nc− ln |Tr|
when a single scatter is present, or more generally

N = Nc −
∑

k

ln |Trk|, (3.23)

when multiple well-separated scatters are present, where Trk denotes the transmission
coefficient of each scatter.

4. Numerical results

The unperturbed base flow is taken to be the Blasius boundary layer over a flat plate.
With its non-parallelism being neglected, the local profile at x∗

c , the centre of the porous
panel or suction slot, is used. The reference length δ∗ is taken to be the displacement
thickness of the Blasius boundary layer at x∗

c .
In order to make the results more accessible to a general reader, the familiar non-

dimensional frequency F ≡ ω∗ν/U∗2
∞

× 106, which is independent of the reference length,
will be used. It is related to ω via

F = ω/R× 106. (4.1)

4.1. Local porous wall

Calculations were first carried out for a local porous panel. The dynamics of the panel
is described by (2.22), in which λ takes complex values, λ(x) = λmeiϕf(x), with ϕ ∈
(−π/2, 0] being the phase difference between the velocity and pressure fluctuations, and
the distribution of the porosity is taken to be

f(x) =
{

tanh[(x− xc + d/2)/∆]− tanh[(x − xc − d/2)/∆]
}

/2, (4.2)

where xc denotes the centre of the panel and d is a measure of its width, whilst ∆ is the
length scale in which the wall changes from being rigid to porous and vice versa. We take
∆ ≪ d so that the distribution is of top-hat form, featuring an almost constant non-zero
porosity λm over a length d, beyond which the wall is practically rigid. Therefore d and
∆ will be referred to as panel width and junction width respectively.
In order to validate the theoretical formulation and prediction of LSA, a DNS in time
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domain and involving a sponge zone has been performed. The method and the code were
developed by Huang et al. (2005b). The convective terms are split and approximated by
a fifth-order weak upwind difference scheme while the viscous terms are discretized by
applying twice an eighth-order central difference scheme for the first-order derivative. The
scheme for the viscous terms is suboptimal in comparison with a direct approximation of
the second-order derivative because it looses in accuracy for a given grid size (Babucke
et al. 2008). However, it is sufficiently accurate in our calculations since we used a
fine resolution with 180 mesh points in one wavelength. The governing equations are
integrated fully explicitly in time by using a third-order TVD Runge-Kutta method.
As the base flow, the Blasius similarity solution at xc is not a stationary solution of
the N-S equations, a suitable small steady source term of O(10−6) is added to the N-S
equations (Huang et al. 2005a) in order to render this local Blasius solution a steady
state. Furthermore, the boundary condition on the porous wall, (2.20), is changed to

λ2
∂(v − v̄)

∂t
+ (v − v̄) = −λ1(p− p̄), (4.3)

where v̄ and p̄ are the normal velocity and pressure of the base flow respectively. This
ensures that porosity affects only the unsteady perturbation as it does in our theoretical
modelling.
The DNS is conducted for a finite porous wall centred at xc, where the local Reynolds

number Rc = 1262. The porosity adjustment is described by λ1 = λmf(x) and λ2 = 0
with λm = 2 and f(x) being given by (4.2), in which d = 27 and ∆ = 0.8, 3.2. The
relatively large λm and small ∆ signify an abrupt change of porosity, which presents
a computational challenge as a fine resolution in the streamwise direction is required.
The computational domain covers the Reynolds number range 1000 < R < 1577. A
T-S wave with a frequency F = 60, for which the corresponding wavelength λTS = 27,
is imposed at the inlet. A very small amplitude A0 = 10−6 is specified to ensure that
the perturbation remains essentially linear in the entire region of interest. A mesh size
∆x = 0.15 is used, for which there are 180 points within one wavelength. The number
of points in the wall-normal direction is 201, resulting in more than 120 points in one
boundary-layer thickness and the mesh size ∆y at the wall being smaller than 0.002. The
time step is ∆t = 2.5× 10−5, giving rise to a Courant-Friedrichs-Lewy (CFL) number of
0.25. Calculations using smaller ∆t and ∆y were found to give the same result.
Figures 3 (a-1) and (a-2) show the evolution of the amplitude obtained by three differ-

