The Role of Neutralizing Antibodies in HIV-1 infection

David George Bonsall

Imperial College London
Jefferiss Trust Laboratory
Department of Medicine

Thesis submitted for the degree of Ph.D.

2011
The writer has recently (May, 1892) obtained experimental evidence that the blood of vaccinated, and consequently immune, calves contains something which neutralizes the specific virulence of vaccine virus, both bovine and humanized. Four drops of blood serum from a calf, which had been vaccinated two weeks previously, mixed with one drop of liquid lymph recently collected in a capillary tube, after contact for one hour, was used to vaccinate a calf; the same animal was also vaccinated with lymph, preserved on three quills, which was mixed with four drops of serum from the immune calf and left for one hour. The result of these vaccinations was entirely negative, while vaccinations upon the same calf, made with virus from the same source, and mixed with the same amount of blood serum from a non-immune calf, gave a completely successful and typical result.

George Miller Sternberg, 1862
Protective Inoculations in Infectious Diseases

The first recorded evidence for the virus-neutralizing component of serum that we now know to be antibodies.
Declaration

The work described herein is the work of the candidate except where clearly indicated. Cell lines, recombinant proteins and plasmids obtained from collaborators are indicated in Chapter 2, Materials and Methods.

The case study described in Chapter 4 was led by Professor Paul Klenerman (Nuffield Department of Clinical Medicine, Oxford University). The phylogenetic analyses (shown in Figures 4.5-4.7) were carried out by Dr Gary Huang and Dr Aris Katzourakis at Oxford University. The HLA typing and CD8+ T cell functional analysis was conducted by Dr John Frater at Oxford University. All clinical data (CD4+ T cell counts, HIV-1 VL, Hepatitis B VL, immunoglobulin quantification, and liver function tests) were acquired at clinical laboratories at St Mary’s Hospital, London.

In Chapter 5, viral load assessments and CD4+ T cell counts were carried out at clinical laboratories affiliated with the following centres: The Mortimer Market Centre (London, UK), St Mary’s Hospital (London, UK), Royal Free Hospital (London, UK), St Bartholomew’s Hospital (London, UK), Brighton General Hospital (Brighton), San Raffaele Hospital (Milan, Italy), Isipingo Clinic (Durban, South Africa), Verulum Clinic (Durban, South Africa), Botha's Hill Clinic (Durban, South Africa), Umkomaas Clinic (Durban, South Africa), Durban City Hospital, (Durban, South Africa), Taylor Square Clinic (Syndey, Australia), The Centre Clinic (Melbourne, Australia)

David George Bonsall
Abstract

Human immunodeficiency virus type 1 is a major cause of morbidity and mortality worldwide and there is urgent demand for a protective vaccine. A major goal of vaccine development is the elicitation of antibodies capable of neutralizing diverse strains. In order to achieve this goal it is necessary to understand the dynamic relationship between neutralizing antibodies (NAbs) and HIV-1, *in vivo.*

In humans, HIV-1 rapidly escapes from NAbs, confirming that humoral responses inhibit virus replication. However, neutralizing responses are commonly detected in viraemic patients and the clinical impact of NAbs on HIV-1 control is unclear. To investigate this further, viral load (VL) and NAb activity were assessed longitudinally in patients enrolled into a clinical trial of short-course antiretroviral therapy (ART), administered in early infection. The aims of this study were two-fold: i) to understand the importance of VL in the control of NAb responses and ii) to assess whether NAbs contribute to durable control of VL set-point.

A high-throughput pseudovirus neutralization assay was developed, using automated counting procedures to quantify infected TZM-bl reporter cells. The assay was used to assess NAb responses with autologous viruses derived from 22 patients. Seven patients with low VL set-points (<10⁴ RNA copies/ml) failed to develop neutralizing responses throughout the 48-144 week follow-up period. In contrast, the remaining patients developed progressively-increasing neutralizing plasma titres (IC₅₀) that correlated with the extent and timing of VL rebound after cessation of ART. This suggests that the production of NAbs depends on the duration and extent of viraemia in early infection. Viral load was poorly predictive of neutralizing responses against heterologous isolates assayed in 38 patients, suggesting that other factors are important in the production of antibodies with cross-neutralizing activity.

Depletion of specific immunological compartments can yield crucial information as to their functional importance in vivo. We took advantage of a unique opportunity to investigate the role of NAbs and the consequences of their depletion in an HIV-1 infected human. Three years after cessation of short-course ART, the patient was treated for pre-existing low-grade lymphoplasmacytic lymphoma by antibody-mediated depletion of CD20⁺ B cells using rituximab. This treatment was followed by a 1.7 log₁₀ rise in HIV-1 VL which spontaneously reversed. Autologous NAb responses decreased as viraemia flared, and recovered as VL was controlled. Antibodies were found to target the CD4 binding site (CD4bs), as shown by competitive-binding assays. Sequence analysis revealed diversification through generation of new variants as NAbs decreased, with subsequent selection of NAb-resistant mutants at sites consistent with the binding data. These data suggest that B cell function contributed to long-term control of VL in this individual and that NAbs may be more important in controlling HIV-1 infection than previously suspected.
Acknowledgements

First and foremost I would like to thank my supervisors, Professor Myra McClure and Professor Andrew George for all the help and support they have provided. I am especially grateful for the time and energy Professor McClure has invested in my academic development.

I take this opportunity to thank Dr Peter Cherepanov and Dr Massimo Pizzato, who were always on hand to answer my questions with excellent advice and practical solutions. I thank all those involved in the SPARTAC clinical trial for providing me with an invaluable and enjoyable experience. In particular, I thank Dr Sarah Fidler and Professor Jonathan Weber for helping me understand the clinical aspects of this project. Thanks also to Dr Kholoud Porter and Dr Katherine Donegan for their help with the statistical analyses described in Chapter 5. Dr Mark Robinson joined the SPARTAC team in late 2009 and I am grateful for the support he has provided.

Thanks must go to Professor Paul Klenerman, Dr Emma Thomson, Dr Graham Cooke and Professor Quentin Sattentau for inviting me to take part in a successful and enjoyable collaboration (Chapter 4). Thanks also to Dr Gary Huang for allowing me to present some of the data he acquired as part of this collaboration.

I thank the Medical Research Council and the Wellcome Trust for funding this project. I am also grateful for the additional support provided by the NIHR Biomedical Research Centre funding scheme.

This project was made possible by the support of my friends and family. I would like to thank all the scientists at the Jefferiss Trust for keeping me close to sanity. Finally, I thank Tony for all his unconditional love and support.
Table of Contents

Declaration... 3

Abstract.. 4

Acknowledgements... 6

List of Figure... 9

List of Tables... 11

List of Abbreviations .. 12

Chapter 1: Introduction... 15
 1.1 Introduction.. 16
 1.2 The origins of the HIV-1 pandemic... 18
 1.3 HIV-1 genome... 19
 1.4 Virion structure... 23
 1.5 The early phase of the HIV-1 life cycle... 26
 1.6 The late phase of the HIV-1 life cycle... 30
 1.7 Structural features of the HIV-1 Envelope glycoproteins that facilitate virus entry......................... 31
 1.8 Antibody structure and function.. 35
 1.9 The production and function of antibodies are both linked to the same variables functional affinity and antigen concentration.. 35
 1.10 Structural features of Env that limit binding to antibodies and BCRs... 38
 1.11 Antibodies that circumvent the structural defenses of Env... 39
 1.12 Mechanisms of virus neutralization.. 43
 1.13 Non-neutralizing roles of antibody in HIV-1 infection... 48
 1.14 Assays of HIV-1 neutralization.. 50
 1.15 Virological factors that affect neutralization in vitro... 51
 1.16 Target cell factors that affect neutralization in vitro... 53
 1.17 The natural course of early HIV-1 infection... 55
 1.18 The role of cellular immune responses in the control of HIV-1... 58
 1.19 The role of neutralizing antibodies in the control of viral load... 60
 1.20 The impact of ART on the control of HIV-1 infection... 65
 1.21 Rationale for administering ART in early infection.. 66
 1.22 Outline of this thesis... 68

Chapter 2: Materials and Methods.. 70
 2.1 Mammalian cell lines and tissue culture maintenance.. 71
 2.2 DNA vectors used for cloning, sequencing and pseudovirus construction....................................... 71
 2.3 Antibodies, plasma and recombinant proteins. .. 74
 2.4 Clinical assays of HIV-1 viral load... 74
 2.5 Clinical assays for the quantification of antibodies... 75
 2.6 Extraction of viral RNA from human plasma... 75
2.7 Reverse transcription of viral RNA... 76
2.8 PCR amplification of full-length HIV-1 envelope for construction of expression
plasmids.. 76
2.9 Purification of PCR amplified DNA.. 78
2.10 DNA digestion.. 78
2.10.1 DNA digestion for plasmid construction.. 78
2.10.2 Analytical restriction digest.. 79
2.11 Gel Extraction.. 79
2.12 DNA ligation.. 80
2.13 Production of competent bacteria... 80
2.14 Transformation of competent E.coli... 81
2.15 Gel Extraction.. 79
2.16 Monitoring growth of pcDNA.env transformed E.coli.................................... 83
2.17 Alkaline-lysis mini-preparation of plasmid DNA.. 83
2.18 Large-scale alkaline-lysis maxi-preparation of DNA plasmids with high copy
number... 84
2.19 Construction of HIV-1 Env-pseudotyped viruses... 85
2.19.1 Transfection of 293T/17 cells with linear polyethyleneimine....................... 85
2.19.2 Transfections with lipofectamine 2000... 86
2.20 Infectivity screening of HIV-1 Env-pseudotyped virus.................................. 86
2.21 Titration of HIV-1 Env and VSV-G-pseudotyped virus.................................. 88
2.22 Assessing antibody-mediated neutralization of HIV-1 Env-pseudotyped virus.... 88
2.23 Quantification of pseudovirus infection by luciferase detection...................... 89
2.24 Site directed mutagenesis.. 89
2.25 Quantification of HIV-1 reverse transcriptase activity.................................... 90
2.26 Competitive binding assays.. 92
2.27 Evolutionary analyses of HIV-1 envelope genes.. 92
2.27.1 PCR amplification of HIV-1 envelope for sequencing reactions.................. 92
2.27.2 TOPO TA cloning of HIV-1 envelope genes for sequencing analyses......... 93
2.27.3 Phylogenetic analyses.. 94
2.28 HLA typing.. 94
2.29 IFN-γ ELISPOT assays.. 95

Chapter 3: A high through-put neutralization assay for HIV-1 Env-pseudotyped viruses.............. 96
3.1 Introduction... 97
3.2 Results... 100
3.2.1 Optimization of molecular cloning to construct HIV-1 Env-expression
Cassettes... 100
3.2.2 MACH-1 strain E.Coli are partially resistant to HIV-envelope toxicity........... 106
3.2.3 Envelopes derived from different HIV-I isolates exhibited variable levels
of toxicity in E.coli.. 108
3.2.4 Optimization of 293T/17 cell transfections for the construction
of Env-pseudotyped viruses... 111
3.2.5 Optimization of a high-throughput pseudovirus-microtitration
assay.. 114
3.2.6 Validation of the β-Gal neutralization assay.. 117
Chapter 4: B cell depletion in an HIV-1 infected human reveals a role for NAbs in the control of VL.

4.1 Introduction

4.2 Clinical History

4.3 Results

4.3.1 Impact of B cell depletion on plasma antibody concentration

4.3.2 Neutralizing plasma titres against HIV-1 temporarily decreased following rituximab therapy

4.3.3 Antibody characterization

4.3.4 Analysis of sequence evolution in HIV-1 envelope over time

4.3.5 Neutralization susceptibility of mutated Env-pseudotypes to NAbs and patient plasma

4.3.6 Mutant Env-pseudoviruses exhibited similar levels of infectivity after correction for RT activity

4.3.7 Analysis of CTL responses prior to Rituximab Therapy

4.3.8 Impact of rituximab monotherapy on HBV co-infection

4.4 Discussion

Chapter 5: The neutralizing response to HIV-1 following short course antiretroviral therapy in PHI

5.1 Introduction

5.2 Results

5.2.1 Patient demographics

5.2.2 Neutralizing responses were variably detected within 4-12 weeks of stopping ART

5.2.3 Longitudinal assessment of NAb responses following discontinuation of early ART

5.2.4 NAb responses were associated with delayed viral rebound after cessation of early ART

5.2.5 Clade specific differences of VL and NAb response

5.2.6 Neutralization of heterologous HIV-1 Env-pseudotypes

5.3 Discussion

Chapter 6: Conclusions

6.1 Conclusions

6.2 Footnotes

References

Publications pertaining to this thesis

A one-step SYBR Green I-based product-enhanced reverse transcriptase assay for the quantitation of retroviruses in cell culture supernatants

B-cell depletion reveals a role for antibodies in the control of chronic HIV-1 Infection
List of Figures

Figure 1.1 The percentage of adults (15-49) infected with HIV-1 worldwide.. 17
Figure 1.2 The HIV-1 genome.. 22
Figure 1.3 Models of HIV-1 virion structure.. 24
Figure 1.4 Schematic representation of the HIV-1 life cycle.. 27
Figure 1.5 Structure of HIV-1 envelope... 32
Figure 1.6 Models of neutralizing and non-neutralizing antibodies... 45
Figure 1.7 Effector functions of antibodies that involve Fcγ receptors and cellular immune responses......................... 49
Figure 2.1 DNA vectors used for HIV-1 envelope cloning.. 72
Figure 2.2 DNA vectors used for pseudovirus construction.. 73
Figure 2.3 High throughput colony screening method for the identification of pcDNA.env constructs......................... 82
Figure 3.1 Schematic representation of the HIV-I Env-pseudotype neutralization assay.. 99
Figure 3.2 Isolation of env by RT-PCR amplification of viral RNA was variably efficient... 101
Figure 3.3 Efficiency of ligation reactions used to construct env expression plasmids... 104
Figure 3.4 Toxicity of HIV-1 env variants in E.coli is associated with transcription-promoters orientated with the env ORF. ... 105
Figure 3.5 Susceptibility to HIV-env toxicity is dependent on E.coli strain... 107
Figure 3.6 Envelope clones exhibit variable levels of toxicity in E.coli. ... 110
Figure 3.7 Optimization of pseudovirus production by PEI transfection... 113
Figure 3.8 Optimized cell-seeding protocol for HIV-1 pseudotype microneutralization assays.. 115
Figure 3.9 Comparison of luminometry with automated spot counting for TZM-bl based pseudovirus infectivity assays. .. 116
Figure 3.10 Validation of the high-throughput microneutralization assay for HIV-Env pseudotypes... 118
Figure 4.1 Clinical course of HIV-1 in relation to rituximab therapy... 126
Figure 4.2 Autologous neutralizing antibody titres assayed over time... 131
Figure 4.3 Antibody binding to HIV-1 envelope decreased following rituximab therapy.. 135
Figure 4.4 Antibody binding to HIV-1 envelope decreased following rituximab therapy.. 136
Figure 4.5 Diversification of HIV-1 env sequences after rituximab therapy.. 138
Figure 4.6 Ancestral analysis of emerging strains ... 139
Figure 4.7 Tracking of selected envelope mutants.. 142
Figure 4.8 Locations of selected mutations within HIV-1 envelope. 143
Figure 4.9 Impact of selected mutations on susceptibility of the virus to neutralizing antibodies...146
Figure 4.10 Optimization of the SG-PERT assay for the quantification of pseudovirus particles.. 148
Figure 4.11 Impact of selected mutations on pseudovirus infectivity. 152
Figure 4.12 Clinical course of HIV-1, HBV and ALT in relation to Rituximab therapy 156
Figure 5.1 Pre-ART CD4 counts and VLs were not significantly affected by gender or HIV-1 subtype.. 169
Figure 5.2 Men infected with subtype B virus had higher VL set-points than women infected with subtype C virus.. 172
Figure 5.3 VSV-G pseudotyped virus was not neutralized by patient plasma 175
Figure 5.4 VL detected during PHI correlated with chronic VL set-points. 176
Figure 5.5 Neutralizing responses rebounded after cessation of early ART 180
Figure 5.6 Rebounding neutralizing responses were associated with high VL set-point 182
Figure 5.7 Neutralizing responses followed rebounding VLs ...183
Figure 5.8 Neutralizing responses against autologous-contemperanous Env-pseudovirus were associated with delayed viral rebound. ... 185
Figure 5.9 Neutralization of Tier 1B heterologous strains weakly correlated with VL and autologous NAb titre...191
List of Tables

Table 1.1 Classification and functions of the HIV-1 proteins ..20
Table 1.2A Studies that suggest a positive correlation or no correlation between NAb potency and VL...63
Table 1.2B Studies that suggest NAb responses are associated with slower rates of disease progression...63
Table 2.1 Primers used for PCR amplification, sequencing, mutagenesis and quantitative-RT PCR...77
Table 3.1 Identification of samples with low N3VL that underwent ultracentrifugation prior to RT-PCR ...102
Table 3.2 Stability of pcDNA.env plasmids in transformed MACH-1 E.coli109
Table 4.1 Impact of rituximab on plasma immunoglobulin concentrations...............................128
Table 4.2 Impact of rituximab on neutralizing plasma titres (IC$_{50}$). ...129
Table 4.3 Neutralizing plasma titres against heterologous virus..132
Table 4.4 Analysis of CD8+ T cell responses and epitope evolution over time............................154
Table 5.1 Patient demographics and clinical manifestations during PHI.......................................170
Table 5.2 Half maximal neutralizing titres of patient sera tested with autologous Env pseudotypes ...174
Table 5.3 Breadth and potency of neutralizing responses assayed in chronic infection..............188
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACD</td>
<td>acid-citrate-dextrose</td>
</tr>
<tr>
<td>ADCC</td>
<td>antibody dependent cell mediated cytotoxicity</td>
</tr>
<tr>
<td>ADCVI</td>
<td>antibody-dependent cell-mediated virus inhibition</td>
</tr>
<tr>
<td>AID</td>
<td>activation-induced cytidine deaminase</td>
</tr>
<tr>
<td>AIDS</td>
<td>acquired immunodeficiency virus</td>
</tr>
<tr>
<td>ALT</td>
<td>alanine transaminase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>APOBEC3G</td>
<td>apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 G</td>
</tr>
<tr>
<td>ART</td>
<td>antiretroviral therapy</td>
</tr>
<tr>
<td>BCR</td>
<td>B cell receptor</td>
</tr>
<tr>
<td>β–gal</td>
<td>β–galactosidase</td>
</tr>
<tr>
<td>BMV</td>
<td>Brome mosaic Virus</td>
</tr>
<tr>
<td>CA</td>
<td>capsid proteins (p24)</td>
</tr>
<tr>
<td>CCR5</td>
<td>C-C chemokine receptor 5</td>
</tr>
<tr>
<td>CD</td>
<td>cluster differential</td>
</tr>
<tr>
<td>CD4bs</td>
<td>CD4bs</td>
</tr>
<tr>
<td>CD4i</td>
<td>CD4 inducible</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>C-HR</td>
<td>carboxy-terminal heptad repeats</td>
</tr>
<tr>
<td>CMV</td>
<td>cytomegalovirus</td>
</tr>
<tr>
<td>CRF</td>
<td>circulating recombinant form</td>
</tr>
<tr>
<td>C-terminal</td>
<td>carboxy-terminal</td>
</tr>
<tr>
<td>CTL</td>
<td>cytotoxic T cell</td>
</tr>
<tr>
<td>CXCR4</td>
<td>CXC chemokine receptor 4</td>
</tr>
<tr>
<td>DC</td>
<td>dendritic cell</td>
</tr>
<tr>
<td>DC-SIGN</td>
<td>dendritic cell-specific ICAM3 grabbing non-integrin</td>
</tr>
<tr>
<td>DEAE-dextran</td>
<td>diethylaminoethyl-dextran</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified eagle’s medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>E.coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EC</td>
<td>elite controller</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme linked immunosorbant assays</td>
</tr>
<tr>
<td>ELISpot</td>
<td>enzyme-linked immunospot assay</td>
</tr>
<tr>
<td>Env</td>
<td>envelope</td>
</tr>
<tr>
<td>ESCRT-I</td>
<td>endosomal sorting complex required for transport 1</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
<tr>
<td>FFU</td>
<td>focus forming units</td>
</tr>
<tr>
<td>FP</td>
<td>fusion peptide</td>
</tr>
<tr>
<td>GALT</td>
<td>gut-associated lymphoid tissue</td>
</tr>
<tr>
<td>gp</td>
<td>glycoprotein</td>
</tr>
<tr>
<td>HAART</td>
<td>highly active antiretroviral therapy</td>
</tr>
<tr>
<td>HBcAb</td>
<td>hepatitis B virus core antibody</td>
</tr>
</tbody>
</table>
HBsAg, hepatitis B virus surface antigen
HBV, hepatitis B virus
HCDR, heavy chain complementary determining region
HIV-1, human immunodeficiency virus type 1
HIV-2, human immunodeficiency virus type 2
HLA, human leukocyte antigen
HRP, horseradish peroxidase
IC50, half-maximal inhibitory concentration
IC90, 90% inhibitory concentration
ICAM, inter-cellular adhesion molecule
IFN, interferon
Ig, immunoglobulin
IL, interleukin
IN, integrase
IQR, inter-quartile range
ITAM, immuno-receptor tyrosine based activation motif
IU, infectious units
kb, kilo base
kDa, kilo Dalton
LB, lysogeny broth (aka Luria-Bertani broth)
LCDR, light chain complementary determining region
LCL, lymphoplasmacytic lymphoma
LEDGF, lens epithelium-derived growth factor
LPS, lipopolysaccharide (Endotoxin)
LTNP, long-term non-progressor
LTR, long-terminal repeat
MA, matrix protein (p17)
MCMC, Markov chain Monte Carlo
MCS, multiple cloning site
MHC, major histocompatibility complex
ML, maximum likelihood
M-MLV, Moloney murine leukemia virus
MPER, membrane proximal external region
mRNA, messenger RNA
NAb, neutralizing antibody
NC, nucleocapsid protein
N, effective population size
N-HR, amino terminal heptad repeat
NK cell, natural killer cell
nm, nanometer
NNRTI, non-nucleoside reverse transcriptase inhibitors
NRTI, nucleoside reverse transcriptase inhibitors
N-terminal, amino terminal
PBMC, peripheral blood mononuclear cells
PBS, phosphate buffered saline
PCR, polymerase chain reaction
PEI, polyethylenimine
PERT assay, product-enhanced reverse transcriptase assay
Pfu

Pyrococcus furiosus

PHI
primary HIV-I infection

PI
protease inhibitors

PIC
pre-integration complex

pol
polymerase

PP
polypurine tract

PR
protease

R
repeat sequence

RLU
relative light units

RNA
ribonucleic acid

RRE
rev response element

RT
reverse transcriptase

rTTh pol
recombinant Thermus thermophilus polymerase

SDS
sodium dodecyl sulphate

SG
SYBR green

SHIV
simian human immunodeficiency virus

SIV
simian immunodeficiency virus

SIVcpz
simian immunodeficiency virus chimpanzee strain

SIVgor
simian immunodeficiency virus gorilla strain

SOB
super-optimal broth

SOC
super-optimal broth with catabolite repression

SPARTAC
short-pulse antiretroviral therapy at seroconversion

SV40
simian virus 40

TAE
tris-acetate-EDTA

Taq
Thermus aquaticus

TAR
trans-acting responsive element

TCID
tissue culture infectious dose

TCLA
T cell lab adapted

TE
tris-EDTA

TMB
3,3’,5,5’-tetramethylbenzidine

TNF
tumour necrosis factor

U3
unique 3-prime domain

U5
unique 5-prime domain

UNAIDS
The United Nations Joint Programmed on HIV/AIDS

UV
ultraviolet

VC
viraemic controllers

VL
viral load

VSV-G
vesicular stomatitis virus G protein

WHO
World Health Organization

WT
wild type

X-gal
bromo-chloro-indolyl-galactopyranoside
Introduction
In June 1981 the Centers for Disease Control (United States of America) reported five unexplained cases of an acquired immunodeficiency syndrome (AIDS) in men co-infected with *Pneumocystis pneumonia* and cytomegalovirus (CMV) (Gottlieb, 2006). Since then more than 25 million people worldwide have died from AIDS-related complications (UNAIDS, epidemic update 2009, www.unaids.org). Despite these harrowing figures, rapid progress has been made towards controlling the AIDS pandemic. Two years after the first diagnoses, human immunodeficiency virus type 1 (HIV-1) was identified as the causative agent of AIDS (Barre-Sinoussi *et al*., 1983, Popovic *et al*., 1984) and by 1985, phase 1 clinical trials had begun on the first drug to treat HIV-1 infection (Fischl *et al*., 1987). Today, rates of AIDS-related mortality are now declining in several countries, which is largely due to the introduction of combination antiretroviral therapy (ART) (Bhaskaran *et al*., 2008, Jahn *et al*., 2008). Nevertheless, approximately 0.8% of the adult population, worldwide, are infected with HIV-1 (UNAIDS, 2008), and the need for a protective vaccine is greater than ever (Figure 1.1).

In HIV-1 infection, T cells that express the CD4 antigen are the principle targets of virus infection, while CD8+ T cells are considered important in controlling viral replication (Carrington and O’Brien, 2003, Crawford *et al*., 2007, Pereyra *et al*., 2008a, Schmitz *et al*., 1999). B cells are the producers of antibodies and are also involved in regulation of T cell responses. For a vaccine to achieve sterilizing immunity to HIV-1 it may be necessary to induce T and B lymphocyte responses, and there has been some success following a vaccination trial that aimed to do this. A randomized, placebo-controlled trial (RV144) conducted on 16,000 participants showed a 31% reduced risk of HIV-1 infection in individuals vaccinated with recombinant-canarypox vector (ALVAC) and recombinant HIV-1 envelope glycoprotein (AIDSVAX) (Rerks-Ngarm *et al*., 2009). Antibodies may have been responsible for this protective effect, as individuals vaccinated with ALVAC/AIDSVAX as part of a previous study produced HIV-1 specific
Figure 1.1: The map is colour coordinated to show the prevalence (%) of HIV-1 infections in men and women aged 15-49, per region. Data are taken from the UNAIDS/WHO epidemic update (2008), in accordance with the terms and conditions stated on the web-site (http://unaids.org/en). Epidemiological estimates are based on anonymous monitoring at designated ‘sentinel surveillance’ sites. These estimates are supported by national surveys conducted in 33 countries.
antibodies that had antiviral effects \textit{in vitro} (Karnasuta \textit{et al.}, 2005). Other vaccination trials have been less successful. The phase-2 STEP trial of an adenovirus vector-based vaccine failed to protect against infection despite inducing HIV-1 specific T cell responses (Buchbinder \textit{et al.}, 2008). Post-hoc analyses indicated a modest increase in infection rates in uncircumcised vaccine recipients and those with previously acquired immune responses to adenovirus serotype 5 (Robertson, 2008b, Robertson, 2008a, Hutnick \textit{et al.}, 2009, Sekaly, 2008). The immunological correlates of these dichotomous clinical outcomes have yet to be determined.

Some HIV-1 infected individuals produce antibodies that neutralize autologous and heterologous strains of HIV-1, \textit{in vitro} (Carotenuto \textit{et al.}, 1998b, Deeks \textit{et al.}, 2006a, Sather \textit{et al.}, 2009). Understanding the mechanisms that control the production of neutralizing responses in these patients, particularly during the early stages of infection, is central to the development of HIV-1 vaccines. Additionally, it is important to understand the role of neutralizing antibodies (NAbs) in established HIV-1 infection as this may identify novel targets for drug interventions that could potentiate protective immunity and delay progression to AIDS.

1.2 The origins of the HIV-1 pandemic

The human immunodeficiency viruses, HIV-1 and HIV-2, are lentiviruses belonging to the family of Retroviridae. Each virus originated from separate zoonotic transmissions from species of African primates infected with simian immunodeficiency virus (SIV). The most likely ancestor of HIV-2 is an SIV strain that infects sooty mangabeys and was probably transmitted to humans in the 1940’s (Lemey \textit{et al.}, 2003). HIV-2 is endemic in West Africa and is less infectious and less virulent than HIV-1 (Pepin \textit{et al.}, 1991). The closest ancestor of HIV-1 is SIVcpz, which infects the common chimpanzee, \textit{Pan troglodytes} (Gao \textit{et al.}, 1999). Two separate SIV strains closely resemble distinct parts of the SIVcpz genome, indicating that separate cross-species transmissions produced a hybrid virus capable of infecting humans.
in parts of Africa where primates are hunted and eaten (Bailes et al., 2003). The earliest confirmed case of HIV-1, for which genetic material has been recovered, dates back to 1957. By comparing differences between this viral genome with those of other early cases, Worobey et al. estimated that HIV-1 entered the human population near the beginning of the 20th century (Worobey et al., 2008). It is likely that SIV has been transmitted to humans on at least four separate occasions, thus founding four separate HIV-1 lineages: major (M), outlier (O), N and P. An SIV strain that infects gorillas (SIVgor) is the most likely ancestor of HIV-1 groups O and P (Takehisa et al., 2009, Plantier et al., 2009).

The majority of HIV-1 infections belong to group M, which is sub-divided further into nine distinct subtypes: A, B, C, D, F, G, H, J and K. Viruses from separate clades occasionally recombine within super-infected individuals and, if transmitted, become known as circulating recombinant forms (reviewed in Carr et al., 1998). Subtype B infections predominate in Europe and North America, while subtype C infections predominate in Sub-Saharan Africa and are responsible for approximately half of all HIV-1 infections worldwide (Osmanov et al., 2002).

