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ABSTRACT

Information about the physical properties of astrophysical objects cannot be measured directly but is inferred
by interpreting spectroscopic observations in the context of atomic physics calculations. Ratios of emission
lines, for example, can be used to infer the electron density of the emitting plasma. Similarly, the relative
intensities of emission lines formed over a wide range of temperatures yield information on the temperature
structure. A critical component of this analysis is understanding how uncertainties in the underlying atomic
physics propagates to the uncertainties in the inferred plasma parameters. At present, however, atomic physics
databases do not include uncertainties on the atomic parameters and there is no established methodology for
using them even if they did. In this paper we develop simple models for the uncertainties in the collision
strengths and decay rates for Fe XIII and apply them to the interpretation of density sensitive lines observed
with the EUV Imagining spectrometer (EIS) on Hinode. We incorporate these uncertainties in a Bayesian
framework. We consider both a pragmatic Bayesian method where the atomic physics information is unaffected
by the observed data, and a fully Bayesian method where the data can be used to probe the physics. The
former generally increases the uncertainty in the inferred density by about a factor of 5 compared with models
that incorporate only statistical uncertainties. The latter reduces the uncertainties on the inferred densities, but
identifies areas of possible systematic problems with either the atomic physics or the observed intensities.
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1. INTRODUCTION

Spectral observations of solar and stellar coronae, mostly
taken in the X-ray, extreme ultraviolet (EUV), and ultravio-
let (UV) part of the spectrum, are regularly combined with
atomic data to infer fundamental plasma parameters such as
electron temperatures and densities. This information is es-
sential for constraining models of coronal heating. In gen-
eral in astrophysics, reliable atomic data are essential for
interpreting and modeling x-ray observations, as, for ex-
ample, discussed in Kallman & Palmeri (2007). One key
aspect about the modelling is the accuracy of the atomic
data, an area which has recently received some attention, see
e.g. Luridiana & Garcı́a-Rojas (2012); Bautista et al. (2013);
Loch et al. (2013); Chung et al. (2016). In these studies,
guidelines to estimate uncertainties as a routine part of the
computations of data have been provided, or some prelimi-
nary analysis based on comparisons between different calcu-
lations.

Over the years, the accuracy of spectral observations and of
the atomic calculations has progressed hand in hand. Current
space instruments now provide measurements with accuracy
of 20% or better. With the earliest observations and atomic
data, discrepancies between measured and predicted line in-
tensities of factors of two or more were common. In the past
years, thanks to large-scale atomic structure and scattering
calculations (see, e.g. the reviews Jönsson et al. 2017; Bad-
nell et al. 2016), the atomic data have improved significantly.
In a series of papers, starting from Del Zanna et al. (2004),
one of us (GDZ) has benchmarked the available atomic data
for several of the main ions against all available experimen-
tal data, from laboratory sources to astrophysical spectra, and
found generally good agreement (within 10–20%) between
observations and theoretical calculations. Several reasons for
the remaining discrepancies have been identified. Sometimes
lines were blended, sometimes their identifications were in-
correct. In some other cases the radiometric calibration of
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an instrument was at fault, or the atomic calculations were
incorrect.

The problem of interpreting astrophysical spectra is a com-
plex one and it is tempting to account for any systematic un-
certainties in the analysis with broad, ad hoc assumptions.
One might assume, for example, an inflated uncertainty for
each observed line intensity with the hope of encompassing
the uncertainty associated with counting statistics, the ra-
diometric calibration, and the atomic data. Such broad as-
sumptions, however, do not account for obvious correlations
within the analysis. For example, the uncertainty in the cali-
bration clearly should be much smaller for two emission lines
that are close in wavelength than for two lines that are far
apart in wavelength. Similarly, the atomic data for strong
lines that are the result of transitions from the ground state
are likely to be more accurate than the atomic data for weak
lines that are influenced by many different transitions (e.g.,
Foster et al. 2010).

Fortunately, recent reductions in the cost of computing
have made it possible to carry out detailed statistical analy-
sis on complex systems. Lee et al. (2011), for example, have
developed a Bayesian approach for sampling from a distri-
bution of plausible calibration curves and incorporating this
information into a comprehensive analysis of high-energy
Chandra spectra. Along the same theme, here we consider
the effect of uncertainties in the atomic data and the problem
of propagating them to the determination of plasma param-
eters. Since the atomic calculations involve many thousands
of parameters, we cannot sample the posterior in the usual
way. Thus, we develop a method that relies on a relatively
small number of realizations of the atomic data to compute
posterior distributions for the parameters of interest. While
there still exist several computational bottlenecks in the pro-
cess, we present for the first time a framework that can be
applied in general to this class of problems. To begin with,
we deploy a simple, but realistic, model to describe the un-
certainties in some of the atomic parameters for Fe XIII, use
it to generate different realizations of the plasma emissivi-
ties, then apply this ensemble of atomic data to analyze the
density-sensitive Fe XIII lines observed in solar active region
spectra using a Bayesian framework.

We are focusing here on Fe XIII for various reasons: it is
one of the most widely used ions; several atomic calculations
are available; the main lines, from the 3s2 3p 3d configu-
ration, are well identified and strong in active regions; are
mostly free of blends; and fall in a spectral region where they
are observed by the EUV Imaging Spectrometer on Hinode
(EIS, Culhane et al. 2007) and the radiometric calibration is
relatively well understood. EIS is routinely used to measure
electron densities from coronal iron ions (e.g., see Watan-
abe et al. 2009; Young et al. 2009). Furthermore, consider-
ing lines from a single ion removes the uncertainties related

to the ionization fractions and elemental abundance, greatly
simplifying the problem. Future work will expand this anal-
ysis to the calculation of the undertainties associated with
emission measure distributions, which generally use obser-
vations of emission lines from different ionization stages and
elements.

This paper is structured in the following way. In Section 2
we describe the Fe XIII emission lines of interest and present
the traditional analysis of some representative observations.
In Section 3 we develop the models for the uncertainties in
the atomic data and describe how they are used to generate
different realizations of the plasma emissivities. In Section 4
we present the analysis of a simple test case where we specify
the plasma properties. In Section 5 we describe the applica-
tion to actual observations. In Section 6 we conclude with a
summary and a discussion of future work.

2. MODELING EIS FE XIII OBSERVATIONS

To motivate our thinking about the data analysis, we con-
sider the problem of determining the electron density in loop
footpoints using observations of density-sensitive Fe XIII
emission lines. The uncertainties in the atomic data and the
analysis presented in the next sections are independent of the
specific problem to which they are applied. This analysis
could, for example, also be applied to measuring densities
in million degree loops or measuring densities in the diffuse
corona above the limb. We feel, however, that considering
a specific application makes the analysis both realistic and
tractable.

Figure 1 illustrates a typical observation of a solar active
region. The intense magnetic fields in the active region lead
to the formation of 3–4 MK plasma on the relatively short
loops in the active region core (e.g., Del Zanna 2013; Del
Zanna & Mason 2014; Warren et al. 2012). The footpoints
of these high temperature loops are bright in million degree
emission lines, and the footpoints are often referred to as the
“moss” because of their mottled appearance in high resolu-
tion images (e.g., Berger et al. 1999; Fletcher & De Pontieu
1999). These footpoint measurements provide information
on the boundary conditions in these loops and are important
for constraining models of coronal heating (e.g., Peres et al.
1994; Martens et al. 2000; Winebarger et al. 2008). Mea-
surements of the electron density in the moss are of partic-
ular utility because they yield information on both the base
pressure of the loop as well as the filling factor (Warren et al.
2008).

To further illustrate the concept of the moss, in Figure 2 we
show Fe XIII 202.044 Å intensities computed from a simple,
one-dimensional hydrodynamic loop model (Schrijver & van
Ballegooijen 2005). Here a relatively large volumetric heat-
ing is assumed and a loop with an apex temperature of about
3 MK is produced. As expected, the Fe XIII emission comes
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Figure 1. Observations of NOAA active region 11785 on 8 July 2013 near 2 UT. The top panels show the photospheric magnetic field measured
with HMI, million degree emission observed with the AIA Fe IX 171 Å channel, and high temperature loops observed with XRT. The middle
panels show EIS rasters in a series of emission lines that range in temperature of formation from 0.8 MK to 5.0 MK. The bottom panel shows an
EIS spectrum near 202 Å from a single spatial pixel with the Fe XIII lines of interest highlighted. The EIS rasters are from an observation that
began at 01:55 UT, and this field of view is indicated by the dotted lines in the top panels. The EIS full CCD spectrum is from an observation
that began at 00:20 UT; this field of view is indicated by the dashed lines in the top panels.

from a relatively localized region near the footpoint of the
loop. Thus moss observations can yield information on in-
dividual loops. The emission at higher temperatures, in con-
trast, is generally an integration across many different loops
along the line of sight, making the interpretation of such ob-
servations much more difficult.

As mentioned previously, the EIS instrument on Hinode
observes many emission lines whose intensities can be com-
bined to form density-sensitive ratios. Figure 1 also shows
the spectral region observed with EIS near 202 Å, which is
dominated by intense Fe XIII lines. A typical analysis of
these lines involves fitting each of the spectral features with

Gaussians to derive the line intensities and their correspond-
ing statistical errors. For this work we consider the lines at
196.525, 200.021, 201.121, 202.044, 203.165, 203.826, and
209.916 Å (see Table 1) and fit them with single or multiple
Gaussians, as appropriate. These lines will be discussed ex-
tensively in Section 3. We have randomly selected 1000 pix-
els from the EIS observations of the moss shown in Figure 1
for analysis. Note that the lines at 202.044 and 209.916 Å
originate in the same upper level and they form a branching
ratio that is independent of solar conditions. The other five
lines form density-sensitive ratios with the 202.044 Å line.
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Figure 2. Density measurements in the moss can be used in con-
junction with hydrodynamic loop models to infer the properties of
high-temperature active region loops. The bottom panel shows the
temperature and density as a function of position derived from as-
suming steady, uniform heating. The middle panel shows the inten-
sity of Fe XIII 202.044 Å as a function of position along the loop.
The top panel shows a rendering of the loop as it would appear
viewed from the side. See Warren et al. (2008) for additional de-
tails.

