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Abstract

Field ion microscopy (FIM) allows to image individual surface atoms by ex-
ploiting the effect of an intense electric field. Widespread use of atomic
resolution imaging by FIM has been hampered by a lack of efficient image
processing/data extraction tools. Recent advances in imaging and data min-
ing techniques have renewed the interest in using FIM in conjunction with
automated detection of atoms and lattice defects for materials characteriza-
tion. After a brief overview of existing routines, we review the use of machine
learning (ML) approaches for data extraction with the aim to catalyze new
data-driven insights into high electrical field physics. Apart from exploring
various supervised and unsupervised ML algorithms in this context, we also
employ advanced image processing routines for data extraction from large
sets of FIM images. The outcomes and limitations of such routines are dis-
cussed, and we conclude with the possible application of energy minimization
schemes to the extracted point clouds as a way of improving the spatial res-
olution of FIM.
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1. Introduction

Field ion microscopy (FIM), invented in 1951 by Erwin Müller [1, 2, 3], is
a high electric field technique which uniquely enables imaging of surfaces with
atomic resolution. FIM is based on ionization of an imaging gas in the vicinity
of a field-emitter tip as a consequence of the locally high electric field. The
high electric field is achieved by applying a high voltage of a few kilovolts onto
a very sharp needle-shaped specimen maintained at a temperature usually
below 80 K. Specimens are either electropolished [4] or milled with a focused
ion beam (FIB) [5] into a very sharp needle tip with an end radius below
100 nm. The advantage of using FIB for specimen preparation lies in its
site specific application for extracting tips in microstructure regions of high
interest such as across internal interfaces. An excellent review on using FIB
for site specific specimen preparation can be found in reference [5].

Once the specimen is mounted an imaging gas is introduced. The in-
troduced imaging gas gets attracted by the cold surface due to polarization
forces. The gas atoms then thermally accommodate with the cold tip surface
by performing a series of ”hops”. Surrounding the tip surface there exists
a critical surface, where the maximum ionization occurs. This surface usu-
ally lies around 1-4 Å above the tip [6]. During the ”hops”, the ionization
probability for the gas atoms can be considerable as they spend a signifi-
cant amount of time in the critical surface. As a consequence an electron
can tunnel from the imaging gas atom into the tip. The ionized gas atom
is accelerated away from the positively biased tip and towards the detector,
where gas ions contribute to image formation.

The surface is the intersection of the crystalline lattice with the imposed
end shape, often approximated as nearly-spherical. Owing to the discreteness
of the atomic arrangement at these scales the tip apex curvature is, in reality,
made of atomic scale crystallographic terrace features where some of the top,
edge and corner atoms are naturally protruding, producing local field en-
hancement. This means that these exposed atomic terrace positions are sites
of magnified electrostatic field strength and also of aberrated field direction.
The amount of gas atoms ionizing depends on such a local enhancement of
the electric field. This variation in electric field strength across the surface
atoms gives the final contrast in the FIM image. Overall the contrast in FIM
also depends on the gas supply function and adsorption behavior [7, 8, 9].
Atomic resolution can be attained in some cases on certain high index facets
where the surface field distribution is corrugated enough to give contrast in
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the image. By collecting the gas ions on a phosphor screen, an image is
formed that reveals the distribution of the electrostatic field near the surface
and the current created by the number of incoming imaging gas ions.

Historically, images were collected on a film in a dark room after sufficient
exposure on the screen was achieved by field ionization [2]. Eventually, field
ion microscopes were fitted with a stack of micro-channel plates (MCP) in-
front of the phosphor screen. The image on the phosphor screen can be
recorded with a high-resolution high-frame-rate camera. The MCPs act as a
photo multiplier by creating an electron cascade in response to the gas ion
impact. Another variant of FIM is referred to as eFIMTM, which is performed
on a local electrode atom probe (LEAP) [10] using the delay-line detector
used in the atom probe mode.

The atomic resolution of FIM made it a popular technique for studying
internal interfaces [11, 12, 13] and dislocations [14, 15, 16] at unprecedented
atomic positioning resolution. When exposing the tip not only to the mini-
mum field strength required for ionizing the imaging gas but also for evap-
orating the tip atoms themselves continually, the method is rendered depth
sensitive. This means that the specimen can be investigated tomographically
along the tip longitudinal axis, which has led to the development of 3DFIM
[17]. The emergence of atom probe tomography (APT), which is addition-
ally able to characterize the chemical identity of the imaged atoms, lead to
some decline in the usage of the FIM technique by the materials science
community. Nevertheless 3DFIM offers the important advantage over APT
of a significantly higher spatial resolution with 100 % positional detection
efficiency in 3 dimensions in some cases. This high degree in positional accu-
racy allows characterization even down to single point defects in a material,
a feature not offered by any other device. This causes currently an increased
interest in the 3DFIM technique.

Ultimately, owing to all the advances in detector technology, 3DFIM is
capable of producing large and accurate tomographic datasets containing in-
formation on sequential atomic positions. These large datasets lead to a new
tremendous challenge of how to manage the data. Presently, there is a lack
of efficient data handling and data treatment algorithms to extract perti-
nent information from these datasets in an (a) automated; (b) fast; (c) user-
independent; (d) and error quantified manner. For instance, characterization
of a volume of 0.001 µm3 (a typical sample size analyzed in 3DFIM) produces
in the range of 2 × 1015 images (assuming a constant field evaporation rate
and capture speed). Hence, there is a great need for efficient algorithms and
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data mining routines to fully exploit the potential of 3DFIM. To this end,
M. Dagan et al. [18] have proposed an atom by atom data extraction routine
for reconstructing 3DFIM data. Building on their work we recently proposed
a new method to extract atomic positions from 3DFIM datasets [19]. With
this article, we focus our attention on using various modern image processing
and machine learning algorithms for extracting information from 3DFIM.