1.3 HIV-1 genome

The HIV-1 genome consists of a dimer of single-stranded RNA molecules of approximately 9 kilobases (kb) in length. Each sense-stranded RNA genome contains nine genes that encode fifteen proteins classified as accessory proteins (Vpu, Vpr, Vif, and Nef), regulatory proteins (Tat and Rev) and nine structural proteins cleaved from precursor proteins (Gag, Pol, and Env). (Figure 1.2 and Table 1.1). Because the HIV-1 genome is transcribed by cellular RNA polymerase (pol) II, the 5’ terminus is capped via a 5’-5’ phosphodiester bond to an M7 GTP group and the 3’ terminus ends with approximately 200 adenosine bases (polyA). Immediately internal to the 5’ cap and the 3’ adenosines are non-coding sequences that play important roles in DNA replication. The organization of these sequences and the protein-coding portions of the genome are shown in Figures 1.2 and 1.4.
<table>
<thead>
<tr>
<th>Protein type</th>
<th>Precursor</th>
<th>Viral protein</th>
<th>Other names</th>
<th>Size (kDa)</th>
<th>Localization</th>
<th>Functions and interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gag-Pol</td>
<td>MA</td>
<td>Matrix</td>
<td>17</td>
<td>Virion</td>
<td>Anchors Gag and Gag-Pol into the membrane</td>
<td>Interacts with the cytoplasmic tail of gp41</td>
</tr>
<tr>
<td>Gag-Pol</td>
<td>CA</td>
<td>Core capsid</td>
<td>24</td>
<td>Virion</td>
<td>Provides structure to the virion core</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>Nucleocapsid</td>
<td>7</td>
<td>Virion</td>
<td>Encapsidates viral RNA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p6</td>
<td></td>
<td>6</td>
<td>Virion</td>
<td>Binds and incorporates Vpr into virion</td>
<td></td>
</tr>
<tr>
<td>Gag-Pol</td>
<td>PR</td>
<td>Protease</td>
<td>15</td>
<td>Virion</td>
<td>Cleaves Gag and Gag-Pol precursor proteins</td>
<td></td>
</tr>
<tr>
<td>Gag-Pol</td>
<td>RT</td>
<td>Reverse Transcriptase</td>
<td>66, 51</td>
<td>Virion</td>
<td>Reverse transcribes viral RNA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAse H*</td>
<td>RNAse H*</td>
<td></td>
<td>Virion</td>
<td>Degrades RNA template</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN</td>
<td>Integrase</td>
<td>31</td>
<td>Virion</td>
<td>Integration of DNA provirus</td>
<td></td>
</tr>
<tr>
<td>gp120</td>
<td>gp120</td>
<td>Envelope surface subunit</td>
<td>120</td>
<td>Virion</td>
<td>Binds to the host antigen, CD4, and to the chemokine receptors CCR5 and/or CXCR4</td>
<td></td>
</tr>
<tr>
<td>gp160</td>
<td>gp41</td>
<td>Envelope transmembrane subunit</td>
<td>41</td>
<td>Virion</td>
<td>Mediates virus:cell fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tat</td>
<td>16/14</td>
<td>Nucleus</td>
<td>Nucleus, Nucleolus</td>
<td>Transactivator of HIV-1 gene expression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>19</td>
<td>Nucleus</td>
<td>Nucleolus, Cytoplasm</td>
<td>Interacts with Rev response element in env</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vif</td>
<td>Viral protein F</td>
<td>23</td>
<td>Cytoplasm, Membrane, Virion</td>
<td>Promotes virion maturation and infectivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vpr</td>
<td>Viral protein R</td>
<td>10-15</td>
<td>Virion, (Nuclear membrane?)</td>
<td>Promotes nuclear localization of preintegration complex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vpu</td>
<td>Viral protein U</td>
<td>16</td>
<td>Plasma membrane</td>
<td>Enhances virion release by inhibiting host-cell protein, CD134 (tetherin), activity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nef</td>
<td>Negative factor</td>
<td>25</td>
<td>Plasma membrane, Cytoplasm, (Virion?)</td>
<td>Enhances virion production</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1 Classification and functions of the HIV-1 proteins

- **MA**: Matrix protein (MA)
- **CA**: Core capsid protein (CA)
- **NC**: Nucleocapsid protein (NC)
- **p6**:衝突 protein (p6)
- **PR**: Protease (PR)
- **RT**: Reverse Transcriptase (RT)
- **RNAse H**: RNAse H (RNAse H*)
- **IN**: Integrase (IN)
- **gp120**: Envelope surface subunit (gp120)
- **gp41**: Envelope transmembrane subunit (gp41)
- **Tat**: Transactivator (Tat)
- **Rev**: Interacts with Rev response element (Rev)
- **Vif**: Viral protein F (Vif)
- **Vpr**: Viral protein R (Vpr)
- **Vpu**: Viral protein U (Vpu)
- **Nef**: Negative factor (Nef)

- **Regulatory**
 - **Gag-Pol**: Structural proteins
 - **gp160**: Gag-Pol precursor proteins
 - **gp120**: Envelope proteins

- **Accessory**
 - **Vif**: Viral protein F
 - **Vpr**: Viral protein R
 - **Vpu**: Viral protein U
 - **Nef**: Negative factor

- **Structural**
 - **MA**: Matrix
 - **CA**: Core capsid
 - **NC**: Nucleocapsid
 - **p6**:衝突
 - **PR**: Protease
 - **RT**: Reverse Transcriptase
 - **RNAse H**: RNAse H
 - **IN**: Integrase

- **Regulatory**
 - **Tat**: Transactivator
 - **Rev**: Interacts with Rev response element
 - **Vif**: Viral protein F
 - **Vpr**: Viral protein R
 - **Vpu**: Viral protein U
 - **Nef**: Negative factor
Table 1.1 Classification and function of the HIV-1 proteins

The fifteen HIV-1 proteins are divided into three categories: structural proteins, regulatory proteins and accessory proteins. The functions and localization of each protein are shown. Reverse transcriptase is a multifunctional enzyme, which exhibits RNA and DNA dependent polymerase activity and ribonuclease H (RNase H) activity. The active sites of both enzymes are located on the p66 subunit of the p66/p51 heterodimer (*).
Figure 1.2 shows the positions of the open reading frames (ORFs) and LTRs of the HIV-1 genome. The x-axis indicates the positions of each ORF with reference to HIV-1 strain HXB2CG, which is the numbering system used throughout this thesis. The regulatory proteins, Tat and Rev, are both encoded by two exons shown as shaded rectangles. The diagram has been adapted, with permission, from the Los Alamos sequence compendium (2010) (http://www.hiv.lanl.gov)
1.4 Virion structure

The HIV-1 virion is approximately 100 nm in diameter and is surrounded by a lipid bi-layer, enriched with cholesterol and sphingomyelin (Liao et al., 2001). Embedded in the viral membrane are the envelope (Env) glycoproteins that mediate virus entry. The 120 kilo Dalton surface subunit of Env, gp120, is non-covalently attached to the transmembrane subunit, gp41. Both glycoproteins form 7-14 trimers on the virion surface (Chertova et al., 2002, Lu et al., 1995, Weiss et al., 1990, Chan et al., 1997). Several host proteins have been detected within the virus envelope, including complement-regulatory proteins CD55 and CD59 that protect against antibody-dependant and antibody-independent mechanisms of viral inactivation (Marschang et al., 1995, Saifuddin et al., 1997, Saifuddin et al., 1995).

Nascent virions are non-infectious due to highly-stable associations between the Gag and Gag-Pol precursors that make up the interior-core structure (Gottlinger et al., 1989) (Figure 1.3A). Myristoyl groups at the N-termini of Gag and Gag-Pol interact with the internal leaflet of the lipid envelope. During virion maturation, Gag-Pol precursors dimerize to form the active site of viral protease (PR), which cleaves Gag-Pol to form the HIV-1 enzymes: PR, reverse transcriptase (RT) and integrase (IN). Additionally, PR cleaves Gag to form the membrane-associated matrix protein (MA), capsid (CA), nucleocapsid (NC), C-terminal domain (p6), and two spacer domains (Henderson et al., 1992, Mervis et al., 1988) (reviewed in (Gottlinger, 2001)). Mature virus particles are recognized by their electron-dense cone-shaped cores, which consist of hexagonal lattices of CA, beneath which resides the dimeric RNA genome, encapsidated by NC (Gelderblom, 1991) (Figure 1.3B).
Figure 1.3 Models of HIV-1 virion structure

A Immature Virion

B Mature Virion

Dimeric RNA genome
Figure 1.3 Models of HIV-1 virion structure

Figure 1.3 A: The immature HIV-1 virion is shown. The interior-core structure is formed by stable interactions between Gag and Gag-Pol precursors. The different colours show domains that correspond to the mature proteins, formed when PR cleaves these precursors. Trimers of gp120 and gp41 are shown embedded in the lipid membrane.

Figure 1.3 B: The mature HIV-1 virion is shown with cleaved Gag and Pol proteins. The conical core is formed from a hexagonal lattice of CA proteins. Beneath the core resides the dimeric-RNA genome, encapsidated by NC. Several viral-accessory proteins have also been detected in the virus core (not shown; see Table 1.1 for details).
1.5 The early phase of the HIV-1 life cycle

The HIV-1 life cycle is divided into early and late phases (Figure 1.4). The early phase begins with virus entry. The mechanism of HIV-1 entry was thought to be independent of pH and endocytosis (McClure et al., 1988). However, recently Miyauchi et al. tracked single virus particles using live-cell imaging and showed that HIV enters cells via dynamin-dependent endocytosis prior to fusion (Miyauchi et al., 2010). The majority of virions that attach to the cell membrane are endocytosed, but this generally leads to degradation of the virus by the endocytic pathway (Fredericksen et al., 2002, Schwartz et al., 1998). Virus attachment may be facilitated by electrostatic interactions between gp120 and cell-surface proteoglycans (Mondor et al., 1998, Moulard et al., 2000). Additionally, lectin-binding proteins such as dendritic cell-specific ICAM3 grabbing non-integrin (DC-SIGN) bind to mannose type carbohydrates attached to gp120 (ICAM3 stands for intra-cellular adhesion molecule 3) (Geijtenbeek et al., 2000). These interactions enhance virus infection in vitro, but they are not essential for virus entry.

The primary receptor for HIV-1 entry is CD4, which is expressed on T-helper cells, regulatory-T cells, macrophages and dendritic cells (Klatzmann et al., 1984, McDougal et al., 1986). Additionally, the seven transmembrane G protein-coupled chemokine receptors, CXCR4 and CCR5, are critical cofactors required for HIV-1 entry (Alkhatib et al., 1996, Deng et al., 1996, Feng et al., 1996). Transmitted viruses are usually CCR5 tropic (R5), while CXCR4-tropic variants (X4) tend to arise later in infection, although subtype C viruses are rarely CXCR4 tropic (Salazar-Gonzalez et al., 2009). Variants that enter the cell independently of CD4 have been reported, as have isolates capable of binding to alternative chemokine receptors, in vitro, such as CXCR6 and CCR8 (reviewed in (Clapham and McKnight, 2001)). Virus entry is subject to inhibition by NAbs, which are the subject of this thesis. Therefore, structural aspects of virus entry will be described in detail in subsequent sections.
Figure 1.4 Schematic representation of the HIV-1 life cycle

1. Entry
2. Uncoating
3. Reverse Transcription
 a. 5' R U5 PB U3 R 3'
 b. 5' PB U3 R 3' R' U5' RNA
 c. 5' PB PP U3 R U3' R' U5
 d. 5' PB U3 R U5 PB U3' R' U5
 e. U3' R' U5
4. Nuclear Import
5. Integration
6. Transcription
7. Translation (early)
8. mRNA export
9. Translation (late)
10. Assembly
11. Budding
The stages of the HIV-1 replication cycle are shown. The early phase is shaded blue and the late phase is shaded red.

1. The surface subunit of viral Env (gp120) binds to the CD4 host antigen and the CCR5 or CXCR4 chemokine receptor leading to gp41-mediated fusion of virus and cell membranes.

2. The virus core is released into the cytoplasm and MA and CA layers disassemble, releasing the RNA genome.

3. Reverse transcriptase synthesizes DNA while RNase H (also part of RT) digests the RNA template.
 a. tRNA primes transcription of –sssDNA from the 5' PB site
 b. –sssDNA is transported to the 3' PB sequence of viral RNA
 c. Reverse transcription of the full-length minus strand is primed by –sssDNA, while RNAase H degrades the RNA template, sparing the polypurine (PP) tracts.
 d. Plus-strand DNA synthesis is primed from the PP tracts
 e. After removal of all viral RNA and tRNA, the PB sequence of the plus-strand base-pairs with the complementary PB sequence of the minus strand, leading to the synthesis of full-length duplex viral DNA.

4. Viral DNA forms the PIC which is transported into the nucleus through nuclear pores.

5. Viral DNA integrates into the host genome forming the provirus.

6. The initial phase of transcription is initiated by host transcription factors (including NFκB)

7. Fully-spliced viral mRNA translocates to the cytoplasm, leading to translation of Tat and Rev.

8. Viral Tat is required for transcription of full-length viral RNA, while Rev is required to export mRNA to the cytoplasm.

9. Unspliced and partially-spliced viral mRNA is translated to produce Gag, Gag-Pol and gp160.

10. The Gag and Gag-Pol precursors assemble around viral RNA. Trimeric gp160 is cleaved by cellular-furin proteases into gp120 and gp41 subunits, which are transported to the plasma membrane. The cytoplasmic tail of gp41 associates with the MA domain of Gag.

11. Immature virus particles bud from the plasma membrane.
Upon fusion with the host cell membrane, MA dissociates and the core of the virion is released into the cytoplasm (Fassati and Goff, 2001, Zhang et al., 2000). Metastable interactions between CA proteins allow the core to uncoat by a simple dilution effect and secondary to the pH of the cytoplasm (Briggs et al., 2004) and reviewed in (Lehmann-Che and Saib, 2004). The RNA genome is released into the cytoplasm, which leads to the formation of the reverse transcriptase complex (RTC) that consists of viral proteins RT, IN, Vpr and p17 and several host factors (Fassati and Goff, 2001). Reverse transcription is primed by a molecule of transfer RNA (tRNA, lys3) that binds to the primer binding (PB) sequence at the 5’ end of the genome (Mak et al., 1994). Initially, a short product known as minus-strand strong-stop DNA (-ssssDNA) is synthesized by the transcriptase activity of RT, while a second enzyme activity of RT, RNase H, digests the RNA template. Subsequently, -ssssDNA is released from the 5’-end of the genome and is transported to a short repeated sequence (R) at the 3’ end, where it primes reverse transcription of the full-length minus strand (Ghosh et al., 1995, Wohrl and Moelling, 1990, Wang et al., 1994, Klarmann et al., 1997, Driscoll and Hughes, 2000). Short stretches of purines, called polypurine tracts (PPT), escape degradation by RNase H, and serve as primers for the synthesis of plus-strand DNA (reviewed in Telesnitsky and Goff, 1997).

The final product of reverse transcription is a linear, double-stranded (ds) DNA molecule flanked by sequences called long-terminal repeats (LTRs). The dsDNA genome forms the pre-integration complex (PIC) by binding to several host and viral proteins, including IN (Farnet and Bushman, 1997, Miller et al., 1997). The PIC is transported into the nucleus where it interacts with several host proteins including lens-epithelium derived growth factor (LEDGF). Chromatin binds to the PIC through interactions with LEDGF, which results in the targeted integration of the viral genome, usually into active transcription sites of chromosomal DNA (Cherepanov et al., 2003, Maertens et al., 2003). Integration heralds the end of the early phase of the virus life cycle.
1.6 The late phase of the HIV-1 life cycle

The integrated form of the virus is known as the provirus. The 5’ LTR contains elements that bind to cellular transcription factors that promote RNA-pol II dependant transcription, while the 3’ LTR overlaps *nef* and is responsible for transcription termination. During the early phase of transcription, fully-spliced viral RNA transcripts translocate from the nucleus to the cytoplasm for expression of Nef, Rev and Tat. An RNA stem loop in the 5’ LTR, known as the trans-acting responsive element (TAR), binds to viral Tat protein, which promotes transcription of full-length mRNA (Karn, 1999). Unspliced and partially-spliced mRNA transcripts encoding the structural precursors Env, Gag, and Gag-Pol are transported from the nucleus by Rev, which binds to another RNA stem loop in *env*, known as the Rev-response element (RRE) (Malim *et al*., 1990) (Figure 1.4).

The uncleaved MA domain of Gag binds to phosphatidylinositol-(4,5)-bisphosphate in the plasma membrane. This interaction is thought to expose N-terminal myristate moieties of Gag that anchors the precursor into the phosphor-lipid membrane, specifically within microdomains known as lipid rafts (Saad *et al*., 2006). Viral RNA is encapsidated by Gag through interactions between zinc-finger domains in NC that bind to structurally-conserved RNA stem loops that constitute the psi site (ψ). The process of RNA encapsidation serves as a scaffold for CA-mediated multimerization of Gag and Gag-pol around the dimeric genome (Muriaux *et al*., 2001). Virus assembly ends with budding of the virus particle from the plasma membrane, which is facilitated by host-derived endosomal sorting machinery including the clathrin adapter complex and the endosomal sorting complex required for transport (ESCRT-I), which localize to the site of virus assembly through interactions with p6 and MA, respectively (Camus *et al*., 2007).

Gag alone is sufficient to produce virus particles, but the formation of infectious virions requires the incorporation of Env glycoproteins. Both gp120 and gp41 are cleaved by the cellular protease, furin, from the 160 kDa trimeric-precursor, gp160, which is encoded by HIV-1 *env* and translated on endoplasmic-reticulum-bound polyribosomes (Allan *et al*., 1985, Hallenberger *et al*., 1992, Veronese *et al*., 2007).
Oligosaccharides are attached to gp120 and gp41 by host cellular machinery in the ER and Golgi. Specifically, these are linked to asparagine side chains in amino acid sequences NXS or NXT, where the second residues can be any amino acid except proline. This sequence is known as a glycosylation sequon. In primary CD4⁺ T cells and macrophages, interactions between the cytoplasmic tail of gp41 and the MA domain of Gag are essential for Env incorporation. However, truncation of the gp41 cytoplasmic domain has little effect on the infectivity of virions produced in some cell lines (eg. HeLa), suggesting that Env may also be incorporated in a non-specific manner. The host factor, TIP47, probably acts as co-factor for Env incorporation, since this protein has been shown to bind gp41 and MA (Lopez-Verges et al., 2006).

1.7 Structural features of the HIV-1 Envelope glycoproteins that facilitate virus entry.

Sequence analyses of diverse HIV-1 strains demonstrate that gp120 is divided into five variable regions and five conserved regions (Starcich et al., 1986). Kwong et al. solved the X-ray crystal structure of the gp120 core in complex with the two N-terminal domains of CD4, which revealed gp120 has two domains linked by a bridging sheet and held together by seven disulphide bridges (Figure 1.5 A). The N-terminus of the inner domain interacts with gp41 (Figure 1.5 B), while the outer domain forms the exposed face of the envelope trimer (Kwong et al., 1998) (Figure 1.5 C). The gp41 subunit consists of an N-terminal hydrophobic fusion peptide (FP), two heptad repeats (N-HR and C-HR), a transmembrane domain and a cytoplasmic tail. In solution, peptides consisting of the N-HR and C-HR domains naturally form trimeric structures consisting of coiled coils of alpha-helices known as six-helix bundles. Strong associations between the ectodomains of gp41 are largely responsible for the trimeric arrangement of Env. (Chan et al., 1997, Weissenhorn et al., 1997). The primary HIV-1 receptor, CD4, consists of four immunoglobulin-
Figure 1.5 Structure of HIV-1 envelope
Figure 1.5 A: The atomic-level crystal structure of the gp120 core is shown (2.5 Å). This structure was solved by Dr Peter Kwong in 1998 (Kwong et al., 1998). The structure was obtained from crystals of gp120, the N-terminal domains of CD4 (D1-D2) and a Fab fragment from neutralizing antibody, 17b. The gp120 core has deletions at the N and C termini and at the V1/V2 and V3 loops. The positions of the N-linked glycans are highlighted with red spheres. The structure was downloaded from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and PyMol software was used to construct ribbon diagrams and highlight domains. Only the gp120 core is shown; the CD4 domains and Fab fragment of 17b are hidden. (PDB ID: 1GC1)

Figure 1.5 B: The crystal structure of the gp120 core bound to CD4 (D1-D2) and the 17b Fab fragment is shown superimposed on a 3 dimensional cryo-electron tomogram, solved by Liu et al. (20 Å) (Liu et al., 2008). The image is available in the cryo-electron microscopy data bank (EMDB ID: 3DNN).

Figure 1.5 C: The relative positions of each gp120 monomer within an unbound Env trimer are shown. The colour scheme is the same as for Figure 1.5A (PDB ID: 3DNN) (Liu et al., 2008).

Figure 1.5 D: The relative positions of each gp120 monomer within a CD4-bound Env trimer are shown. The binding of gp120 to CD4 causes each monomer to rotate by approximately 45°. (PDB ID: 3DNO) (Liu et al., 2008).

All structures are taken from the RCSB protein and electron microscopy data banks in accordance with the terms of use stated on the website (www.pdb.org) (Berman et al., 2000)
like extracellular domains with a flexible hinge separating domains three and four (Littman et al., 1988, Maddon et al., 1985, Wu et al., 1997). The amino terminal domain (D1) interacts with the conserved CD4-binding site on gp120, which consists of residues that are discontinuous in the primary amino acid sequence. Part of the CD4-binding site is recessed into the gp120 core, while other parts are more exposed, especially the CD4-binding loop formed from the α-3 helix and the β-15 strand (Figure 1.5 A) (Kwong et al., 1998, Chen et al., 2005). In its unbound state, the CD4-binding sites are situated on top of the trimer and are protected by the V1/V2 loops and N-linked carbohydrate moieties.

Upon binding to CD4, gp120 undergoes a conformational change in its tertiary structure. Specifically, the β-20 and β-21 strands re-orientate to stabilize the bridging sheet and the CD4-binding loop dislocates to make contact with CD4 (Huang et al., 2005, Kwong et al., 2000, Kwong et al., 1998). Cyro-electron tomography, in conjunction with X-ray crystallography, has shown how CD4 binding affects the quaternary and tertiary conformations of Env trimers. Binding to CD4 causes each gp120 monomer to rotate by approximately 45 degrees which places the gp41 stalk in close proximity to the target cell membrane (Figure 1.5 D). Concomitantly, the V3 loop is repositioned to point directly toward the target cell, readying it for chemokine receptor binding (Liu et al., 2008).

Binding of gp120 to CCR5 or CXCR4 transduces a conformational change in gp41 that causes the FP to penetrate the outer leaflet of the target-cell membrane (Liu et al., 2008, Dimitrov et al., 2005). This results in the formation of a pre-hairpin intermediate, which connects the virus with the target cell. Subsequently, gp41 rearranges to form six-helix bundles that results in the formation of fusion pores and the merger of viral and cellular membranes (Markosyan et al., 2003, Melikyan et al., 2000).
1.8 Antibody structure and function

Antibodies are immunoglobulins that are the secreted form of the B cell receptor (BCR). All immunoglobulins consist of multimeric complexes of two proteins known as the heavy (H) and light (L) chains. There are two types of light chain (κ and λ) and five types of heavy chain (μ, δ, γ, α, and ε) that define the major antibody isotypes (IgM, IgD, IgG, IgA and IgE, respectively) (Edelman, 1991). The IgG isotype has two heavy chains that each consist of an N-terminal variable domain and three constant domains with a flexible hinge linking domains two and three. Disulphide bonds attach each heavy chain to a light chain consisting of one variable and one constant domain. This configuration produces a characteristic Y-shaped antibody molecule. A constant domain consisting of the heavy chains only constitute the Fc portion, while the two arms of the ‘Y’ shaped molecule are known as the Fab portions.

Loops protruding from the variable domains of each Fab portion form the complementary-determining regions CDR1, CDR2 and CDR3. In total, six CDRs (three from each heavy and light chain) make up the antigen-binding site, or paratope, of each Fab portion (Saphire et al., 2001). The chemical composition and electrostatic properties of the paratope determine its specificity for particular epitopes (antigenic determinants) (McCoy et al., 1997). Specificity is also a function of “shape complementarity” that defines how well epitope and paratope structures fit together (Lawrence and Colman, 1993) and reviewed in (Epa V.C. and Colman P.M., 2001).

1.9 The production and function of antibodies are both linked to the same variables: functional affinity and antigen concentration

Immature B cells express membrane-bound IgM monomers in complex with invariant Igα and Igβ proteins that together form the B cell receptor complex (BCR). During early B cell development, gene segments encoding the immunoglobulin variable domains (designated V, D and J) undergo somatic recombination involving a complex of enzymes that includes proteins encoded by the recombination
activating genes RAG1 and RAG2 (Agrawal and Schatz, 1997). Consequently, immature B cells carry diverse BCRs that bind differentially to antigens such as HIV-1 Env. Antigen binding cross-links BCR complexes and transduces signals through immuno-receptor tyrosine based activation motifs (ITAM) located on the cytoplasmic tails of Igα and Igβ proteins, which leads to the differentiation of B cells (Cornall et al., 2000). Alternative splicing of mRNA results in modifications to the immunoglobulin heavy chain and the synthesis and secretion of soluble IgM, which is the major isotype of primary immune responses. Subsequent differentiation to memory B cells and plasma cells involves further modifications to the H chain that switches protein expression from IgM to IgG; a process that requires direct contact with CD4+ T helper cells (Aruffo et al., 1993).

Immunoglobulin variable domains are modified further by a process known as affinity maturation, whereby activation induced cytidine deaminase (AID) introduces mutations that alter the affinities of BCRs. Those B cell clones that express mutated BCRs with high affinity to antigen are selected, while BCRs that lose affinity to antigen cease to transduce survival signals, causing the B cell to die by apoptosis (Clarke et al., 1985, Petersen-Mahrt et al., 2002). The antigen-dependent stages of B cell maturation occurs at sites in the lymphoid tissue known as germinal centres and involves Follicular dendritic cells (FDCs) and CD4+ T cells (Schwickert et al., 2007). Follicular helper T cells (Tfh) that express CD4 and the CXCR5 chemokine receptor play a critical role in forming germinal centres by expressing cytokines IL-4 and IL-21 (Breitfeld et al., 2000). Interactions between the BCR and cognate antigen, as well as interactions between the CD40 antigen of B cells and the CD40 ligand of CD4+ T cells, are both required for antibody isotype switching, affinity maturation and B cell proliferation. If either of these interactions is absent the B cell will die by apoptosis. The outcome of affinity maturation is the production of antibodies that bind strongly to antigen.
The strength of association between immunoglobulins and antigen, HIV-1 Env for example, is defined by the intrinsic affinity of monovalent interactions and the avidity of multivalent interactions. The interaction between monovalent antibody paratopes (P) and antigen epitopes (E) that forms epitope-paratope complexes (PE) can be defined by the following equilibrium equation:

1. \[P + E \rightleftharpoons PE \]

At equilibrium the association rate of P and E equals the dissociation rate of PE such that concentrations P, E and PE remain constant. Thus, at equilibrium, concentrations of P, E and PE are related to the association equilibrium constant (\(K_a\)), by the Law of Mass Action:

2. \[K_a = \frac{[PE]}{[P][E]} \]

Equation 2 indicates that the concentration of PE at equilibrium is proportional to the concentration of P and E and the affinity of the interaction (reviewed in George et al., 1997). Importantly, the Law of Mass Action governs the interactions between viral antigen and BCRs and also the interaction between antibodies and viral antigen. When an immature B cell is exposed to a novel antigen the proportion of BCRs that will become cross-linked will depend on the functional affinity (avidity) of the BCR to the antigen and the concentration of that antigen. However, in chronic HIV-1 infection, antibody is normally present in vast molar excess over viral antigen (Klasse and Moore, 2004), therefore, the proportion of viral epitopes bound as equilibrium is approached, approximately depends on the avidity of the interaction and the concentration of the antibodies.

The relationship between intrinsic affinity and avidity is non-additive because of co-operative effects involving distinct binding sites. The degree of co-operativity that produces this synergy depends upon the relative spatial distributions of the epitopes and paratopes, and also the entropic penalty incurred by stabilizing Fab domains and envelope conformations that are otherwise free to move (reviewed in
A case in point: Torsional flexibility afforded by the IgG3 hinge region results in higher levels of HIV-1 neutralization than IgG1 molecules bearing the same Fab portions. This was originally attributed to increased steric hindrance afforded by the larger Fc portion of IgG3 (Cavacini et al., 1995). However, Scharff et al. demonstrated that hinge flexibility was more important. In these experiments, polyclonal IgG1 and IgG3 antibodies were digested with papain to produce monovalent Fab fragments and with pepsin to generate divalent F(ab’)_2 fragments (covalently linked by a disulphide bond, but lacking the heavy chain Fc portion). The F(ab’)₂ fragments of IgG3 neutralized more efficiently than those of IgG1, while Fab fragments derived from both isotypes neutralized similar amounts (Scharf et al., 2001).

1.10 Structural features of Env that limit binding to antibodies and BCRs

The human immunodeficiency virus has evolved several mechanisms that allow functional Env trimers to avoid high affinity interactions with immunoglobulins. Structurally-critical sites in HIV-1 envelope are conserved amongst successive generations of the virus quasispecies. However, other sites in Env exhibit structural plasticity and accommodate mutations without affecting Env functionality. Genetic diversity of HIV-1 is greatest in the envelope gene, which can differ by 20% between viruses from the same clade and by up to 35% between viruses from separate clades (Los Alamos HIV-1 sequence database). Mutations commonly arise because mechanisms that replicate HIV-1 genetic material are highly prone to error (Preston et al., 1988). Additionally, HIV-1 RT can “jump” between strands of the dimeric RNA genome, resulting in high rates of recombination (Jetzt et al., 2000). Mutations in Env accumulate over the course of infection, particularly in the variable loops. Consequently, antibodies that neutralize virus by binding to non-conserved sites rapidly select escape variants (Richman et al., 2003, Wei et al., 2003). Several structural features of HIV-1 envelope protect the conserved sites from binding to antibodies.

I. The gp120 core is shielded by N-linked glycans (Wei et al., 2003).
II. Structurally conserved sites are sterically hindered within the gp120 core, while other sites are occluded within the Env trimer. (Labrijn et al., 2003)

III. Conformational epitopes, such as those induced by interactions with CD4, are only transiently exposed, which provides a short-kinetic window for antibody binding.

IV. Antibodies that bind to conformational epitopes incur an entropic penalty which limits the strength of antibody binding by conformational masking (Kwong et al., 2002).

The latter mechanism of antibody escape is determined by the thermodynamics of antibody binding to HIV-1 Env. The free energy that corresponds to the binding affinity of an epitope-paratope interaction has two components. The first component is enthalpy, which corresponds to the internal energy of covalent and non-covalent bonds. The second component is entropy, which acts to disrupt the order imposed by these bonds. Antibodies that bind to the receptor binding sites of gp120 must stabilize the highly flexible structure and induce unfavourable changes in entropy and compensatory changes in enthalpy. Consequently, affinity-guided selection of antibodies favours epitope-paratope interactions that do not incur entropic penalties. This includes epitopes on monomeric gp120 that are not present within native envelope trimers and are therefore non-neutralizing (Kwong et al., 2002).

1.11 Antibodies that circumvent the structural defenses of Env

In spite of the evolving structural defenses of HIV-1 envelope glycoproteins, most chronically infected patients produce antibodies that neutralize virus, in vitro, to some extent (Deeks et al., 2006b). There is considerable variation in the neutralizing efficacy of antibody responses between patients, and a minority develop antibodies capable of inhibiting a diverse range of virus isolates. Investigations of these patients have occasionally led to the discovery of monoclonal antibodies with potent neutralizing activity. Most of these NAbs have unusual structural features that circumvent the structural defences of HIV-1 Env. These antibodies can be divided into categories defined by the following epitopes:
I. Epitopes overlapping the CD4 binding site (CD4bs).

II. Conserved motifs within the variable loops.

III. High-mannose moieties of N-linked carbohydrates.

IV. CD4 induced (CD4i) epitopes (ie. the co-receptor binding site).

V. Epitopes in gp41.

VI. Epitopes that are only exposed on Env trimers.

Antibodies b12 (Burton et al., 1994), m14 (Zhang et al., 2004b) and VRC01 (Zhou et al., 2010) all target the CD4bs. Atomic level structures have revealed that b12 and m14 have unusually long heavy-chain CDR3 loops (HCDR3) that are the product of atypical V(D)J recombination events (Saphire et al., 2001). It was thought that these protruding loops were required to access a recessed cavity in the CD4bs; however, crystal structures of b12 in complex with gp120 core demonstrated that this was not the case. Interestingly, only the heavy chain of b12 makes contact with gp120 and the long HCDR3 loop separates the envelope from the light chain CDRs (Zhou et al., 2007). Thus, the b12 epitope is restricted to conserved residues in and around the CD4bs. It remains to be seen whether this is true for the other CD4bs antibodies.

The co-receptor binding site is highly conserved and is the target of neutralizing antibodies 17b, X5 and 48d. The binding affinities and the neutralizing activities of these antibodies increase in the presence of soluble CD4 (Moulard et al., 2002). Antibodies 17b and X5 also have long HCDR3 loops that include acidic residues to mimic the N-terminal gp120-binding domain of CCR5. Additionally, sulphated tyrosines in the CDR3 region mimic post-translational modifications of the CCR5 receptor (Huang et al., 2004). Fab domains of 17b, X5 and 48d bind and neutralize virus better than whole IgG, suggesting that the Fc domains pose steric constraints that limit access to the coreceptor binding site of CD4-bound Env (Labrijn et al., 2003).
Steric constraints may also limit antibody access to the gp41 domain. Neutralizing antibodies 2F5 and 4E10 have been shown to bind to the membrane proximal external region (MPER) of gp41 and have long hydrophobic HCDR3 domains that bind to lipid moieties in the cell membrane. This autoreactivity is essential for neutralizing activity, but non-essential for gp41 binding. Ontogenic analyses of murine B cells have revealed that autoreactivity precedes Env-specificity in the development of MPER-specific antibodies (Barton Hayes; presented at Keystone 2010, abstract #X5006), suggesting that self-reactivity of immunoglobulin BRCs may be important in the development of this type of antibody response. Another example of partial autoreactivity has recently been demonstrated for the CD4i antibody 21c. Crystal structures demonstrated that this antibody contacts both the CD4 antigen and the CCR5 coreceptor binding site of gp120 (Diskin et al., 2010).

High mannose moieties within carbohydrates are the targets of antibody 2G12 (Scanlan et al., 2002). Carbohydrates are attached to the envelope glycoprotein by host cellular machinery and are generally not immunogenic. However, 2G12 has a unique structure whereby the two VH domains are interlocked producing a single paratope consisting of four variable domains (Calarese et al., 2003). The neutralizing activity of this antibody is highly potent, yet attempts to elicit 2G12-like antibodies by vaccination have so far proved unsuccessful.