ent methods: DNS, LSA and LST for ∆ = 0.8 and 3.2, respectively. The corresponding
local amplification rates G are displayed in (b-1) and (b-2). The predictions by LSA
and DNS agree quite well, and especially both capture the fine detail of the adjustment,
which is sharper for smaller ∆ (corresponding to a more abrupt change). For smaller ∆,
the amplitude exhibits double peaks. The dash-dotted lines, labelled as ‘rigid, E.F.’ in
figures 3 (a-1) and (a-2) represent the forward extrapolation of the otherwise continued
exponential growth of the oncoming mode if the wall were rigid, and as is indicated by
the dashed lines labelled as ‘rigid, E.B.’, the eventual modal growth far downstream is
also extrapolated backward using the growth rate for the rigid wall. From these, the
transmission coefficient is found to be 6.39 and 7.61 for ∆ = 0.8 and 3.2 respectively,
exact the same as what LSA predicts directly. In the upstream and downstream limits,
the amplitude matches smoothly with the exponential growth. The formulation and
prediction of LSA are therefore validated. The amplitude obtained by LST (see (3.21))
is however significantly below that by LSA, and most notably LST fails completely to
capture the non-monotonic behavior of the amplitude. The modifications to the local
wavelength are shown in (c-1) and (c-2). The violent ‘step-like’ behaviour of G and K
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Figure 3. The local amplitude A, growth rate G and the wavenumber K versus the local
Reynolds number R for the case of a T-S wave with frequency F = 60 scattered by a local
porous panel centred at Rc = 1262 with d = 27, λm = 2 and ϕ = 0◦. The figures (a-1)-(c-1)
on the left-hand side are for ∆ = 0.8, and the figures (a-2)-(c-2) on the right-hand side are for
∆ = 3.2. The dash-dotted lines (labelled as ‘rigid, E.F.’) represent the continued exponential
growth of the incident T-S wave if the wall were rigid, whereas the dashed lines (labelled as
‘rigid, E.B.’) represent the backward extrapolation of the transmitted wave using the growth
rate for the flat rigid wall.
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Figure 4. The local amplitude A, growth rate G and wavenumber K versus the local Reynolds
number R for the case of a T-S wave with frequency F = 20 scattered by a local porous panel
centred at Rc = 2750 with d = 32, ∆ = 0.73 and ϕ = 0◦. The figures (a-1)-(c-1) on the left-hand
side are for λm = 1, and the figures (a-2)-(c-2) on the right-hand side are for λm = 2. The
dash-dotted lines (labelled as ‘rigid, E.F.’) represent the continued exponential growth of the
incident T-S wave when the wall were rigid, while the dashed lines (labelled as ‘rigid, E.B.’)
represent the backward extrapolation of the transmitted wave using the growth rate for the flat
rigid wall.
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Figure 5. Effects of the junction width ∆ and porosity λm on the transmission coefficient Tr
for a T-S wave with F = 20 interacting with a finite local porous panel centred at Rc = 2750
with d = 32 and ϕ = 0◦: (a) Tr versus ∆ with λm = 1; (b) Tr versus λm with ∆ = 1.46.
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Figure 6. Variation of the transmission coefficient Tr with the wave frequency F for a local
porous panel centered at Rc = 2750 with d = 32, ϕ = 0◦: (a) ∆ = 1.46, λm = 1; (b) ∆ = 0.73,
λm = 2. Symbols: ◦, frequency of the neutral mode; •, frequency of the most unstable mode.

highlights the strong non-parallelism, which cannot be accounted for by LST or PSE.
It is worth mentioning that the simulation on a 256-core parallel cluster takes 40 hours
to reach a statistically steady state, whereas LSA requires only about a few minutes on
one core and is therefore much more efficient. The LST solution can be obtained in one
minute on one core, but its validity is restricted to relatively small λm and large ∆ as
will be shown later. Among the three methods, LSA is accurate and most efficient.
Figure 4 displays the results for the case of a T-S wave with frequency F = 20