The developments in Artificial Intelligence (AI), especially in computer
vision have been explosive. Modern machine learning algorithms enable a
fully automated detection and classification of objects in a picture. We
give an overview about these advanced data mining tools and how they
can be utilized to extract the wealth of information from 3DFIM images.
We have implemented some of these concepts within a set of routines in
PythonTM (Python Software Foundation; Python Language Reference, ver-
sion 2.7; Available at http://www.python.org) employing the SciPy package
[20]. These routines allow us to extract the relevant information from a large
number (order of several 10,000s) of FIM images in very short computational
times (order of minutes).

2. Existing data extraction routines for 3D field ion microscopy

A 3DFIM experiment produces a series of images of the continually
field evaporating surface. A main challenge lies not in acquiring such large
datasets but rather in analyzing them. The article by Vurpillot et al. [21]
serves as an excellent review for the current state-of-the-art and the main
issues associated with data extraction from large FIM datasets. We briefly
review here the available analysis methods and also some recent develop-
ments. Broadly speaking the analysis methods can be categorized into an
atom by atom approach and a geometrical approach.

The first approach towards advanced 3DFIM analysis was already de-
veloped in the early 70s for characterizing radiation damage in metals at
the atomic scale [22, 23]. In these early approaches FIM images were cap-
tured on film which later were developed and manually analyzed individually.
The captured FIM images were dissected atom-by-atom and the positions of
atoms and defects were marked manually. Owing to the associated cumber-
some analysis methods, systematic FIM studies of more complex atomic sce-
narios remained an exception. Taking the additional disadvantage of 3DFIM
of being insensitive to the chemical nature, APT became gradually the more
dominant technique. Yet, FIM’s ability to characterize atomistic defects
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such as vacancies in three dimensions is still unparalleled with any other
technique. In this context the drastic increase in computing power became
an essential asset when Dagan et al. developed an automated method to
reconstruct 3DFIM data atom by atom [21, 24]. The algorithm takes advan-
tage of layer by layer evaporation and the atoms are identified based on a
threshold intensity. The final coordinates are converted to real space based
on theoretical nearest neighbor distances. This work lead to a rise in interest
around the physics of image formation in FIM and also in the use of the
associated computationally enhanced analysis techniques.

The geometrical approach to 3DFIM atomic position reconstruction in-
troduced by Vurpillot et al. consists in stacking the digital images obtained
from a 3DFIM experiment [17]. The image stack is then corrected, assuming
a known projection law, a specimen’s geometry and a constant evaporation
rate. The stacking approach does not provide atomistic precision but is
rather used for investigation of segregation, clustering and fine scale precip-
itation studies [25, 26, 27, 28, 29]. This method can also be used to identify
crystallographic planes and dislocations which are hard to spot in a 2DFIM
image.

Both the atom by atom reconstruction approach and the geometrical
method suffer from their own limitations. For instance, the atom-by-atom
approach is limited to regions with atomic resolution, and thus a 3D recon-
struction is only possible around certain high index facets. The geometrical
approach looses the atomic positioning precision due to the simplistic geo-
metrical assumptions of the tip shape. In the following sections we showcase
how various data extraction methods can be employed to further improve
the atom-by-atom analysis approach and recover as much positioning infor-
mation as possible. In addition, the use of machine learning algorithms to
extract the physics behind field ionization and evaporation is also explored.

3. Supervised and unsupervised machine learning

Machine learning (ML) algorithms are currently exploited to derive sys-
tematic insights from very rich experimental datasets and for solving complex
problems in various disciplines [30]. Progress in ML has lead to decision rules
that can in some cases be automatically derived by specific algorithms that
are capable of learning, whilst exploiting the speed and the robustness of the
available advanced computer infrastructure.
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Machine-learning methods can be grouped into two major categories de-
pending on the approach to a given problem viz. supervised and unsupervised
learning [31]. Supervised learning algorithms try to identify the relationship
between input and output. This dependency is learned as a function f(x) by
using a set of labeled data {X = [ai, bi], i = 1, ..., N} consisting of N pairs
(a1, b1), (a2, b2), ... , (aN , bN), where the input variables ai are D-dimensional
vectors ai ∈ RD and the output variables (or system responses) bi are dis-
crete values (e.g., Boolean) for classification problems and continuous values
(b ∈ R) for regression tasks. Support Vector Machines (SVMs) and Artificial
Neural Networks (ANN) are widely used techniques that fall in this category.
Typical tasks that can currently routinely be carried out by a supervised ma-
chine learning algorithm are image segmentation and classification. In the
computer vision community, semantic segmentation, which is an extremely
challenging task, aims to partition the image into semantically meaningful
parts (such as differentiating a cat, a car or Einstein in the same image),
and to classify each part into one of the predetermined classes making use
of ML or the more advanced deep learning methods [32]. 3DFIM represents
a very good example of a complex problem where rather large experimental
datasets are available and which are to date widely under-exploited. For the
case of FIM data analysis, this concept could help in determining whether a
group of pixels represents, e.g. an atom, a defect such as a vacancy, a dislo-
cation or a grain boundary. This idea can be also extended to 3DFIM, where
the data can be subjected to systematic segmentation and classification into
sub-volumes that may contain or represent these various features. The moti-
vation for using such algorithms lies in enabling the automated reconstruction
of a fully atomically-resolved three dimensional point cloud representing the
imaged specimen, including its population of crystalline defects. However, to
apply deep learning algorithms for semantic segmentation, the structure of
3DFIM data must be defined precisely, followed by labeling of a large enough
dataset to be used as a training dataset for the algorithm.

