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Abstract—Cloud systems include both locally based servers
at user premises and remote servers and multiple Clouds
that can be reached over the Internet. This paper describes
a smart distributed system that combines local and remote
Cloud facilities. It operates with a task allocation system that
takes decisions to allocate tasks dynamically to the service
that offers the best overall Quality of Service and a routing
overlay which optimizes network delay for data transfer between
clouds. Internet-scale experiments exhibit the effectiveness of our
approach in adaptively distributing workload across multiple
clouds.

Index Terms—Cloud Computing, Adaptive Networked Sys-
tems, Quality of Service, Performance Management, Global Inter-
net, World-Wide Experiments, Smart Intercontinental Networks

I. INTRODUCTION

The wide-spread usage of IP networks allows large-scale
Cloud providers such as Amazon EC2[1], Microsoft Windows
Azure[2] and Google Compute Engine[3] to build Cloud
infrastructures at a global scale which facilitates the deploy-
ment of applications spanning multiple regions around the
world for improving reliability and provisioning services with
lower latency and a better experience for the end users.
This enables service providers to distribute workloads across
multiple Clouds for balancing load and offering better Quality
of Service(QoS) to all the requests it receives. The selection
of a Cloud for an end user also relies on other considerations
such as security, cost, and energy consumption. For example,
cloud bursting refers to “an application deployment model in
which an application runs in a private cloud (on local servers)
and bursts into a public cloud when the demand for capacity
spikes”[4].

Using the Internet as the network medium between Cloud
regions is the default choice offered by many Cloud providers.
It is known that the routes set up by IP do not necessarily
result in the best performance [5], and that IP connections
may have lower reliability than other paths [6], [7], [8]. The
Cloud processing latency is affected by workload distribution
inside the Cloud; this not always easy to assess due to the
heterogeneity in both workload and machine hardware, and
the dynamic changes of load conditions over time. Much
research on the solutions to these issues require sophisticated
optimisation algorithms with relatively high computational
complexity [9], [10], [11]. Some approaches are also based
on substantial performance measurements resulting in traffic

overhead [12], [13], [14], [15] and potential overhead in the
Cloud. Such approaches can be difficult to put into practice
due to scalability problems for large systems and the need for
computational efficiency when one must make real-time and
on-line decisions.

A. Approach of the current paper

In recent work [16] we have examined how a task allocation
platform (TAP) that is internal to a Cloud can be used
to dynamically make task allocation decisions to optimise
QoS, and have suggested both model based and learning
based approaches. In other recent work [17] we have shown
that a limited amount of re-routing over an overlay network
using a measurement and big data approach can substantially
average end-to-end delay for internet traffic and also reduce
the perceived packet loss.

Here we combine these two ideas. In this paper we focus on
the QoS that tasks receive, in particular the overall response
time which is determined by the network latency to access,
forward data and programs, retrieve results and data, and
which includes the local or remote Cloud processing delay.
In particular, we propose a practical system for adaptive
workload distribution across multiple Clouds over wide area
networks. The system includes a TAP deployed in each Cloud
that optimises user perceived QoS and exploits the routing
overlay SMART over Clouds [17] for improving network
delay incurred by data transfer.

In this approach, requests of users are routed to a designated
local Cloud, which may well be the geographically closest
one, provided that it has enough available capacity to handle
the request. When the workload at the local Cloud increases,
the TAP at the local Cloud can decide to forward requests to
remote Clouds. In the process, TAP will consider the effect of
both the data transfer delay and Cloud processing delay, each
being weighted for their relative importance. The estimate of
data transfer delay used in our system also takes into account
the measured packet loss which will result in extra network
delay for applications that use TCP for data transmission.

In order to optimise Cloud delay and network latency, our
approach is meant to be easily deployable over a large popu-
lation of machines, and it should be able to make fast on-line
decisions resulting in good quality of service (QoS) with low
computational overhead. Although it requires measurement
and monitoring both of network characteristics and of local



and remote Cloud delays, we limit the frequency and overhead
related to the monitoring effort, and also limit the compu-
tational complexity of decision making using reinforcement
learning [18].