Since it is not obvious how to reconcile all of the individ-
ual line ratios, we use a simple empirical model to interpret
the observations. We make the standard assumption that the
intensity of an emission line can be computed with

In = εn(ne, Te)n
2
e ds, (1)

where εn(ne, Te) is the plasma emissivity, ne and Te are
the electron density and temperature, and ds is the effective
path length through the solar atmosphere (see, for example,
Mariska 1992). First, we note that since the excitation ener-
gies of the levels associated with these wavelengths are very
similar, the emissivity ratios used to evaluate the plasma den-
sities are highly insensitive to changes in temperature. Fur-
thermore, as illustrated in Figure 2, most of the Fe XIII emis-
sion in high-temperature loops are thought to originate in a
narrow region near the footpoint over which the temperatures
are close to the peak temperature of formation of the ion,

Table 1. Selected Fe XIII lines observed by Hinode EIS

i–ja Identification λexp (Å) Notes

1–20 3s2 3p2 3P0 – 3s2 3p 3d 3P1 202.044
2–23 3s2 3p2 3P1 – 3s2 3p 3d 3D1 201.126
3–20 3s2 3p2 3P2 – 3s2 3p 3d 3P1 (209.916) branching ratio
3–25 3s2 3p2 3P2 – 3s2 3p 3d 3D3 203.826 self-blend b

3–24 3s2 3p2 3P2 – 3s2 3p 3d 3D2 203.795 self-blend b

7–60 3s 3p3 3D1 – 3s 3p2 3d 3F2 203.772 self-blend b

8–60 3s 3p3 3D2 – 3s 3p2 3d 3F2 203.835 self-blend b

3–23 3s2 3p2 3P2 – 3s2 3p 3d 3D1 (204.942) branching ratio
1–23 3s2 3p2 3P0 – 3s2 3p 3d 3D1 (197.431) branching ratio
2–24 3s2 3p2 3P1 – 3s2 3p 3d 3D2 200.021
2–19 3s2 3p2 3P1 – 3s2 3p 3d 3P2 209.619
2–22 3s2 3p2 3P1 – 3s2 3p 3d 3P0 203.165 blended
4–26 3s2 3p2 1D2 – 3s2 3p 3d 1F3 196.525
2–21 3s2 3p2 3P1 – 3s2 3p 3d 1D2 (204.262) blended

a i and j are the indices of the lower and upper levels in the CHIANTI
database

b self-blend: multiple lines from the same ion that are close in wavelength

Table 2. Modeling Fe XIII Line Intensities in
the Mossa

Line Iobs σI Imodel |∆I|/I(%)

196.525 1473.1± 18.8 1443.6 2.0
200.021 1521.4± 29.1 1749.9 15.0
201.121 2373.2± 44.4 1987.0 16.3
202.044 2866.5± 53.6 2989.1 4.3
203.165 775.2± 42.5 767.5 1.0
203.826 9237.6± 142.6 8751.2 5.3
209.916 530.2± 56.4 516.2 2.6

aObserved and modeled line intensities for a single spatial
pixel (#217) using Equation 1. The best-fit density and
path length are logne = 9.68 ± 0.01 and log ds =
8.67 ± 0.02. The intensities and their corresponding
uncertainties are in units of erg cm−2 s−1 sr−1.

≈ 1.8 MK. We therefore adopt this value of the temperature
and henceforth treat the plasma as isothermal. Of course,
hydrodynamic models show that there are gradients in tem-
perature and density along the loop, where segments of high
ne occupy small ds, and segments of small ne cover a large
ds, so Equation 1 must be treated as an empirical description
characterized by a representative density and effective path
length.

With this empirical description, however, we can derive in-
formation about the solar atmosphere directly from the obser-
vations. The physical model shown in Figure 2 depends on
additional assumptions about the loop geometry, the plasma
composition, and the nature of the heating.

For this empirical model we can use the observed intensi-
ties and their corresponding statistical uncertainties, the com-
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puted plasma emissivities, and assumed temperature to infer
the best-fit electron density and path length by performing a
least-squares fit. The plasma emissivites for each line is com-
puted using version 8 of the CHIANTI atomic data base (Del
Zanna et al. 2015; Dere et al. 1997).

The results of an example calculation are shown in Table 2,
where we have taken the observed intensities from a single
spectral pixel (arbitrarily chosen as #217) from an EIS full-
CCD observation (EIS file eis_l0_20130708_002042) and
applied Equation 1. The resulting best-fit parameters are
log ne = 9.68 ± 0.01 (cm−3) and log ds = 8.67 ± 0.02

(cm). The error bars associated with the parameters are very
small, suggesting that the parameters are very precisely de-
termined. The uncertainties associated with the intensities,
however, are also small and the standard method of deter-
mining the best-fit ne and ds by minimizing χ2 results in
reduced χ2≈30 for this case, indicating that the model is a
poor fit to the data.

This example highlights the difficulty in interpreting many
solar observations. Since the sun is relatively close, we can
obtain observations with high signal-to-noise. This bounty of
photons, however, means that models generally do not pass
rigorous statistical tests. This can be simply ignored or cov-
ered up by inflating the statistical errors with ad hoc assump-
tions. The real deficiency in the analysis is taking the atomic
data as fixed and without uncertainty. In reality, the uncer-
tainties associated with the plasma emissivities are likely to
be comparable to or larger than those from counting statistics,
and a proper data analysis must include a treatment of them.
We now turn to estimating the uncertainties in the atomic data
available for Fe XIII.

3. UNCERTAINTIES IN THE ATOMIC DATA

The most recent (and largest) scattering calculation for
Fe XIII is an R-matrix calculation carried out within the UK
APAP network1, which had a target of 749 levels up to n = 4

(Del Zanna & Storey 2012). The main focus of this calcula-
tion was to provide accurate data for the n = 4 → n = 3

soft X-ray transitions. Indeed, new lines in this wavelength
range were subsequently identified (Del Zanna 2012a). The
scattering calculation was supplemented by a structure cal-
culation which was used to calculate the radiative data, us-
ing either observed or empirically-adjusted theoretical wave-
lengths. The scattering and radiative data produced in this
calculation were recently made available within the CHI-
ANTI database2 in its version 8 (Del Zanna et al. 2015). We
use these data as our baseline.

Storey & Zeippen (2010) previously carried out a similar
scattering calculation (using the same R-matrix method and

1 www.apap-network.org
2 www.chiantidatabase.org

the same codes), the only difference being that it was aimed
at improving the earlier calculations for the n = 3 levels. The
target had a total of 114 fine-structure levels, and included
only some n = 4 levels.

Del Zanna & Storey (2012) also performed separate cal-
culations for the n = 5, 6 levels, but showed that cascad-
ing effects are small when considering the strong EUV lines
emitted by the n = 3 levels. The same paper also showed
that the intensities of the transitions from the n = 3 levels
are close to those of the previous Storey & Zeippen (2010)
model.

The Storey & Zeippen (2010) atomic data provided very
good agreement between observed and theoretical intensities
of the strongest EUV lines, as shown in one of the benchmark
works by Del Zanna (2011), based on a variety of sources,
including Hinode/EIS. Del Zanna (2011) also benchmarked
other atomic data for this ion, calculated by Gupta & Tayal
(1998) and Aggarwal & Keenan (2005). Various shortcom-
ings in these calculations were found. On the other hand,
excellent agreement (to within a relative 10%) was found for
the main lines observed by Hinode EIS in an active region
moss area and the Storey & Zeippen (2010) atomic data, al-
ready indicating an excellent accuracy in both the experimen-
tal and theoretical data, as we will also confirm below.

The Del Zanna (2011) benchmark work also reviewed all
the previous identifications and determined which lines are
likely to be blended, and hence avoided in our analysis. The
main lines chosen for our study are listed in Table 1, in or-
der of decreasing intensity. The main line is the straight de-
cay to the ground state, which produces the emission line at
202.044 Å. We note that two transitions from the 3s 3p2 3d
3F2 were suggested to be blending the main density diagnos-
tic line, already a self-blend at 203.8 Å. However, as noted
by Del Zanna (2011), at the high densities that are consid-
ered here these lines do not have a significant contribution,
so even if the identifications were incorrect the results pre-
sented here would still stand. The other lines (at 201.126,
200.021, 209.619, 203.165 Å) have a similar density sensi-
tivity as the 203.8 Å one, except the 196.525 Å, which de-
cays to a more excited level. The 203.165 Å was shown to
be blended at low densities. Some lines (with wavelengths in
brackets) were not considered since they are branching ratios
(decays from the same upper level) with other lines we have
included. Further benchmarks were carried out by Del Zanna
(2012b).

The intensity of a spectral line is proportional to the popu-
lation of the upper level and the spontaneous transition prob-
ability (the A-value). To assess which atomic rates affect a
spectral line, it is therefore important to check which are the
main populating mechanisms for each level. A simplified
level diagram for the main transitions discussed in this sec-
tion is provided in Figure 3, for a specific density. However,
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Figure 3. A simplified level diagram for the transitions relevant to
the lines considered in this paper.

Figure 4. Percentage difference in the thermally-averaged collision
strengths (Storey & Zeippen (2010) vs. Del Zanna & Storey (2012)),
for a selection of transitions (top: to the 3s2 3p 3d levels; bottom: to
the other n = 3 levels). The dashed lines represent the approximate
uncertainties used to generate alternative realizations of the atomic
data for Fe XIII.

the main populating mechanisms for each atomic level nor-
mally vary with the density, so the issue can become quite
complex to describe. Some details will be discussed in a
separate paper, where also the various parameters that can

affect an atomic calculation are reviewed. In summary, the
202.044 Å line is mainly populated by direct excitation from
the 3s2 3p2 3P0 ground state via a strong dipole-allowed tran-
sition. The various calculations provide the same rate, within
a few percent. In turn, the population of the ground state
decreases significantly as the population of the metastable
levels increases. On the other hand, the populations of the
other levels which produce the other lines in Table 1 are
mainly driven by excitations from all the 3s2 3p2 3P0,1,2

levels, although non-negligible contributions (typically 10–
30%) come also from cascading from higher levels.