Unsupervised learning refers to any ML process that attempts to learn
the structure in an unlabeled dataset {X = [ai], i = 1, ..., N}, where ai ∈ RD

in the absence of the output variables bi [31]. Various clustering techniques
and dimensionality reduction routines fall into this category. The fact that
the unsupervised learning techniques do not need a labeled training dataset
is a considerable advantage. However, since there is usually no sufficiently
robust or large dataset in this field to train the algorithm reliably enough,
accuracy that can be obtained by these methods is usually lower than that
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Figure 1: FIM image of pure bcc W obtained using He as imaging gas. Regions with
atomic resolution are highlighted. The region marked by 1, is used for identifying all the
atoms (marked in red in the upper right corner). Machine learning is then used to assign
correct labels to those atoms that assemble crystallographic planes. In this case, atoms
labeled blue belong to the first, black to the second and purple to the third plane layer,
respectively, assembling altogether a pyramid type motif (lower right corner).

achieved by the help of supervised learning algorithms. In this paper, we
focus on unsupervised methods to identify the underlying structure of the
FIM data, to visualize them and to label them for further application of
supervised learning techniques.

4. Advanced data mining routines for 3D field ion microscopy

In this section we describe the advanced data mining routines which in-
clude unsupervised learning routines (Sec. 4.1) and a routine purely based
on image processing (Sec. 4.2). To demonstrate the utility of these methods
we apply them to a 3DFIM dataset obtained for bcc tungsten. The speci-
men for 3DFIM was obtained from a tungsten wire oriented along the [011]
direction. A very sharp needle like shape was achieved by using electrochem-
ical polishing at 5-8 V using AC in a 5% molar NaOH solution. The local
radius across the main [011] pole was estimated to be approximately 20 nm
by the ring counting method [33]. 3DFIM experiments were performed on
a 3DAP-LAR FIM [34]. FIM images were obtained on a phosphor screen,
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and recorded using a CCD camera (AVT Stingray) at 15 fps rate. The res-
olution of each recorded image was set to 1280 pixels × 960 pixels. From
this complete image, a region of interest (ROI) was selected around the (222)
crystallographic plane. Each image of the ROI is 150× 150 pixels in size. A
set of (222) planes was chosen for the data analysis as the atomic density of
these planes in a body centered cubic structure is sufficiently low to produce
atomic resolution in FIM. In the following, ”FIM image” generally refers to
the selected ROI image of 150× 150 pixels.

4.1. Unsupervised machine learning applied to 3DFIM

Here we use unsupervised machine learning to understand the underlying
structure of 3DFIM data and use this information to test supervised learning
algorithms for data extraction. It will be seen that the extracted structure
of 3DFIM data is related to various field evaporation phenomena. Although
these phenomena of field evaporation have been long established, the ability
of a machine to decipher this structure from 3DFIM data serves as a proof
of concept.

4.1.1. Dimensionality reduction

In problems with high levels of complexity, one of the challenges lies in ex-
tracting information from a dataset that is made of a large number of samples
and where each sample has high-dimensionality. The 3DFIM dataset used
herein contains 10,000 FIM images each with an image size of 150 × 150
pixels, i.e. 22,500 dimensions (considering only the ROI). Relevant extrac-
tion of information from such data requires identifying pertinent variables,
determining the interaction of these variables with each other, and then refor-
mulating the data using exclusively these specific variables. This procedure
is referred to as ”dimensionality reduction” and simplifies any further pro-
cessing. Mathematical hurdles of working with high-dimensional data are
often called the curse of dimensionality [35]. When the dimensionality of
the data increases, a good representation of the data in 2D or 3D Euclidean
spaces can be very helpful to reveal various phenomena present in the data
but such a representation might not always be possible [36].

For data with high dimensionality, two complementary strategies are em-
ployed to either avoid or at least reduce issues related to dimensionality.
First, there are often a number of input variables that do not or only weakly
affect the output and can hence be considered as irrelevant and ignored.
Second, the dependencies amongst the pertinent variables are established.
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Once the relevant variables have been established, the dimensionality of the
observed data tends to be still larger than necessary. Let us consider two
highly correlated variables where information about one can be derived from
the other. Correlations between such variables can be sometimes very com-
plex and retaining only one of them might not be sufficient to encompass the
whole information. Hence, instead of arbitrarily removing a variable from
the pair, the best is to reduce the dimensionality of the data by trying to
find a new set of transformed variables that keeps as much of the available
information as possible.

The new set of variables must possess the following features: It must
1) contain fewer variables than the original set and 2) preserve the most im-
portant information contained in the initial dataset. We hence seek a trans-
formation that contains and shows the same information from a different
perspective, i.e. a projection which preserves the geometry whilst represent-
ing the relevant objects [37]. Linear and nonlinear transformations of the
input used herein are referred to as projections, mainly because all these
transformations aspire to preserve the characteristics that are geometrical or
have a geometrical interpretation. In other words, when there is a depen-
dency amongst two or more variables, their joint distribution does not spread
over the whole space. The dependencies in the data create a structure in the
distribution, that can be seen in the form of a geometrical locus. Dimension-
ality reduction attempts to eliminate any redundancies in the initial set of
variables. Linear multivariate analyses such as principal component analysis
(PCA) or multidimensional scaling (MDS) have long been used to find such
projections, but cannot always reveal low-dimensionality structures when the
manifold formed by the geometrical loci of data is curved [38]. Hence, there
has been recent interest in algorithms identifying non-linear manifolds in
data [39, 36, 37]. There are many, somewhat heuristic, methods to discover
non-linear manifolds based on the preservation of the geometric properties
of local neighborhoods within the data, while embedding, unfolding or oth-
erwise projecting the data to occupy fewer dimensions. Algorithms such as
Isometric feature mapping (Isomap) or maximum variance unfolding (MVU)
attempt to preserve local distances. They estimate global manifold proper-
ties by continuation across neighborhoods and then project the manifold to
lower dimensions by classical methods such as PCA or MDS. In the follow-
ing, we discuss the application of a linear method (PCA) and a non-linear
method (Isomap) to the 3DFIM dataset.
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Principal Component Analysis