scattered by a porous panel centred at Rc = 2750 with d = 32, ∆ = 0.73 and ϕ = 0◦.
Here the value of d corresponds to approximately one wavelength of the imposed T-S
wave. Two different porosities, λm = 1 and 2, are considered. For the former value, the
prediction considering the non-parallelism is re-plotted (labelled as ‘LSA-nonparallel’).
The comparison indicates that the amplitude evolution, the local growth rate and
wavenumber of the disturbance exhibit little difference with or without accounting for
the non-parallelism of the base flow, indicating that the effect of non-parallelism of base
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flow is much weaker than that of the abrupt changes. The computational domain covers
the Reynolds number range 2000 < R < 3334, larger than what is shown in figure
4. LST indicates that the boundary layer over a porous surface is considerably more
unstable. This is reminiscent of ultrasonically absorptive coating (UAC), which is known
to destabilize first modes (but stabilize second Mack modes) on supersonic boundary
layers. The destabilizing effects in the two cases are consistent since first modes are
continuation of T-S waves into the supersonic regime, and UAC may be modelled by
a model similar to that for a porous wall (Fedorov 2011). The predictions of LSA are
compared with those by usual LST. The amplitude, local growth rate and wavenumber
for the porosity λm = 1 with a small junction width (i.e. sharp change) are displayed in
figures 4(a-1, b-1, c-1). There is a sharp increase of the amplitude in the region over the
scatter, and consequently the amplitude downstream is much higher than that attained
without the porous panel. The transmission coefficient Tr ≈ 7, significantly greater than
unity. It is interesting to note that the amplitude predicted by LSA varies over a length
that is several times of the panel width d with the effect of the porous panel extending
to both the upstream and downstream directions. The upstream influence is expected
because of the elliptic nature of the LSA formulation. Most strikingly, the evolution is
non-monotonic. LST also captures the enhanced amplification as is indicated in figure
4(a-1). However, the predicted amplitude evolution is monotonic rather than oscillatory,
and the predicted variation is confined within the porous section. This is because in the
LST formulation, the effect of porosity is completely local, exerted through the boundary
condition. The LSA results in Figure 4(b-1) indicate that the porous effect is destabilizing
overall, causing the local growth rate to increase by a factor of 6 at the center of the local
porous panel, but near the junctions there is a local stabilizing effect and this leads to
the non-monotonic behaviour of A. The local porous wall also changes the wavenumber
appreciably as is indicated in figure 4(c-1). LST predicts the overall features of enhanced
growth rate and wavenumber variation, but fails to capture the upstream influence and
detailed characteristics, especially those near the junctions. Unlike LSA, LST predicts
that a porous wall is uniformly destabilizing. Figures 4(a-2, b-2, c-2) show the results for
a larger porosity, λm = 2. The overall features are similar to those for λm = 1, except that
the variations of the amplitude, growth rate and wavenumber near the second junction
region become sharper. Furthermore, the differences between the predictions by LSA
and LST become larger, suggesting that LST would give even worse predictions when
the porosity λm is increased further.
Figure 5 shows the effects of the junction width ∆ and the porosity λm on the

transmission coefficient Tr. As figure 5(a) indicates, Tr increases monotonically with
∆. For a finite ∆, the transmission coefficient Tr predicted by LSA consists of both
the distributed effect of the enhanced local growth rate in the porous region and the
local effect of the junctions, but the Tr given by LST (see (3.22)) accounts for, in a
rather approximate manner, the former effect only. The two are therefore different. The
difference is the largest in the limit ∆ → 0 with the discrepancy of 2.2 representing the
pure effect of sharp junctions. As ∆ increases, the difference between the LSA and LST
predictions becomes smaller because the distributed effect dominates whilst the pure
junction effect weakens. Figure 5(b) shows that the Tr predicted by LSA first increases
with λm, reaching a maximum at λm ≈ 1, after which Tr decreases but still maintains at
a value significantly greater than unity. LST captures the same trend, and in particular
for 0 6 λm 6 1, the prediction by LST is in agreement with that by LSA. However,
significant deviation arises for λm > 1 with the transmission coefficient predicted by
LST being just a fraction of that given by LSA. The base-flow non-parallelism is found
to make a negligible difference of less than 3%, and its minor role in the scattering
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process is reaffirmed. The cause of scattering is the strong inhomogeneity associated
with the short-scale change of the porosity.
We also investigated the variation of the transmission coefficient with the frequency,

and the results are shown in figure 6 for ∆ = 1.46 and 0.73. As is indicated, LSA predicts
that as the frequency increases from that of the neutral mode, the transmission coefficient
|Tr| first decreases slightly and then increases rather steeply with F . In contrast, LST
predicts a monotonic increase with F . The LST prediction for relatively small F is of
course erroneous, but approaches the correct value given by LSA for large F . The latter is
expected since T-S modes of higher frequency have wavelengthes shorter than the length
scale of the mean-flow distortion, and so LST eventually becomes applicable. The result
that higher-frequency T-S waves are more sensitive to the destabilization is of interest.
An analytical treatment may be taken to obtain the asymptotic behaviour of Tr in the
high-frequency limit, but the pursuit of this line is beyond the scope of this paper.