Figure 5. Scatter plot of the thermally-averaged collision strengths
calculated by Del Zanna & Storey (2012) with the R-matrix codes
(as in CHIANTI, present), vs. with the DW approximation. Dash
and dot-dash lines indicate a ± 20, 50%.

It is therefore important to first assess how accurate the
rates of excitation from the 3s2 3p2 3P0,1,2 to the 3s2 3p 3d
levels are. We have chosen to compare the latest values with
those calculated by Storey & Zeippen (2010), because the
two calculations were very similar, i.e. the main differences
are caused by the size of the target and not by the method of
the calculation. As already shown by Del Zanna & Storey
(2012), the largest calculation provides very similar rates for
the stronger lines, but significantly increased values for the
weaker ones, as one would expect. We have considered only
excitations from the 3s2 3p2 3PJ and 3s2 3p2 1D2 levels (the
only ones with significant population) at the temperature of
peak ion abundance in ionization equilibrium (2 MK, see Fig-
ure 4 top). As an estimate of the uncertainty in the strongest
lines, with collision strengths above 1.0, we have taken 5%,
which is well above the scatter of values. For the weaker
lines, we have taken as an estimate the dashed line, i.e. a
linear increase (up to a maximum of 50%).

We have then considered all the excitations to the remain-
der of the n = 3 levels calculated by Storey & Zeippen
(2010), taking into account the different level orderings of
the two calculations. In this case, we have taken a 10% un-
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certainty for the transitions above 0.1, and the linear increase
shown in Figure 4 (bottom, up to a maximum of 50%).

One possible estimate for all the n = 3 levels not included
in Storey & Zeippen (2010) and all the n = 4 levels is to
compare the full scattering calculation with the results of the
distorted-wave (DW) calculation carried out by Del Zanna &
Storey (2012), which does not include resonance enhance-
ments (see Figure 5). We have taken a 20% uncertainty for
the transitions above 0.01 and 50% for the weaker transitions.

Figure 6. Percentage difference in the A-values calculated by
Young (2004) and Del Zanna & Storey (2012) within the lowest
27 levels.

The next step is to provide an estimate on the uncertainty
of the A-values. As shown by Young (2004), different calcu-
lations can provide significantly different values. For our es-
timates, we have chosen to compare the Del Zanna & Storey
(2012) A-values with those calculated by Young (2004) with
the SUPERSTRUCTURE program (Eissner et al. 1974). An
extended configuration set was used by Young (2004) to cal-
culate radiative data for this ion. This data were made avail-
able within CHIANTI version 4 (Young et al. 2003) in 2003.
Figure 6 shows comparisons of the A-values for all the tran-
sitions within the lowest 27 levels, which include the 3s2 3p
3d.

We have taken for transitions having an A-value above
1010 an uncertainty of 5%, for those between 108 and 1010

10%, while for weaker transitions, 30%. For the forbidden
transitions within the ground configuration: we have taken
10%.

We have modified the standard CHIANTI IDL routines
distributed in SolarSoft (SSW, Freeland & Handy 1998) to
assign to each transition an uncertainty in the A-value and
in the excitation rate. We used the IDL function randomn
to randomly vary each rate within the estimated uncertainty.
The distribution is normal, in the sense that if, e.g., an un-
certainty is 10%, most values will vary within ± 20%. We

then used the standard CHIANTI routine (emiss calc) to
calculate the line emissivities. For each of the seven chosen
lines, we have added any Fe XIII lines within ± 0.1 Å to
take self-blends into account. We have generated a total of
1000 realizations of the emissivities for each line, which are
shown in Figure 7. The figure clearly shows how the spectral
lines vary their emissivities as a function of the density. Fig-
ure 8 shows the variation of ratios with density. By attaching
reasonable uncertainties to the atomic data we can generate
realizations of the emissivities that capture this uncertainty.
We can then use the ensemble of emissivities to characterize
the uncertainties of the atomic data to infer physical parame-
ters like plasma densities and column heights. Our methodol-
ogy for combining an ensemble of emissivities with observed
data to account for uncertainties in atomic data is described
in detail in Section 5.

4. SIMULATED DATASETS

The next step in this analysis is to generate sets of intensi-
ties from known densities and path lengths. This will allow
us to test our ability to recover physical parameters from the
Fe XIII intensities and to illustrate how the variations in the
atomic data developed in the previous section lead to varia-
tions in the inferred densities and path lengths. These inten-
sities complement the set of observed intensities taken from
the data illustrated in Figure 1.

The ratio curves shown in Figure 8 indicate that these
lines are sensitive to density in the range of ne of 108 to
1011 cm−3. Thus we randomly select 1000 densities uni-
formly on the interval log ne = [8.5, 10.5]. To continue with
our theme of analyzing observations of active region moss
we use the theoretical estimate of the moss path length from
Martens et al. (2000) of

ds =
2.56× 108

P0
, (2)

where P0 = 2kbneTe is in dyne cm−2, kb is the Boltzmann
constant, and ds is in cm. Again, we use the peak temper-
ature of formation for Fe XIII, 1.8 MK, for this calculation.
Note that this expression was derived for somewhat cooler
emission and we do not expect it to track the Fe XIII path
lengths exactly.

Each set of density and path length can be used to generate
a set of intensities using statistics using the EIS pre-flight ef-
fective areas and the assumption of a 60 s exposure time and
the 2′′ slit. Finally, we do not use these computed intensities
directly when attempting to recover them with the model. We
first apply a normally distributed random perturbation to each
intensity, which mimics the variations in measured counts ex-
pected due to the finite exposure time.

An example set of simulated intensities is given in Table 3
for assumed values of log ne = 9.90 and log ds = 7.80. If
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Figure 7. Emissivities of the seven Fe XIII lines considered in this work. The emissivities are computed assuming a temperature of 1.8 MK, the
temperature of formation for Fe XIII. The gray lines represent the 1000 realizations of the CHIANTI atomic data. The red curve is the default
value from CHIANTI v.8. As discussed in Section 5, the blue curve is identified as being most probable match to the observations (#471) and
the green curve the second most probable (#368).

      

10
−3

10
−2

10
−1

10
0

10
1

Fe XIII 196.525/202.044

      

10
−3

10
−2

10
−1

10
0

10
1

      

10
−3

10
−2

10
−1

10
0

Fe XIII 200.021/202.044

      

10
−3

10
−2

10
−1

10
0

      

10
−1

10
0

Fe XIII 201.121/202.044

      

10
−1

10
0

7 8 9 10 11 12
Log n

e
 (cm

−3
)

10
−3

10
−2

10
−1

10
0

Fe XIII 203.165/202.044

7 8 9 10 11 12
Log n

e
 (cm

−3
)

10
−3

10
−2

10
−1

10
0

7 8 9 10 11 12
Log n

e
 (cm

−3
)

10
−2

10
−1

10
0

10
1

Fe XIII 203.826/202.044

7 8 9 10 11 12
Log n

e
 (cm

−3
)

10
−2

10
−1

10
0

10
1

7 8 9 10 11 12
Log n

e
 (cm

−3
)

10
−1

10
0

Fe XIII 209.916/202.044

7 8 9 10 11 12
Log n

e
 (cm

−3
)

10
−1

10
0

R
a
ti
o
 (

e
rg

s
)

Figure 8. The theoretical ratios of six Fe XIII lines with respect to Fe XIII 202.044. See Figure 7 for additional details.

we use the standard set of CHIANTI emissivities to model
these intensities we recover the input parameters almost ex-
actly, log ne = 9.90±0.01 and log ds = 7.82±0.03. As with
the example set of observed intensities in Table 2, the uncer-
tainties on these parameters are very small. Unlike the case
with the observed intensities, however, we obtain a reduced
χ2 of order 1.

5. INFERENCE

The standard method of χ2 minimization (see Section 2)
allows best-fit values of the plasma density ne and column
depth ds to be determined for a given pixel, under the as-
sumption that the emissivity curves are completely and cor-
rectly specified. Now, equipped with 1000 datasets corre-
sponding to randomly selected EIS pixels, we can consider
the uncertainties in the fitted density and path length in each
case that result from both statistical fluctuations in the ob-
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Table 3. Modeling Fe XIII Line Intensities in
the Mossa

Line Iobs σI Imodel |∆I|/I(%)

196.525 751.0± 9.4 750.7 0.0
200.021 678.7± 11.8 694.7 2.4
201.121 750.7± 14.8 748.6 0.3
202.044 1012.5± 20.6 1011.9 0.1
203.165 313.7± 13.7 296.2 5.6
203.826 3533.1± 52.2 3498.8 1.0
209.916 168.4± 21.0 174.8 3.8

aAn example set of intensities computed from assumed
values of logne = 9.90 and log ds = 7.82. The
observed intensities include a normally distributed ran-
dom perturbation. The best-fit density and path length
are logne = 9.90±0.01 and log ds = 7.82±0.03.
The format of the table is the same as Table 2.

served intensities and the atomic data uncertainties incorpo-
rated in the ensemble of CHIANTI emissivities. To do so,
we develop a Bayesian methodology that first assumes the
observed data is uninformative regarding the atomic physics
(the so-called pragmatic Bayesian method) and then incor-
porate the potential information in the observed data to learn
about the atomic physics (the fully Bayesian method). The
fully Bayesian method is a principled statistical analysis,
while the pragmatic method makes simplifying assumptions
that tend to overestimate the final uncertainty on the fitted
density and path length. More details of the distinction be-
tween the two methods is discussed in Section 5.4. We start
by providing an introduction to Bayesian inference in Sec-
tion 5.1.