PCA is a popular technique for dimensionality reduction that aims to
identify the most consequential basis to re-express a given dataset. The new
basis should reveal the underlying structure in the dataset and filter out the
noise [36]. Mathematically, we can define PCA as follows: For N high di-
mensional input variables {X = [ai], i = 1, ..., N}, where ai ∈ RD, PCA is
employed to find a linear subspace with lower dimensionality d (d ≤ D),
such that the maximum variance is maintained in the subspace. The linear
subspace can be defined by d orthogonal vectors also called principal com-
ponents, say u1, u2, ..., ud, forming a new coordinate system. Ideally d � D
(worst case would be d = D). In other words, PCA aims to reduce the
dimensionality of the data, while preserving its information content which
comes from the variation (or, equivalently, minimizing the loss of informa-
tion). The principal components are given by the top eigenvectors of the
D ×D covariance matrix C = 1

N

∑
iXi ·XT

i , with i running over the rows
of the matrix X [36].

Figure 2 shows the result of projecting our 3DFIM dataset onto its first
two principal components. In this plot, each point represents one micrograph
(with a dimensionality of 150 × 150), and is color-coded according to the
number of atoms in the first terrace of the corresponding picture (see Fig. 1).
The numbers on the outer circle represent the average number of atoms on the
first terrace of images in the corresponding slice of the circle. The PCA result
reveals a cyclic pattern in the 3DFIM dataset and a specific grouping of the
colors. Note that starting with the gray color cloud to the left representing a
terrace of 27 atoms and going counter-clockwise the number of atoms in the
terrace gradually decreases until 3, before a jump to the next terrace occurs.

Isomap

Isomap is a nonlinear dimensionality reduction method that is built on
a linear dimensionality reduction approach, more precisely it is built upon a
classical multidimensional scaling (MDS) (see reference [40] for details). In
MDS, the input X is projected into a smaller subspace with dimension d by
preserving the pairwise Euclidean distances |Xi −Xj|2, or the dot products
Xi ·Xj, i.e. the L2 norm. The orthogonal vectors, w1, w2, ..., wd, which form
the subspace are the top d eigenvectors of the N × N Gram matrix with
elements Gij = Xi ·Xj [37]. Isomap also tries to preserve the local geometry
of the data. To this end, one assumes that the high-dimensional data in X
lie on a low-dimensional manifold M , and one replaces the Euclidean dis-
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Figure 2: PCA applied to the 3DFIM dataset. Each point represents one FIM picture
in this dataset, and its color indicates the number of atoms in the first terrace of the
corresponding picture. The numbers on the outer circle represent the averages over the
number of atoms in the first terrace for that particular arc of the circle.

tances between the points in the high-dimensional space with the distances
on this manifold. Since the manifold is unknown, to a first approximation, a
k-nearest neighbor graph between points in the dataset is considered, where
k needs to be chosen such that any two data points in the dataset are con-
nected by at least one path but it should not become too large to have a
computationally efficient approach. The shortest path between the points is
then used to approximate the distance on the manifold.

The complete Isomap algorithm has three main steps [37]:

1. Constructing a k-nearest neighbor graph based on the distances dX(i, j)
between pairs of points i, j in the input space X. Either all the points
within some fixed radius are connected to each point, or each point is
connected with each of its k-nearest neighbors. These neighborhood
relations are expressed as a weighted graph G over all the data points,
where edges are represented as weights dX(i, j) between the neighboring
points.
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2. The geodesic distances dM(i,j) between all pairs of points on the man-
ifold M are estimated by Isomap from computing their shortest path
distances dG(i,j) in the graph G.

3. Finally a MDS is applied to a matrix of graph distancesDG = {dG(i, j)},
which embeds the data in a d-dimensional Euclidean space Y which
preserves the manifold’s estimated intrinsic geometry. The coordinate
vectors yi for points in Y are chosen to minimize the cost function:

E = |τ(DG)− τ(DY )|L2 (1)

where DY denotes the matrix of Euclidean distances dY (i, j) = |yi − yj|
and |A|L2 the L2 matrix norm

√∑
i,j A

2
ij . Distances are converted into

the inner products by the τ operator, these characterize the geometry
of the data in a form that supports efficient optimization. The global
minimum of Eq. (1) is achieved by setting the coordinates yi to the
top d eigenvectors of the matrix DG.

Figure 3 shows the result of applying Isomap to the 3DFIM dataset.
Each point represents one micrograph (with dimensionality of 150 × 150)
in a reduced 2-dimensional space. Each image is color-coded according to
the number of atoms in the first terrace. Again, the numbers on the outer
circle represent the averages over the number of atoms in the first terrace
of pictures whose Isomap representations are in a slice of the circle with
a corresponding angle. The Isomap result reveals a similar cyclic behavior
in the dataset as found with PCA. This cyclic behavior detected by both
linear and non linear dimensionality reduction algorithms is a consequence
of the field evaporation behavior in crystalline materials. Field evaporation
in many pure and crystalline materials occurs layer-by-layer and proceeds
from atoms sitting at the ledge of a terrace and towards the center. When a
terrace field evaporates the atoms sitting on the ledge disappear decreasing
the number of atoms on the terrace as the evaporation proceeds. As shown
in Fig. 4(b), by evaporating atoms from the surface of the sample during
FIM, the first terrace area decreases until it evaporates completely and the
subsequent terrace is exposed. This field evaporation behavior is seen for all
terraces. The number of cycles is a measure of the number of atomic terraces
evaporated/analyzed during the 3DFIM.