4.2. Local steady suction

We now consider scattering of a T-S wave by the mean-flow distortion induced by a
local steady suction. The calculations were carried out for the parameters representative
of the laboratory conditions (Reynolds & Saric 1986). A free-stream velocity U∗

∞
=

17 m/s is chosen. Other parameters are selected to be the values under the standard
atmospheric pressure near the ground, namely, ρ∗

∞
= 1.225kg/m3, p∗

∞
= 101325Pa,

µ∗

∞
= 1.79 × 10−5Pa · s and c∗

∞
= 340 m/s, which give a unit Reynolds number Re∗ =

1.1634× 106/m and Mach number M = 0.05. For a given Reynolds number R = Re∗δ∗,
there is a corresponding displacement thickness δ∗ and the location x∗

c of the scatter,
and vice versa.
The imposed steady normal velocity on the wall is taken to be

v̄(x, 0) = −v̄mf(x), (4.4)

where v̄m is the magnitude of the suction velocity with the negative sign indicating
suction, and the function f(x) characterizes the distribution. A distribution that is
realizable in experiments (Reynolds & Saric 1986) most likely features a top-hat profile,
and may be described by

f(x; d,∆) =
{

tanh[(x− xc + d/2)/∆]− tanh[(x − xc − d/2)/∆]
}

/2, (4.5)

where xc denotes the centre of the suction slot, d is a measure of the slot width and
∆ ≪ d characterizes the width in which the velocity increases from zero to v̄m and vice
versa.
Figure 7 shows the characteristics of the steady base flow subject to the suction velocity

(4.4) with its distribution given by (4.5). The values of d and v̄m used correspond to a
suction slot with a width d∗ = 29 mm, velocity v̄∗m = 17 mm/s and a free-stream
velocity U∗

∞
= 17 m/s, which are representative of wind-tunnel experimental conditions

(Reynolds & Saric 1986). The computational domain covers the Reynolds number range
636 < R < 2521. The local suction produces a distortion to the flow in the regions
upstream and downstream of the suction slot. The range of upstream influence is limited;
when R < 1000 the flow field is almost identical to that of the Blasius boundary layer.
However, in the downstream direction the effect of suction extends as far as to R = 2000,
by which the relaxation to the Blasius flow completes. Near the suction slot (Rc = 1262),
an appreciable distortion is induced despite a fairly small suction velocity v̄m = 0.001
as can be observed in the contours of the shear dU/dy and the streamlines (figures 7a
and b). The fluid in the region below about 40% of the boundary-layer displacement
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Figure 7. The mean-flow distortion induced by a local suction centred at Rc = 1262 with the
velocity distribution described by (4.4)-(4.5), in which d = 27, ∆ = 2.4 and v̄m = 0.001. (a)
Contours of the shear dU/dy with the dash lines representing the Blasius flow and the solid lines
indicating the result with the local suction; (b) Streamlines and the velocity vector field U; (c)
Profiles of the streamwise velocity distortion ∆U at different streamwise locations. (d) Profiles
of the transverse velocity V at different streamwise locations. (The transverse velocity of the
Blasius flow was taken to be zero.)

thickness flows out of the boundary layer through the slot (figure 7b). Figures 7c and d
indicate that while the vertical velocity induced in the boundary layer by the suction is
comparable with v̄m, the change to the streamwise velocity, which corresponds to flow
acceleration, is about 5%, fifty times as large as v̄m. Compared with the unperturbed
flow, the distortion is still small, but remarkably it is capable of influencing the oncoming
T-S wave substantially as will be shown below.

Figure 8 shows the results obtained by LSA, LST and DNS. Without suction, the
T-S mode would evolve following the dot-dashed lines in figure 8a. When the location
suction is imposed, the T-S wave is much reduced as figure 8b indicates. In the region
over the local suction, which is centred at Rc = 1262, there is a sharp decrease of the local
growth rate, indicating that the local suction significantly stabilizes the T-S wave. Both
LSA and LST predict this stabilizing effect as does the DNS. The predicted amplitude
as well as the local growth rate and wavenumber are in good qualitative agreement,
but appreciable quantitative differences exist. Interestingly, the predicted transmission



24 Z. F. Huang and X. Wu

1100 1200 1300 1400 1500 1600
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

LSA
DNS
LST
rigid, E.F.
rigid, E.B.