5.1. Bayesian Inference

We take a Bayesian approach in our statistical analysis be-
cause it enables us to build in the complex hierarchical de-
pendencies engendered by atomic uncertainties. Such an ap-
proach offers a probability-based formalism for combining
information from our prior knowledge and the current data.
This requires both a prior distribution, which quantifies the
uncertainty in the values of the unknown model parameters
before the data is observed, and a likelihood function — the
distribution of the data given the model parameters. The like-
lihood function allows us to assess the viability of a parame-
ter value given the observed data under a proposed statistical
model. The likelihood function is combined with the prior
distribution to yield the posterior distribution, which quanti-
fies the uncertainty in the values of the unknown model pa-
rameters taking account of the observed data. If we letX and
ψ represent generic data and unknown model parameters, re-
spectively, Bayes’ theorem provides the posterior distribution
as

p(ψ|X) =
L(ψ|X) p(ψ)

p(X)
, (3)

where L(ψ|X) is the likelihood of X given ψ (sometimes
written as p(X|ψ)) and P (ψ) the prior distribution of ψ.
The term P (X) is a normalizing constant necessary to make
p(ψ|X) a proper probability distribution. (The term p(X) is
sometimes referred to as the ”evidence” in the astrophysics
literature.) The posterior distribution, which combines infor-
mation in the data with our prior knowledge, is our primary
statistical tool for deriving parameter estimates and their un-
certainties.

To perform a Bayesian analysis of the Fe XIII intensities,
we start by defining notation and terminology in Section 5.2.
We specify the likelihood function and the prior distribution
in Section 5.3. In Section 5.4, we derive the posterior dis-
tribution under two sets of assumptions, which result in the
aforementioned pragmatic Bayesian and fully Bayesian ap-
proaches. In Section 5.5 and Section 5.6 we discuss our
model-fitting routines, separate pixel-by-pixel and simulta-
neous analyses, where we consider the 1000 pixel datasets
individually and simultaneously. In Section 5.7 and Sec-
tion 5.8 we apply our methodologies to the simulated and
the observed intensities, respectively.

5.2. Notation

Suppose that in each of K = 1000 pixels we observe the
intensities of each of J spectral lines with wavelengths Λ =

{λ1, . . . , λJ}. Let Ikλ be the observed intensity of the line
with wavelength λ ∈ Λ in pixel k ∈ {1, . . . ,K}, σkλ its
known standard deviation, Dk = (Ikλ1

, . . . , IkλJ
), and D =

{D1, . . . , DK}.
We also have a collection of M = 1000 realizations of the

plasma emissivities, denoted byM,

M = {ε(m)
λ (nek, Tek), λ ∈ Λ,m = 1, . . . ,M},

where nek and Tek are the electron density and temperature
for pixel k and m indexes the emissivity realization (i.e.,
emissivity curve, ε(m)

λ (nek, Tek)), with m=1 corresponding
to the default CHIANTI emissivities.

The expected intensity of the line with wavelength λ in
pixel k can be rewritten (from Eq (1)) as ελ(nek, Tek)n2

ekdsk,
where dsk is the path length through the solar atmosphere for
pixel k. Let θk = (log nek, log dsk) be the plasma parame-
ters in pixel k, and Θ = (θ1, . . . , θK).

5.3. Statistical Model

The first step in specifying our statistical model is to con-
struct the likelihood function. We model the intensities Ikλ
given m, nek, and dsk as a normal (i.e. Gaussian) distribu-
tion,

Ikλ | m,nek, dsk indep∼ N
(
ε
(m)
λ (nek, Tek)n2

ekdsk, σ
2
kλ

)
,

(4)
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for λ ∈ Λ, where N (µ, σ2) is a normal distribution with
mean µ and variance σ2. We suppress the conditioning on
the σkλ throughout for notational simplicity. Thus the likeli-
hood function of Dk given emissivity index, m, and plasma
parameters, θk, is

L(m, θk | Dk) = p(Dk | m, θk)

=

J∏
j=1

N
(
Ikλj

∣∣ ε(m)
λj

(nek, Tek)n2
ekdsk, σ

2
kλj

)
,

(5)

where N (x | µ, σ2) is the density of a normal distribution
with mean µ and variance σ2 evaluated at x. Note that we
focus on methods that treat the emissivity index m as an un-
known parameter, whose prior is specified below, whose pos-
terior we estimate to determine the most likely emissivity re-
alizations among those inM, and whose uncertainties affect
both the fit and error bars of θk.

Next, we specify the joint prior distribution on the un-
known model parameters. For log nek and m we specify a
continuous uniform distribution and a discrete uniform dis-
tribution, respectively,

p(log nek) =
1

5
for 7 ≤ log nek ≤ 12, (6)

p(m) =
1

M
for each m = 1, . . . ,M. (7)

This choice of prior on m stipulates that the 1000 realiza-
tions of emissivity curves inM are all a priori equally likely
to be the true emissivity. As the realizations were gener-
ated by attaching reasonable uncertainties to the atomic data
as described in Section 3, the atomic data uncertainties are
contained in p(m) and are thus captured by the correspond-
ing posterior distribution. Therefore, the 1000 realizations of
emissivity curves can also be considered as a sample of 1000

draws from an implicit prior distribution.
For log dsk, however, a uniform prior, p(log dsk) ∝ 1,

yields an improper posterior distribution because the likeli-
hood converges to a positive constant as log dsk goes to−∞.
Therefore, we specify a Cauchy distribution for p(log dsk),

log dsk ∼ Cauchy(center = 9, scale = 5). (8)

which is a broad, fat-tailed distribution covering all conceiv-
able values for the path length that we expect based on all
sets of Fe XIII intensities, with an example set of intensities
shown in Table 2.

We assume the parameters are independent a priori so that
the joint prior distribution is

p(m, θk) = p(m) p(θk)

= p(m) p(log nek) p(log dsk).
(9)

Here θ is indexed by k, but m is not. This reflects the fact
that, although θk vary among the pixels, we expect the true

emissivity (i.e., the true value ofm) to be an underlying phys-
ical quantity that is the same for all pixels.

We consider two ways to fit the plasma parameters, Θ,
given the observed or simulated intensities, D, while ac-
counting for atomic uncertainty, M. First we can analyze
each pixel separately in a sequence of pixel-by-pixel analy-
ses. Although this may yield different estimates of m, the
index of the preferred emissivity curve among the pixels, it
allows us to see if the intensities of each pixel give consistent
information as to the best emissivity curve(s). Alternatively,
we can simultaneously analyze the intensities from all the
pixels to arrive at an overall estimate of the most likely emis-
sivity curve. Using this strategy, uncertainty can be quanti-
fied with a list of the most likely emissivity realizations from
M (or their indices, m) along with their associated posterior
probabilities.

We consider both the separate pixel-by-pixel and simul-
taneous analyses, and for each develop both pragmatic and
fully Bayesian approaches. Specifically, Section 5.4 devel-
ops the pragmatic and fully Bayesian approaches to the pixel-
by-pixel analyses and Section 5.5 describes the algorithms
used to deploy these approaches. The simultaneous analysis
and its algorithm are discussed in Section 5.6.

5.4. Pragmatic and fully Bayesian methods for separate
pixel-by-pixel analysis

Given the likelihood function in Eq (5) and the prior distri-
bution in Eq (9), the joint posterior distribution for m and θk
under the separate pixel-by-pixel analyses is

p(m, θk|Dk) =
L(m, θk | Dk) p(m, θk)

p(Dk)
, (10)

where p(Dk) =
∑M
m=1

∫
L(m, θk | Dk) p(m, θk) dθk.

Then the marginal posterior distribution p(θk | Dk) can be
obtained by summing over m,

p(θk | Dk) =

M∑
m=1

p(m, θk | Dk). (11)

In this way, we are able to infer θk accounting for uncertain-
ties of the atomic data via the ensemble inM.

5.4.1. Pragmatic Bayesian method

For the pragmatic Bayesian method, as described by Lee
et al. (2011), we assume that the observed intensities are un-
informative as to the most likely emissivities. That is, we
do not take into account the information in the intensities
for narrowing the uncertainty in the choice of emissivity re-
alizations. Mathematically, this assumption can be written
p(m | Dk) = p(m), i.e., m and Dk are independent. Thus,
the pragmatic Bayesian joint posterior distribution of m and
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θk is

p(m, θk | Dk) = p(θk | Dk,m) p(m | Dk) (12)

= p(θk | Dk,m) p(m), (13)

and the marginal posterior distribution of θk (from Eq (11))
is

p(θk | Dk) =

M∑
m=1

p(m, θk | Dk)

=

M∑
m=1

p(θk | Dk,m) p(m).

(14)

The pragmatic Bayesian method accounts for atomic un-
certainty in a conservative manner. The assumption that
p(m | Dk) = p(m) ignores information in the intensities,
Dk, that may reduce uncertainty of atomic data represented
by m and hence of θk. We now consider methods that allow
Dk to be informative for m.

5.4.2. Fully Bayesian method

In contrast to the pragmatic Bayesian method, the fully
Bayesian method, as described by Xu et al. (2014), incor-
porates the potential information in the data (i.e., the inten-
sities) to learn about m. The fully Bayesian joint posterior
distribution of m and θk is given in Eq (12) and the marginal
posterior distribution of θk is given by

p(θk | Dk) =

M∑
m=1

p(m, θk | Dk)

=

M∑
m=1

p(θk | Dk,m) p(m | Dk)

(15)

where each p(θk | Dk) is normalized so that
∑M
m=1 p(m |

Dk) = 1.
Using Bayes’ theorem, we can directly compute the proba-

bility of each emissivity realization,m, given the data in each
pixel separately,

p(m | Dk) =
p(Dk | m)∑M
m=1 p(Dk | m)

. (16)

This is the marginal posterior probability among those emis-
sivity realizations inM. Eq (16) holds because each of the
m has the same prior probability (see Eq (7)).

The Bayesian posterior distribution in Eq (16) allows the
observed intensities to be informative for the atomic physics,
following the principles of Bayesian analysis (Xu et al.
2014). It enables us to use the intensities to determine which
emissivity realizations are more or less likely and averages
over (posterior) uncertainty in emissivity realizations.