Figure 4 (a) shows the angles of the first 500 3DFIM images after projec-
tion onto the Isomap space with horizontal axes (see Fig. 3). Each period
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Figure 3: Isomap manifold learning on the 3DFIM dataset. Each point represents one
picture in the reduced dimensional space, and its color indicates the number of atoms in
the first terrace of the corresponding picture. The numbers on the outer circle represent
the averages over the number of atoms in the first terrace of pictures.

of this plot represents the field evaporation of one terrace from the moment
of its exposure to the surface until its complete evaporation. Figure 4 (b)
depicts the evolution of the FIM pictures and the number of atoms in the
first terrace during one of these periods (highlighted in Fig. 4(a) by the red
dashed rectangle).

Although Isomap is built on an MDS approach, the MDS algorithm ap-
plied to the same dataset is not able to reveal the cyclic pattern observed
within the data (see Fig. 5). The reason is that the objective function in MDS
aims to preserve the pairwise Euclidean distances in the low-dimensional
space and therefore it fails to appropriately represent the 3DFIM dataset. A
comparison between the projections obtained from Isomap and PCA shows
that the Isomap projection reveals finer details and enables a better separa-
tion between micrographs based on the number of atoms in the first terraces
(see the color of points in Fig. 3). However, there is still an overlap of colors
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Figure 4: (a) Angles of the first 500 3DFIM images after projection onto the Isomap space
with horizontal axes (see Fig. 3). (b) Evolution of a terrace seen from FIM pictures
and the number of atoms in the first terrace of the highlighted period in (a) (red dashed
rectangle).

especially in the images with a higher number of atoms in the first terrace.
The reason is that for high numbers of atoms in the first terrace, the number
of available configurations that these atoms can adopt is significant. Hence
an ideal projection would be one that could distinguish the data based on
the configuration of atoms in the corresponding image. To this end, the lo-
cal information within the images should also be taken into account whilst
calculating the similarity (e.g. pair distances) between images. This could
be achieved by using autoencoders in combination with convolutional neural
networks, which is beyond the scope of the current article. (See reference
[41] for additional details.)

We showed here that a complex 3DFIM dataset can be used as input
for dimensionality reduction efficiently unraveling the underlying structure
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Figure 5: MDS applied to the 3DFIM dataset. Each point represents one picture in the
reduced dimensional space, and its color indicates the number of atoms in the first terrace
of the corresponding FIM picture.

of the data. Further we discussed that the structure revealed by the linear
and non-linear dimensionality reduction is in fact a consequence of the field
evaporation behavior of a pure and crystalline material. The output of these
algorithms was able to classify the data according to the number of atoms
on the first terrace and also, to some extent, the configurations formed by
those atoms. Further analyses can be performed in the direction of analyzing
the stability of certain configurations for a given crystallographic plane. In
the following, we describe some advanced image processing methods and
clustering algorithms which can be used to maximize the data extracted
from 3DFIM.

4.2. Image processing based data extraction routines applied to 3D field ion
microscopy

In a recent paper [19], we showed an improved method for reconstructing
3DFIM data. It was also shown recently [Katnagallu et al., 2017 communi-
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Figure 6: Intensity at the center of the FIM image versus the image number. Peaks
indicate the number of planes evaporated. Compare with Fig. 4 which also shows the
same periodic behavior, a consequence of layer-by-layer evaporation.

cated] that the higher the intensity of an imaged position, the less represen-
tative is the imaged position of the true atomic position, which implies that
the positions of atoms imaged in the center of a terrace are more accurate.
Keeping this in mind, we developed another new routine for 3DFIM data
reconstruction. In every 3DFIM data extraction routine, the first step is to
determine the overall depth of the analyzed volume. In an atom-by-atom
approach, this problem boils down to calculating the number of planes of in-
terest that have evaporated, which can be directly derived from monitoring
the intensity in the center of the image. As the evaporation proceeds from
the edge of the terrace inwards, the intensity in the center keeps increasing.
As the terrace collapses, the atoms left on the terrace are imaged brightly.
The reason is the high local curvature leading to an increase in the local field,
thus increasing the current of gas ions originating from above of these specific
atoms. Such an analysis is shown in Fig. 6 revealing a clear periodic behav-
ior where each peak indicates the final image of a terrace before complete
evaporation. The same information can be obtained from an ML approach
as was shown by the dimensionality reduction using PCA and Isomap (see
Fig. 4(a)). The number of peaks in this intensity variation thus gives the
number of planes evaporated.
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After this number is computed, the image at which a new plane is exposed
can also be calculated based on the peak positions. The determination of the
depth of the data enables the next steps of the data extraction procedure.
These steps can be classified into three categories a) identification of atoms
(atom detection; Sec. 4.2.1) b) assigning the right crystallographic plane to
the identified atoms (plane detection; Sec. 4.2.2) and c) depth assignment
based on the number of planes evaporated. Depth assignment is easier to
implement and as described above capitalizes on layer-by-layer evaporation,
while the first two steps employ a plethora of algorithms encompassing vari-
ous methods to build a 3D point cloud. The aim in the following is to look
at these algorithms in terms of applicability and efficiency.