As mentioned, the majority of antibodies targeting the variable loops rapidly select escape mutants at minimal expense to viral fitness. Consequently, the neutralizing activity of these antibodies is generally restricted to the autologous virus that primed the original response. However, V3 contains a conserved motif at its crown (GPG(R/Q)) which is the target of NAb, 447-52D. Additionally, 447-52D has been shown to interact with atoms on the amino acid main-chain of V3, which facilitates binding to diverse strains (Stanfield et al., 2004). The majority of clade B isolates have GPGR sequences. By contrast, the
majority of clade C isolates have GPGQ motifs at the same position and are generally resistant to neutralization by this antibody.

Two recently discovered antibodies, PG9 and PG16, have been shown to bind preferentially to Env trimers and potently neutralize approximately 80% of HIV-1 isolates from all clades (Walker et al., 2009). Crystal structures of these antibodies have revealed long CDR3 loops with sulphated tyrosine residues (Pancera et al., 2010). Mutagenesis analyses suggest that PG9 and PG16 bind to epitopes on gp120 formed from conserved parts of V2, V3, the V1/V2 stem and part of the co-receptor binding site. Inducing antibodies that target trimeric envelope is a desirable outcome of HIV-1 vaccination because antibodies that bind to monomeric gp120, without binding to oligomeric envelope, are non-neutralizing (Moore et al., 1995).

Passive infusions of neutralizing antibodies have been shown to protect macaques against chimeric SIV viruses that express the HIV-1 envelope (SHIV) (Baba et al., 2000, Emini et al., 1992, Mascola et al., 1999, Mascola et al., 2003, Mascola et al., 2000, Putkonen et al., 1991, Zhang et al., 2004a). This has placed a considerable emphasis on the immunogenic potential of the HIV-1 envelope glycoprotein and its capacity to elicit cross-reactive NAbs. It is not the NAbs per se that the field aims to identify, rather the cognate epitopes to which they bind. However, the unusual antibody structures and post-translational modifications of these antibodies are rarely found in vivo, and attempts to elicit them have so far failed. For this reason, the CD4bs specific antibody, VRC01, holds considerable promise because its structure is the product of normal V(D)J gene arrangements. Notably, VRC01 has an affinity and neutralizing potency that rivals all other HIV-1 specific antibodies, suggesting that induction of potent NAbs by vaccination is a realistic possibility. Work is currently underway to use antibodies, such as VCR01, as structural-scaffolds and selective-agents for the design of relevant immunogens by techniques collectively termed reverse-engineering (Kwong et al: presented at HIV Vaccines, Keystone, 2009: X5011)
In spite of occasional discoveries of unusually potent NAbs, the majority of HIV-1 infected patients do not possess single NAb clones with high levels of neutralizing activity. However, broad and potent neutralizing activity can be achieved from many partially-effective antibodies (Scheid et al., 2009). Since part of this thesis investigates the role of HIV-1 specific antibody responses that arise under ordinary circumstances, the mechanisms that contribute to neutralization in the majority of cases needs further discussion.

1.12 Mechanisms of virus neutralization

Dimmock makes the distinction between neutralization and virus inactivation (Dimmock, 1984). The former involves virus-antibody interactions that lead directly to reductions in infectivity, while the latter involves secondary factors such as complement or cells that act in concert with antibodies to eliminate virus. Sattentau and Klasse define neutralization as all virus-antibody interactions that result in losses of infectivity, but they excluded inhibition by antibodies that bind to receptors on the cell-surface (Sattentau and Klasse, 2001). However, this definition is perhaps no longer appropriate since NAb 21c has been shown to neutralize by binding gp120 and CD4 simultaneously (Diskin et al., 2010). For the purpose of this thesis, neutralization is defined as all antibody-virus interactions that lead to virus inhibition. Particular mechanisms cannot be precluded unless they can be empirically confirmed not to participate.

Neutralizing activity has been detected with antibodies that bind to MHC and ICAM-1 receptors incorporated within virus particles upon budding from the cell membrane (Arthur et al., 1995, Losier et al., 2003). Although ICAM-1 has been implicated in virus attachment, there is no evidence that MHC augments virus entry, so why should MHC-specific antibodies neutralize? It is suggested that immunoglobulins, which are large molecules approximately 12.5 nm in length, inhibit virus attachment through steric hindrance. In a study by Parren et al., half-maximal neutralizing titres of antibodies were
shown to match half-maximal binding titres to HIV-1 Env, confirming that functional affinity and antibody concentration were critical determinants of neutralization (Parren et al., 1998). This was true for all antibodies tested, irrespective of the whether the cognate epitope was a conserved region involved in virus entry, such as the receptor binding sites, or a carbohydrate motif. In light of these data it has been suggested that sufficient levels of antibody binding to Env is all that is required to inhibit infection (Burton et al., 2001). Why then, are some HIV-1 Env-binding antibodies incapable of neutralizing?

An antibody will fail to neutralize if it cannot occupy enough sites on the surface of functional virus envelope trimers to prevent virus entry. Thus, neutralization follows a “multi-hit” model, which dictates that more than one antibody is required to inhibit entry of a single virion (Della-Porta and Westaway, 1978). By measuring antibody neutralization of viruses with mixtures of neutralization-sensitive and neutralization-resistant envelope glycoproteins, Yang et demonstrated that all trimers need to be bound in order to neutralize the virus and that each trimer is inactivated when bound to a single antibody (Yang et al., 2005). This was true for nine antibodies with different specificities to epitopes in Env.

The relationship between epitope occupancy and neutralization is further corroborated by the observation that non-neutralizing antibodies that bind to epitopes overlapping the b12 binding site, do not interfere with the neutralizing activity of b12 (Herrera et al., 2003). However, the same non-neutralizing antibodies were shown to have higher binding affinities than b12 for envelope proteins on the surface of infected cells, so why do these non-neutralizing antibodies fail to reach the occupancy threshold required to neutralize the virus, and why do they not compete with b12 for binding to Env?

The answer may be that these non-neutralizing antibodies bind to epitopes that are not present on functional envelope trimers, but are present on uncleaved gp160 trimers and monomeric gp41/gp120 envelope proteins. Monomeric, non-functional envelope glycoproteins have been detected on the surface of virus particles and infected cells, and it has been suggested that these proteins stimulate the production of antibodies that are non-neutralizing (Moore et al., 2006) (Figure 1.6).
Figure 1.6 Models of neutralizing and non-neutralizing antibodies

A. Neutralization pre-attachment

B. Neutralization post-attachment

C. Low affinity insufficient occupancy

D. Epitope not exposed on Env trimer
Figure 1.6 Models of neutralizing and non-neutralizing antibodies

A. Antibodies neutralize HIV-1 by binding to all envelope trimers on the surface of the virus, thus blocking attachment to the host-cell receptors. Antibody 2G12 has been shown to bind to high mannose carbohydrates. Carbohydrate-specific antibodies are rarely found \textit{in vivo}.

B. Antibodies can neutralize virus by binding to epitopes exposed on Env at a post-attachment stage of virus entry.

C. Low affinity antibodies that do not exceed the occupancy threshold required for neutralization will not block virus entry.

D. Antibodies that bind to soluble gp120 or gp41/gp120 monomers on the surface of the virion, but not to functional Env trimers, will not neutralize the virus.
Antibodies that block the initial adsorption of virus to cells will neutralize. However, this is not the only mechanism of neutralization. For instance, antibodies 2F5 and 4E10 do not block HIV-1 attachment, and neutralize by blocking later stages of virus fusion (Binley et al., 2003). Additionally, antibodies have been shown to alter Env conformation on binding, which can lead to dissociation of gp120 from gp41 (Poignard et al., 1996), thus lowering the occupancy threshold required for neutralization. There is some controversy as to whether an antibody can bind to fusion-competent envelope trimers without inhibiting the function of these trimers (Herrera et al., 2003, York et al., 2001). York et al. detected binding of non-neutralizing antibodies to envelope glycoproteins from neutralization-resistant primary isolates suggesting that different neutralization sensitivities do not relate to levels of antibody binding (York et al., 2001). However, this study did not distinguish between antibody interactions with functional and non-functional envelopes. The carbohydrate specificity of antibody 2G12 provides additional evidence that the precise epitope location may be important in determining levels of neutralization. Multiple N-linked glycans contribute to the 2G12 epitope and mutating each of these individually has been shown to variably affect levels of neutralization, suggesting that the position of these glycans is important in determining whether they mediate neutralization or not (Scanlan et al., 2002).

Nevertheless, studies have demonstrated that binding-affinity and epitope occupancy, are strong determinants of neutralization, in vitro (Yang et al., 2006, Parren et al., 1998). The situation in vivo is complicated by the fact that polyclonal responses consist of NAbs with diverse specificities that, together, may exceed the occupancy threshold required for neutralization, even if individual low-affinity antibody clones cannot, by themselves, neutralize.

In summary, antibodies will neutralize if they block virus attachment to host cells. Additionally, antibodies that bind to Env at post-attachment stages of virus entry can also block virus entry. It is clear that antibody affinity and antibody concentration are critical determinants of epitope occupancy, but it
is less clear whether these are the only factors that contribute to mechanisms of virus neutralization, *in vivo*.

1.13 Non-neutralizing roles of antibody in HIV-1 infection

The constant Fc part of the antibody molecule binds to the Fcγ family of receptors expressed on the surface of phagocytes, monocytes, neutrophils, B lymphocytes, natural killer cells (NK), follicular dendritic cells (FDCs), and myeloid and plasmacytoid dendritic cells. Antibodies that cross-link virus form immune complexes which bind to Fcγ receptors on FDCs. These FDC-bound immune-complexes maintain virion infectivity for long periods *in vivo* and *in vitro*. Thus, FDCs may cooperate with non-neutralizing antibodies to enhance virus infection (Smith-Franklin *et al.*, 2002).

Several classes of Fcγ receptors have been defined. All but one of these have cytoplasmic tails with immuno-receptor tyrosine-based activation motifs (ITAM) (Takai, 2002). Interactions between the Fc part of neutralizing antibodies and Fcγ receptors has been shown to augment virus-neutralization by 100-1000 fold in cultures of monocytes or dendritic cells, possibly by promoting endocytosis and degradation of virus in acidic lysosomes (Holl *et al.*, 2006) (Figure 1.7). This mechanism of Fc-dependant virus-neutralizing could be important in the acute stages of infection because dendritic cells and macrophages are some of the first cells to contact HIV-1 following transmission. Virus particles that are endocytosed by antigen-presenting cells (APCs) are processed into peptides then presented to CD4⁺ T cells in complex with MHC class II receptors. This process serves as an important link between humoral and cellular immune responses, because CD4⁺ T cells are required for the development of HIV-1 specific NAb responses and CTL responses. Interestingly, antibodies that bind to the CD4bs of gp120 have been shown to inhibit MHC class II restricted antigen presentation, possibly by stabilizing gp120 conformations and inhibiting proteolysis (Tuen *et al.*, 2005).
Figure 1.7 Effector functions of antibodies that involve Fcγ receptors and cellular immune responses

Figure 1.7: The Fcγ receptors bind to the Fc portion of antibodies. Fc:Fcγ receptor interactions have been shown to enhance neutralization of virus infection of phagocytes such as monocytes and dendritic cells, in vitro. HIV-1 infected CD4+ T cells express viral-envelope glycoproteins. Antibodies that bind to Env cross-link Fcγ receptors expressed on NK cells, which stimulates the release of cytoplasmic granule toxins (perforin and granzyme) and β-chemokines, leading to mechanism of ADCC and ADCVI, respectively.
Antibodies that bind to Env expressed on the surface of infected cells cross-link FcγRs expressed on NK cells, macrophages, neutrophils and γδ T cells, which leads to targeted cell killing, in vitro. Antibody-depant cell-mediated cytotoxicity (ADCC) has been shown to correlate with NK cell degranulation measured by expression of the CD107a antigen (Chung et al., 2009). Additionally, NK cells may also contribute to mechanisms of antibody-depant cell-mediated virus inhibition (ADCVI), whereby Fcγ receptor cross-linking leads to the production of β-chemokines that inhibit HIV-1 replication without killing the infected cell (Forthal et al., 2005) (Figure 1.7)

1.14 Assays of HIV-1 neutralization

This thesis focuses on neutralizing antibody responses that develop in HIV-1 infected patients. Therefore, a suitable neutralization assay was required to measure the neutralizing activity of antibodies present in plasma samples derived from patients. Assays that measure neutralization in vitro are tissue culture systems consisting of the following components: antibody, target cell, and virus. Additionally, each assay requires a suitable end-point measure of virus infection. The choice of neutralizing agent is straightforward and depends on the scientific objective. Monoclonal antibodies that bind to known epitopes in Env are typically used to characterize neutralization phenotypes of virus isolates. Conversely, neutralization assays can be used to characterize the breadth and potency of polyclonal antibodies in plasma or sera derived from HIV-infected or vaccinated individuals.

Differences in target cell phenotype can affect levels of neutralization detected in vitro, as can properties of the virus that are unrelated to Env structure. Given the importance of neutralization assays to the development of HIV-1 vaccines, standardization and validation is critical if they are to provide biologically relevant data. To this end, an international collaboration, named NeutNet, was setup in 2004 to evaluate different neutralization assays by means of inter-laboratory comparisons using standardized reference reagents (Fenyo et al., 2009). The authors concluded the following:
“no single assay can be recommended for the measurement of HIV-1 neutralization because the assay results vary significantly depending on both the virus and the reagent used”

Clearly, the choice of neutralization assay is not trivial. The following sections (1.15 and 1.16) discuss how the phenotype of the virus and the target cell can influence levels of neutralization detected in vitro.

1.15 Virological factors that affect neutralization in vitro

Early neutralization assays used viruses that were adapted to grow in immortalized T cell lines (Robert-Guroff et al., 1985). Most of these T cell line adapted (TCLA) viruses use the CXCR4 co-receptor. Extensive passage of HIV-1 in the absence of NAbs has been shown to select variants that are highly sensitive to neutralization. This has been attributed to “open” envelope conformations that expose epitopes, particularly in V3, that are usually not exposed on functional-trimeric envelopes of primary isolates (Beddows et al., 1998, Moore et al., 1995, Malenbaum et al., 2000). Additionally, TCLA viruses are more likely to shed gp120 from functional trimers, thus lowering the site occupancy threshold required for neutralization (Poignard et al., 1996). For these reasons, TCLA viruses are poorly representative of the majority of field isolates, yet are still used to screen patient sera for low levels of neutralizing activity (Seaman et al., 2010).

In order to study patient viruses, assays were developed to detect virus neutralization in peripheral blood mononuclear cell (PBMC) cultures (Mascola, 1999). By this method, infectious virus is isolated from plasma or infected cells by co-culture with mitogen-stimulated PBMCs derived from healthy donors. Infection is usually measured from levels of p24 by enzyme-linked immunosorbant assays (ELISA). However, levels of p24 in tissue-culture supernatant may not reflect quantities of virus particles, because p24-antigen is shed from infected cells. Alternatively, RT activity can be quantified from viral
lysates derived from culture supernatants. Unlike p24 antigen, HIV-1 RT activity has been shown to be associated with whole-virion production (Fernie et al., 1991).

Primary isolates are generally less sensitive to neutralization than TCLA strains and are considered to be more biologically relevant. However, there are several disadvantages associated with using wild-type PBMC-cultured virus. Firstly, the act of culturing virus rapidly selects variants with differing neutralization sensitivities (Spira and Ho, 1995, Voronin et al., 2007). Secondly, it is difficult to identify genetic correlates of neutralization from diverse molecular quasispecies. Finally, the phenotype of PBMCs used to culture the virus may vary between donors and is subject to the conditions of cell culture. Since virus phenotype reflects that of the producer-cell membrane, differences in the incorporation of host proteins can lead to inconsistencies in virus titre and neutralization sensitivity (Hioe et al., 1998, Bounou et al., 2004). These factors limit the reproducibility of neutralization assays that use primary HIV-1 isolates, which has led to the development of alternative systems that use molecularly cloned viruses expressed in mammalian cell lines.

Mammalian cell lines transfected with cloned envelope genes, cis-linked to downstream transcription promoters, express functional envelope proteins. These proteins are incorporated within virus-like particles by co-transfecting a second plasmid, encoding the remaining HIV-1 genes. Transfected envelope genes lack LTRs that are required to bind viral integrase (Balakrishnan and Jonsson, 1997). Consequently, the envelope gene does not integrate and Env-pseudotyped viruses (pseudoviruses) are capable of only a single infectious cycle (Wei et al., 2003). In contrast to the evolving quasispecies of primary HIV-1 isolates, clonal envelope plasmids used to construct pseudoviruses are relatively stable. For this reason, pseudoviruses constructed with sequenced envelope clones are useful tools for mapping epitopes targeted by NAbs (Seaman et al., 2010).
Although pseudoviruses are useful models of wild-type HIV-1, they are structurally distinct in ways that can influence virus infectivity and neutralization-susceptibility. Louder et al. demonstrated that a single passage of molecularly cloned virus through mitogen-stimulated PBMCs led to a significant reduction in sensitivity to NAbs. Interestingly, viruses isolated directly from 293T cells were shown to incorporate significantly fewer envelope trimers than PBMC-passaged viruses, which may explain the differences observed (Louder et al., 2005). In contrast to these findings, Provine et al. demonstrated that levels of Env-incorporation in molecularly cloned virions had minimal impact on the sensitivity to neutralizing antibodies (Provine et al., 2009).

Comparative studies have suggested that pseudovirus assays are generally more sensitive at detecting neutralization than assays using replication competent virus, although each type of assay uses different cells to measure infection, making it difficult to delineate the true cause for these discrepancies (Fenyo et al., 2009, Polonis et al., 2008). To address this problem, Heyndrikx et al. compared the neutralizing effects of virus entry inhibitors with Env-pseudotyped viruses and replication competent HIV-1 stocks in PBMCs and reported that pseudoviruses were, on the whole, more readily neutralized than wild type viruses (Heyndrickx et al., 2008).

1.16 Target cell factors that affect neutralization in vitro

Most of the immortalized T cells do not express CCR5 and are limited to investigations of X4-tropic variants. In contrast, a wider range of clinical isolates can be assessed using mitogen-stimulated PBMCs that more closely resemble the natural targets of HIV-1. The physiological relevance of the PBMC assay is demonstrated by its capacity to predict quantities of NAbs that protect macaques from subsequent challenge with SHIV (Mascola et al., 2000). Nevertheless, PBMC-based assays are labor intensive and require a constant supply of cells from healthy donors. Therefore, reporter-cell lines are required for
many applications that require high-throughput neutralization screening or in situations where primary HIV-1 isolates are not available.

The TZM-bl reporter cell line is widely used to assess neutralization of Env-pseudotyped viruses. This cell line, also known as JC53BL-13, was derived from a sub-clone of JC-53, which is a CD4+ Hela cell line (HI-J) transduced with a retroviral vector encoding CCR5. HeLa cells endogenously express CXCR4, in fact a cDNA library derived from HeLa cells was used in the discovery of CXCR4 as a co-factor for HIV-1 entry (Feng et al., 1996). Two reporter genes encoding β-galactosidase and luciferase were introduced into JC-53 cells separately, each under transcriptional control of an HIV-1 LTR (Wei et al., 2002). The LTR promoter is transactivated by viral Tat protein, which results in the transcription of both reporter genes, thus allowing quantification of virus infection using X-gal or D-luciferin substrates.

Parent cell lines of TZM-bl were used to determine the contribution of CCR5 cell-surface concentrations on rates of HIV-1 entry and neutralization sensitivity. Platt et al. used sub-clones of JC53 that expressed different levels of CCR5 to show that co-receptor expression levels are limiting for virus infection (Platt et al., 1998a). Subsequently, Reeves et al. showed that high cell-surface concentrations of CCR5 resulted in rapid rates of fusion and resistance to the gp41 antagonist, T20 (Reeves et al., 2002). Because T20 binds to the C-terminal HR domain of gp41 at an intermediary stage of virus entry, it was suggested that the surface concentration of CCR5 controlled the time during which the virus was sensitive to neutralization (Reeves et al., 2002). In support of this finding, a small molecule antagonist of CCR5, SCH-351125, has been shown to act synergistically with T-20 by decreasing the availability of the virus co-receptor, thus slowing rates of fusion and increasing the period that HIV-1 is susceptible to gp41 antagonism (Tremblay et al., 2002). Chodhury et al. showed that levels of CCR5 expression correlated with resistance to monoclonal antibodies that bind to CD4 inducible epitopes (Choudhry et al., 2006). Conversely, sensitivity to b12 is not significantly affected by CCR5 surface concentrations. This is
unsurprising because b12 blocks attachment to CD4, which occurs prior to CCR5 engagement. From these data it is clear that the cell-surface concentration of the co-receptor is a critical determinant of virus neutralization for some, but not all, NAb.

Expression of CCR5 is approximately 100-fold higher in TZM-bl cells than PBMCs, which may partly explain why NAb such as X5 are more effective in PBMC assays (Choudhry et al., 2006). However, disparities in neutralization data obtained with each system are dependent on NAb specificity. For example, Binley et al. compared the neutralization phenotypes of 125 primary isolates assayed in PBMCs to the corresponding Env-pseudotypes assayed in U87 reporter cells. Overall, discordant neutralization sensitivities were observed in 24% of all cases. More neutralizing activity was detected with X5 in the PBMC assay, while the opposite was true for antibody 4E10. On the other hand, b12 neutralized similar proportions of virus in both systems (Binley et al., 2004). Differences in target cell phenotype may be responsible for these inconsistencies, but the authors could not rule out virus-dependant factors because different types of virus were used in each assay. Additionally, it is unlikely that high CCR5 expression in PBMCs were responsible for the higher levels 4E10 activity because Choudury et al. reported that CCR5 expression negatively correlates with 4E10 neutralization (Choudhry et al., 2006). Consequently, there are likely to be unknown cellular and viral factors that effect levels of neutralization detected in vitro and the results reported by any neutralization assay should be interpreted with caution.

1.17 The natural course of early HIV-1 infection

The majority of HIV-1 infections are acquired sexually by transmission through the genital tract or rectal mucosa. Homogeneity amongst HIV-1 genomes sampled early in infection indicates that most infections arise from a single founder virus, while approximately 10-20% of individuals are infected with two to five antigenically-distinct virions (Keele et al., 2008). Studies of rhesus macaques intra-vaginally challenged
with SIV suggest that productive infection initiates in CD4+ T cells expressing the CCR5 chemokine receptor (Li et al., 2009a, Miller et al., 2005). Intraepithelial dendritic cells (DC) and Langerhan cells in the lamina propria facilitate dissemination of the transmitted virus to CD4+ T cells by a process known as trans-infection (Geijtenbeek et al., 2000). Dendritic cells capture HIV-1 with C-type lectins, such as DC-SIGN, and deliver virus to CD4+ T cells across a virological synapse (Hubner et al., 2009). It has been suggested that direct cell-to-cell transmission of virus may limit the effectiveness NAbs in vivo, however, inhibition of trans-infection by NAbs has recently been reported (Martin et al., 2010).

Replication of HIV-1 remains localized to the mucosa and draining lymph nodes for approximately 10 days, a period known as the eclipse phase because viral RNA is not detectable by conventional clinical assays (Busch and Satten, 1997, Keele et al., 2008). Limiting numbers of CD4+ T lymphocytes initially restricts viral replication, but these foci of infection are subsequently expanded, in part, by chemokine-secreting plasmacytoid dendritic cells that recruit additional CD4+ T cells to the mucosa. Li et al. demonstrate that SIV infection can be prevented by blocking recruitment of CD4+ T lymphocytes to the endocervical mucosa with anti-inflammatory agents that inhibits the production of chemokines, such as MIP-3α (Li et al., 2009a). These encouraging findings suggest that HIV-1 is vulnerable to elimination during the early stages of infection. The challenge to vaccine research is to prime immune responses capable of developing into secondary immune responses within the first few weeks of HIV-1 infection. Therefore, understanding the factors that control early antibody responses to HIV-1 is of central importance to vaccine research and will be the subject of chapter 5.

At the end the eclipse phase the virus disseminates through the lymphatic system. Dendritic cells and macrophages facilitate this process by transporting the virus between the mucosa and lymphoid tissue, particularly gut-associated lymphoid tissue (GALT), which is a major source of CD4+CCR5+ T cells and bears the brunt of immune destruction during the early stages of infection (Brenchley et al., 2004).
Studies of SIV-infected macaques demonstrate that as VL reaches peak levels 30%-60% of all memory CD4+ T cells become infected and die by immune-mediated cell killing or viral cytolysis (Mattapallil et al., 2005). Concomitant with increasing viraemia, a systemic immune response ensues, partly due to translocation of commensal bacteria and LPS through compromised GALT tissue in the gut lumen. Leukocytes of myeloid and lymphoid lineage respond to high levels of viraemia by producing type I interferons (IFN), tumour necrosis factor alpha (TNF-α) and interleukins (IL)-1, IL-15, IL-18 and IL-22 (Stacey et al., 2009). Although several of these soluble factors have antiviral activity (IFN-α and IFN-β for example), this “cytokine storm” enhances viral replication and contributes to CD4+ T cell apoptosis (Brule et al., 2007, Lapenta et al., 1999).

During PHI there is a 50% loss of B cell germinal-centers from the GALT (Levesque et al., 2009). Additionally, HIV-1 infected patients have unusually high numbers of B-cell subsets characterized as immature cells, exhausted cells and antibody-producing plasmablasts. Most of these features are attributed to the high levels of viraemia, either directly through virus-antibody interactions with the CD21 complement receptor, or through indirect bystander effects mediated by cytokines and cellular interactions. High-level viraemia leads to B cell hyperactivity, hypergammaglobulinaemia, B cell proliferation, expression of apoptosis-signaling molecules, and high incidences of B cell malignancies (reviewed in (Moir and Fauci, 2009b)) (Titanji et al., 2005, Ho et al., 2006), additionally, low levels of memory B cells have been reported at all stages of infection and this is not associated with levels of vireamia.

Peak levels of viraemia, frequently exceeding 10^6 RNA copies per ml, coincide with the detection of HIV-1 specific antibodies and an associated seroconversion illness (Fiebig et al., 2003, Little et al., 1999). The most common symptoms are fever, myalgia, arthralgia, rash and night sweats (Daar et al., 2001). The severity of seroconversion-illness and the extent and duration of vireamia are associated with rates of
disease progression (Mellors et al., 1995). In a study of 2176 acutely infected individuals, a small proportion (7%) spontaneously controlled VL below 400-500 RNA copies per ml and exhibited slower CD4 declines (Madec et al., 2005b).

In the absence of ART, VL declines to a stable set-point by 12-20 weeks (Rodriguez et al., 2006). Immune hyperactivation persists into the chronic phase of disease and this continues to contribute to T cell loss. Viral load set-point is minimally predictive of progression to AIDS in chronic infection, whereas markers of T cell activation, including CD38 and HLA-DR, have been shown to be strong positive correlates of HIV-1 disease progression (Rodriguez et al., 2006, Deeks et al., 2004, Giorgi et al., 1999).

Mathematical models based on rates of VL decrease following intervention with ART indicate the average half life of an infected CD4+ T cell is approximately 0.7 days (Markowitz et al., 2003). Despite this, relatively steady CD4 counts and VLs are maintained by rates of cell proliferation that exceed 10^9 cells per day and daily viral turnovers exceeded 10^{10} virions (Ho et al., 1995, Perelson et al., 1996). However, continuous high-level replication of HIV-1 leads to a progressive CD4 T cell loss at a rate of 30-90 cells /mm^3 per year (Stein et al., 1992). Eventually, this leads to severe immunosuppression and patients become susceptible to AIDS-defining illnesses. The median CD4 count associated with the development of an AIDS-defining illness was shown to be 67 cells/mm^3, with 10% of patients developing an illness with CD4 counts <200 cells/mm^3 (Taylor et al., 1995).

1.18 The role of cellular immune responses in the control of HIV-1

There is substantial evidence to suggest that CD8^+ cytotoxic T cell (CTL) responses contribute to the initial decline of VL and to durable control of VL set-points. The initial decline in VL coincides with the appearance of HIV-1 specific CTLs (Borrow et al., 1994). Additionally, macaques depleted of CD8^+ CTLs prior to challenge with SIV sustain high VLs, strongly inferring an important role for this subset in the early control of viraemia (Schmitz et al., 1999). Additionally, a subset of HIV-1 infected patients who
control viraemia in the absence of ART have been variably shown to exhibit strong T cell responses. Patients with VLs below 2000 copies/ml are termed viraemic controllers (VC) and tend to progress more slowly to AIDS. Approximately 1 in 300 patients maintain levels of viraemia below detectable limits of ultrasensitive assays and are known as elite controllers (EC) (Deeks and Walker, 2007). Pereya et al. detected higher levels of CD8+ CTLs and CD4+ T helper cells in 124 ECs and VCs compared to 30 subjects with progressive disease. Factors associated with T cell mediated viral control included high levels of expression of IL-2 and IFN-α, and specificity to MHC-restricted epitopes in Gag (Pereyra et al., 2008a). The mechanism by which CTLs control HIV-1 replication was thought to be through direct-cytolysis of infected T cell, but this mechanism has recently been questioned by macaque studies that failed to identify changes in rates of CD4+ T cell killing following CD8+ cell depletion. Therefore, other mechanisms, such as the antiviral effects of cytokines, may be more important (Klatt et al., Wong et al.).

Genetic-linkage studies have shown that HLA-B57, HLA-B27 and HLA-B51 alleles are associated with better prognoses (Carrington and O'Brien, 2003). These genes encode MHC class I molecules involved in antigen-presentation to CD8+ CTLs. Individuals that carry these alleles have been shown to develop potent CD8+ T cell responses directed at epitopes in HIV Gag, which concurs with the bias for Gag-specific CTL responses in ECs (Crawford et al., 2007). Population wide analyses of these genetic polymorphisms provide convincing evidence for a protective role of CD8+ T cell responses (Fellay et al., 2007), but on an individual basis they are not always predictive of better clinical outcomes. For example, in a HIV transmission pair (ie two patients infected with an antigenically similar virus), rapid disease progression was observed in the transmitter, while the recipient controlled VL to undetectable levels, despite both patients carrying the HLA-B*57 allele (Bailey et al., 2008). Overall, these findings support a protective role for CD8+ T cell responses in vivo, but suggest that other factors may also be important.
The role of neutralizing antibodies in the control of viral load.

The role of neutralizing antibodies in the control of VL is unclear. Anti-HIV-1 IgM has been detected within 3 days after the onset of symptoms (Cooper et al., 1987). However, standard clinical assays generally detect antibodies targeting p24 core antigen within 4 to 10 weeks after transmission. The first antibodies targeting Env may be gp41-specific. Tomaras et al. detected gp41-specific IgM within virion-antibody immune complexes 8 days after VL was first detected. Antibody-dependent complement-mediated HIV-1 inactivation is observed ex vivo with plasma from acutely infected individuals (Aasa-Chapman et al., 2005), and there are conflicting reports as to whether this contributes to early viraemia control (Huber et al., 2006, Tomaras et al., 2008).

Mature IgG responses capable of neutralizing autologous virus have been detected within 4 weeks after the onset of symptoms. However, most NAb responses are first detected after 12 weeks or more following transmission, after the initial decline in VL (Gray et al., 2007, Wei et al., 2003, Aasa-Chapman et al., 2004). Therefore, it is unlikely that NAbs control viraemia during the early stage of PHI. However, it is less clear whether NAbs contribute to the durable control VL set-point at later stages of infection.

Passive infusions of b12 exerted minimal control on established HIV-1 infection in a SCID-humanized mouse model of HIV-1 infection, although transient suppression of VL was observed in mice administered cocktails of b12, 2G12 and 2F5 (Poignard et al., 1999). Neutralization sensitive viruses were isolated from b12 treated mice, indicating that neutralizing titres of antibody were ineffective at inhibiting the replication of HIV-1 in vivo. However, in these experiments proviruses were isolated from cells of spleen and lymph node biopsies, which may not reflect actively replicating virus (Nickle et al., 2003, Ruff et al., 2002). In fact, the majority of virus isolates were neutralization resistant and escape mutants were detected 7 days after b12 transfusion, suggesting that escape occurred rapidly. Rapid
selection of NAb-escape mutants does not imply ineffective neutralization; it indicates that neutralization-sensitive viruses can be eliminated by neutralizing antibodies.