5.5. Algorithms for the separate pixel-by-pixel analyses

5.5.1. Algorithms for pragmatic Bayesian in the separate
pixel-by-pixel analyses

The Metropolis-Hastings (MH) algorithm (e.g., Hastings
1970) is a general term for a family of Markov chain simu-
lation methods that are useful for sampling from Bayesian
posterior distributions. Let p(ψ|X) be the target poste-
rior distribution, using the notations in Section 5.1. A pro-
posed ψ∗ is sampled from a proposal distribution q(ψ∗|ψ(t))

at iteration t + 1. Calculating the acceptance probability,
ρ = p(ψ∗|X) q(ψ(t)|ψ∗)

p(ψ(t)|X) q(ψ∗|ψ(t))
, we set ψ(t+1) = ψ∗ with proba-

bility min(ρ, 1) and set ψ(t+1) = ψ(t) otherwise.
To obtain a Monte Carlo (MC) sample of (m, θk) from

the pragmatic Bayesian posterior in Eq (13), we first ob-
tain a MC sample of the emissivity index, {m(1), . . . ,m(L)},
from its prior distribution, Eq (7). For each m(`), with
` = 1, . . . , L, we can then sample {θ[`,t]

k , t = 1, . . . , T}
from p(θk | m(`), Dk) using the MH algorithm. This re-
quires that we specify the proposal distribution q(θ∗|θ(t)).
To do so, we first compute the value of θk that maximizes
log p(θk | m(`), Dk), i.e., the maximum a posteriori (MAP)
estimates, θ̂k, along with the 2 × 2 Hessian matrix evalu-
ated at the mode θ̂k, H(θ̂k), for each m(`). We then use
t4

(
θk | θ̂k, (−H(θ̂k))−1

)
as the MH proposal distribution,

where tν (x | µ,Σ) is the density of a multivariate t distri-
bution with ν degrees of freedom, mode µ, and scale matrix
Σ, evaluated at x. This type of MH sampler is known as an
independence sampler (Gilks et al. 1996). We run MH for T
iterations, the last of which is taken as the MC sample corre-
sponding to m(`), i.e., θ(`)

k = θ
[`,T ]
k .

5.5.2. Algorithms for fully Bayesian in the separate pixel-by-pixel
analyses

In the fully Bayesian separate pixel-by-pixel analyses, our
aim is to obtain a MC sample from the joint posterior distri-
bution, Eq (12), and we propose three basic strategies for do-
ing this: (i) two-step MC with MH, described in Section 5.5.3
and Appendix A, (ii) two-step MC with a Gaussian approxi-
mation, described in Appendix B, and (iii) Hamiltonian MC
(HMC), described in Appendix C. Specifically, the first strat-
egy uses the MH algorithm while the second strategy makes
a Gaussian approximation to the conditional distribution of
θk given the sampled emissivity realization m, respectively.
Comparing the three strategies, the two-step MC with MH
is preferred because of the accuracy of estimates with mod-
erate computation time, while two-step MC with a Gaussian
approximation may be faster (but less accurate) and HMC
can be more accurate (but slower) under certain conditions.

5.5.3. Implementation of two-step MC with MH for fully Bayesian
in the separate pixel-by-pixel analyses
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In order to implement the fully Bayesian method and to ob-
tain a MC sample of θk via Eq (15), we first evaluate Eq (16)
for each m where

p(Dk | m) =

∫
L(m, θk | Dk) p(θk) dθk (17)

is the Bayesian evidence conditional on a given emissivity.
For each sampled θk, we need only evaluate the likelihood
for m = 1, . . . ,M , and then renormalize the M likelihood
values by this weighted sum, which can be achieved via a
two-step sampling as described in this section.

The two dimensional integral in Eq (17) can be evaluated
numerically using the grid generated from the Trapezoidal
Quadrature Rule (TQR), which is suitable for finite domain
quadrature 3. The Product-Rule is also used in the construc-
tion of multivariate grids, which leads to an evenly designed
grid.

The two dimensional quadrature can then be expressed as∫
L(m, θk | Dk) p(θk) dθk

=
∑
i,j

wi,j L(m, log n
(i)
ek , log ds

(j)
k | Dk) p(log n

(i)
ek , log ds

(j)
k )

(18)

where nodes (log n
(i)
ek , log ds

(j)
k ) and weights (wi,j) are de-

fined by the chosen quadrature rule 4. The integral range of
the two parameters is (θ̂k−3× sdevk, θ̂k+3× sdevk) where
sdevk is a vector of the square root of the diagonal elements
in variance-covariance matrix (−H(θ̂k))−1.

Having evaluated Eq (16) at each m, we can obtain a MC
sample of the emissivity index, {m(1), . . . ,m(L)}. For each
m(`) we sample from p(θk | Dk,m

(`)) using an indepen-
dence sampler exactly as described in Section 5.5.1. For each
m(`), we run the independence sampler for T iterations to
obtain the MC sample corresponding to m(`), θ(`)

k = θ
[`,T ]
k .

The detailed two-step MC with MH (SMH ) is given in Ap-
pendix A.

5.6. Simultaneous analysis

When we consider all the K-pixel intensities together in a
simultaneous analysis using the fully Bayesian method, the
likelihood function of m and Θ given D, and the prior distri-
bution of m and Θ are, respectively,

L(m,Θ | D) =

K∏
k=1

L(m, θk | Dk) (19)

3 Package ’mvQuad’ provides a collection of methods for (potentially)
multivariate quadrature in R, and is available at https://cran.r-project.org/
web/packages/mvQuad/.

4 TQR and Product-Rule are used in the construction of multivariate grids,
where level = 5 is a subcommand in the grid creating commander, which
represents accuracy level, typically number of evaluation points for the pa-
rameters in each dimension.

and

p(m,Θ) = p(m)

K∏
k=1

p(θk). (20)

Thus, the joint posterior distribution of m and Θ can be ex-
pressed as

p(m,Θ | D) =
L(m,Θ | D)p(m,Θ)

p(D)
, (21)

where p(D) =
∑M
m=1

∫
L(m,Θ | D)p(m,Θ) dΘ. Simi-

larly, treating m as an unknown parameter, we express the
left hand side of Eq (21) as

p(m,Θ | D) = p(Θ | D,m) p(m | D), (22)

and we conduct statistical inference by obtaining a MC sam-
ple from this joint posterior distribution.

First we can use all the data simultaneously to obtain the
marginal posterior probability of each emissivity realization
m,

p(m | D) =

∏K
k=1 p(Dk | m)∑M

m=1

∏K
k=1 p(Dk | m)

. (23)

and sample m(`), for ` = 1, . . . , L, with weights given by
the marginal posterior probabilities in Eq (23) so that those
favoured by the data are sampled more frequently. The com-
putation of p(Dk | m) for each k and m is discussed in Sec-
tion 5.5.3.

For each sampledm, we sample θ from its conditional pos-
terior distribution

p(Θ | D,m) ∝ L(m,Θ | D) p(Θ)

=

K∏
k=1

L(m, θk | Dk) p(θk)

=

K∏
k=1

J∏
j=1

N
(
Ikλj

∣∣ ε(m)
λ (nek, Tek)n2

ekdsk, σ
2
kλj

)
× p(log nek) p(log dsk).

(24)

as these K-pixel datasets were randomly selected from the
observations indicated in Section 2, so that we can safely as-
sume conditional independence among them.

Similarly, an MH sampler is used to obtain a correlated
MC sample, {Θ[t], t = 1, . . . , T}, from p(Θ | m(`),D). A
t4

(
θk | θ̂k, (−H(θ̂k))−1

)
proposal distribution is used for

each pixel independently and separately to make the compu-
tation more efficient. With this proposal distribution, we run
the MH for T iterations over all the K-pixel intensities and
obtain the MC sampler corresponding tom(`), Θ(`) = Θ[`,T ].
The detailed two-step MC with MH via simultaneous analy-
sis (SMHsimul

) is given in Appendix D.

https://cran.r-project.org/web/packages/mvQuad/
https://cran.r-project.org/web/packages/mvQuad/
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Figure 9. Comparisons of the inferred density ne and path length ds using different methods for pixel #217 (for the intensities listed in Table 2).
The results from the different methods used are color coded, with blue representing the standard method, red the pragmatic Bayes method
(Section 5.4.1), and green the fully Bayes method (Section 5.4.2) with the latter two computed for all pixels simultaneously (see Section 5.6).
The contour plots (with levels at 0.01×, 0.1×, and 0.5× the maximum) show where the majority of the mass of the joint probability distributions
of (ne, ds) fall, and their marginalized distributions along each axis is shown to the top and to the right of the corresponding axis. The results
from the standard analysis is shown along with the histograms as straight lines (solid for the best-fit and dashed denoting the ±1σ errors on
the best-fit obtained from the default CHIANTI emissivity functions), extending into the contour plot region. The best-fit value from standard
analysis is also marked on the contour plot with a ’+’ sign, with the arms of the symbol corresponding to the sizes of the error bars. The standard
deviations of the marginalized posterior densities, as well as the 90% equal-tail bounds for both the pragmatic and full Bayes cases are listed in
the legend. As expected, the density and path length are highly correlated. The standard method underestimates the uncertainties, the pragmatic
Bayes method inflates them due to atomic data uncertainties. The fully Bayes method strikes a balance between atomic data uncertainties and
how well the data are fit, shrinking the error bars relative to pragmatic Bayes and shifting the estimates. The full set of plots for all 1000 pixels
considered here are available as a supplementary figure in the online journal.

5.7. Application to simulated intensities

Here we illustrate both the separate pixel-by-pixel and the
simultaneous analyses, mentioned in Section 5.5 and Sec-
tion 5.6, with a simulated case, using K = 1000 simulated
sets of intensities for each of J = 7 spectral lines with known
density and path lengths as described in Section 4. This will
allow for the comparison of our inferred values with known
values.