R

A

(a)

1100 1200 1300 1400 1500 1600
-0.02

-0.01

0.00

0.01

0.02

LSA
LST
rigid

R

G

(b)

1100 1200 1300 1400 1500 1600
0.21

0.22

0.23

0.24

LSA
LST
rigid

R

K

(c)

Figure 8. The local amplitude A, growth rate G and wavenumber K versus the local Reynolds
number R for a T-S wave with frequency F = 60 scattered by a local suction centred at
Rc = 1262 with the slot width d = 27, ∆ = 2.4 and the maximum suction velocity v̄m = 0.001.
The dash-dotted line (labelled as ‘rigid, E.F.’): the exponential growth of the incident T-S wave
in the absence of suction; the dashed line (labelled as ‘rigid, E.B.’): backward extrapolation of
the transmitted wave using the growth rate for the rigid wall without suction.

coefficients are near the same: LSA and LST give Tr = 0.242 and 0.258 respectively,
suggesting that Tr is less sensitive than the local behaviour. It should be stressed that
only LSA is the appropriate theory. The close agreement could be explained by observing
that even though the width of the suction slot d = 27 is rather short, which is about
one wavelength of the imposed T-S wave for R = 1262 and F = 60, the local suction
affects the mean flow in a much larger range extending from R = 1000 to R = 2000,
which is nearly 8d. Furthermore, since the magnitude of the suction velocity is rather
small (v̄m = 0.001), the mean flow varies fairly slowly in the streamwise direction. As a
result of these, LST may serve as an approximation.

The parameters characterizing the suction are d, v̄m and ∆, on which the total suction
flow rate

Q = v̄m

∫

∞

−∞

f(x; d,∆)dx, (4.6)

may depend in general. It is worth noting that for the distribution (4.5), the suction flow
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Figure 9. Effects of the total suction flow rate Q on the transmission coefficient Tr. The
T-S wave has a frequency F = 25 and the local suction slot is centred at Rc = 1339. The total
suction flow rate Q is changed either by varying the suction width d with a fixed suction velocity
v∗m = 5.7 × 10−3U∗

∞
(circle) or by altering the suction velocity v∗m with a fixed suction width

d∗ = 12.8mm (square). The suction length in the spanwise direction is taken to be 0.91m as in
the wind-tunnel experiment (Reynolds & Saric 1986), and Q∗ stands for the dimensional suction
flow rate per unit spanwise length of the strip.

rate is

Q = v̄m d, (4.7)

independent of ∆, and that v̄(xc ± d/2, 0) = − 1
2 v̄m tanh(d/∆) 6= 0. These indicate that

d is not the (non-dimensionalised) geometric width of the slot, rather it is the equivalent
width that gives the same flux Q if the maximum velocity v̄m were uniformly distributed
over d.
We now exam the role of the suction flow rate Q in scattering and its effect on the

transmission coefficient Tr. The value of Q is changed by two ways: by varying the
suction width d while holding the suction velocity v̄m fixed, and alternatively by altering
the suction velocity v̄m with the suction width d fixed. The results in figure 9 show that
regardless how Q is varied, the transmission coefficient Tr remains almost the same as
long as Q is equal, indicating that the total suction flow rate is the key parameter for the
laminar flow control. Tr decreases monotonically with the increase of Q. Furthermore,
Tr decreases almost linearly with the increase of Q when Q < 50 × 10−3 (or Q∗ <
1.1 × 10−3m2/s in the present dimensional setting), and Tr reaches 0.06 as Q rises to
85× 10−3 (or Q∗ rises to 1.8× 10−3m2/s).

4.3. Quantitative comparison with experiments

Finally, we perform calculations for the parameter values pertaining to the four cases
(I, II, III and IV) in the experiments of Reynolds & Saric (1986), and make detailed
comparisons with the experimental data. In order to be consistent with the experiments,
the Reynolds number R in this subsection is based on the boundary-layer thickness
defined as

√

ν∗
∞
x∗

c/U
∗

∞
rather than on the displacement thickness. Case III is considered
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Figure 10. The disturbance amplitude vs the local Reynolds number. The parameters come
from the suction Case III in the experiments of Reynolds & Saric (1986): suction location
Rc = 1339, suction velocity v∗m = 5.7 × 10−3U∗