In humans, antibody escape mutants have been detected as early as 12 weeks post infection (Goonetilleke et al., 2009). Goonetilleke et al. identified replacement of wild-type founder sequences with viruses carrying envelope mutations at known neutralizing epitopes. Complete loss of founder virus sequences implies that NAbs effectively eliminated the quasi-species majority, which confirms that NAbs exerts some control on viral replication. However, the authors did not confirm the neutralization-sensitivities of the wild-type and mutant viruses. Although these mutations were previously shown to confer neutralization resistance in other studies, there is no guarantee that these mutations transfer similar phenotypes to antigenically-distinct viruses. Nevertheless, if these findings can be confirmed, it seems likely that NAbs may inhibit viral replication early in infection.

Transient selection of neutralization escape mutants does not imply durable control of VL. However, several studies conducted in the late 1980’s and 1990’s claimed that NAb responses correlated with slower rates of disease progression. Cross-sectional and longitudinal studies showed higher levels of neutralization in long-term non-progressors (LTNPs) compared with rapid progressors (Karpas et al., 1988, Cao et al., 1995, Pilgrim et al., 1997, Scarlatti et al., 1996, Zhang et al., 1997). However, in none of the studies was it possible to decipher the clinical impact of NAbs from other confounding factors. Cecilia et al. attempted to resolve this issue by studying NAb responses in pairs of LTNPs and rapid progressors matched according to age, sex, race, and number of circulating CD4+ lymphocytes (Cecilia et al., 1999). Neutralizing responses were shown to be significantly lower in the rapid progressors when they had developed AIDS, but prior levels of neutralization were not predictive of these differing rates of disease progression. Thus, it was not clear whether low-level neutralizing activity was cause or effect of AIDS pathogenesis. Notably, a case study of heterozygotic perinatally-infected twins reported lower
levels of NAb responses are not associated with better clinical outcomes and may positively correlate with VL. In a study by Li et al, fewer elite controllers had broad neutralizing activity than viraemic patients (Li et al., 2007). Furthermore, Doria-Rose et al. investigated 24 ECs, 37 patients with low viraemia and 52 chronic progressors and demonstrated that only 25% of the ECs had broad NAb activity compared to 42% in the other two groups (Doria-Rose et al., 2009).

Mahalanabis et al. reported variable levels of neutralization against autologous viruses derived from viraemic controllers, although neutralizing-serum titres varied according to the autologous HIV clone used in the neutralization assay. Interestingly, NAb-sensitivity did not vary amongst HIV-clones derived from one of two patients with elite control of viraemia, which may indicate that NAb responses effectively limited viral diversity in this individual (Mahalanabis et al., 2009b). Bailey et al. also demonstrated low levels of Env diversity in ECs and equivalent levels of neutralizing titres to chronic disease progressors (Bailey et al., 2006).

A possible reason for the discrepant results reported by investigation of NAb responses in vivo, relates to differences in study design. The early studies grouped patients according to CD4 count, while more recent studies have tended to group patients according to VL (Table 1.2A vs. Table 1.2B). Additionally, the early studies compared LTNPs, who had been infected for several years, with rapid progressors, who had been infected for shorter periods. This is problematic because broad and potent neutralizing
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Group*</th>
<th>General NAb trend</th>
<th>n</th>
<th>VL RNA copies/ml</th>
<th>CD4 count cells/mm³</th>
<th>Notable exceptions</th>
<th>Neutralization Assay</th>
<th>Virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harrer et al 1996</td>
<td>LTNP</td>
<td>CP</td>
<td>Similar</td>
<td>10</td>
<td><50-302,000</td>
<td>>500 for >10 years</td>
<td>na</td>
<td>PBMC</td>
<td>Het</td>
</tr>
<tr>
<td>Bailey et al 2006</td>
<td>ES</td>
<td>CP</td>
<td>Similar</td>
<td>9</td>
<td><50</td>
<td>-</td>
<td>-</td>
<td>Pseudovirus & TCLA</td>
<td>Aut & Het</td>
</tr>
<tr>
<td>Pereya et al 2008</td>
<td>EC</td>
<td>VC</td>
<td>Variable</td>
<td>17</td>
<td><50</td>
<td>-</td>
<td>ECs had Variable NAb response</td>
<td>Pseudovirus</td>
<td>Aut & Het</td>
</tr>
<tr>
<td>Doria-Rose et al 2009</td>
<td>LTNP</td>
<td>SP</td>
<td>Similar</td>
<td>24</td>
<td>mean <50</td>
<td>-</td>
<td>25% ECs had broad NAb response</td>
<td>Pseudovirus</td>
<td>Het</td>
</tr>
<tr>
<td>Li et al 2007</td>
<td>LTNP</td>
<td>SP</td>
<td>Variable</td>
<td>18</td>
<td><1,000</td>
<td>>500</td>
<td>-</td>
<td>Pseudovirus</td>
<td>Het</td>
</tr>
<tr>
<td>Lambotte et al 2009</td>
<td>VC</td>
<td>CP</td>
<td>Variable</td>
<td>13</td>
<td><400</td>
<td>-</td>
<td>ECs had higher levels of ADCC</td>
<td>Pseudovirus</td>
<td>Het</td>
</tr>
<tr>
<td>Deeks et al 2006</td>
<td>VC</td>
<td>CP</td>
<td>Variable</td>
<td>8</td>
<td><2,000</td>
<td>-</td>
<td>-</td>
<td>Pseudovirus</td>
<td>Aut & Het</td>
</tr>
<tr>
<td>Mahalanabis et al 2009</td>
<td>EC</td>
<td>CP</td>
<td>Variable</td>
<td>2</td>
<td><75</td>
<td>-</td>
<td>Variable NAb responses</td>
<td>Pseudovirus</td>
<td>Aut</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Group*</th>
<th>General NAb trend</th>
<th>n</th>
<th>VL</th>
<th>CD4 count</th>
<th>Notable exceptions</th>
<th>Neutralization Assay</th>
<th>Virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pantaleo et al 1995</td>
<td>LTNP</td>
<td>CP</td>
<td>Decline</td>
<td>15</td>
<td>70,000</td>
<td>>600 for >7 yrs</td>
<td>-</td>
<td>TCLA</td>
<td>Het</td>
</tr>
<tr>
<td>Cao et al 1995</td>
<td>LTNP</td>
<td>CP</td>
<td>Decline</td>
<td>10</td>
<td>-</td>
<td>>500</td>
<td>-</td>
<td>PBMC</td>
<td>Het</td>
</tr>
<tr>
<td>Harrer et al 1996</td>
<td>LTNP</td>
<td>STNP</td>
<td>Decline</td>
<td>6</td>
<td>-</td>
<td>>600 for >10 yrs</td>
<td>-</td>
<td>PBMC & TCLA</td>
<td>Aut & Het</td>
</tr>
<tr>
<td>Montefiori et al 1996</td>
<td>LTNP</td>
<td>CP</td>
<td>Decline</td>
<td>12</td>
<td>-</td>
<td>>600 for >2 yrs</td>
<td>-</td>
<td>PBMC & TCLA</td>
<td>Aut & Het</td>
</tr>
<tr>
<td>Cecilia et al 1998</td>
<td>LTNP</td>
<td>RP</td>
<td>Decline</td>
<td>14</td>
<td>-</td>
<td>>316 for 7 yrs</td>
<td>decline >53 cells per qtr</td>
<td>GHOST (GFP)</td>
<td>Het</td>
</tr>
</tbody>
</table>
Table 1.2A: Studies that suggest a positive correlation or no correlation between NAb potency and VL

Two studies reporting similar levels of neutralizing activity between patients grouped according to VL are shown along with eight studies reporting lower levels of neutralizing activity in patients with low VLs compared to patients with high VLs. The patient groups (Long-term non-progressors (LTNP), elite controllers (EC), chronic progressors (CP) and viraemic controllers (VC)) are shown in the third column and correspond to the definitions given in each study. For these studies, VLs were used to assign patients to each group. Note that the criteria for each group differ between the studies (column 6). The assays used by each study are shown in the far right columns. Three studies assayed neutralization with autologous (Aut) and heterologous (Het) viruses, while five studies assayed responses with heterologous viruses only.

Table 1.2B: Studies that suggest NAb responses are associated with slower rates of disease progression

Five studies are shown that report higher levels of neutralizing activity in LTNPs compared to CPs, short term non-progressors (STNPs), and rapid progressors (RPs). These studies grouped patients according to their CD4+ T cell counts and durations of infections. GHOST cells are human osteogenic sarcoma (HOS) cells that stably express the virus entry receptors along with a green fluorescence protein (GFP) reporter gene which is used to detect HIV-1 infection.
responses develop in response to sustained levels of viraemia (Sather et al., 2009). This supports the view that sustained levels of antigen are required to stimulate B cell responses, as demonstrated by observations that antibodies to HIV-1 occasionally become undetectable in patients receiving ART (Hare et al., 2006). Therefore, NAbs may accumulate and mature in viraemic LTNPs, while elite controllers may lack sufficient levels of viraemia to stimulate antibody production.

1.20 The impact of ART on the control of HIV-1 infection

Since HIV-1 was first discovered as the causative agent of AIDS, there has been considerable progress in the development of ART. The first drug to be licensed was Zidovudine in 1987, which was shown to decrease mortality and the risk of opportunistic infections in a randomized placebo-controlled trial of patients with AIDS defining illnesses (Fischl et al., 1987). This drug falls into the class of nucleoside reverse transcriptase inhibitors (NRTIs) which are metabolized by cellular kinases to form nucleotide analogues that lack 3’ hydroxyl groups required during RT-dependent cDNA synthesis (Horwitz J.P., 1964). Four additional mechanistic classes of ART have since been licensed for the treatment of HIV-1, namely, non-nucleoside RT inhibitors (NNRTIs), protease inhibitors (PIs), integrase inhibitors and viral-entry inhibitors. Current British guidelines for the treatment of HIV-1 recommend initiation of combination ART consisting of dual NRTI with either a PI or NNRTI (Gazzard et al., 2008).

An editorial published in the New England Journal of Medicine in 1996, entitled “Time to hit HIV, early and hard” advocated the early initiation of combination therapy and it was common practice to initiate therapy in patients with CD4 counts less than 500 cells/mm³ (Ho, 1995). However, an international collaborative study of 62,760 participants demonstrated that although ART reduced the overall risk of death by approximately 50%, the survival benefit was only 1% for patients with CD4 counts more than 500 cells/mm³ (Hogg et al., 2001). Observations of virologic failure and drug resistance are major arguments against early therapy, because treatment efficacy needs to be sustained throughout the course of the disease. Drug toxicities and complicated dosing regimens lead to poor drug adherence
rates, which in turn leads to the development of drug resistant virus (reviewed in (Rowland-Jones and de Silva, 2008)). For this reason current UK, US, and WHO guidelines recommend commencing treatment when CD4⁺ counts reach 350 cells/mm³ (Office of AIDS Research Advisory Council (OARAC), December 2009) (Gazzard et al., 2008).

There is some evidence supporting the use of ART-initiation at thresholds greater than 350 cell/mm³. Notably the NA-ACCORD and UK CHIC studies reported lower rates of mortality and morbidity in patients who initiated therapy with CD4 counts greater than 350 cell/mm³ (Kitahata et al., 2009, Phillips et al., 2007). However, NA-ACCORD was not randomized and was limited by large numbers of patient exclusions. Although UK-CHIC analysed larger numbers of patients (17,609), insufficient data was collected on causes of morbidity and mortality to ascertain net-benefit to risk ratios associated with commencing ART in the presence of high CD4 counts. Randomized trials are therefore needed to definitively address the optimal timing for initiating ART with respect to CD4 count.

1.21 Rationale for administering ART in early infection

There is now a strong case for early treatment regimes aimed at limiting immune destruction in PHI. Firstly, lower levels of VL are associated with less viral diversity, which may limit escape from adaptive immunological responses (Altfeld et al., 2001). Secondly, early treatment has been associated with restoration of B and T lymphocyte number and function, which has been associated with improved antiviral responses (Hoen et al., 2007, Titanji et al., 2005). Thirdly, some preliminary reports show long-lasting virus suppression and sustained levels of CD4⁺ T cell counts after termination of early therapy; ultimately, this may prolong the duration of symptom-free disease and reduce the demand for ART in the long-term (Steingrover et al., Hecht et al., 2006). Finally, lower VLs in primary infection are associated with reduced rates of transmission (Wawer et al., 2005, Attia et al., 2009)
Early initiation of ART has been shown to lead to a more robust immunological recovery following PHI. A study by Streeck et al. monitored HIV-1 specific CD8$^+$ T cell responses in 20 acutely infected individuals by IFN-γ enzyme-linked immunospot assay (ELISpot) and flow cytometry. The 12 patients who opted to initiate early ART for 24 weeks had HIV-specific CD8$^+$ T cells that showed enhanced differentiation from an effector memory to an IFN-γ$^+$ phenotype. Six months after treatment ended, patients had higher levels of CD8$^+$ T cell activation and preserved CD4$^+$ T cell numbers compared to untreated patients, despite similar levels of VL to treatment naïve patients (Streeck et al., 2008). This suggests that short courses of ART in PHI may have long-term benefits. Early initiation of ART may also result in the restoration of HIV-specific CD4$^+$ T helper cell responses, which has been associated with transient control of viraemia following treatment interruption (Malhotra et al., 2000, Ferrantelli et al., 2004).

Studies have shown that ART administered in acute infection can preserve B cell function. Morris et al. demonstrated that B cell hyperactivity and hypergammaglobulinaemia resolve in response to ART administered during acute and chronic stages of infection (Morris et al., 1998). Additionally, early initiation of ART has been associated with reduced rates of B cell apoptosis, and partial restoration of memory B cell pools (Titanji et al., 2005). Preservation of B cell responses was recently reported following early initiation of ART in HIV-1 infected infants (Pensieroso et al., 2009). However, B cell memory cells were not restored by ART in chronic infection, suggesting that early intervention may be required to prevent permanent B cell depletion (Hart et al., 2007). Limiting B cell and CD4$^+$ T cell dysfunction with short courses of ART in PHI could potentiate NAb responses, which may contribute to the control of viraemia after treatment cessation.

Although several studies have demonstrated clinical benefits following early-ART intervention, it is unclear whether these protective effects are limited to the duration of therapy. Currently, decisions regarding early treatment are not evidence based and are left to the discretions of the clinician and patient. In order to determine the long-term impact of early treatment more data are needed from
suitably-powered randomized-controlled trials, such as the Short Pulse Antiretroviral Therapy at seroConversion (SPARTAC) study. This trial is ongoing and has recruited 366 eligible participants from genitourinary medicine clinics in the UK, Australia, Italy, Uganda, South Africa, Spain and Brazil. Upon confirmation of PHI, each patient is randomized to receive either 12 weeks or 48 weeks ART, or no therapy. The primary outcome measure is the time taken for CD4 counts to decrease below 350 cells per/mm3 on two consecutive occasions, assessed one month apart. All patients are to be followed until 130 primary end-point events are detected. The primary objective of SPARTAC is to determine whether administering ART for a limited period during PHI can slow rates of CD4$^+$ T cell loss after treatment ends (Babiker and Gibb, 2006). The decision to treat patients for a minimum period of three months was informed by a pilot study of 90 patients (Fidler et al., 2002) that showed this intervention was well tolerated and did not induce ART resistance. The 48 week treatment arm was included to assess whether longer treatment regimes improved the clinical outcome further, although SPARTAC is not specifically-powered to detect a difference between the 12 and 48 week trial arms.

Clinical specimens are collected from patients enrolled into SPARTAC at 4 to 12 week intervals and used to assess the impact of early ART on humoral and cellular immune responses. Work in our own lab has focused on neutralizing responses that develop after patients discontinue therapy. Because investigators are blinded to the treatment arm of the patient, it is currently not possible to compare patients who received early ART with those who did not. However, neutralizing responses can be assessed in individuals randomized into the two ART treatment arms.

1.22 Outline of this thesis

The SPARTAC study provided a useful platform with which to study changes in neutralizing antibody activity that develop after patients discontinue ART. We hypothesized that rebounding VLs stimulate the production of neutralizing antibodies after ART cessation, resulting in an association between quantities of circulating virus and subsequent levels of neutralizing activity. Furthermore, NAb responses were
predicted to inhibit the replication of neutralization-sensitive quasispecies and select NAb-resistant virus. In order to determine whether antibody selection contributed to the control of viral load, sequencing analysis of HIV-1 \textit{env} was undertaken in one patient with a clinical history that was suggestive of antibody-mediated control of VL. The patient, who was enrolled into the SPARTAC pilot study, was diagnosed with a lymphoplasmacytic B cell lymphoma. He had also been diagnosed with an acute hepatitis B virus (HBV) infection two years prior to HIV-1 seroconversion. Following a three-month course of early ART the patient developed a VL set point of 10^5 RNA copies per ml. Three years later the patient became unwell and his lymphoma required treatment with a monoclonal antibody (rituximab) that targets and depletes CD20$^+$ B cells. Surprisingly, this led to a transient $1.7 \log_{10}$ increase in HIV-1 VL. The patient’s HBV infection also reactivated following rituximab therapy. The clinical details of this case led us to hypothesize that NAbs were important in controlling the patient’s HIV-1 VL. In order to investigate this possibility, several techniques were employed to characterize the patient’s virus and NAb response before and after B cell depletion. The results of this unique case study will be presented in chapter 4.

This thesis examines three aspects of HIV-1 antibody research. Firstly, the development and validation of an HIV Env-pseudotype neutralization assay will be reported, along with novel techniques that improve the sensitivity and specificity of this type of assay. Secondly, we examine the role of NAbs in natural infection. We report the only documented case of B-cell depletion in an HIV-1 infected human and present compelling evidence that NAbs contributed to HIV-1 control in this individual. The relevance of this case to the wider field will be discussed. The final chapter examines how levels of viraemia during the early stages of HIV-1 infection control the development of neutralizing antibody responses. This investigation focuses on patients enrolled into the SPARTAC trial who received early, short-courses of ART. This allowed us to examine the temporal association between developing NAb responses and VL rebound after ART-cessation.
Chapter 2

Materials and Methods
2.1 Mammalian cell lines and tissue culture maintenance

The human epithelial kidney cell line 293T clone 17 (293T/17) is a derivative of the 293tsA1609neo cell, which constitutively expresses the simian virus 40 (SV40) large T-antigen (DuBridge et al., 1987). Clone 17 has been specifically selected for its high transfectability and its capacity to produce high titres of infectious retrovirus (American Type Culture Collection (ATCC), CRL-11286). The indicator cell line, TZM-bl was used to quantify infectious pseudovirus particles (described in section 1.16) (National institute for health (NIH) AIDS Research and Reference Reagent Program) (Wei et al., 2002). Both cell lines were cultured in complete Dulbecco’s modified eagle’s medium (complete DMEM), containing 4.5 g/l glucose, L-glutamine, 10 % (v/v) fetal-calf serum (FCS) (heat inactivated at 56°C for 1 hour), 100 U/ml penicillin G and 100 μg/ml streptomycin (Invitrogen Life Technologies, UK).

Cells were passaged when 80-90% confluent. Adherent-cell monolayers were washed once with Trypsin-ethylenediaminetetraacetic acid (Trypsin-EDTA) (Invitrogen) and incubated with Trypsin-EDTA at 37°C for 2-5 min. Cells were resuspended in 10 ml of complete-DMEM and centrifuged at 400 g for 5 min. Cell pellets was resuspended in complete-DMEM and one twentieth of the volume was transferred to a tissue culture flask in 5-6.25 ml of complete DMEM per cm² of the flasks surface area.

2.2 DNA vectors used for cloning, sequencing and pseudovirus construction

Plasmid pcDNA3.1(+) and phagemids KS Bluescript II and SK Bluescript II (Stratagene) were used to clone HIV-1 envelope genes (Figure 2.1). Expression vector pMD-G encodes vesicular stomatitis virus G-protein (VSV-G) from a CMV promoter (Naldini et al., 1996). Expression vector pHXB2-env contains the HIV-1 envelope gene expressed from an SV40 promoter. The HIV-1 backbone pNL4-3Δenv is derived from a full-length HIV-1 chimera (pNL4-3) consisting of the 3’ half of HIVLAV and the 5’ half of HIVNY5. The blunt-ended proviral DNA genome was cloned into the multiple cloning site (MCS) of pUC18 (Adachi et al., 1986). The LAV envelope gene was made defective by mutating at the start codon and at a unique Kpnl restriction site (Dorfman et al., 2002) (Figure 2.2).
Figure 2.1 DNA vectors used for HIV-1 envelope cloning

Figure 2.1 A: PCR amplified HIV-I env was cloned in plasmid pcDNA3.1 using 5’XhoI-3’ApaI or 5’NotI-3’ApaI restriction sites downstream of the CMV promoter (P CMV) and upstream of the bovine growth hormone polyadenylation sequence (BGH). The neomycin resistance gene (neomycin) is expressed with an SV40 early promoter and origin (SV40 ori) and SV40 polyadenylation sequence (SV40 pA) (neomycin selection was not used). The pUC origin of replication (pUC ori) initiates plasmid replication in *E.coli*. The F1 origin (F1 ori) initiates plasmid replication in phage and was not used. Figure 2.1B: Envelope genes from pcDNA.env were subcloned into phagemids KS pBluescript II and SK pBluescript II. Both phagemids are identical except for oppositely orientated MCS which intersperse a *lacZ* gene and *lac* promoter. The pMB1 origin of replication (pMB1ori) replicates plasmids in *E.coli*. The ampicillin resistance gene (Amp R) confers antibiotic resistance.
Figure 2.2 DNA vectors used for pseudovirus construction

Figure 2.2 A: The full-length HIV-1 backbone, NL4-3Δenv, is a chimera of the HIV-1 strains, HIV\textsubscript{NY5} and HIV\textsubscript{LAV}. The native 5' LTR of HIV\textsubscript{NY5} serves as a promoter for transcript \textit{i}. The HIV\textsubscript{LAV} \textit{env} gene is non-functional owing to frame-shift mutations at the start codon and at a unique KpnI restriction site (red crosses).

Figure 2.2 B: pHXB2-\textit{env} encodes full length HIV\textsubscript{HXB2} envelope under transcriptional control of an SV40 promoter (SV40 pr).

Figure 2.2 C: Plasmid pMD-G consists of a \textit{vsv-g} gene flanked by a 5' intervening sequence 2 (IVS2) and polyadenylation sequence from a human \textbeta-globin gene. The \textit{vsv-g} gene is transcribed from a CMV-immediate-early promoter (CMV). Plasmids pNL4-3Δenv, pHXB2-\textit{env} and pMD-G encode an ampicillin resistance gene for antibiotic selection in \textit{E.coli}.
Dr Massimo Pizzato kindly provided pHXB2-env, pMDG and pNL4-3Δenv. Plasmids encoding HIV-1 clade B and clade C reference envelopes were obtained from the NIH AIDS Research and Reference Reagent Program (Li et al., 2005, Bailey et al., 2006).

2.3 Antibodies, plasma and recombinant proteins.

Pooled plasma derived from HIV-uninfected donors was obtained from Autogen Bioclear. Neutralizing monoclonal antibodies 447-52D and 2G12 were obtained from the National Institute for Biological Standards and Control (NIBSC, Potters Bar, UK). Antibodies b12 and 4.8d were gifts from Professor Dennis Burton (Scripps Research Institute, La Jolla, US). The CD4 peptide mimic, M33, is a 27 amino-acid peptide mimicking the gp120 binding site of CD4 and was provided by Professor Quentin Sattentau (William Dunn School of Pathology, Oxford University, UK) (Martin et al., 2003). Recombinant gp120 derived from clade B HIV-I strain BaL, expressed in Chinese hamster ovary (CHO-K1) cells, was provided by Dr Simon Jeffs (Jefferiss Trust Laboratories, Imperial College, UK).

2.4 Clinical assays of HIV-1 viral load

The PCR-based Amplicor HIV-1 Monitor v1.5 Assay (Roche) quantifies HIV-I RNA from plasma samples mixed with known concentrations of a synthetic protein-coated RNA construct which serves as an internal quantitation standard (QS). The RNA is RT-PCR amplified using gag specific primers and Thermus thermophilus DNA polymerase (rTth pol), which has RT and DNA polymerase activity. Biotin labeled oligonucleotide probes are hybridized to amplified DNA products to allow quantification of the QS and viral RNA with avidin-horseradish peroxidase (HRP) conjugates. The amount of bound amplicon is determined using an ELISA plate reader after the addition of an HRP-specific colorimetric substrate.

The Chiron v3.0 or Versant branched DNA (bDNA) HIV-RNA v3.0 assay (Bayer, NY, US) uses bDNA nucleic acid hybridization to quantify VL without amplifying the RNA target. Oligonucleotides are used
to capture viral RNA to the base of a microtitre well, while a second set of oligonucleotides amplifies a chemiluminescent signal.

2.5 Clinical assays for the quantification of antibodies.

Quantification of total IgG, IgM and IgA was performed using an automated immunonephelometric Beckman Immage system (Beckman-Coulter Diagnostics, USA). The technique measures the light-scattering properties of antibody/latex-particle immune complexes (Denham et al., 2007). Anti-hepatitis B surface antigen (HBsAb) was quantified by ELISA using the Axsym Abbott system (Abbott Diagnostics, Wiesbaden, Germany). Both assays are validated for diagnostic purposes and were performed at the Clinical Biochemistry Laboratory at St Mary’s Hospital, Paddington.

2.6 Extraction of viral RNA from human plasma for RT-PCR amplification env

Viral RNA was extracted from cryo-preserved, EDTA or acid-citrate-dextrose (ACD) plasma, for RT-PCR amplification of HIV-1 env. Where stated, virus was concentrated from 3 ml of plasma mixed with 9 ml of phosphate buffer saline (PBS) (Sigma Aldrich), by ultracentrifugation at 60,000 g for 2 hr at 4°C (Sorvall Combi AH-629 rotor). Supernatants were decanted and viral pellets were resuspended in 140 μl of PBS. Concentrated virus, or 140 μl of unconcentrated plasma were processed using a QIAamp viral RNA extraction kit (QIAGEN, UK). Virus was lysed with 540 μl of buffer AVL (supplied) containing 10 ng/μl poly-A carrier RNA. After 10 min incubation at room temperature (18-22°C), samples were diluted twofold with ethanol, vortexed for 15 sec and passed through a silica-resin centrifuge column at 16,000 g for 1 min. Adsorbed RNA was washed with 500 μl each of buffers AW1 and AW2 (supplied) by successive centrifugations at 16,000 g for 1 min. The column was dried by a further 2 min centrifugation at 16,000 g and viral RNA was eluted with 30-60 μl of buffer AVE (supplied).
2.7 Reverse transcription of viral RNA

Viral RNA was reverse transcribed to cDNA using the nef-specific primer, EnvN (Table 2.1). First, 10-30 μl of viral RNA was annealed to 2 pmol of EnvN and 10 nmol of each of the deoxyribonucleotide triphosphates (dNTPs) (deoxyribo-adenosine triphosphate (dATP), deoxyribo-thymidine triphosphate (dTTP), deoxyribo-cytidine triphosphate (dCTP), and deoxyribo-guanosine triphosphate (dGTP)), by heating to 65°C for 5 min in a GeneAmp PCR System 9700 thermocycler, then incubating on ice for 1 min. Two-hundred units (U) of recombinant Moloney murine leukemia virus RT (Superscript III, Invitrogen) was added to each reaction in the manufacturers supplied buffer to yield final concentrations of 5 mM 1,4-dithiothreitol, 50 mM Tris-HCl (pH 8.3), 75 mM potassium chloride (KCl), 3 mM magnesium chloride (MgCl₂), 500 μM dNTP and 100 nM EnvN. Reverse transcription was performed at 25°C for 15 min, then at 55°C for 2 hr. The reaction was terminated by denaturing Superscript III RT at 70°C for 15 mins.

2.8 PCR amplification of full-length HIV-1 envelope for construction of expression plasmids.

Full length HIV-1 env was amplified from cDNA by nested-PCR with Easy-A high fidelity PCR cloning enzyme (Stratagene, UK). This enzyme is a fusion of 5 U/μl Thermus aquaticus (Taq) DNA polymerase (5 U/μl), 4 U/μl recombinant Pyrococcus furiosus (Pfu) DNA polymerase, and 40 ng/μl recombinant Pfu polymerase enhancing factor (P45). Viral cDNA was added to the supplied enzyme-reaction buffer supplemented with 200 μM dNTPs, 100 nM outer-sense primer EnvA, and 100 nM outer-antisense primer, EnvN, made-up to a final volume of 50 μl with nuclease-free water (Sigma). First-round products were amplified using a thermo-cycler programmed as follows: 2 min denaturation at 95°C followed by 10 cycles consisting of denaturation (95°C for 40 s), annealing (50°C for 30 s) and extension (72°C for 3 min 30 s) followed by a further 25 cycles of denaturation (95°C for 40 s), annealing (55°C for 30 s) and extension (72°C for 3 min 30 s). Thermo-cycling was followed by a final incubation at 72°C for 5 min. One microlitre of each reaction was used as the template for second-round amplifications with 100 nM inner
Table 2.1 Primers used for PCR amplification, sequencing, mutagenesis and quantitative-RT PCR

<table>
<thead>
<tr>
<th>Application</th>
<th>Primer</th>
<th>Orientation</th>
<th>Sequence (5'→3')</th>
<th>HXB2 numbering</th>
<th>Restriction site</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse transcription</td>
<td>EnvN</td>
<td>anti-sense</td>
<td>CTG TCA ATC AGG GAA GTA GCC TTG TGT</td>
<td>5954←5982</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HIV-1 env</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR amplification</td>
<td>EnvA</td>
<td>outer sense</td>
<td>GGC TTA GGC ATC TCC TAT GGC AGG AAG AA</td>
<td>9145→9171</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HIV-1 env</td>
<td>EnvN</td>
<td>outer anti-sense</td>
<td>CTG TCA ATC GTA GCC TTG TGT</td>
<td>5954←5982</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>EnvF2</td>
<td>inner sense*</td>
<td></td>
<td>GGG CTC GAG GCC GCC GCC AGC AGA AGA CAG TGG CAA TG</td>
<td>6207→6227</td>
<td>Xhoi-NotI</td>
<td>this study</td>
</tr>
<tr>
<td>EnvF3</td>
<td>inner sense*</td>
<td></td>
<td>GGG CTC GAG GCC GCC GCC AGC AGA AGA CAG TGG CAA TGA</td>
<td>6207→6228</td>
<td>Xhoi-NotI</td>
<td>this study</td>
</tr>
<tr>
<td>EnvR2</td>
<td>inner anti-sense*</td>
<td></td>
<td>AAA TCT AGA GGG CCC CCA CTG GCC ACC CAT RTT A</td>
<td>8793←8811</td>
<td>XbaI-Apal</td>
<td>this study</td>
</tr>
<tr>
<td>EnvR3</td>
<td>inner anti-sense*</td>
<td></td>
<td>AAA TCT AGA GGG CCC CCA CTG GCC ACC CAT RTT ATG GC</td>
<td>8789←8811</td>
<td>XbaI-Apal</td>
<td>this study</td>
</tr>
<tr>
<td>Env10F</td>
<td>inner sense*</td>
<td></td>
<td>CTA TGG CAG GAA GAC GAG AC</td>
<td>5968←5990</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Env13R</td>
<td>inner anti-sense*</td>
<td></td>
<td>CTA TCT GTC CCC TCA GCT ACT GC</td>
<td>8707←8685</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Env11F</td>
<td>inner sense</td>
<td></td>
<td>GCA TGA GAA TAT AAT CAG TTT ATG GG</td>
<td>6536←6561</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Env12R</td>
<td>inner anti-sense</td>
<td></td>
<td>CAA ATG AG TTT TCC AGA GCA ACC C</td>
<td>8035←8012</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>JAE1</td>
<td>sense</td>
<td></td>
<td>CACAGTACAATGTACACATG</td>
<td>6953←6972</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>JAE4</td>
<td>anti-sense</td>
<td></td>
<td>ACAATTTCTGGGTCCCCCC</td>
<td>7320←7339</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mutagenesis</td>
<td>R339E/F</td>
<td>sense</td>
<td>ATT GTA ACA TTT CTA GAG TAG AAT GGG AAG ACA CCT TAA</td>
<td>7213→7251</td>
<td>XbaI</td>
<td>this study</td>
</tr>
<tr>
<td>HIV-1 env</td>
<td>R339E/R</td>
<td>anti-sense</td>
<td>TTA AGG TGT CTT CCC ATT CTA CTC TAG AAT TAC TAA AAT</td>
<td>7213←7251</td>
<td>XbaI</td>
<td>this study</td>
</tr>
<tr>
<td>R339N/F</td>
<td>sense</td>
<td></td>
<td>TTA AGG TGT TTC TGG AAT GGA ATG ACA CCT TAA</td>
<td>7213←7251</td>
<td>Xhoi</td>
<td>this study</td>
</tr>
<tr>
<td>R339N/R</td>
<td>anti-sense</td>
<td></td>
<td>ATT GTA ACA TTT CTA GAG TAG AAT GGA ATG ACA CCT TAA</td>
<td>7213←7251</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Q363R/F</td>
<td>sense</td>
<td></td>
<td>TAA AAC AAT ATT CTA TGG ATC CTC AGG A</td>
<td>7292←7322</td>
<td>Clai</td>
<td>this study</td>
</tr>
<tr>
<td>Q363R/R</td>
<td>anti-sense</td>
<td></td>
<td>TCC TGA GGA TGG ATT AAA GAT TAT TGT TTT A</td>
<td>7292←7322</td>
<td>Clai</td>
<td>this study</td>
</tr>
<tr>
<td>Sequencing</td>
<td>ENV12F</td>
<td>sense</td>
<td>AGG AGG GGA CCC AGA AAT TG</td>
<td>7319←7338</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HIV-1 env</td>
<td>ENV11R</td>
<td>anti-sense</td>
<td>TGG GAG GGC CAT ACA CTG C</td>
<td>7521←7539</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Env11F</td>
<td>sense</td>
<td></td>
<td>GCA TGA GGA TAT AAT CAG TTT ATG GG</td>
<td>6536←6561</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Env12R</td>
<td>anti-sense</td>
<td></td>
<td>CAA ATG AGT TTT CTA GAG CAA CCA</td>
<td>8035←8012</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SG-PERT</td>
<td>BMV129</td>
<td>sense</td>
<td>GGT CTC TTT TAG AGA TTT ACA GTG</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BMV</td>
<td>BMV131</td>
<td>anti-sense</td>
<td>CGT GGT TGA CAC GCA GAC CTC TTA C</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BMVF1</td>
<td>sense</td>
<td></td>
<td>TGG TCG GCT TTA CCT GCT TT</td>
<td></td>
<td></td>
<td>this study</td>
</tr>
<tr>
<td>BMVR1</td>
<td>anti-sense</td>
<td></td>
<td>TAG TGG TGG GCC TTC GCT TT</td>
<td></td>
<td></td>
<td>this study</td>
</tr>
</tbody>
</table>

Table 2.1 The oligonucleotides shown in this table were used for RT-PCR amplification of HIV-1 env (section 2.7-2.8), mutagenesis of Rit.336d.c3 env (section 2.24), sequencing (section 2.27), and the SYBR-Green II product enhanced reverse transcriptase assay (SG-PERT) described in section 2.25. Primers designed by the candidate are indicated. Equal amounts of primers EnvF2 and EnvF3 were mixed prior to use in PCR amplifications of full length HIV-1 env, as were primers EnvR2 and EnvR3 (*). Restriction sites used for cloning and mutagenesis are underlined. Primers indicated by the following references have been described in previous studies: 1 (Derdeyn et al., 2004), 2 (Oelrichs et al., 2000), 3 (Voulgaropoulou et al., 1999) and 4 (Silver et al., 1993). All primers were synthesized by Eurogentec, UK.
sense primer, EnvF2/F3, and 100 nM inner-antisense primer, EnvR2/R3 (Table 2.1), using the same buffer conditions as the first-round reaction. The inner primers contained degenerate nucleotide bases to account for common variations in the primer binding sites identified in the Los Alamos sequence database. Thermo-cycling conditions were the same as for the first-round amplification, except for a shorter extension time of 2 min 45 sec. Five microlitres of each second-round PCR product were mixed with 1 μl of DNA loading dye (Promega) and analysed by electrophoresis through 1% agarose gel (1% (w/v) agarose, Tris-acetate-EDTA (TAE) electrophoresis buffer (40mM Tris acetate, 1 mM EDTA) and 0.5 μg/ml ethidium bromide). After 40 min electrophoresis at 120 Volts, separated DNA was visualized under ultraviolet (UV) light with a transilluminator (Gel-Doc).