We run the separate pixel-by-pixel and simultaneous anal-
yses described in Section 5.5.3 and Section 5.6. For both
analyses, 30 MH samplers, which is determined by construct-

ing autocorrelation plots in this setting (Xu et al. 2014), are
drawn for each sampled emissivity realization m(`), and the
last MH sampler is taken as a MC sampler. There are 8000

MC samplers drawn in each simulation.
The comparison of the relative posterior probability p(m |

Dk) for each emissivity index and for each pixel, in sep-
arate pixel-by-pixel analyses, is shown in the left panel of
Figure 10. The emissivity realization with index 1 occupies
almost all of the probability. Similarly, in the simultaneous
analysis, the posterior probability of the emissivity realiza-
tion with index 1 is nearly to one. Both analyses recover the
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Table 4. MSE between the fitted values
and the true values for both parameters
(logne, log ds) via both separate pixel-
by-pixel and simultaneous analyses

logne log ds

SMH 1.345×10−5 4.936×10−5

SMHsimul
6.748×10−7 2.241×10−6

fact that all of the simulated sets of intensities are computed
from the actual CHIANTI atomic data (the emissivity real-
ization with index 1) instead of the perturbed atomic data as
described in Section 4.

Comparing the results from separate pixel-by-pixel and si-
multaneous analyses using their mean square errors (MSE), a
measure of how well the fitted values explain the given set of
observations, Table 4 shows simultaneous analysis achieves
smaller MSE values and indicates the more data we have, the
smaller MSE is achieved, i.e., simultaneous analysis gives a
better explanation of the given set of observations (i.e., inten-
sities).

5.8. Application to observed intensities

Here we demonstrate the effects of the different types of
analyses by applying them to a real dataset, the EIS full-
CCD observations of an active region used as an exemplar
in Table 2 (EIS file eis 10 20130708 002042). This
dataset comprises sets of measured intensities of J = 7 spec-
tral lines of Fe XIII in K = 1000 distinct, independent pix-
els. The results are shown in Figure 9 for the same pixel as
exemplified in Table 3. The joint posterior probability den-
sity distribution p(θk | Dk) computed using the pragmatic
and fully Bayesian methods are shown as contour plots, and
marginalized 1-D posterior densities p(log nek | Dk) and
p(log dsk | Dk) are shown as curves along the corresponding
axes. The estimates of log nek and log dsk computed via the
standard analysis, i.e., the χ2 minimization of Equation (1),
are marked with straight lines. Notice that the pragmatic
Bayesian method inflates the error bars relative to the stan-
dard method as it accounts for the atomic data uncertainties.
The fully Bayesian method shrinks the error bars relative to
the pragmatic Bayesian method and shifts the best estimate
since it selects a subset of the full range of atomic uncertain-
ties that are consistent with the data. The standard method
underestimates the uncertainties in all cases, and is shifted
relative to the fully Bayesian estimate.

The comparison of the relative posterior probability p(m |
Dk) for each emissivity index and for each pixel, in sepa-
rate pixel-by-pixel analyses, is shown in the right panel of
Figure 10. There are two dominant emissivity realizations
which have a combined posterior probability of over 0.99 us-

Table 5. The posterior prob-
ability of the two dominant
emissivity realizations given
Pixel 593, p(m|D593), using
the two-step MC with MH
via both separate pixel-by-pixel
and simultaneous analyses.

m SMH SMHsimul

471 0.894 1.000

368 0.105 0.000

others < 0.001 0.000

ing the two-step MC with MH. An example of the posterior
probability of the two dominant emissivity realizations given
Pixel 593 is shown in Table 5. Similarly, in the simultane-
ous analysis, the posterior probability of the emissivity curve
with index 471 is exactly one. It indicates that the emissivity
realizations reveal consistent feature of the solar atmosphere.

The computational time is considered in terms of (i) the
elapsed time and (ii) the sum of the user and system times,
which is a closer measure to real clock time. For the separate
pixel-by-pixel analyses, the computation time over all 1000
pixels is about (i) 14.5 hours and (ii) 41.0 hours, respectively,
for the two measures of computational time. For the simulta-
neous analysis, both time measurements are about 6.0 hours.
These computation times consist of both the quadrature part
and sampling part; the computation of the quadrature part is
exactly the same for both the separate pixel-by-pixel and si-
multaneous analyses with a computation time of 1.2 hours
for both measurements.

6. CONCLUSIONS AND DISCUSSION

We have presented the first comprehensive treatment of
atomic physics uncertainties in the analysis of solar spectra.
To make this analysis tractable, we have considered the rel-
atively simple problem of inferring the electron density and
path length from a set of observed Fe XIII intensities and a
simple model for the emission (see Equation (1)). For this
work we have used observed Fe XIII intensities from the EIS
spectrometer on the Hinode satellite. If we consider only the
uncertainties due to counting statistics, we obtain very small
error bars on the electron density and path length, suggest-
ing that the parameters are very precisely determined by the
observations.

An essential component of this analysis is a model that we
have constructed for the uncertainties in the collisional exci-
tation and spontaneous decay rates. These rates are needed to
compute the plasma emissivities that relate the observed in-
tensities with the physical parameters of the plasma. This
model for the uncertainties reflects the fact that for many
transitions, such as those between the lower levels in Fe XIII,
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Figure 10. Selecting the optimal emissivity curves with separate pixel-by-pixel fully Bayesian analysis. The x-axis and the y-axis represent
the index of the pixels and the index of the emissivity curves respectively. For each pixel, the relative posterior probability is plotted along
a vertical column for the emissivity indices, where index 1 represents the default CHIANTI emissivities. The size of the dots represents the
relative values of the posterior probability (p(m | Dk), for emissivity index m and pixel dataset Dk) assigned to each emissivity index for a
given pixel. The analyses carried out for the simulated dataset (left; generated using default m = 1, and showing only p(m | Dk) > 0.06) and
for a real dataset (right; showing only p(m | Dk) > 0.1) are shown.

these rates appear to have converged. For other transitions,
however, the rates are still highly uncertain. We have mod-
ified the CHIANTI software to produce self-consistent real-
izations of the atomic data based on this model for the uncer-
tainties.

We have used a Bayesian framework to interpret the ob-
served intensities in the context of the different realizations
of the atomic data. A pragmatic Bayes approach, where each
realization of emissivities is considered to be equally likely,
yields uncertainties in the electron density and path length
that are about a factor of 5 larger than the uncertainty im-
plied by counting statistics alone. A fully Bayesian approach,
where we allow the observed intensities to update the uncer-
tainty in the emissivity curves, reduces the uncertainties in
the plasma parameters, but also suggests that a different re-
alization of the atomic data is more likely than the default
CHIANTI calculation. This indicates some combination of
systematic errors in the atomic physics, instrument calibra-
tion, and the observed intensities.

The methodology that we have developed here is both la-
bor intensive and computationally demanding. Nevertheless,
we believe that it represents a breakthrough in how atomic
data uncertainties are brought into an analysis. Future im-
provements to the methodology and the structure of atomic
databases will no doubt improve the process and make it

more accessible. The extension to other emission lines would
require an evaluation of the uncertainties in the collisional
excitation and spontaneous decay rates similar to those de-
scribed in Section 3 for each ion. Other uncertainties, such
as those for the ionization and recombination rates needed to
compute the ionization balances, also need to be addressed
if lines from different ionization stages are considered. Once
these uncertainty models are determined, we can only gener-
ate discrete realizations of the atomic data. This necessitates
a brute force approach to computing the posterior which in-
cludes a sum over all of the realizations. The more com-
mon scenario is that the posterior is a continuous function
of the parameters, which can be sampled more easily. It is
clear, however, that the uncertainty in the atomic data is often
the dominant source of error in the analysis of solar spectra.
Thus this effort is essential to a rigorous analysis of the data.

Some constraints and the uncertainties in the atomic data
could, in principle, be extracted from an analysis of the prob-
ability distribution p(m|D) of the different realizations. In
practice, however, our ability to consider this inverse prob-
lem is severely limited by the mismatch between the very
large number of rates that go into calculating the level popu-
lations: the modelled line emissivities depend on 56394 rates
and their associated uncertainties. In principle, if all the tran-
sitions produced by the main levels in the ion could be ob-
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served, some constraints could be established. However, we
only observe a very small number of emission lines.

Finally, we stress that the analysis presented here cannot
overcome any limitations in the model used to interpret the
observations. In this work, for example, we have assumed
that the observed emission can be described by a simple
model with a single density, temperature, and path length.
Despite its simplicity, this model reproduces the observed in-
tensities remarkably well. The path lengths, however, are
relatively long (ds ∼ 109 Mm) compared to the path lengths
expected for the moss (see Equation 2). It is likely that the
observed emission is a combination of high density, short
path length emission from the moss and low density, long
path length emission from the overlying corona. To keep
the analysis simple we have avoided using a more complex
model. However, it would be necessary to consider more
complex emission measure distributions if we seek to inter-
pret the plasma parameters derived from the observations.
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APPENDIX

A. APPENDIX A

A.1. Separate analyses: two-step MC with MH

For Pixel k, i.e. the kth set of intensities, the two-step MC with MH (SMH ) proceeds for ` = 1, . . . , L with

Step 1: Sample m(`) ∼ p(m | Dk) via Eq (16).

Step 2: For t = 1, . . . , T − 1,

Step 2.1: Sample θ[prop]
k ∼ t4

(
θk | θ̂k, (−H(θ̂k))−1

)
and compute

ρ =
p(θ[prop]

k | Dk,m
(`)) t4

(
θ

[t]
k | θ̂k, (−H(θ̂k))−1

)
p(θ

[t]
k | Dk,m(`)) t4

(
θ[prop]
k | θ̂k, (−H(θ̂k))−1

) . (A1)

Step 2.2: Set

θ
[t+1]
k =

θ[prop]
k , with probability min(ρ, 1)

θ
[t]
k , otherwise

. (A2)

Step 3: Set θ(`)
k = θ

[T ]
k .