We therefore propose an approach, applied both in TAP and
to the routing overlay, which uses Reinforcement Learning
[18] with the random neural network [19], [20], [21], [22]
to make fast, judicious and efficient decisions based on the
knowledge learned from the past observations, while adapt-
ing to changes in workload and on-going performance of
the Cloud environment. Our approach benefits from limited
measurement overhead as it probes the performance of sub-
systems which provide better QoS, while still exploring less
frequently a wider range of alternative systems that can in the
future prove to provide improved QoS if the current set of
frequently used subsystems result in poor QoS.

Experiments were conducted on a real large scale system
operating on the Internet at a global scale and we empiri-
cally evaluate the potential of our proposed algorithms for
adaptively distributing workload across multiple clouds. The
experimental results that we obtain, validate the adaptiveness
and effectiveness of our proposed system for dynamic envi-
ronments.

II. REINFORCEMENT LEARNING WITH THE RNN

We now summarise our design for the decision algorithm
the algorithm for allocating tasks using TAP that also exploits
overlay routing so as to include both network travel times,
task wait times, and task execution times, when a particular
Cloud or server is selected. The algorithm uses the Random
Neural Network (RNN) [20], [23] with a set of n neurons,
where each cell or neuron represents one of the choices that
may be made at each step, and the choice that corresponds to
the most activated or excited neuron is selected as the one that
is expected to provide the best performance. This activation
level is represented by the probabilities:

Qi = lim
τ→∞

Prob[ki(τ) > 0], (1)

where ki(τ) is the activation or excitation level at time τ and in
the RNN this is a non-negative integer. are uniquely obtained
from the expression:

Qi =
Λ(i) +

∑n
j=1Qjω

+(j, i)

r(i) + λ(i) +
∑N
j=1Qjω

−(j, i)
, (2)

where the ω+(j, i) ≥ 0 and ω−(j, i) ≥ 0 are the excitatory
and inhibitory weights from cell j to cell i, and the netowrk
also receives external excitatory and inhibitory signals to each
cell that are represented by the parameters Λ(i) and λ(i) ,
respectively. Furthermore we have r(i) =

∑n
j=1[ω+(i, j) +

ω−(i, j)].
User defined QoS criteria lead to a value G that we call

the “goal function” which can be measured as Gti for an
instant t ≥ 0 at some decision point, typically on some input
server i, while the Reward Function is the Γti = 1

Gt
i

so that

te reinforcement algorithm that we use processes these by
updating the weights:
• Compute the historical value of the reward T :

T ← αT + (1− α)Γti (3)

where 0 < α < 1 allows us to weigh “past history” versus
recent data.

• When Γti > T , then:

ω+(j, i) ← ω+(j, i) + Γti

ω−(j, k) ← ω−(j, k) + Γti/(N − 2), if k 6= i

• else if Γti < T

ω+(j, k) ← ω+(j, k) + Γti/(N − 2), if k 6= i

ω−(j, i) ← ω−(i, j) + Γti,

and the Qi are then computed and TAP chooses the server or
Cloud host that coincides with the biggest value of the Qi,
resulting in the smallest value of the goal.

The SMART algorithm for overlay network routing uses a
similar approach to select paths that can minimise end to end
delay in large networks [17].

III. TASK ALLOCATION PLATFORM FOR MULTIPLE
CLOUDS

In recent work [16] we proposed a practical task alloca-
tion platform (TAP) that is internal to a Cloud. It includes
a centralized controller for distributing incoming workloads
and a measurement agent on each machine for observing
service performance and server health state related to user-
defined QoS goals. The controller receives the requests from
end users and makes fast and judicious allocation decisions
for optimising the specified QoS requirements based on the
knowledge leaned from the observations using learning-based
algorithms. We have validated that TAP is able to adaptively
distribute workloads across available servers within a cloud in
response to user required QoS when there is a great diversity
in the types of jobs, the class of QoS goals and the resources
which are required by workloads and which are possessed by
servers.

TAP is scalable as it only needs limited measurement over-
head for monitoring the performance of sub-systems which
provide better QoS, while still exploring less frequently a
wider range of alternative systems that can in the future prove
to provide improved QoS if the current set of frequently used
subsystems result in poor QoS. We implemented TAP as a
Linux based portable software module so that it can be easily
installed on a machine with Linux OS.

In this section, we present an extension of the TAP designed
for workload distribution across multiple clouds over wide area
networks. As shown in Figure 1, user requests are routed to
the local, which is perhaps the geographically closest cloud,
if the cloud has enough capacity. The dispatcher at the local
cloud receives the incoming workload and adaptively selects
the best possible server based on the user-defined QoS (e.g.
the response time).