2.9 Purification of PCR amplified DNA

Amplified envelope genes were purified using Genejet spin columns (Fermentas) using the buffers supplied by the manufacturer. Each PCR product was mixed with 2 volumes of binding buffer, which contains the chaotropic salt, guanidine thiocyanate, to precipitate proteins and to provide the high-salt conditions necessary to adsorb DNA to the silica-resin of the Genejet spin column. The DNA solution was passed through the column by centrifugation and the absorbed DNA was washed twice with an ethanol-based wash solution and dried by centrifugation at 16,000 g for 1 min. Purified DNA was eluted under low salt conditions with 2 x 40 μl volumes of Tris EDTA (TE) buffer (10 mM Tris, pH 8.0, 1 mM EDTA).

2.10 DNA digestion

2.10.1 DNA digestion for plasmid construction

Purified env PCR product or 5 μg of plasmid DNA was digested with 40-80 U of restriction enzyme in the supplied reaction buffer made up to a 100 μl with MilliQ purified water. Typically, PCR amplified env DNA was digested with 40 U each of Apal and Xhol restriction enzymes at 37°C for 6 hr.
2.10.2 Analytical restriction digest

For restriction analysis of plasmid DNA, 500 ng of plasmid was incubated with 20 U of restriction enzyme in the supplied reaction buffer, made up to 20 μl with Milli-Q purified water. Reactions were incubated at 37°C for 1 h. Digested DNA products (10 μl) were analysed by electrophoresis through 1% (w/v) agarose gel.

2.11 Gel Extraction

Products of DNA digestion intended for cloning were separated by electrophoresis through 0.8% (w/v) agarose gel. A GeneJet gel extraction kit (Fermentas) was used to purify separated DNA from agarose-gel slices. Each gel piece was mixed with equal weights of binding buffer and incubated at 50 °C until the agarose had dissolved. Solubilised agarose solution was passed through a GeneJet purification column by centrifugation at 16,000 g for 1 min. The absorbed DNA was washed once with binding buffer and twice with an ethanol-based wash solution. Columns were dried by centrifugation and DNA was eluted with 2 x 50 μl volumes of TE buffer.

Eluted DNA was concentrated by ethanol precipitation prior to ligation or nucleotide sequencing. DNA samples destined for ligation were mixed with 2.5 M ammonium acetate, while samples prepared for sequencing were mixed with 300 mM sodium acetate. Salt-adjusted DNA samples were mixed with two volumes of ice-cold ethanol and incubated on ice for 1 hr. Precipitated DNA was centrifuged at 16,000 g for 1 hr at 4 °C. Supernatants were discarded and DNA pellets were washed with 70% ethanol by centrifugation at 16,000 g for a further 20 min. Decanted supernatants were discarded and the DNA pellets were left to dry before each was dissolved in 15 μl of nuclease-free water (Sigma Aldrich). A microvolume spectrophotometer (NanoDrop ND-1000, Thermofisher scientific) was used to assess nucleotide purity and measure DNA concentration.
2.12 DNA ligation

Restriction-digested env amplicons and pcDNA3.1 were ligated with T4 ligase (NEB), which catalyses the formation of phosphodiester bonds between juxtaposed 5’ and 3’ hydroxyl termini of cohesive or blunt ended DNA. Purified, restriction-digested insert and vector were combined at a molar ratio of 1:6, yielding a final molar concentration of 100 nM in a reaction buffer composed of 50 mM Tris-HCl (pH7.5), 10 mM MgCl₂, 1mM ATP, 10 mM dithiothreitol (DTT), and 2,000 units of T4 ligase. The final reaction volume was made up to 15 μl with nuclease-free water. Ligation reactions were incubated overnight at 16°C.

2.13 Production of competent bacteria

Strains of *Escherichia coli* (E.coli) DH5-α, XL1-blue and MACH1 (Stratagene) were made chemically-competent for transformation with plasmid DNA using the Inoue method (Inoue et al., 1990). Briefly, non-competent bacteria were streaked onto Petri dishes containing LB-agar (1.5% (w/v) agar dissolved in lysogeny broth (LB) (10 g/l Bacto-tryptone, 5 g/l yeast extract, 171 mM sodium chloride (NaCl), pH 7.4)). Plates were inverted and left to grow overnight at 37°C. A single colony was used to inoculate 25 ml of super-optimal broth (SOB) (2% Bacto-tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl₂ and 10 mM magnesium sulphate (MgSO₄)), which was incubated at 37°C in an orbital shaker. After 6 hours, 4 ml of cultured bacteria was transferred to an Erlenmeyer flask containing 250 ml of super-optimal broth (SOB) and this was incubated for a further 8-16 hr in an orbital shaker at 18°C. Bacterial growth was monitored by spectrophotometry and when light absorbance at wavelength of λ=600nm (A₆₀₀) reached 0.5 – 0.8, the flask was transferred to an ice-water bath. Chilled bacteria were harvested by centrifugation at 2500 g and resuspended in ice-cold transformation buffer (TB) (10mM piperazine-N,N'-bis (2-ethanesulfonic acid) (PIPES), pH 6.5, 55 mM manganese chloride (MnCl₂), 15 mM
calcium chloride (CaCl$_2$), 250 mM KCl). Bacteria were centrifuged again and resuspended in 20 ml of TB supplemented with 7% (v/v) dimethyl-sulfoxide (DMSO). After 10 min incubation on ice, 100 μl aliquots of competent bacteria were snap-frozen in liquid nitrogen and stored at -80°C. The OneShot TOP10 strain of *E.coli* was purchased from Invitrogen in a transformation-competent state.

2.14 Transformation of competent *E.coli*

For bacteria transformation, 4 μl of DNA-ligation reaction or 100 ng of purified-plasmid DNA were added to a partially-thawed aliquot of competent E.coli and incubated on ice for 30 min. Transformation reactions were “heat-shocked” for 1 minute in a water bath set to 42°C, then incubated with 500 μl of super-optimal broth with catabolite repression (SOC) (SOB with 20 mM Glucose) in an orbital shaker at 37°C. After 1 hr incubation, 100 μl of the transformed bacteria were spread onto LB-agar containing 120 μg/ml ampicillin. Plates were inverted and incubated at 37°C overnight.

2.15 Screening bacterial clones for the intended plasmid construct

Ampicillin-resistant bacteria colonies were screened for the presence of correctly-sized expression vectors by electrophoresis of bacteria-colony lysates. This method was developed for high-throughput screening of 96 colonies per run (Figure 2.3). Colonies were harvested with sterile 20 μl pipette tips, which were transferred to a 96-well pipette-tip holder. Once filled with bacteria-coated pipette tips, the pipette tip holder was used to inoculate all wells of a 96-well plate containing 100 μl of LB with 120 μg/ml ampicillin. Pipette tips were removed and the inoculated cultures incubated at 37°C for 4 hrs. Residual bacteria, still attached to the 96 pipette tips, were transferred to microtitre wells containing 15 μl of lysis buffer (50 mM Tris HCl, pH 8.0, 10 mM EDTA, 10 μg/ml RNAase A, 50 μg/ml chicken-egg-white lysozyme, 0.05% (w/v) 3,3',5,5'-tetrabromophenolsulfonphthalein (Bromophenol Blue), 10% glycerol). After 5 min incubation at room temperature, the pipette tip holder was removed and 2 μl of
Figure 2.3 High throughput colony screening method for the identification of pcDNA.env constructs.

Figure 2.3 shows the high throughput screening method used to identify correctly sized HIV-1 envelope constructs by colony lysis. Colonies were selected with sterile pipette tips and transferred to a 96-well pipette-tip holder. The pipette tips were transferred to a microtitre plate containing LB/ampicillin, then to a second plate containing bacteria lysis buffer. Samples were processed in bulk as described in section 2.15, then analyzed by electrophoresis through 1% agarose. Positive colonies were identified from the migration rates of super-coiled DNA plasmids and the corresponding wells of the LB/ampicillin plate were used to set-up small scale bacteria cultures for alkaline lysis minipreparation.
phenol:choloform:isoamyl alcohol (25:24:1) were added to each well. Microtitre plates were sealed with adhesive plastic covers and vortexed to emulsify the contents. Plates were centrifuged at 2,000 g for 2 min then vortexed and centrifuged once more at 2,000 g for 5 min. Supercoiled-plasmid DNA contained within the aqueous phase of each well was separated by electrophoresis through 1% agarose. Separate bacteria lysates containing pcDNA3.1 or pcDNA.env (previously confirmed to be correct by nucleotide sequencing) were added to the agarose gel as negative and positive controls, respectively. Correctly sized DNA plasmids were identified as those that migrated through agarose at the same rate as the pcDNA.env control. Positive transformants from the bacteria-culture plate were used to inoculate 5 ml of LB/ampicillin (100 μg/ml) which was incubated at 37°C in an orbital shaker for 12-16 hr. Bacteria were harvested by centrifugation at 4,000 g for 10 mins and the bacteria pellets were processed by alkaline-lysis mini-preparation or stored at -80°C until needed.

2.16 Monitoring growth of pcDNA.env transformed E.coli

Growth of bacteria, transformed with pcDNA.env plasmids, was monitored by spectrophotometry at hourly intervals. Once light absorption values (A$_{600}$) reached 0.4, an aliquot of each culture was diluted 1:106 in LB and 100 μl was spread onto LB agar plates with or without ampicillin. After 12 hr incubation at 37°C, colonies were counted on each plate and used to determine the relative proportion of transformed and non-transformed E.coli.

2.17 Alkaline-lysis mini-preparation of plasmid DNA.

DNA plasmids were purified from bacteria by alkaline-lysis using a GeneJet miniprep kit (Fermentas). Bacteria were resuspended in 250 μl of resuspension buffer (containing RNAase A) and lysed with 250 μl of lysis solution containing sodium dodecyl-sulphate (SDS) and sodium hydroxide, which denatures bacterial protein and DNA, respectively. After 5 min, lysis reactions were terminated with 350 μl of neutralization buffer containing potassium acetate. Precipitated bacterial proteins and chromosomal
DNA were pelleted by centrifugation at 16,000 g for 5 min. Supernatants, containing the plasmid DNA, were passed through a silica-membrane spin column by centrifugation (16,000 g for 1 min) and the flow-through was discarded. Columns were washed twice with an ethanol-based wash solution (16,000 g for 1 min) and residual wash buffer was removed by centrifuging the empty column (16,000 g for 2 min). DNA was eluted into 50 μl of elution buffer (10 mM Tris-HCl, pH 8.5) that was passed through the column by centrifugation at 16,000 g for 1 min.

2.18 Large-scale alkaline-lysis maxi-preparation of DNA plasmids with high copy number.

One-hundred ml of LB containing 120 μg/ml ampicillin were inoculated with single colonies of MACH1 E.coli, transformed with high-copy number plasmids, pHXB2-env or plasmids from the clade B or clade C HIV-1 envelope reference panels. Bacteria were incubated at 37 °C for 16-18 hr in an orbital shaker before harvesting by centrifugation at 4,000 g for 15 min. In order to grow MACH1 E.coli, transformed with the low-copy number plasmids, pNL4-3Δenv or pMD-G, 20 ml of LB containing 120 μg/ml ampicillin, was inoculated with a single transformed colony and incubated at 37°C in an orbital shaker for 8 hours. Four milliliters of this culture were added to 200 ml of LB with ampicillin and incubated at 37 °C. After 5 hours, light absorbance was monitored at hourly intervals by spectrophotometry. When A_{600} reached 0.8 the bacteriostatic antibiotic, chloramphenicol, was added to a final concentration of 170 μg/ml and bacteria were incubated for a further 12 hr before harvesting by centrifugation at 4,000 g for 15 min.

A QiaFilter maxi-preparation kit (Qiagen) was used to purify DNA plasmids from bacterial pellets. Bacteria were resuspended in 10 ml of resuspension buffer (Buffer P1) (50 mM Tris HCl, pH 8.0, 10 mM EDTA, 10 μg/ml RNASE A), then mixed with 10 ml lysis buffer (P2) (200 mM sodium hydroxide, 1% (w/v) SDS). After 5 min, lysis reactions were stopped with 10 ml of chilled neutralization buffer P3 (3.0 M potassium acetate, pH5.5). The resulting solution was decanted into the barrel of a QIAfilter cartridge.
and incubated at room temperature for 10 min to allow a precipitate to float to the surface. Bacterial lysates was passed through the QIAfilter into a QIAGEN-tip 500 column, pre-equilibrated with 10 ml of buffer QBT (750 mM NaCl, 50 mM MOPS, pH 7.0, 15% (v/v) isopropanol; 0.15% (v/v) Triton® X-100). Once all the sample had passed through the anion-exchange resin, the column was washed twice with 30 ml of buffer QC (1 M NaCl, 50 mM MOPS, pH 7.0, 15% (v/v) isopropanol), and DNA was eluted with 15 ml of buffer QF (1.25 M NaCl, 50 mM Tris-Cl, pH 8.5, 15% (v/v) isopropanol). The eluent was mixed with 0.7 volumes of room-temperature isopropanol to precipitate DNA, which was harvested by centrifugation at 4,000 g for 1 hr at 4°C. The supernatant was discarded and the DNA pellet was washed with 5 ml of 70 % ethanol (v/v). After a further 30 min centrifugation at 4,000 g the DNA pellet was air-dried then re-dissolved in 500 μl of TE buffer. The DNA concentration was measured using a NanoDrop ND-1000 and the sample was stored at -20°C.

2.19 Construction of HIV-1 Env-pseudotyped viruses

2.19.1 Transfection of 293T/17 cells with linear polyethyleneimine

Envelope-pseudotyped viruses were constructed by co-transfection of 293T/17 cells with pcDNA.env and pNL4-3Δenv using linear polyethyleneimine (PEI; 25 kDa) (Polysciences Inc, Warrington, PA, US) (Kirschner et al., 2006). Stocks of PEI were prepared in nuclease-free water to a concentration of 1 mg/ml and adjusted to pH 7 with 5M HCl. Solutions were filter-sterilized and stored at -80°C. The following method was used to transfect cells in polylysine-coated 24-well plates. Quantities of PEI and DNA used to transfec 293T/17 cells in larger receptacles (T25 tissue culture flasks and 10 cm diameter Petri dishes) were scaled-up according to the surface area of the cell monolayer.

One day prior to transfection, 293T/17 cells were seeded at a density of 2x10⁵ cells per well. When cells reached 80-90% confluence, tissue culture medium was replaced with 500 μl of DMEM containing 10% (v/v) FCS without antibiotics. Transfection mixtures were prepared by mixing 533 μg of pNL4-3Δenv
with 267 μg of pcDNA.env in 250 μl of serum-free OptiMEM medium. Solutions of DNA were mixed with 250 μl of OptiMEM containing 2.4 μg of PEI and incubated at room temperature for 30 min to allow DNA-PEI complexes to form. Transfecting-DNA mixtures were mixed with the 293T cell supernatants and the 24-well plate was incubated at 37°C in a humidified, 5% CO2-gassed incubator. After 4 hours, tissue-culture medium was replaced with complete DMEM (with antibiotics). Supernatants, which contained pseudovirus particles, were harvested 48 hr and 72 hr post-transfection and clarified by centrifugation at 800 g for 30 min. Transfected-cell supernatants harvested from larger tissue-culture receptacles were passed through a 45 μm Luer-lock syringe filters and stored at -80°C prior to virus titration and neutralization experiments.

Virus pseudotyped with VSV-G, and non-enveloped virus-like particles, were constructed for use as experimental controls in virus titration and neutralization assays. Both types of control virus were produced in 293T/17 cells, pre-seeded in T25 tissue culture flasks. Envelope-deficient virus was constructed by transfecting 9.6 μg pNL4-3Δ env with 22.5 μg of PEI, while VSV-G pseudotyped virus was constructed by transfecting 9.6 μg of pNL4-3Δ env and 3.2 μg pMD-G plasmid DNA with 22.5 μg of PEI.

2.19.2 Transfections with lipofectamine 2000

Where stated, 2 μl of the cationic-lipid, Lipofectamine 2000 (Invitrogen Life Science, UK), were used in place of 2.4 μg of PEI for the construction of Env-pseudotyped viruses by transfections in 24-well tissue-culture plates. The methods for transfection were the same as for PEI transfections (section 2.19.1).

2.20 Infectivity screening of HIV-1 Env-pseudotyped virus.

The TZM-bl reporter cell line (section 2.1) was used to detect infectious pseudoviruses in supernatants harvested from small scale (24-well plate) 293T/17 cell transfections. Ninety-six well white-opaque microtitre plates (Costar, product code: 3917) were pre-seeded with 1.5x10⁶ TZM-bl cells in 100 μl of
complete-DMEM. Plates were left at room temperature for 2 hr to allow cells to distribute evenly before transferring to a 37°C incubator containing 5% CO₂. After 24 hours, cell supernatants were aspirated and replaced with 200 μl of pseudovirus supplemented with 10 μg/ml diethylaminoethyl-dextran (DEAE-Dextran). Each pseudovirus was added to quadruplicate wells.

After 48 hr incubation, infected-cell monolayers were fixed with 0.2% gluteraldehyde and histochemically stained with bromo-chloro-indolyl-galactopyranoside (X-gal) staining solution (2 mM MgCl₂, 5 mM potassium ferrocyanide (K₃Fe(CN)₆), 5 mM potassium ferricyanide (K₄Fe(CN)₆), 137 mM NaCl, 2.7 mM KCl, 10 mM disodium phosphate (Na₂HPO₄), 1.76 mM monopotassium phosphate (KH₂PO₄), pH 7.4 and 1 mg/ml of X-gal stock solution dissolved in N,N-dimethylformamide). Infected cells, expressing β-galactosidase, produced “blue” focus forming units (FFU) after 6 hr incubation at 37°C. Cell monolayers were washed twice with tap water and then left to air dry.

An ELISPOT reader (AID, model no. ELR06) was calibrated to count the number of FFU in each well. The AID EliSpot software (v3.0) collected images in each well, across a surface area of 24 mm², which is 75% of the total surface area. Image correction parameters were optimized to achieve a high-contrast between FFU and background artifact produced from dense clusters of uninfected cells. The camera shutter speed was set to 1/2046 sec and the video processing amplification parameters were set to the following values: Brightness 122, gain 0, hue 158, colour saturation 1, sharpness 255 (max), gamma 129, white balance (red) 138, white balance (blue) 160. All FFU that produced an image-intensity greater than 12 were counted. Pseudoviruses producing more than 200 FFU per well were scaled-up by large-scale transfections in T25 tissue cultures flasks or 10cm diameter Petri dishes for virus titrations and neutralization experiments.
2.21 Titration of HIV-1 Env and VSV-G-pseudotyped virus.

White-opaque microtitre plates were seeded with 1.5×10^4 TZM-bl cells in 100 μl of complete-DMEM, 24 hr prior to pseudovirus titrations (section 2.20). Frozen aliquots of supernatant, containing filter-purified pseudovirus, were thawed at room temperature and serially diluted fivefold in complete DMEM (six dilutions ranging from 1:1 to 1:3125). Each dilution was mixed with equal volumes of complete-DMEM supplemented with 20 μg/ml DEAE-dextran (10 μg/ml final concentration). Supernatants from the pre-seeded microtitre plate were removed and 200 μl of each pseudovirus dilution were added to triplicate wells. Plates were incubated for 48 hr at 37 °C, fixed with 0.2% gluteraldehyde and stained with X-gal (section 2.20). Focus forming units were counted using an ELISpot plate reader (AID) and infectious titres were calculated from virus dilutions that produced FFU within a linear range of 10 – 800 FFU per image. Pseudovirus titres are given as infectious units (IU) per ml, however, these titres are only applicable to microtitre wells (0.32 cm2) containing 200 μl of supernatant.

2.22 Assessing antibody-mediated neutralization of HIV-1 Env-pseudotyped virus

Neutralization of Env-pseudotyped viruses was assessed with patient-derived plasma and NAbs using a modified version of the standardized luciferase assay (Montefiori, 2009). This assay was adapted to incorporate automated cell counting of β-galactosidase expressing TZM-bl cells. Plasma was heat-inactivated at 56°C for 1 hour, then serially diluted 3-fold from 1:10 to 1:2430. Each plasma dilution was mixed with an equal volume of pseudovirus, supplemented with DEAE-dextran (20 μg/ml), yielding 6000 IU/ml of pseudovirus, 10 μg/ml DEAE-dextran and dilutions of plasma ranging from 1:20 to 1:4860. Where stated, plasma was substituted for NAbs, b12 or 2G12, at final concentrations ranging from 0.0781 μg/ml to 20 μg/ml. Pseudovirus was incubated with plasma or NAb for exactly 1 hr at room temperature, then 200 μl of each mixture was added to triplicate microtitre wells containing TZM-bl cell monolayers, pre-seeded 24 hr previously (see section 2.20). Virus-only controls consisted of well
containing 200 μl of supernatant containing 6000 IU/ml of pseudovirus and 10 μg/ml of DEAE-dextran. In order to confirm that heat-inactivated virus did not contain infectious virus particles, plasma diluted 1:20 in complete-DMEM was added to microtitre wells in the absence of virus. Plates were incubated at 37°C in a humidified, 5% CO₂-gassed incubator. After 48 hours, cell monolayers were washed twice with PBS, fixed with 0.2% gluteraldehyde, and stained with X-gal. After two more washes with water, plates were dried at room temperature and FFU were counted using an ELISpot plate reader (AID) (see section 2.20). Neutralization was calculated as the percentage reduction of FFU mediated by each plasma dilution relative to the virus-only controls. Percentage neutralization was plotted against log plasma dilutions (or log NAb concentration) and curves were fitted to the data points using XLfit curve fitting software (IDBS, UK). Half-maximal neutralizing titres (IC₅₀) were interpolated from neutralization curves and are presented as reciprocal dilutions of plasma or concentrations of NAb.

2.23 Quantification of pseudovirus infection by luciferase detection

Where stated, pseudovirus infected TZM-bl cells were quantified by luminometry using D-luciferin (BriteLite Plus, PerkinElmer), which is metabolized by luciferase to produce oxyluciferin in a chemiluminescent reaction. Forty-eight hours post-infection, supernatant fluids were aspirated from each well and replaced with 100 μl of D-luciferin and 100 μl of fresh DMEM without phenol red (Sigma-Aldrich). Cells were lysed by vigorous pipetting and after 10 min incubation at room temperature relative light units (RLU) were quantified using a luminometer (XS, Harta, UK). Background levels of luminescence were recorded from wells that received TZM-bl cells without virus.

2.24 Site directed mutagenesis

Plasmids pcDNA.env(E339/R363), pcDNA.env(N339/R363) and pcDNA.env(N339/Q363) were obtained by site-directed mutagenesis of pcDNA.env(Rit336d) using the quick-change method (Papworth 1996). The R339E and R339R mutations were introduced to pcDNA.env(Rit.336d.c3) prior to the Q363R mutations.
Mutagenesis primers were designed to incorporate restriction sites that encoded synonymous-mutation, so that successfully mutated clones could be identified by restriction analysis (Table 2.1). Primers R339E/F and R339E/R introduced and R to E mutation at site 399 and an XbaI restriction site, while primers R339N/F and R339N/R introduced an R to N mutation at site 339 and an XhoI restriction site (Table 2.1). Plasmid pcDNA.env(RitD336) was used as the template for PCR amplification using Pfu UltraII Fusion HS (Stratagene) in buffer supplied by the manufacturer supplemented with 200 μM dNTPs, 3% DMSO and 10 nM of each primer. Each reaction was subjected to the following thermo-cycling conditions: Five min denaturation at 95°C followed by 18 amplification-cycles consisting of denaturation (95°C for 50 sec), annealing (60°C for 50 sec), and extension (68°C for 9 min). Thermo-cycling ended with a final incubation at 68°C for 12 min. The reactions were digested with 10 units of DpnI restriction enzyme to remove dam-methylated PCR template, and the products of digestion were used to transform competent MACH1 E.coli. Plasmid envelopes, purified from bacteria by alkaline lysis mini-preparation, were screened for the intended mutations by analytical restriction digests with XbaI (R339E mutants) and XhoI (R339N mutants). Mutant envelope plasmids were mutagenised further using primers Q363R/F and Q363R/R, which introduced a Q to R mutation at site 363 and a ClaI restriction site. Double-mutant clones were identified by restriction-digestion with ClaI and the final mutants clones were verified by sequencing of mini-scale plasmid DNA preparations.

2.25 Quantification of HIV-1 reverse transcriptase activity.

Relative concentrations of pseudovirus particles in supernatant fluids were assessed using a product-enhanced reverse transcriptase (PERT) assay that quantifies cDNA reverse transcribed from an RNA template by HIV-1 RT. Quantities of the cDNA product are measured by real time PCR using the asymmetric cyanine nucleic acid stain, SYBR Green I (SG), which absorbs blue light (λmax = 488 nm) and emits green light (λmax = 522 nm) when bound to double stranded DNA. Purified plant-viral RNA
derived from Brome Mosaic virus (BMV) is used as the template because of a lack of sequence homology with retroviral and mammalian genomes. Additionally, this virus lacks a DNA phase to its life cycle, thus reducing the potential for false-positive results from DNA contaminants. This assay was developed in house (Pizzato et al., 2009). The sensitivity of the assay was subsequently improved by redesigning the PCR primers to prevent the formation of primers-dimers and eliminate RNA-dependant Taq polymerase activity (Table 2.1).

The modified SG-PERT assay was executed as follows. Supernatants were mixed with equal volumes of viral lysis buffer (100 mM Tris-HCl (pH7.5), 50 mM KCl, 0.2 mM DTT, 0.25 % (v/v) Triton X-100, 50 % (v/v) glycerol and 0.4 U/μl RNase inhibitor (Fermentas)) and incubated at room temperature for 5 min. Viral lysates were diluted ten-fold in dilution buffer (20 mM Tris-HCl, 20 mM KCl and 5 mM ammonium sulphate (NH₄)₂SO₄, pH8.3), then 10 μl of each sample was added to a LightCycler capillary (Roche) with 10 μl of reaction buffer (20 mM Tris-HCl, 20 mM KCl, 5 mM (NH₄)₂SO₄, 200 μM dNTPs, 0.5 μM sense primer BMVF1, 0.5 μM antisense primer BMVF2, BSA 0.1 μg/ml, 1/20000 SYBR green I, 12 ng BMV template RNA and 0.2 U Hotstart Taq (MBI Fermentas)). Capillaries were placed in a LightCycler 2.0 (Roche) instrument and incubated at 37°C for 30 min. The reverse transcribed BMV cDNA product was amplified using the following program: 5 min Taq polymerase activation at 95°C followed by 45 amplification cycles of denaturation (5 sec at 95°C), annealing (5 sec at 55°C), extension (15 sec at 72°C) and data acquisition (7 sec at 83°C). Amplification curves were generated by the LightCycler software (v4) from log fluorescence (λ = 530mn) measured during the acquisition step. For each amplification curve the software calculated a crossing point, defined as the cycle number at which the real-time fluorescence rises above background fluorescence recorded prior to PCR amplification. After the final amplification cycle, melting temperatures of the DNA products were determined by cooling the samples to 55 °C then heating to 95°C at a rate of 0.1°C per second, while constantly monitoring the decline in fluorescent signal.
2.26 Competitive binding assays

Antibody specificity was mapped using a competitive-binding enzyme-linked immunosorbent assay (ELISA). High-binding ELISA plates (Greiner) were coated with 1 mg/ml of recombinant BaL-strain gp120 and incubated at 4°C overnight. Plates were washed three times with wash buffer (PBS, pH 7.4, 0.05% Tween-20) using an automated microtitre-plate washer (M96, MTX LabSystems), and blocked with 200 μl of blocking buffer (PBS, pH 7.4, 0.05% tween-20, 2% milk powder) to limit non-specific antibody binding. After 1 hr incubation at room temperature, plates were washed three times and each well received either 50 μl of sample buffer (PBS 0.05% Tween-20, 1% BSA), or 50 μl of sample buffer containing 5 μg/ml of M33. Plates were incubated for a further hour, during which time plasma samples were diluted three-fold in sample buffer, yielding dilutions ranging from 1:10 to 1:2190. Without washing the plate, 50 μl of each plasma dilution were added to duplicate wells and after 1 hr incubation, plasma dilutions were mixed with 100 μl of biotinylated-NAb to yield 50% saturating titres (4.6 μg/ml b12, 0.36 μg/ml 2G12 or 0.8 μg/ml 447-D). Biotinylated NAb 4.8d (2.4 μg/ml) was added to wells that previously received M33 peptide. After one hr incubation, plates were washed three times and bound NAb was detected with 1.25 μg/ml of streptavidin-HRP conjugate and 3,3',5,5'-tetramethylbenzidine (TMB) colorimetric substrate (Thermofisher). After 20 min incubation the reaction was stopped with 0.08 M sulfuric acid and light absorbance at λ=450nm (A_{450}) was measured with a spectrophotometer plate reader (BioRad, model 3550). Plasma-mediated inhibition of NAb-binding was determined as the percentage reduction in A_{450} relative to wells that received sample buffer instead of plasma.