For simplicity at each iteration, if the sampled emissivity index in Step 1 is the same as the previous draw, we do not need to
iterate MH to sample θk in Step 2 since we already have a good proposal distribution for the same target distribution. Moreover,
if there does exist one dominant emissivity curve, e.g., there exists m∗ such that p(m∗ | Dk) ≥ 0.9999, we only need to sample
this m∗ all the time.
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B. APPENDIX B

B.1. Separate analyses: two-step MC with Gaussian approximation

This is an alternative method to sample p(m, θk | Dk) based on Eq (15) and Eq (16). As in Section 5.5.3, we can evaluate
Eq (16) at each m and obtain a MC sample of the emissivity index, {m(1), . . . ,m(L)}. For each m(`), instead of using exact MH
algorithm, we can then sample from p(θk | Dk,m

(`)) by considering an approximate algorithm via Gaussian approximation.
We can conduct a Gaussian approximation to p(θk | Dk,m

(`)) with mean equal to the MAP estimates, θ̂k, and variance-
covariance matrix (−H(θ̂k))−1. Specifically the Gaussian approximation distribution N

(
θk | θ̂k, (−H(θ̂k))−1

)
has the same

mode and curvature as the target conditional distribution p(θk | Dk,m
(`)). Thus the two-step MC with Gaussian approximation

(SG) proceeds for ` = 1, . . . , L with

Step 1: Sample m(`) ∼ p(m | Dk) via Eq (16).

Step 2: Sample θ(`)
k ∼ N

(
θk | θ̂k, (−H(θ̂k))−1

)
, where θ̂k depends on m(`).

Similar to Section A, if there is one dominant emissivity curve, we only need to sample this dominant one all the time.

B.2. Results from the simulated set of intensities and the observed intensities

Here we illustrate two-step MC with Gaussian approximation using a simulated case and a realistic case as described in
Section 5.7 and Section 5.8.

For two-step MC with Gaussian approximation, same as two-step MC with MH in Section 5.7, TQR and Product Rule are
used in computing multivariate quadrature in Eq (17). Once we obtain a MC sample of emissivity index via Eq (16), a Gaussian
approximation is conducted to p(θk | Dk,m

(`)) for each sampled m(`) and each pixel Dk as described in Appendix B.1. There
are 8000 MC samplers drawn for each pixel.

The plots to compare the relative posterior probability for each emissivity index and for each pixel are identical to those in the
simulated and realistic cases in Section 5.7 and Section 5.8.

In the realistic case, the computation time over all 1000 pixels is 8.0 hours or 20.7 hours, with respect to the elapsed time or the
sum of user and system times, respectively. It consists of both the quadrature part and the sampling part, where the computation
time of quadrature part is the same as with the two-step MC with MH, 1.2 hours for both measurements.

C. APPENDIX C

C.1. Separate analyses: Hamiltonian Monte Carlo

Another alternative method to obtain a MC sample from the joint posterior distribution in Eq (10) via the separate analyses is
to start by obtaining a sample from their marginal posterior distribution,

θ
(1)
k , . . . , θ

(L)
k ∼ p(θk | Dk).

First, we rewrite
p(θk | Dk) ∝ L(θk | Dk) p(θk), (C3)

where

L(θk | Dk) =

M∑
m=1

L(m, θk | Dk) p(m | θk)

=
1

M

M∑
m=1

L(m, θk | Dk)

=
1

M

M∑
m=1

J∏
j=1

N
(
Ikλj

∣∣ ε(m)
λ (nek, Tek)n2

ekdsk, σ
2
kλj

)
,

(C4)

since the prior independent assumption, p(m | θk) = p(m) = 1/M , and the observation independent assumption among lines of
wavelengths.
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Evaluating p(θk | Dk) in this way we can use the Stan5 software package (Carpenter et al. 2016) to obtain {θ(1)
k , . . . , θ

(L)
k } via

HMC to sample directly from its marginal posterior distribution, Eq (C3). However, we must analytically marginalize over m,
via Eq (C4), since it cannot accommodate discrete parameters.

With these MC sample {θ(1)
k , . . . , θ

(L)
k } in hand, we can sample m from its conditional posterior distribution,

p(m | θ(`)
k , Dk) =

p(m) L(m, θ
(`)
k | Dk)∑M

m̃=1 p(m̃) L(m̃, θ
(`)
k | Dk)

=
L(m, θ

(`)
k | Dk)∑M

m̃=1 L(m̃, θ
(`)
k | Dk)

,

(C5)

for ` = 1, . . . , L.

C.2. Sampling multimodal posterior distributions with Stan

The simulation obtained in Appendix C.1 results in bimodal posterior distributions for log ne and log ds for a couple of pixel
datasets. Specifically, the two modes correspond to the two different emissivity curves. The resulting relative size of the two
modes does not match the actual posterior distributions indicating HMC algorithm has trouble in jumping between the modes.
This multiple-mode problem may be due to an insufficient number of emissivity curves because our set of emissivities sample
the full uncertainty range sparsely. To solve this problem, we have experimented with adding a few strategically chosen synthetic
emissivity curves to the set M and the augmented set of curves is denoted by Maug, where M is a subset of Maug, i.e.,
M ⊂ Maug. These tend to connect the modes and allow HMC to jump between modes. We can then remove the samples
associated with the synthetic emissivity curves to get MC samples purely from the original target.

We run the algorithm described in Appendix C.1 withM replaced byMaug. For each sampled value of θ(`)
k , ` = 1, . . . , L,

we compute p(m | θ(`)
k , Dk) for each m ∈ Maug, withM replaced byMaug in Eq (C5), and sample a value of m, say m(`),

from it. Once we have these sample values of m, m(`), for ` = 1, . . . , L, we can then extract the samples of θk that correspond
to the non-synthetic emissivity curves to get MC samples purely from the original target, i.e., consider the conditional posterior
distribution p(m | θ(`)

k , Dk) for each m ∈M.
This creative method of adding synthetic emissivity curves in HMC can be generalised to all pixel datasets. If all the multiple-

mode pixels have two modes and these two modes depend on the two same emissivity curves, the same synthetic emissivity
curves can be added into the original ones and the above procedure can be repeated to all pixel datasets.

C.3. Results from the simulated set of intensities and the observed intensities

Here we illustrate HMC with Stan through a simulated case and a realistic case as described in Section 5.7 and Section 5.8.
For HMC with Stan (H), a few strategically chosen synthetic emissivity curves are added, as described in Appendix C.1 and

Appendix C.2. There are 5 chains running, 4000 iterations each, and the first half of the iterations of each chain are discarded as
burn-in.

In the simulated case, the comparison of the relative posterior probability p(m | Dk) for each emissivity index and for each
pixel shows the emissivity curve with index 1 occupies almost all of the probability which also recovers the fact that all of the
simulated sets of intensities are computed from the actual CHIANTI atomic data (the emissivity curve with index 1 instead of the
perturbed atomic data as described in Section 4).

In the realistic case, once we run HMC with Stan as described in Appendix C.1, bimodal distributions appear for several of
the pixels. The two modes correspond to two different emissivity curves with index 471 and 368, i.e., Emis471 and Emis368.
Moreover, the relative size of the two modes does not match the actual posterior distribution as shown in the left column of
Figure 11. Therefore, a few strategically chosen synthetic emissivity curves are added to the original set and the augmented set is

Maug/M = {w1 ∗ Emis471 + w2 ∗ Emis368}

where (w1, w2) = (0.75, 0.25), (0.50, 0.50), and (0.25, 0.75). The HMC with Stan is run once more withM replaced byMaug

as described in Appendix C.2. Samples of θ(`)
k , ` = 1, . . . , L, are obtained as shown in the middle column of Figure 11. For each

sampled value of θ(`)
k , we compute p(m | θ(`)

k , Dk) for each m ∈ Maug, via Eq (C5), and sample a corresponding m(`) from

5 Stan is a probabilistic modeling language developed by Andrew Gelman and collaborators. It interfaces with the most popular data analysis languages like
R, Python, etc., and is available at mc-stan.org.

mc-stan.org
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Figure 11. Demonstrating the augmented emissivity curves method to correct HMC/Stan analysis. The posterior probability densities are
shown as calculated for the pixel 593 dataset for the logne (top row) and log ds (bottom row). In all cases, the exact distributions, marginalized
over the ensemble set of emissivity curves, are shown as as the solid green curves. The distributions conditional on one of the two most likely
emissivity candidates, Emis471 and Emis368, are shown as the dashed and dot dashed blue lines respectively, and are renormalized with their
corresponding posterior weights. The histogram represents the posterior density distributions computed using HMC via Stan. Going from left
to right in each row, the left panels depict the problem that HMC produces modes of different heights compared to the exact calculation; the
middle panels show its deformation as the augmented emissivity sampleMaug is used where the posterior distributions conditional on each of
the augmented emissivities are shown as the red dotted curves and are renormalized with their corresponding posterior weights; and the right
panels show the corrected versions after removing the augmented emissivities.

it. Considering the conditional posterior distribution p(m | θ(`)
k , Dk) for each m ∈ M, we can then extract the samples θ(`)

k that
correspond to the non-synthetic emissivity curves to get MC samples purely from the original target as shown in the right column
of Figure 11. The computation time over all 1000 pixels is 51.4 hours or 135.5 hours, with respect to the two ways of measuring
the computation time, the elapsed time or the sum of user and system times respectively.

D. APPENDIX D

D.1. Simultaneous analysis

The two-step MC with MH via simultaneous analysis (SMHsimul
) proceeds for ` = 1, . . . , L with

Step 1: Sample m(`) ∼ p(m | D) via Eq (16).

Step 2: Proceed for t = 1, . . . , T ,

Step 2.1: For each pixel k = 1, . . . ,K, sample θ[prop]
k ∼ t4

(
θk | θ̂k, (−H(θ̂k))−1

)
and set Θ[prop] = (θ[prop]

1 , . . . , θ[prop]
K )
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Step 2.2: Compute

ρ =

∏K
k=1 p(θ

[prop]
k | Dk,m

(`)) ·∏K
k=1 t4

(
θ

[t]
k | θ̂k, (−H(θ̂k))−1

)
∏K
k=1 p(θ

[t]
k | Dk,m(`)) ·∏K

k=1 t4

(
θ[prop]
k | θ̂k, (−H(θ̂k))−1

) . (D6)

Step 2.3: Set

Θ[t+1] =

Θ[prop], with probability min(ρ, 1)

Θ[t], otherwise
. (D7)

Step 3: Set Θ(`) = Θ[T ].