∞
: (a) suction width d∗ = 16mm without

correcting the edge effect, (b) equivalent suction width d∗ = 12.8mm after accounting for the
edge effect. Solid line, LSA; dashed line, LST (present); circle, experiment (Reynolds & Saric
1986); rectangle, LST (R&N) (Reed & Nayfeh 1986). Caption ”W/” means ”with suction”, and
caption ”W/O” indicates ”without suction”.
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Figure 11. The disturbance amplitude versus the local Reynolds number for Cases I, II & IV in
the experiments of Reynolds & Saric (Reynolds & Saric 1986): (a) Cases I and II, single suction;
(b) Case IV, six suction strips, the locations of which are indicated by arrows in the figure. The
width of each suction strip is d∗ = 12.8mm with the edge effect accounted for in LSA. Line,
LSA (present); symbol, experiment (Reynolds & Saric 1986).

first, where a suction flux of 10−3m3/s through 16mm× 910mm strip was given, and
a suction velocity v∗m = 5.7 × 10−3U∗

∞
was also quoted. A calculation was first carried

out by assuming this to be a uniform (i.e. mean) suction velocity over the geometric
width d∗ = 16mm, and the result is shown in figure 10a. Suction suppresses the T-S
wave considerably. Interestingly, the disturbance development predicted by LSA is in
good agreement with the prediction by the LST analysis performed by Reed & Nayfeh
(1986). In their work, the distorted base flow was calculated by using the linear triple-
deck theory, which is based on the large-Reynolds-number assumption. We carried out
LST analysis for the base flow computed numerically, which is more accurate. The result
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turns out to be virtually the same as that of Reed & Nayfeh (1986). The LSA prediction
is a good qualitative agreement with the experimental data. However, an appreciable
quantitative difference exists. We find that this is caused by the edge effect of the suction
strip. Treating the suction velocity v∗m = 5.7×10−3U∗

∞
given by Reynolds & Saric (1986)

as the mean (uniform) velocity over the entire strip d∗ = 16mm leads to a suction flow
rate larger than the given value of 10−3m3/s, indicating that v∗m is not the mean value
but the peak value instead. Use of this maximum value as the mean suction velocity in
LSA and LST caused the discrepancy. The true mean suction velocity must be smaller
because of the blocking effect of the slot edges. The latter can be accounted for by a
suitably smoothed suction profile (4.5). In order to ensure that the total suction flow
rate, the key controlling parameter as the result figure 9 indicates, is the same as that in
the experiment, we may either use d∗ = 16mm as the equivalent width while reducing
v∗m to Q∗/d∗ according to (4.7), or alternatively, take v∗m as the maximum velocity but
choose the equivalent suction width d∗ = Q∗/v∗m = 12.8mm, where Q∗ is the flux rate
per unit spanwise length of the slot. These two treatments lead to the same result as
expected. Figure 10b presents the results of LSA and LST calculated after the edge
effect is corrected. The prediction by LSA is now in good quantitative agreement with
the experiment measurement. The LST result turns out to be just as accurate because for
a weak suction the induced distortion varies rather slowly as we observed earlier. In this
sense, the success of LST is somewhat fortuitous, and is not expected if the distortion is
genuinely abrupt.
Figure 11 shows the evolution of the amplitude obtained by LSA for the Cases I and

II of the experiments of Reynolds & Saric (1986), for which the suction slot was centred
at Rc = 1552 and 1370 respectively, and the T-S wave has the frequency F = 20 with
its neutral position at R = 1040. The experimental measurements are also presented for
comparison. As with Case III, the suction width was taken to be d∗ = 12.8mm in order
to account for the edge effect. A good quantitative agreement between the prediction by
LSA and the experimental data can be seen for both cases. The transmission coefficient is
found to be 0.15 and 0.11, respectively. The suction strip in Case II is closer to the lower-
branch neutral position, which is at R = 1040, whereas the suction in Case I is closer to
the location of maximum growth, R = 1650. The reduction in the T-S wave amplitude is
more pronounced than that in Case I, and correspondingly transition would be delayed
farther downstream. The result suggests that it is preferable to apply suction in the initial
region of growth near the lower branch of the neutral stability curve, instead in the region
where the wave is already highly amplified. A further calculation was performed for Case
IV, in which the suction is applied through six strips, but the total flux is kept the
same as that in the Cases I, II and III. The result is shown in figure 11b, and again the
agreement with the experimental data is satisfactory. The transmission coefficient was
found to be 0.13, indicating that multi-strip or distributed suction is just as effective as
a single strip suction. The latter is however less difficult to deploy in practice.