If the workload in the local cloud increases, the dispatcher
could decide whether to forward the subsequent requests to
the remote clouds in order to balance the load and offer better
QoS to all the requests it receives. The decision would rely
on a variety of considerations, such as security, cost, QoS and
energy consumption.
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Fig. 1. The overview of the TAP for workload distribution across multiple
clouds over wide area networks

We currently only concern ourselves with the QoS that
tasks receive, in particular the response time observed by
tasks. Obviously this response time will be determined by the
network delay incurred by the access to local or remote clouds,
which includes the network delay to process the request, the
network delay to forward the task with its possible code and
data, plus the time it takes to return the results to the sender
after execution, plus the waiting time and service time inside
the clouds. That is to say, the dispatcher would select a remote
cloud (say the j-th cloud) to share the workload of the local
cloud by considering the response time (denoted by Dj

job)
which consists of the data transfer latency (denoted by Dj

n)
which depends on the traffic conditions on the connections to
the remote clouds and the proximity of the remote cloud to
the local cloud as well as the response time within the cloud
(denoted by Dj

e) which is related to the viability or health
state of the cloud. Hence, a goal function for the decision can
be presented as,

Dj
job = aDj

n + bDj
e (4)

where a and b are the relative importance being placed
on the data transfer latency on network connections and the
processing delay inside the cloud. It should be noted that the
data transfer latency for the local cloud, though not zero, may
be negligible. Each cloud can report its health state via TAP
regularly, including the response time within the cloud. In
the following section, we present the approaches we used to
predict the data transfer latency via measuring the network
delay on the connections to all the external clouds. This of
course is easier said than done because it depends on the nature
of the transfers and on the other traffic in the connections.

A. Data transfer delay estimation

To simplify matters, we measure the round-trip delay (de-
noted by T jp (t) for the j-th cloud at time t) and the packet loss
(denoted by Lj(t) ) on each connection via pinging every
a certain time interval (e.g. 1 second) thereby obtaining the
network delay. A weighted average of the measurements for
the round-trip delay is used as

T jp = αT jp + (1− α)T jp (t) (5)

where 0 < α < 1 is a parameter which reflects the relative
importance between the past values and the most recent
measurement.

The packet loss needs to be considered because some
applications (e.g. HTTP requests) utilize TCP to transfer the
data and require retransmissions for the lost packets, which
results in extra delay. The loss is measured as follows:

Lj(t+ 1) =
αtLj(t) + (1− α)t1[loss on the t−th ping]

t+ 1
(6)

It should be noted that there is a loss on the connection to the
j-th cloud if the pinging delay at the j-th cloud T jp is larger
than some fixed value Ttimeout.

Therefore, the network delay on the connection to the j-th
cloud considering packet loss can be expressed as

Dj
p = Lj(Dj

p + T jp ) + (1− Lj)T jp (7)

where Dj
p appears on both sides of eq. (7) because the

retransmission of a lost packet might on the average surfer
the same network delay Dj

p .
Therefore, we finally get

Dj
p =

T jp
1− Lj

(8)

The data transfer time of a request to a remote cloud
and its response travelling back to the local cloud can be
approximated using the corresponding network delay which
is obtained from the ongoing measurements on the same
connection:

Dj
n = (

S

M
)Dj

p =
ST jp

M(1− Lj)
(9)

where M is the maximum packet size (bytes), and S is the
total data size (bytes).

Upon the arrival of each job at TAP, the allocation decision
is made using the simple greedy algorithm which selects the
cloud offering the minimal response time.

arg min
j

(a
ST jp

M(1− Lj)
+ bDj

e) (10)



B. Routing Overlay for Improving Data Transfer Performance

To improve data transfer performance on the connections
between a local cloud and remote clouds, we use the routing
overlay, “SMART”, which has been proposed in [17]. It is
a self-healing, self-optimizing and highly scalable routing
overlay that accepts customized routing policies formulated
by distributed applications according to their own needs.