Similar to the separate analyses, for simplicity at each iteration, if the sampled emissivity index in Step 1 is not updated, we do
not need to iterate MH to sample each θk in Step 2. If there does exist one dominant emissivity curve, we only need to sample
the dominant all the time.
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Figure 12. Comparison of best-fit values and actual input for the simulated dataset. The comparisons are shown for both logne (left column)
and log ds (right column). Calculations are performed using fully Bayesian two-step MC with MH for each pixel dataset separately (top row)
and for all the pixel datasets simultaneously (bottom row). The red dots represent the difference between the best-fit value and the actual input
and the horizontal dashed lines represent the line of equality. The grey dots represent a vertical error of ±1 standard deviation for the fitted
values that incorporates atomic data uncertainty. Notice that the uncertainties are reduced when all theK-pixel datasets are used simultaneously.

The results in Figure 12 compare the fitted value using two-step MC with MH to the true value of both parameters log ne (right)
and log ds (left) via both separate pixel-by-pixel (top row) and simultaneous (bottom row) analyses. The grey lines represent the
vertical error of one standard deviation. The dashed line represents equality, where the fitted value is identical to the true value.
Compared with the separate pixel-by-pixel analyses, it shows that the error bars are smaller around the truth when we use the
simultaneous analysis than when we use one pixel dataset at a time. The results in the plots illustrate that as more data are used
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in the analysis by simultaneously analyzing those pixels, incorporating the uncertainty in the atomic physics calculations results
in more accurate fitted values.

E. APPENDIX E

E.1. Comparison of Algorithms and Output Data Analysis

To obtain a MC sample of the parameters, log nek and log dsk, via the separate pixel-by-pixel analyses with joint posterior
distribution in Eq (10), three algorithms were implemented for the fully Bayesian model on each of the 1000 pixel observed
datasets: SG in Appendix B.1, SMH in Section 5.5.3, andH in Appendix C.1.

Our aim is to find which algorithm provides a more accurate simulation to the target posterior distribution and is the best to be
used to make statistical inference. From a statistical point of view, we assume the HMC, which might give the best result, as the
base line, and to see whether these two two-step MC samplers provide better inference or not.

The first test statistic we consider is z-statistic, which is the difference in posterior mean between the sample values from SG
or SMH and from H divided by the standard deviation of H because HMC is assumed to be the base line, indicating how far
away that estimate is from the mean in standard units, i.e.,

ziscore =
meanSi −meanH

sdH
, for i = G or MH. (E8)

Figure 13 shows the histograms of z-scores for both parameters, log ne (top row) and log ds (bottom row), in two comparisons
(left column: SG to H, right column: SMH to H) respectively considering all the 1000 pixels. Looking at the worst case
scenarios, the most extremes we see from the comparison on the left-hand side is about 0.12 to 0.25 of standard deviation off,
which corresponds to Pixel 36, 87, 302, 453, 650, and 934. The comparison on the right-hand side indicates the most extremes
are about 0.15 of standard deviation off occurring at Pixel 302 and 364. The vertical lines correspond to the z-scores values of
these extracted pixels. It suggests that we need to look at the full posterior distributions for those extreme pixels and for the three
algorithms more closely, which will be found in Appendix E.3, to get some insights.

The second test statistic to compare is the ratio of standard deviations between SG or SMH andH, i.e.,

sdSi
sdH

, for i = G or MH, (E9)

which essentially gives the relative size of confidence intervals that we compute.
Figure 14 shows the histograms of the ratio of standard deviations for both parameters, log ne (top row) and log ds (bottom

row), in two comparisons (left column: SG toH, right column: SMH toH) respectively considering all the 1000 pixels. The most
extremes we see from the comparison on the left-hand side corresponds to Pixel 634 and 779. The comparison on the right-hand
side indicates the most extremes occurring at Pixel 396, 418, 634, and 779. The vertical lines correspond to the ratio values of
these extracted pixels. An example of their posterior distributions for the three algorithms can be found in Appendix E.3.

E.2. Parallelization

To improve the efficiency of the code, we parallelize the 1000 pixels into 20 or 10 completely separate processes when pre-
processing emissivities (i.e., obtaining the posterior probability of each emissivity curve) or sampling θ, for all the three algo-
rithms. The doParallel package is used to provide a mechanism to execute foreach loops in parallel within each process, where a
multi-core backend is registered and a four worker cluster (of a 64-bit 2.5 GHz CPU with 128 GB of RAM) is created and used.
Specifically, in the source builds, we set the number of processors to use for the build to the number of cores on our machine we
want to devote to the build, which is thirty-two. We also set the maximum allowed number of additional R processes allowed to
be run in parallel to the current R processes, which is thirty-two as well. For H, each pixel is run with multiple cores and four
pixels are run at the same time. For SG or SMH , we run each pixel with a different core and thirty-two multi-core backends are
used in parallel.

E.3. The posterior values of the parameters for the three algorithms and for the extracted pixels

By comparing the three algorithms using the two test statistics mentioned in Appendix E.1, several extreme pixels are picked
out from each comparison.

Figure 15 show the histograms of the posterior values of the parameters log ne (left) and log ds (right) conditional on all 1000

emissivity curves and the certain extracted pixel dataset respectively. The sampling algorithms used are SG algorithm (top row),
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Figure 13. Selecting the extreme pixels via z-scores (unit difference in posterior mean) which are computed using the outputs of the three
algorithms, SG, SMH , and H under fully Bayesian method and separate pixel-by-pixel analyses. The histograms represent the z-scores for
both parameters, logne (top row) and log ds (bottom row), in two comparisons (left: SG to H, right: SMH to H) respectively considering all
the 1000 pixels. The vertical lines correspond to the values of pixel indices, top left: 650, 934, 302, 36, 453, 87, top right: 302, 364, bottom
left: 87, 453, 36, 302, 934, 650, bottom right: 364, 302, from left to right.

SMH algorithm (middle row), and H algorithm (bottom row). Three more synthetic emissivity curves are conditioned when
usingH as described in Appendix C.3.

For Pixel 364 (the left panel of Figure 15), which are extracted from the right column of Figure 13, having used the synthetic
emissivity curves, it is still not very great job of jumping between the modes forH algorithm in this bimodal case.

For Pixel 396 (the middle panel of Figure 15), it is the histograms ofH algorithm that does not quite get into the tail that makes
the standard deviation fromH algorithm relatively small and filters this pixel out from the right column of Figure 14.

Similarly, for Pixel 650 (the right panel of Figure 15), which are extracted from the left column of Figure 13, the SG algorithm
does not do a great job at recovering the actual posterior with a noticeable discrepancy in the mode.

E.4. Discussion

As an example of the posterior distribution of emissivity curves given Pixel 593, we get these two dominant emissivity curves
from both two-step MC samplers and HMC. Considering the two of them, it is nearly all the probability up to 0.99, as is shown
in Table 6.

The computation time, in the realistic case, over all 1000 pixels for the three algorithms are shown in Table 7. Two ways of
measuring the computation time are included, the elapsed time and the sum of user and system times. Moreover, the computation
time of both two-step MC samplers consist of both quadrature part and sampling part, where the computation times of quadrature
part is 1.2 hours for both measurements.

We actually have two basic strategies for obtaining a MC sample from the joint posterior distribution, HMC and two-step
MC sampler. By comparing the histograms of the posterior values, there is definitely an issue with the Gaussian assumption
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Figure 14. Selecting the extreme pixels via the ratio of standard deviations which are computed using the outputs of the three algorithms, SG,
SMH , and H under fully Bayesian method and separate pixel-by-pixel analyses. The histograms represent the ratio of standard deviations for
both parameters, logne (top row) and log ds (bottom row), in two comparisons (left: SG to H, right: SMH to H) respectively considering
all the 1000 pixels. The vertical lines correspond to the values of pixel indices, top left: 634, 779, top right: 634, 779, 396, 418, bottom left:
634, 779, bottom right: 634, 779, 418, 396, from left to right.

Table 6. The posterior probability of the two dom-
inant emissivity curves given Pixel 593 using two-
step MC and HMC via separate pixel-by-pixel anal-
yses under fully Bayesian method

m HMC with Stan (H) 2stepMC with SG or SMH

471 0.860 0.894
368 0.138 0.105
others < 0.0019 < 0.0016

(two-step MC with Gaussian approximation) where the MC samplers are not matching very well with the actual posterior and it
is more conservative. HMC algorithm looks appropriate but occasionally does not give the relative size of the mode right, though
after adding synthetic emissivity curves. For all 1000 pixels, the MC samplers generated from two-step MC with MH match
the density line of actual posterior very well and this algorithm takes moderate computation time. Therefore, more accurate and
significantly faster, two-step MC with MH would be the best to use to make statistical inference.

In our experiment, there are J = 7 spectral lines with corresponding wavelengths being considered, whereas two of them
are not close to others in wavelength, 196.525 and 209.916 vs 200.021-203.826 Å, and we call them extreme wavelengths. We
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Table 7. Computation time for the three al-
gorithms in realistic case under fully Bayesian
method and separate pixel-by-pixel analyses

Algorithm Elaplsed (h) Sum of User&System (h)

SMH 14.5 41.0

SG 8.0 20.7

H 51.4 135.5

have experimented with one of the two-mode-case pixels (Pixel 593), where the two extreme wavelengths are removed one at
a time from the analysis and the three algorithms mentioned in Section 5.5.3, Appendix B.1, and Appendix C.1 are repeated.
Whether we consider the two extreme wavelengths or not, the resulting MC samplers have a good match to their actual posterior
distributions; however, the shape of the actual posterior distribution differs dramatically when including wavelength 196.525Å
compared to when it is excluded from the analysis. Because including the extreme wavelengths did not impact the ability of the
MC samplers to recover the actual posterior distributions, we used the seven-wavelength dataset in all the experiments.
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