2.27 Evolutionary analyses of HIV-1 envelope genes

2.27.1 PCR amplification of HIV-1 envelope for sequencing reactions.

For clonal sequencing analysis of the C1-C3 region of HIV-1 envelope (bases 6536-9797, HXB2 referencing), reverse-transcribed viral RNA (cDNA) was amplified by nested PCR using outer primers
Env10F/Env13R and inner primers Env11F/Env12R. Reaction mixtures contained 2 μl cDNA (or 1 μl of first round product), 200nM dNTP, 1 U platinum Taq polymerase (Invitrogen Life Sciences, UK), 2mM MgCl$_2$, 200 nM of each primer, made up to 50 μl in the 1X reaction buffer supplied by the manufacturer. Thermo-cycling parameters were as follows: 2 min denaturation at 94°C, followed by 35 cycles consisting of denaturation (95°C for 30 sec), annealing (55°C for 30 sec) and extension (72°C for 3 min 30 sec). Thermo-cycling was followed by a final incubation at 72°C for 5 min.

2.27.2 TOPO TA cloning of HIV-1 envelope genes for sequencing analyses

Amplification products were cloned using a TOPO TA Cloning Kit according to the manufacturer’s instructions (Invitrogen Life Sciences). Briefly, 4 μl of agarose-gel purified PCR product were mixed with 1 μl of reaction mix containing Vaccinia virus Topoisomerase I which ligates overhanging 3’ desoxyadenosines (added by Taq polymerase) to the recessed 5’ terminus of the linearized pCR2.1 vector. After 30 min incubation at room temperature, 1 μl of ligated DNA was used to transform TOP10 E.coli. Bacteria colonies were grown on LB-agar with 120 μg/ml ampicillin and individual clones were expanded for DNA purification by alkaline-lysis mini-preparation (section 2.17). Sequencing reactions were prepared in Big Dye Terminator v3 reaction mixtures (Applied Biosystems, UK) containing of 3.7μL H$_2$O, 1.5μL BigDye buffer, 625 nM of primers ENV11F/ENV11R or ENV12F/ENV11R, 0.8μL BigDye Terminator v3 reaction buffer and 2μL of TOPO TA cloned envelope plasmid. Alternatively, the C2-V3 region was amplified from pcDNA.env clones using outer primers CV1/CV4 and inner primers JAE1/JAE4. The PCR reaction was performed on a Peltier Thermal-cycler (PTC-200, MJ Research, UK) using the following conditions: 30 cycles of denaturation (96°C for 10 sec), annealing (50°C for 5 sec) and elongation (60°C for 2 min). Amplified products were purified by ethanol precipitation with 300 mM sodium acetate (section 2.11), then sequenced using an ABI 3700 DNA analyzer (Applied Biosystems, UK).
2.27.3 Phylogenetic analyses

Evolutionary studies of HIV-1 envelopes genes were conducted by Dr Gary Huang and colleagues at the Peter Medawar Institute (University of Oxford, UK). Sequences were aligned manually using X11, Sequencher (version 4.8, Gene Codes Corporation) and Se-Al (v2.0a11) software. Alignments were used to construct rooted phylogenetic trees using a Markov chain Monte Carlo (MCMC) algorithm that estimates sequence diversity and evolutionary divergence time. The MCMC algorithm was implemented using BEAST software which uses a relaxed molecular clock to estimate rates of evolution. BEAST software was also used to calculate effective population sizes for Bayesian skyline plots. For all analyses a general time-reversible model of nucleotide substitution was used, which has the following assumptions i) for any given site the rate of change from one base to another is independent of the base that occupied it previously (Markov property) ii) nucleotide substitution rates are constant iii) the relative frequencies of each base are at equilibrium. The GTR model used a specific nucleotide substitution matrix (Q) derived from priors calculated using BEAST software. In order to identify sites under positive selection, maximum likelihood (ML) phylogenetic trees were converted to parenthetical notation and used as input files for the CODEML algorithm implemented by PAML software. The CODEML algorithm applies models of non-synonymous (N) and synonymous (S) substitution rates (dN/dS; the ω parameter) and tests the likelihood that the observed data fits each model using empirical Bayes and χ^2 tests.

2.28 HLA typing

Where stated the patients HLA type was determined to the oligo-allelic level using Dynal RELITM reverse sequence-specific oligonucleotide kits for the HLA-A and HLA-B, loci (Dynal Biotech). To obtain four-digit typing, Dynal Biotech sequence-specific priming kits were used, in conjunction with the Sequence-Specific Oligonucleotide type (Duda et al., 2009).
2.29 IFN-γ ELISPOT assays.

Cytotoxic T cell function was assessed by IFN-γ ELISPOT by Dr John Frater and colleagues (Oxford University). Polyvinylidene microtitre plates (Millipore) were pre-coated with 0.5 μg/ml anti-human IFN-γ monoclonal antibody (Mabtech). A total of 10^5 freshly isolated PBMCs were added per well in a volume of 100 μL of R10 medium (RPMI 1640 supplemented with 10% FCS, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 2 mM L-glutamine, and 50 U/ml penicillin-streptomycin). Peptides were added at a final concentration of 2 μg/ml. Negative controls consisted of wells containing PBMCs incubated with medium alone. Positive controls consisted of wells containing PBMCs and 12.5 μg/ml of the mitogen, phytohaemagglutinin (PHA) (Murex Biotech). Plates were incubated overnight at 37°C in a 5% CO₂ incubator and washed the next day. To each well, 0.5 μg/ml biotinylated anti–IFN-γ antibody (7-B6-1; Mabtech) was added and incubated for 1.5 hr, then the plates were washed and incubated with streptavidin-alkaline phosphatase (ALP) conjugate (Mabtech) for 45 min. Plates were developed with the ALP-substrate, 5-bromo-4-chloro-3-indolyl phosphate and nitro-blue tetrazolium chloride in Tris buffer (pH 9.5). The reaction was terminated by washing with water after the appearance of blue spots in the positive control wells. Spots were counted on an ELISpot plate reader (AID), and responses were considered to be positive if the number of spots per well minus the background value was three standard deviation greater than the responses in the negative control wells.
Chapter 3

A high through-put neutralization assay for HIV-1 Env-pseudotyped viruses.
3.1 Introduction

Microtitration of envelope-pseudotyped HIV-1 is widely used to study infectivity (Pastore et al., 2006), drug susceptibility (Petropoulos et al., 2000, Zennou et al., 1998, Ogert et al., 2009) and virus tropism (Pastore et al., 2004), and has been standardized for quantitative and qualitative assessments of NAb responses (Wei et al., 2003). Pseudovirus infectivity assays allow for high through-put assessment of NAb responses and this has facilitated the discovery of novel antigenic targets for HIV-1 vaccine research. For example, the discovery of the first gp120 trimer-specific NAbs, PG9 and PG16, required prior screening of approximately 1800 HIV-1 infected donors and 30,000 B cell clones (Scheid et al., 2009, Simek et al., 2009). This level of through-put was achieved using standardized panels of heterologous Env-pseudotypes which represented a genetically-diverse array of recently transmitted viruses with various neutralization epitope specificities. However, when assessing the role of NAbs in vivo, it follows that it is necessary to assay the patient’s plasma for antibodies against their autologous virus.

Envelope cloning is a significant rate-limiting step in neutralization assays that use autologous Env-pseudoviruses. It is often necessary to screen tens of cloned envelopes in order to identify those that are both representative of the quasispecies majority and capable of producing high enough titres to assay antibody-mediated inhibition of infection. Alternative methods have been described that circumvent envelope cloning, by splicing mammalian transcription promoters onto amplified envelope genes using PCR (Beels et al., 2008, Kirchherr et al., 2007). However, amplification of plasmid DNA in bacteria is still widely used in the construction of Env-pseudotypes, because it is more straight-forward and less error-prone than amplifying large amounts of DNA by PCR.

Envelope cloning is complicated by HIV-1 envelope cytotoxicity in E.Coli, which has been attributed to cell membrane permeabilisation, mediated by the carboxy and transmembrane regions of the gp41
fusion peptide (Chernomordik et al., 1994, Arroyo et al., 1995, McDonald and Burnett, 2005). Herein, we report marked variation in the cytotoxicity of different envelope variants, and provide a solution for cloning toxic envelope genes. These findings have implications for phenotypic assays of HIV-1 Env pseudoviruses, where it is important to avoid selection-bias when sampling viral quasispecies.

Pseudovirus infectivity can be quantified using HIV-1 permissible reporter cell lines that stably express reporter genes under regulatory control of HIV-1 or SIV LTR sequences (Montefiori, 2005). One such cell line, TZM-bl, expresses β-galactosidase (β–Gal) and luciferase in response to the viral Tat protein (Platt et al., 1998b, Wei et al., 2002). Luciferase activity is quantified from D-luciferin-treated cell lysates by luminometry. Alternatively, β–Gal-expressing cells can be stained with X-gal substrate and quantified by spectrophotometry of cell lysates, or manually counted on fixed-cell monolayers (Figure 3.1). Automated counting procedures for high-throughput quantification of histochemically-stained cell monolayers have been reported (Morcock et al., 2008, Patiris and Hanson, 2005). Here, we report the validation of this technique for assaying neutralization of HIV-1, and demonstrate sensitivity and reproducibility equivalent to those of standardized luciferase-based neutralization assays.
Figure 3.1 demonstrates the key steps of the HIV-1 pseudovirus neutralization assay:

A. Full length HIV-1 env is amplified by nested RT-PCR from viral RNA extracted from plasma.

B. Amplified Env amplicons are restriction-cloned in the eukaryotic expression vector pcDNA3.1.

C. Cloned envelope expression plasmids (pcDNA.env) are mixed with the HIV-I backbone, pNL4-3Δenv, and transfected into 293T cells.

D. Transfected 293T cells produce virus particles pseudotyped with Env-glycoprotein expressed from pcDNA.env. Virions incorporate NL4-3Δenv genomic RNA but lack function envelope genes.

E. Env-pseudotyped virus is titrated, and known quantities of virus are neutralized with plasma (or NAbs) and added to TZM-bl reporter cells.

F. Infected cells express β-Galactosidase in response to the viral Tat protein. Cells are fixed and stained with X-gal substrate and infected cells are counted. Neutralization is calculated as the percentage reduction in infected cells, relative to wells that receive virus without plasma.

3.2 Results

3.2.1 Optimization of molecular cloning to construct HIV-1 Env-expression cassettes.

Envelope expression cassettes (pcDNA.env) were cloned from viral RNA extracted from plasma of 22 HIV-1 infected patients enrolled into the SPARTAC clinical trial. These envelopes were used to construct Env-pseudotyped viruses for neutralization experiments that will be described in Chapter 5. Full-length env genes were PCR-amplified from reverse transcribed viral-RNA derived from 14 patients. Initial attempts failed for eight patients with low viral loads ranging from 120 to 1,490 RNA copies per ml of plasma (Figure 3.2A). Hence, viral RNA isolations were repeated using 3 ml of plasma that were ultracentrifuged for 1 hr to pellet the virus prior to RNA extraction. Subsequently, the entire 30 μl of eluted viral RNA were used in the RT step. After 70 cycles of nested-PCR, amplified envelope genes were detected by agarose-gel electrophoresis (Figure 3.2B, amplified env from patient S37 is shown). In the case of patient S10, who had the lowest VL, envelope genes were successfully amplified from approximately 360 RNA copies (Table 3.1).

Initial attempts to clone full-length env amplicons into pcDNA3.1 (+) using Apal and Xhol restriction sites resulted in digestion of the PCR product for patient S37 (Figure 3.2B). This was not surprising as 5% of all clade B and clade C HIV-1 envelope sequences in the Los Alamos database contain the CTCGAG Xhol restriction site. For this reason, each envelope primer had been designed to include two 5’ restriction sites, which allowed us to repeat the restriction digest using Apal and NotI without destroying the envelope open reading frame (ORF).

Cloned plasmids of the correct size were identified by agarose-gel electrophoresis of transformed-bacterial lysates. For the majority of patient-env libraries (18/22), the percentage of screened colonies containing the envelope insert ranged between 80%-100%. In contrast, repeated attempts to transform
Figure 3.2 Isolation of env by RT-PCR amplification of viral RNA was variably efficient

Figure 3.2 A: Amplification of viral env from plasma taken from 8/16 patients is shown (S7, S21, S17, S33, S128, S116, S8 and S35), demonstrating inconsistency of the reaction at low VL (see Table 3.1). Five microlitres of each second-round-PCR product were separated by agarose-gel electrophoresis and amplicons were visualized by UV-transillumination. Plasma collected from uninfected donors was processed using a Viral RNA Extraction Kit (Qiagen) and subjected to RT-PCR as a negative control. pHXB2-env (100ng) was subjected to nested PCR as a positive control. A molecular weight (MW) marker (1Kb, Promega), is shown in lane 1.

Figure 3.2 B: Ultracentrifugation of plasma derived from patient S37 yielded a DNA product after 2x35 cycles of nested RT-PCR. Restriction enzymes Apal and Xhol digested the S37 PCR product at a restriction site within env. The 2.6Kb env gene was left intact following digestion with Apal and NotI.
Table 3.1. Identification of samples with low VL that underwent ultracentrifugation prior to RT-PCR

<table>
<thead>
<tr>
<th>Patient</th>
<th>VL</th>
<th>Weeks post ART</th>
<th>Plasma ultracentrifugation</th>
<th>Alternative restriction sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>16311</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>17890</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>28253</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>120</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S14</td>
<td>187</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S17</td>
<td>62875</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S21</td>
<td>20200</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S33</td>
<td>361246</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S35</td>
<td>N/T</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S37</td>
<td>255</td>
<td>12</td>
<td>Yes</td>
<td>Apal/NotI</td>
</tr>
<tr>
<td>S41</td>
<td>6289</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S46</td>
<td>400</td>
<td>12</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S94</td>
<td>292</td>
<td>12</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S99</td>
<td>1490</td>
<td>12</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S116</td>
<td>42604</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S128</td>
<td>74857</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S132</td>
<td>39354</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S171</td>
<td>1030</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S181</td>
<td>400</td>
<td>4</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S185</td>
<td>8060</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S194</td>
<td>851</td>
<td>12</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S199</td>
<td>5264</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1. Ultracentrifugation was used to pellet virus from eight patients with VL <1500 RNA copies per/ml prior to RNA extraction and RT-PCR. To produce Env-expression plasmids, env was cloned into pcDNA3.1 using Apal/Xhol restriction sites for all samples except S37, which was cloned with NotI and Apal.
E. coli with pcDNA.env derived from patient samples S3, S199, S8 and S17 yielded fewer colonies, none of which contained env. Restriction digested env DNA was gel-extracted then concentrated by ethanol precipitation and molarities of pcDNA.env were normalised to 83 nM (1.1 μg per reaction, 888.132 kDa) prior to DNA ligation. This suggested that the low cloning efficiencies were not due to insufficient quantities of env, particularly as 1.1 μg of env derived from patient S194 was used in a ligation reaction that efficiently transformed E. coli (40/40 positive colonies). Alternative reasons for the failure to clone HIV-1 envelopes from these patients included low efficiencies of restriction-digestion or T4-ligation steps that preceded transformation. However, transforming DNA samples for patients S3 and S194 both contained ligated pcDNA.env product that produced similar signal intensities when analyzed by agarose-gel electrophoresis, suggesting that the cause of these cloning failures lay down stream of E. coli transformation (Figure 3.3).

Previous reports of HIV-1 envelope-mediated cytopathology suggested the possibility that expression of env in E. coli may be inhibiting the growth of transformed bacteria (Miller et al., 1993, Comardelle et al., 1997, Chernomordik et al., 1994, Arroyo et al., 1995). This rationale was based on reports of transcription in E. coli, initiated from the eukaryotic CMV-promoter located upstream of the MCS of pcDNA3.1 (Lewin et al., 2005). To test the contribution of gene-promoter activity to the stability of pcDNA.env-transformed E.Coli, the problematic env genes were religated into Bluescript II vectors with MCS orientated in either direction. For KSbluescript II, this placed env in the opposite orientation to the prokaryotic lac promoter. Conversely, the same vector with the reverse MCS (SKbluescriptII) put env downstream of this promoter. Only transformation with KSbluescript.env produced stable colonies containing the env insert (Figure 3.4), inferring that transcription of HIV-env was inhibiting bacterial growth. Excising env from KSbluescript and re-ligating into pcDNA3.1 failed to yield stable colonies, even at a lower incubation temperature of 22°C, previously shown to stabilise HIV-envelope plasmids in replicating bacteria (McDonald and Burnett, 2005).
Figure 3.3: Efficiency of ligation reactions used to construct env expression plasmids

Figure 3.3: Agarose-gel electrophoresis was used to visualise env amplicons from patients S194 and S3 before and after ligation into pcDNA3.1 using Apal and Xhol restriction sites (lane 1). Nucleotide concentrations of restriction-digested PCR-products were standardized after agarose gel-purification and ammonium-acetate ethanol precipitation (lanes 2 and 3). Lanes 5 and 6 show products of overnight ligation with T4 ligase. Final products composed of pcDNA3.1 and env (8kb) are visible in lanes 5 and 6, but not lane 4 (ligated vector without insert).
Figure 3.4: Toxicity of HIV-1 env variants in E.coli is associated with transcription-promoters orientated with the env ORF.

Figure 3.4 demonstrates variable cloning efficiencies for RT-PCR amplified envelope genes derived from two SPARTAC subjects. Transformed XL1-Blue strain E.Coli colonies were screened by agarose gel-electrophoresis of bacterial lysates. Migration of larger-supercoiled plasmids containing env was slower compared to those lacking the insert. All clones for patient S194 incorporated full-length env (confirmed by sequencing), while clones derived from patient S3 did not. Restriction-digested env from patients S3 was successfully cloned into KSBlueScript II but could not be cloned into the same vector with a reversed MCS (SKBluescript II), which placed the env open reading frame in the same orientation as the LacZ promoter (see Figure 2.1 for details of Bluescript vectors).
3.2.2 MACH-1 strain *E.Coli* are partially resistant to HIV-envelope toxicity.

These data provided an explanation for the failure to clone env from patients S199, S8, S17 and S3, but did not explain why these particular env variants were more problematic than the others, nor did it offer a solution for cloning these particular env genes into mammalian-expression vectors. The production of Env-pseudotyped viruses in 293T cells requires the expression of envelope glycoprotein, which in turn requires fusion of env to a promoter sequence that is functional in eukaryotic cells. The possibility of using plasmids encoding alternative viral promoters derived from SV40 or HIV-I was not pursued, because the early SV40 promoter and the 5’ HIV-1 LTR have been shown to have structural features used by *E.coli* RNA pol to initiate transcription (Lewin *et al.*, 2005).

Ignoring these patients would have introduced selection-bias into the study, so alternative strains of *E.coli* were tested for their capacity to host pcDNA.env libraries. Competent strains of K12 *E.coli* (TOP10, DH5α, and XL1-blue) all failed to host pcDNA.env, while transformation of W strain *E.coli*, MACH-1, produced stable colonies from the same DNA-ligations. In contrast to the K12 strains, MACH-1 transformations yielded a mixture of large and small colonies (approximate diameter, 1 mm vs. 2 mm after 16 hr incubation at 37 °C). Only smaller colonies contained env, while the larger colonies contained re-ligated pcDNA without full-length envelope, confirming that HIV-1 env was inhibiting bacterial growth (Figure 3.5 shows a representative example for S3). This assorted pattern of colony growth was not apparent for all patient-derived envelopes, suggesting that some inhibited bacterial growth more than others.

Previously, Monogram Biosciences (Trophile) had been unable to clone HIV-1 envelope from patient S17 as part of a separate collaborative study with our group. Although reasons for this cloning failure were not given, it is possible that envelope-mediated cytotoxicity was responsible, particularly as envelope expression cassettes used in the Trophile assay are produced in K12 strain *E.coli* (US Patent 7169551 B2).
Figure 3.5: Susceptibility to HIV-env toxicity is dependent on *E.coli* strain

<table>
<thead>
<tr>
<th>E.coli strain</th>
<th>Colony lysis (Patient S3)</th>
<th>No. Positive colonies</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Shot<sup>®</sup> TOP10</td>
<td></td>
<td>0/21</td>
</tr>
<tr>
<td>XL-1 blue</td>
<td></td>
<td>0/21</td>
</tr>
<tr>
<td>DH5-α</td>
<td></td>
<td>0/21</td>
</tr>
<tr>
<td>Mach-1</td>
<td></td>
<td>11/21</td>
</tr>
<tr>
<td>Mach-1 (small colonies)</td>
<td></td>
<td>11/11</td>
</tr>
<tr>
<td>Mach-1 (large colonies)</td>
<td></td>
<td>0/10</td>
</tr>
</tbody>
</table>

Figure 3.5: Competent *E.coli* strains were transformed with 300 ng of a pcDNA.env library derived by T4-ligation of env (Patient S3) with pcDNA3.1. Colony lysates were subjected to agarose-gel electrophoresis in order to identify plasmids containing the env insert. All colonies of DH5-alpha, XL1-blue, and commercial preparations of TOP10 (Invitrogen) contained ligated vector without env, while MACH-1 transformed colonies stably hosted pcDNA.env (confirmed by nucleotide sequencing). Small (S) and large (L) MACH-1 colonies were identified by visual inspection.
3.2.3 Envelopes derived from different HIV-I isolates exhibited variable levels of toxicity in *E.coli*

In order to confirm the apparent variation in cytopathic effect mediated by different *env*-variants, bacterial growth curves were plotted for *env*-transformed MACH-1 cultures. However, because β-lactamase is a secreted protein, outgrowth of bacteria lacking pcDNA.*env* was anticipated, which would have masked the inhibitory effect of Env on bacterial growth. To control for this, cultures were diluted and plated onto LB-Agar and the proportion of bacteria that had lost pcDNA.*env* was calculated by comparing the number of colonies grown on Amp⁺ and Amp⁻ LB-agar. Cultures sampled at an *A*_600 of 0.75-0.89 produced 1.5-2 fold more bacterial colonies on Amp⁻ LB-agar than on Amp⁺ LB-agar, confirming that pcDNA.*env* had been lost from a proportion of cells when cultures reached high densities. However, there was no significant difference in the number of colonies at lower absorbances (*A*_600) of 0.31-0.6 in the absence of ampicillin, confirming that cultures at this stage of bacterial growth consisted of a homogenous suspension of stably transformed bacteria (Table 3.2). Differences in the rates of bacterial growth after short periods of culture were, therefore, not due to outgrowth of pcDNA.*env⁻* bacteria.

Comparison of bacterial-growth curves plotted for each MACH-1 transformation showed temporal variation in the lag-phases of growth between pcDNA.*env* variants, with those clones that failed to grow in K12 *E.coli* taking longer to reach the logarithmic phase of growth (Figure 3.6). All pcDNA.*env* clones showed some inhibition of bacterial growth relative to control cultures transformed with pcDNA3.1 without *env*, suggesting that all envelopes were partially toxic. By contrast, pcDNA3.1-transformed XL-1 blue *E.coli* took 5 hr longer to reach the log-phase, in accordance with the rapid doubling times of the MACH-1 strain. Bacterial-growth entered the log-phase at *A*_600 values of approximately 0.4; above this value no difference was observed in the doubling times of clones. Cloned envelope derived from patient S3 exhibited the greatest cytopathic effect and produced a noticeably less turbid culture after 16 hr which yielded 3-fold less plasmid DNA than for the other patients. Overall, these data demonstrate that the rapid growth rate of MACH-1 *E.coli* is partially able to circumvent HIV-1 Env cytotoxicity that is fatal to slower-growing strains.
Table 3.2: Stability of pcDNA.env plasmids in transformed MACH-1 *E.coli*

<table>
<thead>
<tr>
<th>pcDNA.env clone</th>
<th>(E. Coli) culture</th>
<th>Colony forming units ((10^7) per ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A_{600})</td>
<td>Amp +ve</td>
</tr>
<tr>
<td>S46 c2</td>
<td>0.31</td>
<td>8.5</td>
</tr>
<tr>
<td>S194 c4</td>
<td>0.31</td>
<td>9.9</td>
</tr>
<tr>
<td>S181 c16</td>
<td>0.31</td>
<td>5.3</td>
</tr>
<tr>
<td>S99 c17</td>
<td>0.32</td>
<td>4.5</td>
</tr>
<tr>
<td>S21 c1</td>
<td>0.32</td>
<td>7.1</td>
</tr>
<tr>
<td>S185 c8</td>
<td>0.32</td>
<td>4.1</td>
</tr>
<tr>
<td>S171 c10</td>
<td>0.34</td>
<td>2.8</td>
</tr>
<tr>
<td>S35 c22</td>
<td>0.37</td>
<td>4.6</td>
</tr>
<tr>
<td>S132 c16</td>
<td>0.37</td>
<td>3.2</td>
</tr>
<tr>
<td>S128 c4</td>
<td>0.41</td>
<td>2.6</td>
</tr>
<tr>
<td>S41 c19b</td>
<td>0.46</td>
<td>2.3</td>
</tr>
<tr>
<td>S8 c4</td>
<td>0.48</td>
<td>3.4</td>
</tr>
<tr>
<td>S10 c4</td>
<td>0.51</td>
<td>2.6</td>
</tr>
<tr>
<td>S17 c13</td>
<td>0.55</td>
<td>1.8</td>
</tr>
<tr>
<td>S3 c4</td>
<td>0.60</td>
<td>3.1</td>
</tr>
<tr>
<td>S33 c12</td>
<td>0.60</td>
<td>3.2</td>
</tr>
<tr>
<td>S46 c2*</td>
<td>0.75</td>
<td>7.0</td>
</tr>
<tr>
<td>S194 c4*</td>
<td>0.81</td>
<td>8.4</td>
</tr>
<tr>
<td>S181 c16*</td>
<td>0.89</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Table 3.2: To assess the stability of patient-derived pcDNA.env transformed-*E.coli*, loss of ampicillin resistance was quantified from samples of bacterial cultures containing ampicillin (120 µg/ml). One envelope clone (c) was sampled from each patient. Cultures were sampled when light absorbance \((A_{600}) \) reached values of 0.3-0.6. Bacteria were diluted 1:10\(^6\) and incubated overnight on Amp\(^+\) and Amp\(^-\) LB-agar. Three cultures sampled at higher absorbance values (0.75 to 0.89) produced more bacteria on plates without ampicillin (*).
Figure 3.6: Envelope clones exhibit variable levels of toxicity in *E.coli*.

Figure 3.6. Competent MACH-1 strain *E.coli* were transformed with 100 ng of patient-derived pcDNA.*env* plasmids derived by standard alkaline-lysis and silica-resin based purification techniques (Fermentas, Genejet). Bacterial growth was assessed at 40 minute intervals by spectrophotometry at λ=600nm. took longer to reach the logarithmic phase of bacterial growth. All pcDNA.*env*-transformed MACH-1 cultures grew slower than bacteria transformed with pcDNA3.1, while pcDNA3.1-transformed XL-1 blue *E.coli* took approximately 5 hr longer to reach the logarithmic phase of growth.

Legend

<table>
<thead>
<tr>
<th>E.Coli Strain</th>
<th>Plasmid</th>
<th>Visible toxicity (small colonies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACH-1</td>
<td>pcDNA.env</td>
<td>No</td>
</tr>
<tr>
<td>MACH-1</td>
<td>pcDNA.env</td>
<td>Yes</td>
</tr>
<tr>
<td>MACH-1</td>
<td>pcDNAΔenv</td>
<td>No</td>
</tr>
<tr>
<td>XL1</td>
<td>pcDNAΔenv</td>
<td>No</td>
</tr>
</tbody>
</table>
3.2.4 Optimization of 293T/17 cell transfections for the construction of Env-pseudotyped viruses

Pseudovirus particles were produced by co-transfection of 293T/17 cells with cloned envelope genes and a full-length HIV-1 NL4-3Δenv plasmid. A modified version of the microtitration assay described by the Central-reference laboratory at Duke University medical centre (North Carolina, US) was used to quantify infectious titres of pseudovirus in 293T/17 cell supernatant fluids (Montefiori, 2009). In this modified assay, β-galactosidase activity was quantified in place of luciferase, both of which are expressed by infected TZM-bl reporter cells under regulatory control of a Tat-responsive LTR-promoter. Initially, fixed-cell monolayers were histochemically stained with X-gal substrate and “blue” foci were counted manually under light microscopy.

Pseudoviruses constructed with HIV-1 env sequences from five patients by transfection with Lipofectamine had an infectious titre below 2x10³ IU/ml, which was insufficient to assay neutralization. Therefore, non-branched PEI (25kDa) was investigated as an alternative transfection reagent. In order to optimize pseudovirus expression by PEI transfection, molecular weight ratios of DNA to PEI, ranging from 1:1 to 1:10, were tested using HXB2 pcDNA.env and the infectious titres of the pseudovirus were compared. Transfection with 800ng of DNA (533 μg of pNL4-3Δenv and 267 μg of HXB2 pcDNA.env) with 2.4 – 4.0 μg of PEI produced pseudovirus titres of approximately 1.5 x10⁵ IU/ml, which were 1.5-fold higher than viruses produced with Lipofectamine using the same quantity of DNA (Figure 3.7A). Quantities of PEI greater than 4.0 μg per ml of DMEM caused 293T cell monolayers to detach following a 4 hr incubation period, indicating that PEI-mediated cytotoxicity was responsible for the decreases in infectious titre observed with DNA:PEI ratios greater than 1:5 (Figure 3.7A). In contrast to Lipofectamine transfections, optimized PEI transfection conditions produced infectious Env-pseudotyped virions for all patients selected for study.
In order to rule out ‘carry-over’ of residual DNA:PEI complexes during pseudovirus titrations, NL4-3△env plasmid was transfected without env to produce non-infectious ΔEnv-virions. Harvested supernatants titrated onto TZM-bl cells did not produce foci of infection after 48 hrs, confirming that the reporter cells had not been transfected (Figure 3.7B). Nevertheless, 293T cells were washed after each transfection and supernatants were filtered prior to the virus-titration and neutralization experiments.

To test whether patient-derived HIV-1 envelopes were toxic to mammalian cells, TZM-bl monolayer confluency was visually inspected by light microscopy, and Trypan-Blue dye exclusion was quantified after 48 hrs infection with 200 IU per well of each pseudotype. The percentage viability of Trypan-Blue stained trypsinized-monolayers ranged between 82% - 100%, and monolayer confluence was estimated to be greater than 95% in all cases. Cell viability was not a specific property of individual Env-clones, because variations between different Env-pseudotypes were of similar magnitude to variation observed between triplicate wells receiving the same virus. Moreover, there was no correlation between Env toxicity in TZM-bl cells and E.coli. In fact, TZM-bl cell monolayers infected with S3 Env-pseudotyped virus reached 100% confluence, despite cytopathic effects of S3 pcDNA.env in E.coli (Figure 3.7B). Infectious titres greater than 5x10^3 IU/ml resulted in monolayer confluence less than 50% for virus pseudotyped with HXB2. It was not possible to compare all viruses at this level of infectivity because the majority had titres below 5x10^4 IU/ml. Eukaryotic cytotoxicity resulting from HIV-I env expression in 293T cells could not be ruled out because of the cytotoxic effects of the PEI transfection reagent.
Figure 3.7 Optimization of pseudovirus production by PEI transfection

Figure 3.7A. Co-transfection procedures were optimized for pseudovirus production with plasmids NL4-3Δenv and HXB2.env, mixed in a ratio of 3:1. A total of 800 ng of DNA mixture was combined with relative quantities of PEI shown on the x axis. Pseudoviruses were harvested after 48 hr and titrated on TZM-bl cells, and infectious titres (IU/ml) were calculated from the number of infected cells in each well.