4.2.1. Atom detection

Atom detection is the extraction of x and y coordinates of each atom
from the digital FIM images. A closer inspection of a FIM image reveals
that the images are made by a superposition of Gaussian-like distributions
of intensities centered around the atomic positions. These atomic positions
are also distorted by the image projection from the specimen onto the screen
and by the atomic arrangement surrounding the imaged atom. Certain high
index planes posses enough corrugation in the electric field so as to enable
the ionization of gas atoms almost at every atomic site. The probability
of field ionization and hence the intensity of the imaged spot depends on
the electric field strength at that atomic site. This explains the intensity
differences between the brightly imaged ledge atoms and dimly imaged inte-
rior terrace atoms. Dagan’s routine [18] was based on identifying the atoms
which were imaged above a certain threshold intensity. As every atom gets
brighter and brighter until it field evaporates, each atom can be detected
over the course of the evaporation of a complete plane. This protocol also
requires tracking the identified atoms until evaporation. Dagan’s routine is
well suited for reconstructing the data to get a statistical distribution of de-
fects and/or ad-atoms. In order to understand the physics of field ionization
and field evaporation, as well as to characterize the atomic strains in the im-
aged lattice, it becomes critical to identify and track every atom right from
the moment of its exposure to the surface. In this effort, we developed an
alternative method based on edge detection to identify almost all atoms in
each image. Two methods for identifying atoms based on edge detection are
explained below.

17



Gaussian edge detection

Since the Gaussian-shaped intensity distribution of each atom overlaps
with that of the neighboring atoms, detection of individual atoms in a FIM
image is not a trivial task. This is particularly the case for atoms from the
center of the terrace, where the overlap is much higher as the intensity dis-
tribution spreads more widely. To make these intensity distributions more
distinguishable from each other, we apply a Laplace operator on the images.
As shown in Fig. 7 for a one-dimensional Gaussian distribution, the applica-
tion of a Laplacian operator localizes the intensity distribution for individual
Gaussian distributions. In Fig. 7 the solid green line is formed by the combi-
nation of two individual overlapping Gaussian distributions (the dashed green
lines). The red line shows that, by applying the Laplacian operator, the two
maxima corresponding to the individual Gaussian intensities (dashed green
lines) can now be discriminated as a maximum and a shoulder. These prin-
ciples are extended to the two dimensional FIM images. Figure 8(b) shows
the result of applying the Laplacian operator to an original image shown in
Fig. 8(a). For detecting the atoms, as shown in Fig. 7, the second derivative
(blue line) of the localized Laplacian-modified signal can be used as it is more
negative in the regions close to the original positions of the two atoms. In
a similar way we use the second derivative of the Laplacian-modified image
to identify the regions occupied by the atoms and then, the atom’s positions
are assigned according to the identified regions centroid.

C spline fitting and peak detection

Recently, we showed that the local electric field on the atomic sites re-
arranges over the course of field evaporation giving an impression of atomic
movement in FIM images [Katnagallu et al., 2017 communicated]. Another
conclusion from this work was that atom positions extracted from less intense
parts of the images are least erroneous. Hence for an accurate reconstruc-
tion, the information from the center of the terrace needs to be maximized
as the corresponding intensity is relatively low. We therefore describe next
a method to extract atom positions from the center of a terrace.

The key idea is to improve the edge detection at the center of the terrace
by improving the signal to noise ratio (SNR). This is achieved by averaging
a certain number of similar images of a given terrace. Provided that the
evaporation rate is slow, more images can be recorded for a fixed analysis
volume. The images required for this routine are the images of a terrace
when it first appears. The image index corresponding to a terrace’s first
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Figure 7: A schematic showing the resulting intensity (solid green) of two overlapping
Gaussians (dashed green) and the application of a Laplacian operator (red) localizing
the two individual contributions. The second derivative (blue) of the Laplacian operator
becomes negative in the relevant regions.

Figure 8: Gaussian edge based detection of atoms in FIM image’s ROI. Identified atoms
shown in (b) from the original image (a) using this procedure are marked in green.
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exposure to the surface can be inferred from the analysis shown in Fig. 6.
The blue circles indicate the images where a new terrace has been exposed
to the surface, right after evaporation of the previous terrace. To average a
certain number of images with the identified image index, a comparison of
similarity for the next few images is performed. The comparison is based on
a structure similarity index measure (SSIM) [42]. The SSIM for two images
i and j is given by

SSIM(i, j) = [l(i, j)]α · [c(i, j)]β · [s(i, j)]γ, (2)

which is a function of the intensity in both images l(i, j) given by the mean
of the pixel values, the contrast of both images c(i, j) given by the variance of
the pixel values, and the texture of both images s(i, j) given by the covariance
of the pixel values in images i and j. α, β and γ are weights given to each
term. In this case all the weights are set to 1. SSIM is 1 if the images are
identical and is 0 when the images are completely different.

Thus, the number of images to be averaged is automatically identified
based on the computed SSIM. The threshold value was set so that the images
to be averaged over should not differ by more than 0.90 of the SSIM. This
value was set based on visual inspection of images where a SSIM of 0.90
corresponds to one to two atoms being evaporated from the first terrace in
the image. Once the number of images to be averaged over is identified, a
resultant averaged image is computed. Now the atoms are identified in this
image based on a different edge based detection method. First the averaged
image is fitted with a cubic spline function in two-dimensions. Using C-spline
basis functions to represent a set of samples is advantageous. Operations
such as derivation, integration etc., which assume that the data samples are
drawn from an underlying continuous function can be computed from the
spline coefficients1. A Laplacian operator is then convolved with the fitted
C-spline function to identify the edges of the given image. The output of
the previous operation is used to compute the maxima inside these edges.
These local maxima are then recorded as atomic positions. For the case
of the tungsten FIM images around the (222) plane where 67 (222) planes
were evaporated, the above explained procedure was able to identify 98 % of
atoms. The various steps of the explained method are shown in the Fig. 9
for one of the (222) planes.