5. Summary and conclusions

In the present paper, we investigated the effects of abrupt local changes on instability
and transition of boundary-layer flows. As the change of interest takes place over a
length scale comparable with, or even shorter than, the characteristic wavelength of the
instability, the key assumption of LST and PSE that instability waves modulate slowly
does not hold, and both LST and PSE fail. Instead, the problem should be formulated
as a local scattering problem as was pointed out by Wu & Hogg (2006) and Wu &
Dong (2016), where a local scattering approach was presented using the high-Reynolds-
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number asymptotic formalism. In the present work, a finite-Reynolds-number formulation
was presented. In either case, the abrupt change acts as a scatter. An incident T-S
wave propagates downstream and interacts with the strong inhomogeneity caused by the
scatter. Downstream of the scatter, the disturbance finally relaxes to a local eigen mode,
which is referred to as the transmitted wave. The transmission coefficient, defined as the
ratio of the amplitude of the transmitted wave to that of the incident wave, provides a
natural characterization of the effect of the abrupt change.
In the local scattering approach, the disturbance is periodic in time as in LST and PSE,

but its shape function is allowed to exhibit fast variations in the streamwise direction as
well as in the transverse (wall-normal) direction. Formulated in the frequency domain,
the scattering is governed by a boundary-value problem consisting of the linearized N-S
equations for the perturbation, boundary conditions upstream and downstream of the
scatter as well as the boundary conditions on the wall and at infinity. In order to focus
on the strong inhomogeneity caused by the local change, the weak non-parallelism of
the unperturbed background flow was neglected, and this allowed the scattering to be
formulated as an eigenvalue problem, in which the transmission coefficient appears as the
eigenvalue as in Wu & Dong (2016). Since the LSA is global and elliptic mathematically, a
local scatter can influence the perturbation both upstream and downstream. In contrast,
the PSE are parabolic whilst LST only solves the eigenvalue problem, which is specified in
terms of the local base flow and local boundary conditions at a given streamwise position.
Hence neither can account for any upstream influence. LSA is therefore fundamentally
different from LST and PSE. Nevertheless, when the scatter is relatively wide compared
with the T-S wavelength or the base flow varies slowly in the streamwise direction, both
LST and LSA can give the right solution. This is the case for a local porous panel with
a large width d and a small porosity λm, and for a local suction with a wide enough slot
and a small suction velocity v̄m. However, when the extend of the scatter is comparable
with the T-S wavelength, LST gives wrong results.
In order to quantify the effect of the local scatter on stability and transition, the

eigenvalue problem is solved numerically to predict the development of the disturbance
and the transmission coefficient for the cases of a T-S wave scattered by the abrupt
changes due to a local suction and a finite-porous panel interspersing rigid walls. The
theoretical prediction of LSA is verified by the direct numerical simulations in time
domain. Parametric studies show that a finite porous panel enhances T-S waves and thus
plays a destabilizing role. In contrast, a steady local suction suppresses the T-S wave,
and the amount of suppression is determined primarily by the mass flux of the suction.
A comprehensive comparison of the theoretical predictions with the experimental data
was made, and a good quantitative agreement was obtained.
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Appendix A. Computation of the transfer matrix

As was mentioned in the formulation (§2), a transfer matrix T, which relates the
eigenfunctions of the incident and transmitted instability modes (see (2.30)) needs to
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be known in advance. We now show that the existence of this transfer matrix can be
established by using the so-called EEV approach for linear instability of weakly non-
parallel flows proposed by Huang & Wu (2015). The approach yields the transfer matrix
rather naturally.
Let Q̄I and Q̄T denote the base flow profiles at far upstream and downstream positions,

respectively. Then the eigenfunctions of the inlet and outlet, φ̃I and φ̃T , can be obtained
by solving the eigenvalue problems associated with Q̄I and Q̄T , respectively. In general,
Q̄T differs from Q̄I . We may view Q̄T as arising through a consequence of a gradual
deformation of Q̄I . This may take place naturally in real physical situations, e.g. the
Blasius boundary layer, in which case Q̄I evolves into Q̄T following the similarity
solution. However, not all base-flow properties can be associated naturally with a physical
development, and indeed such an association is not necessary. More generally, it is always
possible to take a mathematical approach and represent the intermediate state between
Q̄I and Q̄T as