Figure 3.7B. Viruses pseudotyped with functional HIV-1 envelopes infect TZM-bl cells, leading to expression of β-Gal. Virus like particles that lack functional envelopes cannot infect the reporter cells (left panel). After 48 hr incubation with 200 IU of S3 pseudotype, TZM-bl cells remained 90-95% confluent (central panel). Conversely 50% of the TZM-bl cell monolayer detached following infection with 5x10⁴ IU/ml of HXB2-Env pseudotyped virus (right panel).
3.2.5 Optimization of a high-throughput pseudovirus-microtitration assay.

Manually counting pseudovirus-infected cells proved to be time-consuming, unreliable and subjective, as counts varied between different assay operators. Therefore, conditions were optimized for automated counts with an ELISpot plate reader (AID). An important step in the modification of this assay was achieving an evenly-distributed cell-monolayer that improved the reproducibility of the assay. For this, opaque 96-well microtitre plates were seeded with reporter cells 24 hr prior to the addition of virus-plasma combinations. This method was compared to the cell-seeding protocol described for the standardized luciferase-based assay in which pseudovirus is added simultaneously with freshly-trypsinized cells. The striking infection-enhancing effect of this minor amendment can be seen in Figure 3.8. In addition to a more even cell distribution, pre-seeded cell monolayers were more permissible to infection, producing 3-5 fold more infectious foci than in the original protocol.

Uninfected cells did not produce a background-noise with the image correction settings described in section 2.20. However, pipette scratches occasionally left distinctive lines on the base of microtitre wells, causing with the ELISpot-reader software to erroneously count high numbers of FFUs. Therefore, each image was manually inspected and automated-counting errors caused by these pipette scratches were corrected. With careful pipetting this affected less than 0.2% of microtitre wells.

The quantifiable limits associated with β-Gal or luciferase as the readouts for the pseudovirus-infectivity assay were compared. A five-fold serial dilution of HXB2 Env-pseudotyped virus was quantified by luminometry and by automated counts of infected-cell foci (Figures 3.9A and 3.9B, respectively). The quantifiable-linear ranges resulting from both readouts reached a plateau above 10^3 foci per well (8.7×10^5 relative light units; RLU). Above this limit, light detection approached saturating levels and it was not possible to differentiate between individual stained-foci and clusters of β-galactosidase expressing cells. Automated cell counting slightly increased the sensitivity of the assay to permit detection of single cell infections, in comparison to light detection from D-luciferin-treated cell lysates, which approached background levels below 10 infectious particles per well (2.5×10^4 RLU). Virus titres
Figure 3.8 Optimised cell-seeding protocol for HIV-1 pseudotype microneutralization assays.

Figure 3.8: An even distribution of cells is a prerequisite for accurate counts of pseudovirus-infected TZM-bl reporter cells using ELISpot readers for automated read-outs. The cell-seeding protocol described by the Duke University Central Reference Laboratory (left panels) was compared to the modified protocol (right panels), in which cells were seeded 12 hr prior to titration of HXB2 pseudovirus. Cell distribution patterns resulting from each protocol are shown by images acquired with an AID ELISpot plate reader. A “halo” effect was observed when virus was mixed with freshly-trypsinized cells which substantially reduced counts of infected cells, given by the numbers to the right of each image.
Figure 3.9 Comparison of luminometry with automated spot counting for TZM-bl based pseudovirus infectivity assays.

Figure 3.9. The quantifiable-linear range of pseudovirus infected TZM-bl cells was assessed by luminometry (Figure 3.9A) and automated spot counting (Figure 3.9B). Titrations of HXB2 Env-pseudotyped virus were prepared in parallel and assayed for luciferase expression using a luminometer (section 2.23) or β-Gal expression by automated spot-counting of X-gal stained cell monolayers using an ELISpot plate reader (section 2.21). Readouts for both techniques reached a plateau above 10^3 infected cells per well (5x10^4 IU/ml or 8.7x10^5 RLU). Percentages give the intra-assay coefficient of variance for 10 replicates of virus dilutions assayed using each technique.
that fell within a linear range of $10-10^3$ infectious particles per well produced standard deviation to mean ratios below 1:10 for both protocols, confirming equivalent levels of accurate reproducibility. Histochemically stained cells were dried prior to reading, so plates could be kept indefinitely at ambient temperatures and anomalous results could be reassessed. This offered a distinct advantage over the original luciferase assay.

3.2.6 Validation of the β-Gal neutralization assay.

The optimized β-galactosidase infectivity assay was validated as a means of measuring neutralization with patient plasma by direct comparison with the luciferase-based assay. The plasma-titres required to neutralize 50% of a HXB2-Env pseudotyped virus (IC$_{50}$) were calculated from neutralization curves derived from each assay. Using the β-gal system, mean IC$_{50}$ plasma-titres calculated for patients S181 and S10 were 1:25 and 1:232, respectively (Figures 3.10A and 3.10B, respectively). These values fell within the 95% confidence intervals of titres detected by the luciferase-assay, confirming that the protocol modifications do not bias the neutralization recorded for patient plasma. Sub-neutralizing concentrations of both plasma enhanced virus infectivity by 10-30%. This level of enhancement corresponded to 15-45 infected cells, which was not detected by the luciferase assay. Optimising the cell distribution had the knock-on effect of reducing the variance of replicate tests, thus narrowing the confidence intervals of the β-gal assay (Figures 3.10C and 3.10D). Overall, automated counting of pseudovirus-infected cell monolayers provided a cost-effective alternative to luciferase-based luminometry with similarly high-levels of throughput, sensitivity and reproducibility.
Figure 3.10 Validation of the high-throughput microneutralization assay for HIV-Env pseudotypes.

Figure 3.10. The β-gal microneutralization assay was compared to the standardized luciferase-based assay. Neutralization of a HXB2 env-pseudovirus is shown for plasma derived from representative patients exhibiting low neutralization (Figure 3.10A; patient S181) or high neutralization (Figure 3.10B; patient S10). Similar patterns of neutralization were detected by luminometry (open circles) and automated cell counting (black triangles). Neutralization curves (black lines) were plotted from the percentage-reductions in spot-forming units (y-axes) relative to no-plasma controls. Neutralizing plasma titres (IC_{50}) are shown by dashed-intercepting lines. Curve fits were plotted using XLfit software. Figure 3.10C gives an example of a HXB2-neutralization curve (β-Gal) acquired using the cell-seeding protocol described by the original assay. Virus was neutralizing with plasma derived from patients S30, for whom pseudovirus was not cloned. For comparison Figure 3.10D shows the equivalent result generated using the modified protocol. The 95% confidence intervals (grey lines) were narrower when virus-plasma mixtures were added to pre-seeded plates.
3.3 Discussion

The Env-pseudotype HIV-1 neutralization assay has produced an invaluable tool with which to identify and characterise HIV-1 neutralizing antibodies. However, the assay was primarily developed for vaccine research, so its capacity to measure natural antibody responses in vivo requires appraisal. Adapting the endpoint measurement from luciferase detection to quantification of β-galactosidase did not affect the intra-assay variation and marginally improved sensitivity to allow detection of a single infected cell. This added sensitivity is unlikely to improve assessments of 50% or 90% neutralizing titres, but could offer a benefit to studies of the non-neutralized fractions of HIV-1 that are commonly detected at saturating concentrations of NAbs in vitro (Burton et al., 2001).

Seeding cells one day prior to incubation with virus/plasma enhanced susceptibility to pseudovirus infection four-fold, perhaps because trypsinisation removes virus-receptors required for entry into host cells. This protocol amendment should also be considered for the original luciferase system, to reduce the number of rejected env-pseudotypes with titres that are considered too low for viral-inhibition assays.

Arguably, PBMCs and wild-type viruses are more relevant to the NAb response, in vivo, than reporter cell systems engineered to be susceptible to molecularly cloned virus, although lectin-stimulated PBMCs are not representative of HIV-1 target cell populations in vivo (Jackson et al., 1988). However, levels of neutralization detected by PBMC-based assays are confounded by the effects of i) cytokines and chemokines that can inhibit or enhance virus replication (Kinter et al., 1996) ii) Fcγ-receptor-dependent cellular mechanisms involving non-neutralizing antibodies (Holl et al., 2004) iii) heterogeneity between PBMCs populations from different donors (Polonis et al., 2009) iv) variable replication kinetics of quasi-populations of cultured virus (Binley et al., 2004) and v) variable plasma concentrations of p24 antigen and anti-p24 antibodies that interfere with the end-point measurement of the assay (Mascola and
Burke, 1993). Consequently, an international collaborative study by NeutNet reported that pseudovirus assays generate results that are generally more reproducible than PBMC-based approaches (Fenyo et al., 2009).

This notwithstanding, the possibility of selecting minority env-clones that are unrepresentative of the major circulating quasispecies is a problem with assays using molecularly cloned virus. This problem is further exacerbated by the findings of this study, which demonstrates variable degrees of HIV-1 Env-mediated cytotoxicity in K12 E.coli strains that are widely used for virus cloning. Potentially, this could bias the selection of patient viruses in favour of those Env-variants that are non-cytotoxic. These findings are particularly relevant to HIV-1 pseudotype assays used in the clinical setting, including the Trofile assay currently licensed to predetermine susceptibility to CCR5-anatagonist, virus-entry-inhibitor, Maraviroc (Pfizer). The possibility of Maraviroc-treatment failure resulting in the selection of minority X4-tropic virus requires this assay to be highly sensitive (Archer et al., 2009, Fatkenheuer et al., 2008, Saag et al., 2009). Therefore, the possibility of Env-toxicity leading biased-sampling of virus quasispecies should be assessed, specifically in this clinical setting.

Previously described methods of culturing env-transformed bacteria at ambient temperature did not yield envelope clones from some patients (McDonald and Burnett, 2005), whereas competent MACH-1 cells derived from E.coli strain W, facilitated env cloning from all patients selected for study. On a per cell basis, it seems likely that MACH-1 cells are susceptible to env toxicity, but compensate with rapid rates of cell division. Correspondingly, those env genes that were toxic to K12 E.coli strains produced ‘small’ MACH-1 colonies that took longer to reach logarithmic phases of growth in suspension culture. Negative-selection mediated by toxic plasmids resulted in outgrowth of faster-growing E.coli that lacked pcDNA.env at A600 values greater than 0.8, which may partly explain why toxic and non-toxic envelopes exhibited similar kinetics of logarithmic-growth. However, this does not explain why cultures of E.coli transformed with the most toxic envelope clone, derived from patient S3, were considerably less turbid
after 16 hr of growth, and yielded significantly less plasmid DNA than the other cultures. This suggests that death rates were dissociated from higher rates of cell division during the initial part of the logarithmic phase, but subsequently caught-up, causing bacterial growth to plateau prematurely. This is to be expected, given a delay in env expression following mitosis, in keeping with the association of env toxicity with mammalian-transcriptional promoters that are not optimised for prokaryotic systems.

Occasionally, repeated attempts were required to grow MACH-1 cultures transformed with particularly problematic envelopes. Therefore, this cloning adaptation may still fail for certain env genes, if the toxicities are greater than those observed here. Nevertheless, MACH-1 cells provide a marked improvement over the more commonly used K12 strains, in terms of their potential to limit sampling bias of HIV-1 env genes. A previous study demonstrates that viral promoters derived from SV40, CMV and HIV-1 possess structural elements that initiate transcription in E.coli, whereas the viral promoter derived from the thymidine kinase gene of herpes simplex virus 1 (HSV1) does not lead to gene transcription in K12 E.coli. Therefore, expression plasmids that use this HSV1 promoter should be assessed as alternative vectors for eukaryotic expression of HIV-1 Env (Lewin et al., 2005).

Previous studies have identified amphipathic α-helical structures within the gp41 fusion peptide, termed lentiviral-lytic peptides that permeabilise membranes of eukaryotes and prokaryotes (Chernomordik et al., 1994, Arroyo et al., 1995). This mechanism, along with transduction of signaling cascades through gp41-binding of calmodulin, has been implicated in human cytopathology (Tencza et al., 1997, Tencza et al., 1995). In this study, we did not detect Env-dependent cytotoxicity in the 293T or TZM-bl mammalian cell lines. However, pseudotyped viruses, that do not package HIV-1 env genes, are unsuitable for this investigation and observations in E.coli are of limited relevance to human infection. Further investigations into effects of more or less toxic envelope genes could identify correlates of virus-mediated pathogenesis.
Chapter 4

B cell depletion in an HIV-1 infected human reveals a role for NAbs in the control of VL
4.1 Introduction

During the chronic stage of HIV-1 infection, VL is maintained at a set-point that reflects a balance between antiviral immune responses and continuous viral turnover from steadily declining numbers of CD4+ T cells. Immunological control of viraemia varies considerably between individuals and a minority (less than 1%) maintains VLs below detectable levels (Lambotte et al., 2005, Madec et al., 2005a). Several studies have detected strong “polyfunctional” CD8+ and CD4+ T cell responses in some elite controllers (Betts et al., 2006, Emu et al., 2008, Migueles et al., 2002, Sarez-Cirion et al., 2007, Streeck et al., 2008, Pereyra et al., 2008b, Potter et al., 2007). Conversely, NAb responses against heterologous isolates are rare and responses against autologous viruses are frequently of lower potency in elite controllers than in chronic progressors (Bailey et al., 2006, Lambotte et al., 2009, Li et al., 2009b, Mahalanabis et al., 2009b, Pereyra et al., 2008a). In spite of low levels of circulating Env antigen, a minority of elite controllers have been shown to develop neutralizing responses (Doria-Rose et al., 2009, Scheid et al., 2009), but functional data linking such antibodies to the control of viraemia is lacking. Furthermore, the controlling effects of partially-neutralizing responses detected in the majority of chronically infected patients has been difficult to determine, due to other confounding factors that limit virus replication, such as T-cell responses, virus fitness and host genetics (Carrington and O’Brien, 2003).

Lymphocyte depletion experiments have yielded information about the functional importance of specific immunological compartments. For instance, depletion of CD8+ T cells in SIV-infected macaques results in higher VLs and accelerated rates of CD4+ T cell destruction (Jin et al., 1999, Lifson et al., 2001, Metzner et al., 2000). Similarly, macaques depleted of B cells prior to SIV infection develop high levels of viraemia that inversely correlate with levels of anti-SIV IgG (Miller et al., 2007, Schmitz et al., 1999). While such data are readily available from animal models, they are rarely available in man.

Rituximab is a mouse-human monoclonal antibody that targets and depletes CD20+ B cells by NK cell-mediated and complement-mediated cytotoxicity (Gong et al., 2005, Taylor and Lindorfer, 2008). It does
not deplete antibody-producing plasma cells, because expression of CD20 ceases when late B cells differentiate into plasma cells (Ahuja et al., 2008). The natural ligand of CD20 has not been defined, although it is thought to be involved in B cell activation and cell proliferation (Popoff et al., 1998). Rituximab therapy has been associated with declining antibody titres in the treatment of autoimmune disorders, such as systemic lupus erythematous, pemphigus vulgaris and mixed cryoglobulinaemia vulgaris (Eming et al., 2008, Saadoun et al., 2008, Stasi et al., 2007). Here, we report a unique case in which rituximab monotherapy was used in a patient with stable HIV-1 viraemia, in the absence of ART. This led to a reversible loss of HIV-1 control, associated with reciprocal changes in NAb titres. Sequence analysis revealed diversification of virus as antibody levels declined, with subsequent selection of NAb-resistant mutants at sites consistent with antibody selection. These data suggest that B cell function contributed to long-term control of VL in this individual, and that NAbs may be more important in controlling chronic HIV-1 infection than previously suspected.

The study described in this chapter was led by Professor Paul Klenerman (Nuffield Department of Clinical Medicine, Oxford University, Oxford). All neutralization assays, envelope mutagenesis, reverse transcriptase quantification and protein-binding experiments were carried out by the candidate. The phylogenetic analyses (shown in Figures 4.5-4.7) were carried out by Dr Gary Huang and Dr Aris Katzourakis at Oxford University. The CD8\(^+\) T cell functional analysis and the HLA typing was conducted by Dr John Frater at Oxford University. All clinical data (CD4\(^+\) T cell counts, HIV-1 VL, Hepatitis B VL, immunoglobulin quantification, and liver function testing) were acquired at clinical laboratories as part of the care the patient received at St Mary’s Hospital, London.
4.2 Clinical History

The patient, a Caucasian male, was diagnosed with an asymptomatic lymphoplasmacytic lymphoma (LCL) in 1972. He did not receive treatment at the time. In 1999, he was diagnosed with acute Hepatitis B virus (HBV) infection. In 2002, aged 58, he was diagnosed with HIV-1 seroconversion illness (clade B). The date at which HIV-1 seroconversion was confirmed is designated as d0 throughout this case study. Following seroconversion, the patient was noted to have elevated numbers of CD138⁺ pre-B cells in the bone marrow and raised IgM (κ-light chain) paraprotein levels, attributed to progression of his LCL.

On diagnosis of HIV-1 infection the patient was recruited into a prospective, non-randomised observational study of early treatment and received three months of combination ART (the pilot study to SPARTAC, Fidler et al., 2002). Thirty months later he received thalidomide treatment for a rising paraproteinaemia without clinical effect. Rituximab therapy was initiated the following month, 1075 days after HIV-1 seroconversion. Four months after the final dose of rituximab the patient became unwell with malaise, fever and unexplained pulmonary infiltrates. This coincided with a $1.7 \log_{10}$ rise in HIV-1 VL, peaking at 737,400 copies/ml. In addition to rising HIV-1 VL, the patient’s HBV VL, previously undetectable, reached peak levels greater than 6×10^6 copies/ml and he developed a biochemical hepatitis (peak alanine transaminanse (ALT) 851 international units (IU) per L). In the absence of ART, HIV-1 VL declined over 3 months, reaching a nadir of 175 RNA copies per ml. Subsequently, long-term combination ART was initiated, 1392 days after seroconversion (emtricitabine, tenofovir disoproxil fumarate and lopinavir/ritonavir). His CD4⁺ count remained above 350 cells/mm³ throughout the follow-up period, and the patient recovered with supportive treatment (Figure 4.1).
Figure 4.1 Clinical course of HIV-1 in relation to rituximab therapy

Figure 4.1: The plasma VL (red; right y-axis) and CD4 count (blue; left y-axis) of the individual studied are displayed over time (days since seroconversion). The brief dip in VL over the first 100 days corresponds to course of ART administered as part of the short-course ART trial (d 0 - d 164). Subsequently, VL was maintained at approximately 10^5 copies per ml over approximately 1000 days without ART. The four week course of rituximab therapy is indicated by the grey shaded area.
4.3 Results

4.3.1 Impact of B cell depletion on plasma antibody concentration

Before the first dose of rituximab, total IgG plasma concentrations were 16.1 g/l, which is within the normal range for a healthy adult (0.8 - 18 g/l, American Society for Clinical Laboratory Science). Fifteen days after the peak VL measurement, total IgG decreased to 10.8 g/l then subsequently increased to 17.3 g/l as VL dropped. Reductions in IgG concentration coincided with reductions in total IgA and IgM κ-light chain paraprotein concentrations. Subsequently, IgA levels returned to pre-rituximab levels, whereas IgM-paraprotein concentrations did not increase. These clinical data suggested that rituximab therapy resulted in modest decreases in total concentrations of different antibody isotypes, which is in keeping with a non-specific depletion of CD20⁺ B cells (Eming et al., 2008, Saadoun et al., 2008, Stasi et al., 2007). However, despite only modest changes to total antibody concentrations, antibody levels to the HBV surface antigen (HBsAb) declined from 7.8 IU/ml to undetectable levels (<1IU/ml) by the peak of HIV-1 VL (Table 4.1). This discrepancy implied that the effects of rituximab on different antibody idiotypes were variable.

4.3.2 Neutralizing plasma titres against HIV-1 temporarily decreased following rituximab therapy.

The reciprocal association between antibody concentration and HIV-1 VL prompted the hypothesis that rituximab therapy caused a transient decrease in HIV-1 NAb titre and a transient loss of viraemia control. To evaluate NAb activity throughout this period, pseudoviruses were constructed from autologous env sequences derived from d 366 and d 1042 plasma. Despite sequence variation within the C2V3 env region involving less than 2% of the 770 sequenced nucleotides, there was no significant difference in neutralization sensitivity between three heterogenous clones assessed for each time point. Neutralizing plasma titres of three clones derived from each time point are shown in Table 4.2. Serum obtained prior to the first dose of rituximab (d 1042) potently neutralized pseudovirus constructed with
Table 4.1 Impact of rituximab on plasma immunoglobulin concentrations

<table>
<thead>
<tr>
<th>Days post-seroconversion</th>
<th>IgG (g/l)</th>
<th>IgA (g/l)</th>
<th>IgM-κ paraprotein (g/l)</th>
<th>HBsAb (IU/ml)</th>
<th>Clinical details</th>
</tr>
</thead>
<tbody>
<tr>
<td>883</td>
<td></td>
<td></td>
<td></td>
<td>12.43</td>
<td></td>
</tr>
<tr>
<td>1028</td>
<td>16.1</td>
<td>0.7</td>
<td></td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>1094</td>
<td>16</td>
<td>0.8</td>
<td></td>
<td>37</td>
<td>Pre rituximab</td>
</tr>
<tr>
<td>1144</td>
<td>15.6</td>
<td>0.7</td>
<td></td>
<td>29</td>
<td>Post rituximab</td>
</tr>
<tr>
<td>1204</td>
<td>12</td>
<td>0.5</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>1239</td>
<td></td>
<td></td>
<td></td>
<td>7.8</td>
<td>During acute illness</td>
</tr>
<tr>
<td>1254</td>
<td>10.8</td>
<td>0.6</td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1295</td>
<td></td>
<td></td>
<td></td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>1298</td>
<td>11.6</td>
<td>0.7</td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>1308</td>
<td></td>
<td></td>
<td></td>
<td>2.86</td>
<td>On ART post-convalescence</td>
</tr>
<tr>
<td>1449</td>
<td>17.3</td>
<td>0.8</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td></td>
<td></td>
<td></td>
<td>100.76</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1 Total immunoglobulin concentrations were assessed at the Diagnostic-Immunology Laboratory at St Mary’s hospital as part of follow-up investigations of the patient’s LCL. Total IgG and IgA concentrations were assessed by immune-nephelometry (Beckman-Coulter) and concentrations of HBsAb were assessed by ELISA. Both assays are validated for clinical diagnostic purposes (section 2.5).
Table 4.2: Impact of rituximab on neutralizing plasma titres (IC₅₀).

<table>
<thead>
<tr>
<th>Days post-</th>
<th>d 336 pseudovirus</th>
<th>d 1042 pseudovirus</th>
<th>Mutant 339E/363R</th>
<th>HXB2</th>
<th>VSV-G</th>
<th>Clinical details</th>
</tr>
</thead>
<tbody>
<tr>
<td>seroconversion</td>
<td>1042</td>
<td>>775</td>
<td>150</td>
<td>n/t</td>
<td>850</td>
<td><20</td>
</tr>
<tr>
<td></td>
<td>1135</td>
<td>>775</td>
<td>225</td>
<td>300</td>
<td>1000</td>
<td>n/t</td>
</tr>
<tr>
<td></td>
<td>1239</td>
<td>220</td>
<td><120*</td>
<td>n/t</td>
<td>875</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1295</td>
<td>250</td>
<td>150</td>
<td>n/t</td>
<td>325</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1308</td>
<td>360</td>
<td>375</td>
<td>n/t</td>
<td>1000</td>
<td><20</td>
</tr>
<tr>
<td></td>
<td>1353</td>
<td>600</td>
<td>425</td>
<td>600</td>
<td>3950</td>
<td>n/t</td>
</tr>
<tr>
<td>negative serum</td>
<td>1308</td>
<td><20</td>
<td><20</td>
<td>n/t</td>
<td><20</td>
<td>n/t</td>
</tr>
</tbody>
</table>

Table 4.2. Half-maximal inhibitory concentrations of sera (IC₅₀, reciprocal dilutions) are shown for virus pseudotyped with Env-clones derived from d 336 and d 1042 plasma. Neutralization of a HXB2 Env-pseudotyped virus is also shown. Serum concentrations below 1:20 did not inhibit VSV-G pseudotyped virus indicating that neutralizing responses were HIV-Env specific. (*)1:120 was the highest concentration of d 1239 serum that could be tested against d 1042 virus due to limited availability. Mutant 339E/363R was constructed to represent envelope changes identified following rituximab therapy. “n/t” denotes virus-serum combinations that were not tested because of limited availability. Autologous envelopes derived 2 years previously (d336, IC₅₀<775¹).
autologous envelopes derived 2 years previously (d336, IC_{50}<775^{-1}). The same serum neutralized contemporaneous Env-pseudotypes (d 1042), albeit to a lesser extent, with an IC_{50} of 1:150. This concurs with typical patterns of viral escape from NAbs previously reported (Mahalanabis et al., 2009b, Parren et al., 1999, Richman et al., 2003, Wei et al., 2003); it also confirmed this patient was able to mount a neutralizing response in spite of his LCL.

Following rituximab therapy, IC_{50} serum titres against d 336 and d 1042 Env-pseudotypes decreased by 2 to 3-fold and the neutralizing effects of 1:180 dilutions of sera reached nadir values concomitant with peak VL (Figure 4.2). Subsequently, neutralizing activity rebounded as viraemia was brought under control. Remarkably, as neutralizing plasma titres returned, VL decreased from 737,400 to 175 copies/ml in the absence of ART, despite a pre-rituximab VL set-point of 1.7 x 10^5 RNA copies/ml (± 8.3 x 10^4, d 153 to d 938,). Sera collected after VL had decreased neutralized d 1042 virus more effectively than sera collected before peak viraemia (Figure 4.2). Decreases in neutralizing activity against a HXB2 Env-pseudotyped virus were also observed, and the changes in IC_{50} titre were greater than that observed for autologous virus strains. The potent levels of neutralization observed against HXB2 were not surprising, as diverse virus strains stimulate antibodies that neutralize HXB2 (Binley et al., 2008).

To determine the breadth of this patient’s NAb response, heterologous NAb activity was tested against a standardized panel of clade-B reference strains. Eight of the twelve isolates were neutralized with titres ranging from 1:90 to 1:300 (Table 4.3). Virus pseudotyped with Env clones SC422661, RHPA4259, THRO4156, WITO4160, CAAN5342, were not neutralized by the patient’s sera (IC_{50} > 20^{-1}). Six isolates were more neutralized by serum collected post-rituximab than serum collected pre-rituximab, in agreement with the increases in neutralization observed with autologous virus. In comparison to other studies, this patient’s neutralizing response exhibited moderate breadth and potency with IC_{50} titres that fell within the inter-quartile ranges reported for chronically infected patients (Binley et al., 2008, Sather et al., 2009, Mahalanabis et al., 2009a). However, there was insufficient serum to assay heterologous
Figure 4.2: Autologous neutralizing antibody titres assayed over time.

Figure 4.2: Autologous viruses, constructed with cloned \textit{env} genes derived from d 336 (■) and d 1042 (●) post seroconversion, were neutralized with patient sera taken before and after rituximab therapy. Percentage reductions of infected cells mediated by serum diluted 1:180 in complete DMEM are shown (black lines: right y-axis). One representative clone from each time points is shown (Rit.336d. c3 and Rit.1042.c6). Plasma VL (red line; left y-axis) is shown over time (days post sero-conversion; x-axis). Grey shaded area indicates the four week course of rituximab therapy. Error bars show the standard deviations of triplicate tests for each clone.
Table 4.3 Neutralizing plasma titres against heterologous virus

Table 4.3 A: Patient sera exhibited moderate neutralizing potency and breadth against heterologous pseudoviruses constructed from a standardized reference panel of heterogeneous envelopes (NIAID, NIH). (**) Reductions in FFU were detected with pooled HIV-1 negative sera, which were attributed to cellular toxicity that was not observed at concentrations below 1:20.

<table>
<thead>
<tr>
<th>Serum</th>
<th>Pseudovirus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6535</td>
</tr>
<tr>
<td>d 1042 (pre rituximab)</td>
<td>220</td>
</tr>
<tr>
<td>d 1353 (post rituximab)</td>
<td>300</td>
</tr>
<tr>
<td>Negative</td>
<td>20**</td>
</tr>
</tbody>
</table>
neutralizing activity at the peak of viraemia (d 1239), so we were unable to assess whether decreases in autologous-neutralization correlated with changes in neutralizing breadth.

These data suggest that, following B cell depletion, HIV-1 NAb s were transiently and partially-depleted, but returned with stronger neutralizing efficacy than pre-rituximab levels. Furthermore, the temporal relationship between VL and neutralizing plasma titre was in keeping with the hypothesis that NAb s contributed to the control of viraemia in this patient. However, it was important to characterize further the changes in NAb activity that followed rituximab therapy.

4.3.3 Antibody characterization

Neutralization was not detected against a VSV-G pseudotype. Because VSV-G envelope interacts directly with the lipid bilayer of the cytoplasmic membrane, VSV-G pseudotyped HIV-1 bypasses the requirement of the interaction between HIV-1 envelope and its receptor and coreceptor to enter cells and is therefore not susceptible to inhibition by HIV-1 neutralizing antibodies. Therefore, neutralizing activity detected against the HIV-1 Env-pseudotyped virus was assumed to be HIV-1 Env specific and antibody mediated. Additionally, HIV-1 negative serum did not neutralize the patient’s Env-pseudotyped virus. However, B cell depletion has been shown to affect cytokine responses (Agarwal et al., 2004), which could potentially affect rates of viral replication in vitro and be mistaken for neutralization. Therefore, it was important to confirm that the changing neutralizing activity was HIV-1 envelope specific.

To define the specificity of the patient’s NAb s, we measured binding competition with envelope-specific monoclonal antibodies using soluble-HIV envelope as the antigenic target (Figure 4.3). Viruses pseudotyped with BaL envelope are highly susceptible to neutralization by heterologous sera (Li et al., 2006b). Therefore, recombinant BaL gp120, purified from transfected CHO-K1 cell supernatants, was expected to bind antibodies in the patient’s plasma that did not neutralize the patient’s own virus.
However, by measuring competition between the patient’s antibodies and biotinylated NAb s that are known to neutralize diverse HIV-1 isolates, it was possible to assess relative titres of antibodies that bind conserved epitopes. This experiment showed competition between patient sera and antibodies b12 and 447-52D (which targets a conformational epitope that includes a conserved GPXR motif in V3). Additionally, the patient’s antibodies competed with 48d in the presence of the CD4 peptide mimic M33, confirming that this patient had antibodies overlapping with a CD4 inducible epitope. There was no competition observed with 2G12, which was not surprising because carbohydrate-specific antibody responses to HIV-1 are rarely detected in vivo (reviewed in (Haynes and Montefiori, 2006)) (Figure 4.3). Conversely, antibodies targeting the CD4bs, and V3 loop are commonly detected in patients with cross-neutralizing antibody responses (Binley et al., 2008).

The concentration of patient serum at which NAb binding was blocked by 50% were calculated for serum samples collected before and after the peak in VL. This revealed a transient decline in binding-competition with b12, 447-52D and 48d during the peak of viraemia, in accordance with decreasing neutralization titres detected with autologous virus and HXB2-env pseudotype (Figure 4.4). This confirmed that the individual had antibodies that bound to epitopes within gp120 and that HIV-1 specific antibodies were partially depleted following rituximab therapy. In order to establish a causal relationship between the dynamics of the NAb response and the observed changes in VL, phylogenetic analyses were carried out on virus envelope sequences derived at multiple time points before and after rituximab therapy. The aim of these experiments was to see if transient losses of antibody-selection pressure affected viral evolution.
Figure 4.3 Antibody binding to HIV-1 envelope decreased following rituximab therapy

Figure 4.3: The Env-epitope specificities of the patient’s antibodies were characterized by competitive-binding ELISA using a panel of biotinylated NAbs: b12, 447-52D, 2G12 and 4.8d. Serial dilutions of patient serum (x-axes) collected on 1042 d (●), 1270 d (○), 1295 d (▲) and 1353 d (■) post-seroconversion were bound to gp120 and incubated with non-saturating concentrations of each NAb. Binding-competition corresponds to the reduction in light absorption (A_{450nm} y-axes) after addition of a streptavidin-HRP conjugate and TMB substrate. To assay binding competition with NAb 447-52D, which binds to a CD4i epitope, patient sera was mixed with the CD4-peptide mimic, M33.