1https://docs.scipy.org/doc/scipy/reference/tutorial/signal.html
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Figure 9: C spline fitting and local maxima based detection of atoms in an averaged image.
The average image is computed based on the difference image and the spline edge filter
and peak based detection are applied to identify the atoms. All atoms are identified due
to improved SNR and are marked in blue.
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4.2.2. Plane determination

Once the atoms are identified, the detected positions have to be correctly
assigned to their corresponding crystallographic planes. As can be seen in
Fig. 9 (”Original image”), at least two (222) terraces are imaged in the chosen
ROI. The outermost terrace is bounded by the brightly imaged atoms and
the atoms lying outside this boundary are not of the first terrace. In order
to correctly assign the depth coordinate, these atoms need to be classified
into those belonging to the top terrace and those not. The methods used
to achieve this goal are based on image processing algorithms or on spectral
clustering.

Image processing based techniques

Classifying the atoms according to their crystallographic planes is not
trivial, especially using image processing based techniques. Image processing
based algorithms rely on identifying the boundaries of the outermost terrace.
Since atoms at the ledge of the terrace have a smaller number of nearest
neighbors and are the sites of higher electric field, they appear more brightly
in FIM. Thus the atoms imaged from the ledge are more similar to themselves
than the images of atoms from the terrace’s center. This information can be
exploited by virtue of the ”entropy” of the image [43]. The entropy, H, of
the image is given as

H = −
∑
k

pk log2(pk), (3)

where k is the number of gray levels and pk is the probability associated with
gray level k. Since the atoms at the ledge sites are imaged similarly the pixels
in the imaged atoms are associated with a similar pk. An implementation of
this entropy as a filter can be used to identify the ledge atoms. Which gives
us the boundary for the outermost terrace. The entropy can thus be used as
a way to classify atoms to their corresponding terraces. The result of this
entropy filter on one of the FIM images is shown in Fig. 10. Other image
processing based techniques for this task are watershed segmentation and
Fourier filtering based methods. A detailed explanation of these methods is
beyond the scope of the current article.

Spectral clustering

The task of identifying elements in a given dataset based on similarity or
dissimilarity amongst them is defined as clustering [44]. Clustering is a type
of unsupervised learning in which the goal is to partition a set of elements into
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Figure 10: A successful application of the entropy based filter to identify the outermost
terrace atoms.

groups called clusters. Differences between various clustering algorithms are
mainly about the ways similarity between the data points is measured [45],
typically through various distortion or distance measures. We now discuss
the so-called spectral clustering applied to plane determination.

Eigenvector techniques are frequently employed in multidimensional data
in order to extract the underlying correlations of the data (see Sec. 4.1.1).
Similarly one can apply such techniques for clustering. Spectral clustering
is an Eigenvector based technique. In spectral clustering, we benefit from
the node-node adjacency matrix of the graph. For a given graph containing
N nodes (each node corresponds to one point in the dataset), we create a
N×N adjacency matrix, in which each entry (i, j) corresponds to the weight
of the edge between the nodes i and j. This essentially corresponds to the
similarity between samples i and j in the dataset. Such weights wij are
recorded in a matrix W . As we are working with undirected graphs, the
matrix is assumed to be symmetric. It implies that wij = wji ∀ (i, j). Now
any clustering algorithm will try to minimize the weights across the clusters.
In spectral clustering, the minimization function is constructed based on the
adjacency weight matrix and another diagonal matrix called a degree matrix
D. Each element in D is the degree of every vertex in the similarity graph,
such that dii is equal to the sum of the weights of the incident edges, so

dii =
n∑
j=1

wij.
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In addition, we formally define the Laplacian matrix L as follows: L
is defined by subtracting the weighted adjacency matrix from the degree
matrix. Hence we have L = D −W . The graph Laplacian matrix defined
in this way conceals both its structural and its eigenvector behavior. Such a
graph Laplacian can now be adopted to identify the pertinent clusters in the
data. The number of connected components in the underlying graph can be
related to the number of eigenvectors with zero eigenvalues for the Laplacian
matrix L as they are equal.

The result of spectral clustering applied to our 3DFIM dataset is shown in
Fig. 11. As a notion of similarity a combination of two metrics is used. The
first metric is the distance between each of the identified atoms, the second is
the intensity of the identified atom. Spectral clustering was able to identify
two distinct planes in each FIM image as can be seen in Fig. 11. Some points
near the top right corner were associated to the wrong cluster. This solution
to plane determination is still not completely efficient and, here again, the
ML could provide significant improvement. The ML algorithms need labeled
training data, which will be first labeled by employing the image processing
and clustering algorithms outlined herein. The accuracy of these algorithms
on each image then needs to be manually verified and that data can be used
as a training dataset.

4.2.3. Atom tracking

Since atoms are imaged multiple times before their evaporation, each
atom can be tracked through multiple images. This allows us to identify the
position of each imaged atom as a function of its surrounding configuration
and also of the operating conditions. In a recent work we used this approach
to track the atoms’ image positions. We concluded that after field evapora-
tion events there is a local rearrangement of the local electric field, leading to
a more precise understanding of how field ion images are formed. Depending
on the task and the reconstruction routine used, it might be necessary to
track atoms. In the following we describe another clustering algorithm to
easily track atoms through multiple images if required.