The SMART overlay network is formed by software agents
(denoted by “Proxy” in Figure 1) that are deployed at Virtual
Machines (VM) in different sites. In our system the links
between neighbouring overlay nodes use the conventional
Internet protocol (IP), while multi-hop links between overlay
nodes are dynamically updated based on Reinforcement Learn-
ing using Random Neural Networks. This approach only needs
a limited monitoring effort by probing a few paths which have
been observed to offer low packet transmission latency and
yet achieves significant improvement in the end-to-end latency
and asymptotically the same performance as the best path.
Therefore, it can be widely deployed over a sizable population
of routers.

C. Experimental results

To validate our proposed system, we built an experimental
system at the global intercontinental level which includes the
local cloud in the test-bed of Imperial College London and the
three remote clouds located in Ireland, Virginia and Singapore
provided by Amazon AWS.

The web requests are originated using Httperf for retrieving
a file of size 128K from the web servers, which generates
I/O bound workload on the web servers. In the local cloud,
the TAP is deployed for optimizing the web request allocation
across the three web servers with distinct I/O capacity. In the
remote clouds, there are other web servers deployed for load
balancing. Between the local and remote clouds, the routing
overlay–SMART–is used for routing the web requests and
responses with the optimized network delay.

The measurement of the network delay on the connections
to all the remote clouds is carried out every one second and
the average response time for the Httperf requests inside each
cloud is also reported every one second. As shown in Figure
2, the network connection to the cloud located in Ireland has
the lowest network delay because this cloud is closer to the
local cloud in London than the others, and the traffic on the
connection appears to be low.

The web browser requests were originated from a client
inside the local cloud at the rate of 0.5 requests per second. We
varied the background workloads, which consume I/O capacity
on the web servers in the local cloud over time in order to
observe whether our TAP is able to adapt to the changing
load conditions. Therefore, the local cloud is loaded lightly,
modestly, heavily and finally lightly during 200 seconds for
each of these successive conditions.

As shown in Figure 3, the incoming web requests were
dispatched to the local cloud when it was under light and
modest load conditions. Our autonomic TAP learned the
optimal request allocation based on the online measurement
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Fig. 2. The weighted average network delay over time on the connections to
the three remote clouds; it is derived from the measurement of the round-trip
delay and loss via pinging.

and directed the requests to the web server which provided
the fastest response. As the workload in the local cloud
increased to a certain high level which resulted in a response
time that was significantly greater than that of one of the
remote clouds (including network delays), the TAP selected
the remote cloud for the subsequent web requests until it
detected that the response time offered by the local cloud time
had dropped significantly due to the offloading of workload
from background tasks.
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Fig. 3. The measured response time from our experiment, measured for
each web request as time elapses; the different colours represent the different
clouds where the requests are allocated and processed.

The improvement of network performance achieved using
our overlay network is shown in Figures 4 and 5. We deployed
our overlay network across Europe, Asia, North and South
America, and Australia using 19 overlay nodes. The RTT
observed between Moscow (Russia) and Dublin (Ireland) using
the direct IP route was roughly 175 ms, whereas the RTT of
the minimum latency path obtained with our overlay based
adaptive routing was approximately 81.7 ms.

The results show that our proposed overlay routing algo-



rithm learns the optimal path in terms of the latency very
fast, and tracks it throughout the 5-day experiment. Similarly,
the available throughput between Virginia (USA) and Tokyo
(Japan) using the direct IP route was 10.85 Mbps on the
average, whereas the average throughput of the optimal path
turned out to be 40.2 Mbps.���

���

����

����

����

����

����

����

����

���� �� �� �� �� �� ����
������

	
��������

��������
���
�������������� 
�

!�	
�� ����	�
"#����	�

!$�� ������	�

Fig. 4. RTD in milliseconds measured for the Japan-Chile connection in an
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Fig. 5. Throughput (Mbps) measured from Virginia (USA) to Sydney
(Australia) over 4 consecutive days.

IV. CONCLUSIONS

This paper proposes a practical system for adaptive work-
load distribution across multiple clouds over wide area net-
works. It uses a Random Neural Network (RNN) based
adaptive learning algorithm to optimize both the cloud delay
within a cloud and data transfer latency between local and
remote clouds in order to improve the responsiveness to user
requests.

Internet-scale experiments conducted on a real large scale
system at a global scale demonstrate the adaptiveness and ef-
fectiveness of our proposed system in dynamic environments.
In future work, we will also take into account the energy
consumption of jobs to take decisions for load distribution
among local and remote Clouds.
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