Q̄(x) = Q̄I + (Q̄T − Q̄I)g(x), (A 1)

where g(x) is the tapering function chosen to satisfy g → 0 as x → −∞ and g → 1 as
x → ∞. It should be stressed that g(x) is a function slowly varying with x, unlike f(x)
describing the scatter, which is a fast function of x. Since Q̄ varies slowly with x, so does
its corresponding eigenvector φ̃.
In the EEV approach (Huang & Wu 2015), the local eigenfunction in the vicinity of

an arbitrary streamwise location xa is expanded as a Taylor series

φ̃(xa +△x) = a
[

φ̃0(xa, y) +△xφ̃1(xa, y) +
1

2
△x2φ̃2(xa, y) + · · ·

]

, (A 2)

where a is a coefficient to to ensure the eigenfunction φ̃(xa+△x) has a norm of unity. An
extended eigenvalue problem arises with the wavenumber α and (φ̃0, φ̃1, φ̃2)

T appearing
as the eigenfunction (eigenvector). Solving that eigenvalue problem, one obtains not only
the local eigenvalue α and its corresponding eigenfunction (φ̃0, φ̃1, φ̃2)

T , but also the
matrices T1 and T2 , where

φ̃1 = T1φ̃0, φ̃2 = T2φ̃0. (A 3)

It follows that the eigenfunction in the vicinity of an arbitrary point xa is linked via the
relation

φ̃(xa +△x) = a
[

I+△xT1 +
1

2
△x2T2 + · · ·

]

φ̃0 ≡ T̃(xa)φ̃0(xa, y), (A 4)

where the local transfer matrix T̃(xa) is given by

T̃(xa) = a
[

I+△xT1 +
1

2
△x2T2 + · · ·

]

. (A 5)

By carrying out the EEV calculation for the intermediate base state and/or boundary
conditions, represented by Q̄ in (A 1), at each mesh point xi between the inlet x0 and
outlet xn, one obtains the local transfer matrix T(xi) with i = 1, 2, . . . , n. The product
of the local transfer matrices then gives the required global transfer matrix,

T =
n
∏

i=1

T̃(xi). (A 6)

In the discretized form, the two eigenvectors at the inlet and outlet, φ̃I and φ̃T , can be
related via a transfer matrix T̃ such that φ̃T = Tφ̃I . If Q̄T is identical to Q̄I , which
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Tapering function D △x |φ̃T −Tφ̃I |∞ |φ0 − φ̃I |∞ |φn/|φn|∞ − φ̃T |∞ Tr

sin 300 0.5 2.44E-5 6.59E-7 3.19E-6 1.79197362
sin 300 5.0 3.87E-5 6.60E-7 3.29E-6 1.79199132
tanh 40 0.5 4.57E-6 1.45E-7 4.51E-6 1.79172500
tanh 40 5.0 7.00E-6 1.45E-7 5.21E-6 1.79170054

Table 1. Test of tapering functions

is the case for an isolated scatter with the unperturbed base-flow being assumed to be
parallel, then the transmission matrix T is the unit matrix I.
Two forms of tapering function were adopted and tested in this paper. The first is

defined as

g(x) =











0 x < −D/2,
[

sin(2πx/D) + 1
]

/2 |x| 6 D/2,

1 x > D/2,

(A 7)

and the second is

g(x) =
[

tanh(x/D) + 1
]

/2, (A 8)

where D is a measure of the length of the gradual deformation, and is chosen to be
much greater than the width d (or ∆) of the scatter. Using these two tapering functions
(referred to as sin and tanh respectively), we performed the calculations for the case of a
T-S wave with a frequency F = 60 and wavelength λTS = 27 being scattered by a rigid-
porous junction at Rc = 1262 with λm = 1 and ϕ = 0◦. Two mesh sizes are used. The
results are displayed in table 1, in which φ̃I and φ̃T are the local eigenfunctions at the
inlet and outlet respectively, while φ0 is the eigenfunction of (3.20), φn is the solution in
(3.18) . The accuracy of the transfer matrix T can be measured by the maximum error,
|φ̃T −Tφ̃I |∞, where the norm is defined as

∣

∣ ·
∣

∣

∞
= max

y

∣

∣ ·
∣

∣. (A 9)

The consistency and accuracy of the solution may be measured by the maximum errors
of (φ0 − φ̃I) and (φn/|φn|∞ − φ̃T ), which characterize how well the scattering solution
matches with the local instability modes upstream and downstream respectively. As
is indicated in table 1, for both tapering functions and mesh sizes, all the errors are
fairly small. The predicted transmission coefficient Tr is independent of the choice of the
tapering function and the mesh size. This was also found to be true of the disturbance
development.
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