Hierarchal clustering

Tracking the same atom imaged multiple times can be considered as a
clustering problem. The identified (x, y) coordinates need to be clustered
along z such that the final clustering construction is comprised of a set of
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Figure 11: Two clusters resulting from spectral clustering indicating two planes present
in the given FIM images.
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subsets K = K1, K2, ..., Kn in M , where M =
n⋃
i=1

Ki and Ka ∩ Kb = ∅, ∀

a 6= b [46]. The method used here to cluster these data points is hierarchical
clustering [47]. In an agglomerative hierarchical clustering, initially every
data point is considered as a cluster. These clusters are then merged suc-
cessively until the sought after cluster construction is found. The merging
of clusters is based on a criterion which is a measure of similarity of these
clusters. Here, we use a single linkage criterion to connect the clusters. In
this criterion, the distance between any two clusters is defined as the shortest
distance between any data point of one cluster to any member of the other.
The clustering decision is made based on which of the cluster distances is
the minimum and those two clusters are merged. The result of using a single
linkage hierarchical algorithm on (x, y) coordinates in images corresponding
to the evaporation of one (222) terrace is shown in the Fig. 12. The result is
the clustering of theses (x, y) coordinates to form individual atoms tracked
through successive images. Each cluster is assigned a number as indicated
by the color bar in Fig. 12. Visual inspection reveals that coordinates corre-
sponding to the same atom through the successive images do not displace by
more than 10 pixels. This value was used as a decision metric for the single
linkage criterion. The physical grounds for these displacements are discussed
in a recent article [Katnagallu et al., 2017 communicated].

5. A word about 3D field ion microscopy reconstruction

After the data are extracted and labeled correctly, in accordance with pre-
vious sections, the data need to be converted to absolute length scales, that
are meaningful to materials physics. Previous atom-by-atom approaches,
used to calibrate the measured distances between atoms on the image with
theoretical nearest neighbor spacing for the crystallographic plane analyzed.
Such conversions to an absolute length scale inherently assume that there are
no surface relaxations for atoms imaged and atoms are at their equilibrium
positions. Figure 13 shows a typical 3D reconstruction of extracted 3DFIM
data. The x and y coordinates are in pixels and the z axis is the plane num-
ber. The periodicity of the reconstruction is evident as planes in the figure.
The noticeable noise in the reconstruction still needs to be understood. One
of the sources could be attributed to errors in data extraction. But also,
as mentioned before, the image of the local electric field is not directly cor-
related with the true atomic positions. Nevertheless the distortion in the
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Figure 12: Atoms tracked through a sequence of 69 images using hierarchal clustering.
Each color indicates the cluster of imaged positions of one atom through the sequence.
Images on the left show the start (left bottom) and the end (left top) images of the 69
images sequence.

reconstructed volume can be expunged by invoking a molecular static relax-
ation protocol, in which the reconstructed volume is encased in a similarly
oriented perfect lattice. The encasing is done after removing the equivalent
atomic sites from the perfect volume. Then using a potential for the material
analyzed, a molecular relaxation is done on the encased data in LAMMPS
[48]. Employing such a routine also preserves the defects recorded in the
analyzed volume. The application of this routine on an analyzed 3DFIM
volume of W with vacancies can be found in reference [19].

These conversions and relaxations do not affect the statistical distribu-
tions of point defects [24], and hence the precision of reconstruction is not a
key requirement. On the other hand, if 3DFIM is employed for characteri-
zation and quantification of lattice strains, or strains surrounding crystalline
defects the precision of the reconstruction needs to be greatly improved. It is
important to make a distinction between the resolution of a FIM image and
its intrinsic precision. The resolution within a FIM image can be seen as the
size of the atom in the image which is determined by the size of the ionization
zone, the lateral velocity of the gas atom at the time of ionization and the
inherent Heisenberg’s uncertainty [49, 50]. Whereas the precision of FIM is
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Figure 13: Final 3D reconstruction of data extracted from 3DFIM, the dimensions are
arbitrary image units.

how well the imaged atom positions correspond to the true atomic sites. Im-
proving the resolution of FIM images can only originate from a reduction in
the base temperature of the specimen. However, extracting precise informa-
tion on the atomic locations requires a thorough comprehension of the image
formation in FIM, which directly relates to the details of the complexity of
the electric field distribution and its rearrangement when an atom has field
evaporated. The presence and the type of defects in the material affects the
local bonding and the local arrangement of the atoms on the surface, and
hence their effect on the local electric field needs to be precisely quantified.
This may be achieved, for instance, by applying ML to the vast amounts of
labeled data accessible by 3DFIM.

6. Outlook

Field ion microscopy has provided a unique vantage point for atomic
scale characterization of materials. The inherent resolution of FIM and the
ability to also gather three dimensional information from materials through
3DFIM, puts the technique far ahead of any other contemporary microscopy
technique. But the lack of advanced data processing and extraction routines
are one of the reasons that likely hindered FIM from becoming a mainstream
characterization technique. This article has detailed a burgeoning frame-
work that will allow full data extraction, which we hope will support the
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renewed interest in FIM and its extension to 3DFIM. The pure image pro-
cessing techniques have helped us to semi-automate the data extraction from
FIM images. The application of machine learning algorithms to our data not
only showed the behavior of field evaporation but also helped us to improve
the accuracy of the reconstructed data. The layer by layer field evaporation
behavior was evident when using PCA or Isomap algorithms on the 3DFIM
data. Also using Isomap clustered the images better with respect to num-
ber of atoms an image had on its first terrace. The semi automated data
extraction routine based on image processing has been helpful not only to
improve the data extraction but also helps us to get much more accurately
labeled data which can be used as a training dataset for supervised machine
learning. With the use of such advanced algorithms for data extraction,
we hope not only to completely automate the data extraction from 3DFIM
but also identify and characterize various material defects. Apart from data
extraction, machine learning has been gaining popularity in identifying fun-
damental physics phenomena [51]. The physics of image formation in FIM
is still not completely understood, and it is our firm belief that machine
learning can be a powerful tool in this direction.

The discussed methods have been implemented in a set of Python rou-
tines. These routines are available upon request to the authors.
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