Figure legend

- Buffer
- d1270
- d1353
- d1295
- d1042
Figure 4.4 Antibody binding to HIV-1 envelope decreased following rituximab therapy

Figure 4.4 shows the reciprocal dilutions of sera collected from the patient before and after rituximab therapy (grey shaded area), that reduce gp120-NAb binding by 50% (IC50, right y-axis). Titres were calculated from interpolations plotted against the curves shown in Figure 4.3. One hundred percent binding was taken as that detected in wells containing either IgGb12 (□), 4.8d (△) or 447D (○) in the absence of patient sera. Corresponding VLs are shown by the red line (left y-axis).
4.3.4 Analysis of sequence evolution in HIV-1 envelope over time

The patient’s virus was subtype B, confirmed using the REGA subtyping tool (100% bootstrap) (de Oliveira et al., 2005). To evaluate sequence evolution over time, partial env genes were cloned from amplified viral RNA derived prior to, and following, rituximab therapy (Figure 4.5A). This uncovered clear sequence diversification as the VL peaked after rituximab treatment. Prior to rituximab therapy the mean pair-wise genetic distance, calculated using the Juke-Cantor method (Section 2.27.3), was 0.004 base substitutions per sites, which increased to 0.02 at the peak of VL (p<0.0001) (Jukes, 1969). In order to determine the likely genealogy of the cloned envelope sequences, a time-structured phylogenetic tree was constructed using a Bayesian relaxed molecular clock, and a general time-reversible model of nucleotide substitution (Drummond et al., 2006, Drummond and Rambaut, 2007). This showed that the increase in genetic distance manifested as a 5-fold increase in effective population size (N_e), as shown by the skyline plot in Figure 4.5B. In other words, the number of genetically distinct viruses that contributed to successive generations increased at a time when NAb titres were decreasing, suggesting that selection pressures acting on the virus were temporarily relaxed following rituximab therapy.

An alternative explanation for the diversification of env following rituximab therapy was considered. Latent HIV-1 is known to persist in resting CD4 T cells for several years and rates of viral evolution within these reservoirs are slow (Siliciano et al., 2003). However, sequences from latent reservoirs have increased intra-patient diversity because virus is archived at different times during infection (Nickle et al., 2003, Ruff et al., 2002). In this patient, high levels of HIV-1 or HBV viraemia could have resulted in reactivation of latently infected CD4+ T cells, which would lead to increases in viral RNA sequence diversity. To assess whether diverse strains represented re-emergence of archived virus we analyzed proviral DNA from PBMC samples available from the time of seroconversion up to day 1042 and placed these sequences on a time-structured tree (Figure 4.6). Viruses found post-rituximab did not represent re-emergence of early archived strains; those strains present as VL peaked were most-closely related to strains present in plasma at day 1042, with a subset related to provirus DNA detected at day 1042. Seemingly, quasispecies had diversified from multiple lineages that were replicating before VL increased.
Figure 4.5 Diversification of HIV-1 env sequences after rituximab therapy

Figure 4.5A: A time-structured tree, showing divergence time estimates among intra-host plasma HIV-1 clonal sequences before and after rituximab therapy (shaded grey), based on a Bayesian relaxed molecular clock applied to 969 nucleotides (Drummond et al., 2006). The external nodes represent sequences taken from time-points indicated by the colours given in the Figure key (inset). The topology is a maximal-clade credibility tree calculated using BEAST, with branch lengths proportional to time estimates for the subtending nodes (summarising 60 million Markov chain Monte Carlo (MCMC) simulations, generated after discarding 6 million as burn-in). All the parameters in the MCMC started from random values, except for substitution rates and population size, where priors were imported from the combined proviral and plasma viral sequence data of the same host calculated by BEAST software.

Figure 4.5B. The effective population sizes (N_e) were calculated using BEAST. The x-axis (days post-seroconversion) is the same as for Figure 4.5A (Drummond et al., 2005).
Figure 4.6 Ancestral analyses of emerging strains

A: (Residue 339)

B: (Residue 363)
Figure 4.6 Ancestral analyses of emerging strains

Figure 4.6A: The amino acid status change in viral Env protein at site 339, which was under positive selection following rituximab therapy. A time-structured maximum clade-credibility tree, showing reconstruction of the probable ancestral amino acid changes at Env position 339 of the plasma viral samples and proviral samples over time. The maximum clade-credibility tree was constructed using methods described in Figure 4.5A.

Figure 4.6B: shows amino acid changes in viral Env proteins at position 363 over time (also under positive selection). Data are presented as described in the legend for Fig 4.6A.
This added credence to the argument that virus diversification had resulted from a transient loss of selection pressure.

Loss of immune selection may have resulted from the observed declines in NAb titres, or decreased B cell support of antiviral CD4⁺ and CD8⁺ T cell responses (reviewed in (Moir and Fauci, 2009a)). It was not possible to delineate either of these causes from a non-specific increase in viral diversity. However, as VL declined and neutralizing activity rebounded, envelope sequences became less diverse and the effective population size decreased. If sequence changes corresponded to reapplication of antiviral immunity, the emerging population would be expected to bear the hallmarks of selection at epitopes involved in antibody or T cell recognition. This prompted a search for epitopes in Env under positive selection.

Maximum likelihood phylogenetic trees were analysed using the CODEML algorithm, in order to identify sites under selection from rates of non-synonymous to synonymous mutations (dN/dS= ω) (Yang et al., 2000). By this method, the goodness-of-fit of two codon substitution models were compared using a χ²-test. The first model (M7) assumes a beta distribution of ω without positive selection, whereas the second model (M8) assumes a beta distribution of ω with positive selection at individual sites (ie. ω>1). Two sites in Env were shown to be under positive selection: Position 339 (dN/dS=7.6; p<0.0001) and position 363 (dN/dS=6.977, p=0.03) (Figure 4.6 & 4.7). Interestingly, glycosylation at site 339 has previously been shown to affect neutralization by the carbohydrate specific antibody 2G12, while mutations at sites 339 and 363 have been shown to affect neutralization by the CD4bs antibody, b12 (Duenas-Decamp et al., 2008, Duenas-Decamp et al., 2009, Scanlan et al., 2002).

Residue 363 intersperses the β14 and β15 anti-parallel strands of gp120 and is exposed on the surface of the outer-domain in close proximity to the CD4 binding loop (Figure 4.8A) (Kwong et al., 1998). Computational modeling of atomic-level envelope structures has demonstrated that mutations proximal to the CD4-binding loop are critical in conferring resistance to CDbs antibodies (Wu et al., 2009). Furthermore, site-directed mutagenesis of site 363 has previously been shown to affect neutralization of the CD4bs antibody, M-14 (Zhang et al., 2004b). Prior to the first dose of rituximab (d 1042 post-
Figure 4.7 Tracking of selected envelope mutants

Figure 4.7. Stacked percentage histograms display the relative frequencies of polymorphisms at sites 339 (top panel) and 363 (bottom panel) from historical samples and plasma samples obtained at the time of rituximab therapy. Each bar shows the frequency of residues at these positions.
Figure 4.8 Locations of selected mutations within HIV-1 envelope.
Figure 4.8 Locations of selected mutations within HIV-1 envelope.

Figure 4.8A. The ribbon diagram of the gp120 core structure (Kwong et al, 1998) shows the inner, outer and bridging domains. The structure is in a CD4-bound and 17b-bound state. Structural data were obtained from the RCSB protein data bank and imported into PyMol software to generate three-dimensional images. The α3 helix is highlighted, as are the β14 and β15 domains.

Figure 4.8B. Site 339 (blue), is located in the α3-helix, while site 363 (pink) is located proximal to the CD4 binding-loop (yellow).

Figure 4.8C shows the surface composition of gp120 (light blue) in the same rotational plane as Figure A and B. Sites 339 and 363 are exposed on the surface of the gp120 core. Site 363 is shown in close proximity to the bound CD4 molecule (D1-D2; orange), while the Fab domain of 17b (purple) indicates the approximate location of the co-receptor binding site.

Figure 4.8D is the same as Figure 4.8C, but rotated 80° to show the distance between residue 339 and the CD4bs.
(seroconversion) position 363 was occupied by an arginine in all viral RNA sequences, while all proviral DNA clones sampled up-to, and including, d 1042 had a glutamine at the same position. Following rituximab therapy, R363 variants were temporarily replaced with Q363 variants, which reverted back to arginine residues as NAb titres rebounded and viraemia was controlled (Figure 4.7). Prior to rituximab therapy, an asparagine at site 339 formed part of a possible NDT glycosylation sequon. This residue is located within the α3 helix, which is exposed on the surface of the protein according to atomic level structures (Figure 4.8B). A previous study demonstrated site 339 is involved in 2G12-binding, and also affects b12 binding, despite being some distance away from the CD4bs (Figure 4.8C and 4.8D) (Scanlan et al., 2002). No other sites in envelope were found to be under positive selection, suggesting that sites 339 and 363, alone, conferred a selective advantage to the virus, thus leading to the founder effects observed in Figures 4.5 and 4.6.

4.3.5 Neutralization susceptibility of mutated Env-pseudotypes to NAbs and patient plasma

Although previous studies demonstrate that sites 363 and 369 are involved in NAb escape, it could not be assumed that different mutations at the same sites would affect neutralization of this patient’s virus in a similar manner. Therefore, pseudoviruses mimicking N/E339 and R363 variants were constructed by site-directed mutagenesis and used in neutralization assays with the patient’s serum and NAbs b12 and 2G12. The template used for site-directed mutagenesis was envelope clone 3 derived 336 days post-seroconversion (Rit.336d.c3), which had residues R339 and Q363 (the same clone shown in Table 4.1). This clone was shown to be partially susceptible to 2G12 and b12 neutralization with IC$_{50}$ titres of 3μg/ml and 5μg/ml, respectively (Figure 4.9A and 4.9B). Concentrations of 20 μg/ml of either antibody neutralized less than 90% of the wild type virus (IC$_{90}$>20 μg/ml). Mutant N339/R363, which corresponded to viral RNA sequences detected immediately prior to rituximab therapy, was more susceptible to 2G12 (IC$_{90}$ 3μg/ml), indicating that this mutation introduced an N-linked glycan. The same mutant was less susceptible to b12 (IC$_{50}$<10μg/ml) and infectivity was enhanced by 10-20% in the presence of sub-neutralizing concentrations of antibody (1.25 – 0.08 μg/ml) (Figure 4.9B). Mutant virus mimicking the majority phenotype at peak viraemia, N339/Q363, was the most susceptible to 2G12
Figure 4.9 Impact of selected mutations on susceptibility of the virus to neutralizing antibodies

Figure 4.9A. Cloned HIV-1 envelope derived from the patient at d 336 (pre-rituximab) was mutated at sites 339 and 363, which introduced the specific sequence changes observed following rituximab therapy (see section 2.24 for methods). Each mutant virus, along with the d336 R339/Q363 wild-type variant, was used in the β-Gal neutralization assay to assess the impact of the selected mutations on neutralization sensitivity to antibody 2G12. Pseudotyped viruses are listed below in the order that each mutation occurred in vivo. The percentage neutralization of each mutant is given by the y-axis. The asparagines at site 339 formed part of an NDT glycosylation sequon.

Figure 4.9B Pseudoviruses mimicking the predominant variant immediately before peak viraemia (blue line; N339/Q363) were transiently more susceptible to b12 than variants present before rituximab therapy (purple line; N339 R363).

Figure Key
neutralization (IC\textsubscript{50} 0.2 μg/ml). As VL declined the majority of virus clones acquired E339 and R363 mutations, which further reduced susceptibility to both NAbs. Twice the concentration of d1042 serum was required to neutralize 50% of the E363/R363 mutant in comparison to wild-type d 336 Env-pseudotype (IC\textsubscript{50} 1:600 vs. 1:300) (Table 4.1). Thus, env mutations were selected over time that modified sensitivity to neutralizing antibodies, and to the patient’s own plasma. Importantly, these mutations were temporally associated with a transient loss of viral control and reciprocal changes in antibody titres, indicating that NAbs contributed to the control of VL in this patient.

4.3.6 Mutant Env-pseudoviruses exhibited similar levels of infectivity after correction for RT activity

Intra-host diversity of HIV-1 envelope can affect virus infectivity (Nora et al., 2008), which could lead to selection by antibody-independent mechanisms. Therefore, the infectious titres of the mutant pseudoviruses were compared using the β-Gal infectivity assay. Initial titrations of mutant N339/R363 revealed an infectious titre that was 1.8-fold higher than wild-type virus (R339/Q363). However, it was not clear whether this resulted from the mutations in envelope or from higher concentrations of virions harvested from transfected 293T supernatants.

In order to standardize the concentration of pseudovirus particles prior to titration, RT activity was measured using the SG-PERT assay that was developed as part of a separate study, led by Dr Massimo Pizzato in collaboration with the candidate (Pizzato et al., 2009) (see section 2.25). Retrovirus particles are quantified from levels of reverse transcribed BMV RNA (cDNA) using SYBR Green II-quantitative PCR. The quantitation standard (QS) for the assay consisted of an HIV-1 nl4-3 virus, previously shown to contain 355 ng/ml p24, 136 ng/ml RT and 11.6 × 109 HIV-1 RNA copies/ml (see (Pizzato et al., 2009) for details). Ten-fold dilutions of the standard revealed that levels of fluorescence tended to plateau prematurely after approximately 25 PCR amplification cycles (Figure 4.10A and 4.10B). This resulted in an amplification efficiency of 1.585 as determined from the slope of the standard curve (optimal efficiency = 2) (Figure 4.10C). Because differences in the infectious titres of the mutant pseudoviruses were subtle, the SG-PERT assay was first optimized before it was used to quantify RT activity in virus-containing supernatants.
Figure 4.10 Optimization of the SG-PERT assay for the quantification of pseudovirus particles

A

B

C

D

Primers 129/131

Redesigned Primers

BMVF1/BMVR1

$y = 1.5861 \ln(x) + 15.153$

$R^2 = 0.9986$

$y = 1.8645 \ln(x) + 11.974$

$R^2 = 0.9982$
Figure 4.10 Optimization of the SG-PERT assay for the quantification of pseudovirus particles

The SG-PERT assay was used to compare efficiencies of RT-PCR amplification of BMV RNA using primers BMV131/BMV129 (left panels) and BMVF1/VMVR1 (right panels) with virion derived HIV-1 RT. Tenfold dilutions of nl4.3 virus were lysed then incubated with reaction mixes containing Taq polymerase and BMV RNA for 30 min to allow HIV-1 RT to reverse transcribe a BMV RNA template. The cDNA product was the quantified by SG-quantitative PCR. For primer sequences see Table 2.1 (Materials and Methods).

Figure 4.10A: Primers 129/131 produced amplification curves that plateaued prematurely in reactions containing low concentrations of virus (1:10^4, dashed line). Blue lines show amplification of DNA product in the absence of HIV-1 RT (negative control).

Figure 4.10B: The amplification cycle at which fluorescence exceed background levels recorded prior to PCR amplification (crossing points) was calculated by the LightCycler software from log fluorescence recorded for each reaction.

Figure 4.10C: Crossing-points were used to construct standard curves. The co-efficients of the logarithmic regression lines represent the amplification efficiencies of each primer set (BMV129/BMV131 = 1.5861, BMVF1/VMVR1 = 1.8645).

Figure 4.10D: Melting peaks of the final amplified products reveal two products in the reactions with primers BMV129/BMV131 and only one product in reactions with primers BMVF1/VMVR1.
Poor amplification efficiency could have been due to waning activity of Taq polymerase, degradation of other heat labile components within the reaction mixture, or sequestrations of reaction components within non-BMV specific amplifications. Non-specific products of amplification were identified by analyzing melting curves of the final PCR product. Negative-first-differential fluorescence, plotted against temperature, revealed two distinct melting peaks (Figure 4.10 D), which was consistent with the formation of primer-dimers.

Secondary structure predictions using the NetPrimer online tool (http://www.premierbiosoft.com/) identified five self-dimerising structures for forward primer BMV131 and three cross-dimers with primer BMV129. Three of these structure predictions had 3’ recesses that would facilitate polymerase extensions and cause destruction of BMV-primer specificity. Primers were redesigned with the intention of eliminating all possible secondary structure formations. Primer-dimers were not detected using the modified primers (BMVF1/BMVR1), and the amplification curves did not plateau at low concentrations of virus. Additionally, the amplification efficiency increased from 1.585 to 1.86 (Figure 4.10 A-D). This suggested that eliminating the formation of primer dimers had the effect of reducing competition for PCR reagents within each reaction, thus allowing reliable detection of low levels of HIV-1 RT. However, the extra sensitivity afforded by the optimized primer set increased background detection of BMV amplified product in the absence of HIV-1 RT. This has previously been attributed to RNA-dependent DNA polymerase activity of the Taq enzyme which reverse transcribes BMV-RNA during PCR amplification cycles (Maudru and Peden, 1997). This was not considered to be a confounding factor because DNA product amplified in the absence of HIV-1 RT was not detected until after the 33rd amplification-cycle.

The modified SG-PERT assay was used to compare RT activity in mutants R339/Q363, N339/Q363 and E339/R363. Mutant N339/Q363, was constructed at a later time point and was not assessed in this
experiment. The amplification cycles at which amplified BMV DNA products were detected (crossing points) were 15.0, 15.3 and 16.4 for mutants N339/R363, E339/R363 and R339/Q363, respectively (Figure 4.11A). These crossing-points corresponded to the following concentrations of RT, determined from the standard curve shown in Figure 4.10 C (BMVR1/BMVF1 primers): 26.8 ng/ml (N339/R363), 22.85 ng/ml (N339/R363), 12.7 ng/ml (R339/W363). Therefore, the concentrations of reverse transcriptase detected in virus N339/R363 were 2.1-fold higher than that of the wild-type virus R339/Q363. After normalizing the concentrations of RT for each mutant and the wild type virus the resulting infectious titres, as assessed in the TZM-bl infectivity assay, ranged from 3.3×10^3 – 3.7×10^3 IU/ml (Figure 4.11B). Subsequently, supernatant fluid containing mutant N339/Q363 was shown to have an RT concentration of 17.3 ng/ml and produced an infectious titre of 3.0×10^3. The difference between the highest and lowest infectious titre (N339/R363 and R339/Q363) was not significant because the coefficient of variation of the SG-PERT assay was previously calculated at 4.1-7.6%. These data suggest that the envelope mutations observed following rituximab therapy did not affect virus infectivity.
Figure 4.11 Impact of selected mutations on pseudovirus infectivity.

Figure 4.11A Supernatant harvests were assayed for reverse transcriptase activity by SG-PERT. The fluorescent signals (y-axis) correspond to quantities of reverse-transcribed, PCR-amplified BMV RNA template, which are proportional to concentrations of RT from lysed pseudovirus particles. Supernatants were assayed undiluted and diluted 1:10 in tissue culture medium. Mutants R339/Q363, N339/Q363 and E339/R363 are shown with the same colour scheme used in Figure 4.11B.

Figure 4.11B. Concentrations of RT detected in each supernatant were normalized prior to titration onto TZM-bl cells. Titres of each mutant virus are shown by the y-axis.
4.3.7 Analysis of CTL responses prior to Rituximab therapy

Other possible causes for the clinical findings of this case were considered, particularly the possibility of an indirect impact on cellular immunity. The patient was found to be homozygous for HLA Class IB allele B0801 and heterozygous for Class IA alleles A0101 and A1101. Four A1101-restricted, optimal epitopes and six B0801-restricted optimal epitopes were identified from HIV-1 sequences published in the Los Alamos Database (www.hiv.lanl.gov). Six of these were in Gag, one was in Pol and three were in Nef. Peptides corresponding to these epitopes were designed to match the consensus sequence of the patient’s virus, assessed 20 days after diagnosis of HIV-1 seroconversion. Each peptide was used in an IFNγ-ELISpot assay to assess CTL responses using PBMCs collected from the patient 1 year post-seroconversion and immediately prior to rituximab. Responses directed at three epitopes in Gag and one in Pol were detected 1 year post-seroconversion; only two of these (both in Gag) were detected prior to the first dose of rituximab, three years after seroconversion (Table 4.4).

Viral gag pol and nef genes were sequenced at d 20, d 1042 and d 1353 post-seroconversion. At day 1042 post-seroconversion, this patient had an N242T mutation in Gag that was not detected at d 20. This mutation is known to confer susceptibility to CTL responses in patients with HLA B57 alleles. It is possible that this mutation represents reversion to a fitter virus phenotype following virus transmission from an HLA B57 positive donor (Navis et al., 2008). Mutations were detected in five epitopes that were relevant to the patients HLA class I phenotype. Two of these mutations corresponded to epitopes that elicited autologous CTL responses one year post seroconversion, but not immediately prior to rituximab therapy. Importantly, none of the observed mutations were temporally associated with the VL changes observed following rituximab therapy. From these data we concluded that CTL escape was not responsible for the sequence changes observed following B cell depletion. However, PBMCs were not available to assess T cell function at the peak of VL. Although loss of T cell function secondary to B cell depletion, may have contributed to increases in VL, this would not result in the envelope-sequence changes observed at this time (Table 4.4).
Table 4.4 Analysis of CD8+ T cell responses and epitope evolution over time

<table>
<thead>
<tr>
<th>Patient HLA</th>
<th>Gene</th>
<th>Autologous Sequence</th>
<th>IFN-γ response (SFU/10^6 PBMC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pre-Rituximab Year 1</td>
</tr>
<tr>
<td>A1101</td>
<td>gag</td>
<td>TLYCVHQK</td>
<td>K8N</td>
</tr>
<tr>
<td>A1101</td>
<td>pol</td>
<td>ACQGVGGPSHK</td>
<td>-</td>
</tr>
<tr>
<td>A1101</td>
<td>nef</td>
<td>QVPLRPMTYK</td>
<td>-</td>
</tr>
<tr>
<td>A1101</td>
<td>pol</td>
<td>AIFQCSMTK</td>
<td>-</td>
</tr>
<tr>
<td>B0801</td>
<td>gag</td>
<td>GGSKKKYQLK</td>
<td>K3R/K7Q</td>
</tr>
<tr>
<td>B0801</td>
<td>gag</td>
<td>ELKSLYNTV</td>
<td>-</td>
</tr>
<tr>
<td>B0801</td>
<td>gag</td>
<td>DIYKRWII</td>
<td>-</td>
</tr>
<tr>
<td>B0801</td>
<td>gag</td>
<td>DCKTILKAL</td>
<td>-</td>
</tr>
<tr>
<td>B0801</td>
<td>nef</td>
<td>WPKVRERM</td>
<td>-</td>
</tr>
<tr>
<td>B0801</td>
<td>nef</td>
<td>FLKE_KGGL</td>
<td>K5Q</td>
</tr>
</tbody>
</table>

Table 4.4 CD8+ T cell responses were analysed by IFN-γ -ELISpot analysis against a panel of HLA-restricted autologous peptides (spot forming units/million PBMCs are shown). The patient’s HLA Class IA and Class IB genotypes were shown to be A0101, A1101 and B0801 homozygous (Section 2.28). Sequencing of the corresponding peptides was carried out at the time-points shown, and mutating residues have been underlined. The results reveal that pre-rituximab there were two main T cell responses detectable, neither of which showed evidence of immune-escape throughout the rituximab-induced viral flare and recovery period.
4.3.8 Impact of rituximab monotherapy on HBV co-infection

Immune activation through recrudescence of other infectious agents may play a role in this case. Concurrent with the VL rise, the patient developed elevated levels of ALT which is released from damaged hepatocytes. This was associated with reactivation of the patient’s HBV infection, which was confirmed by detection of HBV surface antigen (HBsAg) and HBV nucleocapsid (HBeAg) proteins that were previously undetectable. This is consistent with a previous report of reactivating HBV infections following rituximab therapy (Garcia-Rodriguez et al., 2008). Prior to rituximab, HBV DNA was not detectable, but following the final dose of rituximab, HBV VL increased to 6×10^6 copies per ml (Figure 4.12). As shown in Table 4.1, changes in HBV viraemia were associated with reciprocal changes in antibody titres to HBsAg which declined to undetectable levels (<1 IU/ml) at the peak of viraemia. Importantly, HBV VL remained high as control of HIV-1 VL was regained. This dissociation between HIV-1 VL and HBV VL suggests that HBV replication was not responsible for the decrease in HIV-1 VL, or the sequence changes observed in Env. However, it is possible that reactivation of HBV infection observed following rituximab therapy contributed to the initial flare in HIV-1 VL.
Figure 4.12 Plasma VL of HIV-1 and HBV, and the liver function marker, ALT, were quantified in clinical laboratories at St Mary’s Hospital. Values are displayed over time (days post-seroconversion) and the time of rituximab therapy is indicated by the grey shaded area. The left y-axis corresponds to HBV VL (DNA copies /ml) and HIV-I VL (RNA copies /ml). The right y-axis shows quantities of ALT, which is an indicator hepatocyte damage.
4.4 Discussion

Rituximab therapy was used to treat a rising IgM-κ light chain paraproteinaemia in a patient who was also co-infected with HIV-1 and HBV. Following B cell depletion, the patient’s VL increased concurrent with decreases in total IgG levels and HIV-1 neutralizing activity. Recovery of NAb titres coincided with control over viraemia. Multiple analytical techniques were employed to characterize the virus population that was selected as NAbs re-emerged. Emerging virus was defined by polymorphisms at two residues exposed on the virus envelope, both of which showed evidence of positive selection. These data led a strategy of mutagenesis which confirmed that the sequence changes detected affected susceptibility to neutralizing antibodies targeting the CD4bs. In short, all avenues of this investigation contributed to a coherent picture consistent with the hypothesis that NAbs played a major role in containing HIV-1 in this individual.

It was not surprising that this patient had antibodies targeting the CD4bs and V3 loop as these are frequently detected in chronically infected individuals (Binley et al., 2008, Scheid et al., 2009). Competitive-binding experiments were conducted with heterologous BaL envelope glycoprotein, so the titres reported may not reflect levels of antibody binding to autologous virus. This patient’s virus was generally resistant to b12 neutralization as demonstrated by the fact that microgram quantities of antibody failed to neutralize more than 60% of wild type or mutant viruses and lower concentrations of antibody actually enhanced infectivity of the N339/R363 mutant. Antibody mediated enhancement of infectivity has been reported and is associated with sub-neutralizing concentrations of antibody (reviewed in (Burton et al., 2001)). Approximately 25% of clade B field isolates are resistant b12 (Binley et al., 2004, Li et al., 2005, Moore et al., 1995). However, mutations detected at site 363 resulted in
modest changes to b12 neutralization sensitivity, suggesting that antibodies targeting the CD4bs were partly responsible for driving viral evolution in this case.

Residue 363 is adjacent to the CD4 binding loop and a recent structural study demonstrates that residues proximal to the CD4 binding loop are important in conferring resistance to b12 and b12-like antibodies (Kwong et al., 1998, Wu et al., 2009). Sites surrounding the CD4bs are more amenable to sequence variation because they have greater structural plasticity than conserved sites directly involved with CD4 binding (D’Costa et al., 2001). Mutations at site 363 have been shown to confer resistance to the CD4bs antibody M-14 (Zhang et al., 2004a), so it is likely that this patient had antibodies targeting epitopes that included this residue. However, it is unclear how this residue affects neutralization by b12, because site 363 resides outside the b12 binding site (Zhou et al., 2007). Previous studies have also implicated this residue in resistance to b12. Duenas-Decamp et al. showed that P363Q mutations cooperate with S364P mutations to confer partial resistance to b12, yet P363Q alone had minimal effect on neutralization sensitivity (Duenas-Decamp et al., 2008, Duenas-Decamp et al., 2009). In this study we observed a transient arginine to glutamine mutation at residue 363 that effectively removed a positive charge at this site. This may have affected neutralization through interactions with other charged residues residing within the b12-binding site, or alternatively, these mutations may have altered local conformation at the antibody binding site and changed the shape-complementarity of the epitope/paratope interface (Lawrence and Colman, 1993) and reviewed in (Epa V.C. and Colman P.M., 2001).

Immediately prior to the first dose of rituximab there was an absolute discrepancy between proviral DNA and contemporaneous viral RNA sequences: All of the proviral DNA sequences had a glutamine at position 363 (n=12), while all of the viral RNA sequences had an arginine at the same position (n=12). Compartmentalization of distinct virus populations has been suggested as a possible explanation for
similar discrepancies between proviral DNA and viral RNA (Simmonds et al., 1991). However, this is unlikely as there was some overlap in the phylogeny of variants R363 and Q363 (Figure 4.6). An alternative explanation is that virions may have been sampled immediately after selection of R363 variants, before Q363 HIV-1 infected cells had died off. Therefore, it is possible that this patient had recently mounted an effective neutralizing response prior to rituximab-therapy and this may have contributed to the near log-fold decline in VL between d 995 and d 1042. However, this cannot be confirmed because serum was not available to assess neutralization prior to d 1042.

Relaxation of antibody selection pressure is likely to have decreased levels of purifying selection, thus increasing the effect of random genetic drift leading to diversification of the virus and increased Ne population size (Shriner et al., 2004). Alternatively, previously acquired antibody-escape mutations that incurred fitness costs to the virus may have reverted in the absence of antibody selection pressure leading to increased replication rates of individual variants. When antibodies returned, mutants carrying reversion type mutations conferring neutralization susceptibility would have been lost, which could explain why VL subsequently decreased to such low levels (175 RNA copies per ml). Previous studies have suggested that antibody escape does not impact on replicative fitness detected in vitro (Bunnik et al., 2010), and the mutations observed in this study did not significantly impact on TZM-bl infectivity. However, pseudovirus infectivity assays are not entirely suitable for investigating viral fitness because the envelope composition of pseudotyped virions differs from that of wild type virus (Louder et al., 2005). It is, therefore, not clear whether the transient reversion of R363Q detected at peak viraemia affected viral fitness.

Pseudotyped viruses with N339 mutations were more susceptible to 2G12 neutralization indicating that this site was glycosylated. It is not surprising that mutants lacking this NDT sequon remained partially susceptible to 2G12 because other N-linked glycosylation sites were present elsewhere in Env.
Mutations at residues 339 was not related to the transient loss of viraemia control because the R339N mutation occurred prior to rituximab therapy and the N339E mutation was not detected until peak VL had fallen. Nevertheless, glycosylation at this site may have contributed to neutralizing antibody resistance by shielding the conserved receptor binding sites (Koch et al., 2003, Li et al., 2008). Previous studies have demonstrated that site 339 can impact on b12 neutralization, despite being distal to the CD4bs (Scanlan et al., 2002).

Rituximab is commonly given to HIV-1 infected humans to treat lymphoma arising as a complication of late-stage HIV infection, whereas in this case, lymphoma preceded acquisition of HIV. Under normal circumstances antiretrovirals are routinely given, which would confound attempts to assess the impact of rituximab on HIV-1 VL. For this reason there are no published studies on the impact of rituximab in HIV-1 infection. Studies of acute SIV infection in macaques treated with rituximab indicate a role for NAb responses in containing post-acute VL (Miller et al., 2007, Schmitz et al., 1999). In contrast, a recent study of African Green monkeys did not reveal any impact from rituximab treatment during acute SIV infection (Gaufin et al., 2009). Moreover, the aforementioned animal studies initiated rituximab treatment before or immediately following virus inoculation. Future primate studies might investigate the effects of administering rituximab after NAb responses are detected.

The individual in this study received three months of ART started during his seroconversion illness. There is an association between rebounding NAb responses and viraemia control after ART-cession (Montefiori et al., 2001, Montefiori et al., 2003). Early therapy may preserve numbers of B cells that are critical for NAb development, yet irreversibly depleted during untreated PHI (Titanji et al., 2005, Hart et al., 2007). Further investigations of NAb responses following early short-course therapy are warranted and will be discussed in chapter 5.
Given the unusual clinical nature of this case, is it likely that the effects of rituximab would be similar in the majority of HIV-1 infected patients? Prior to rituximab therapy, evolution of Nab responses and virus envelope sequences followed a typical pattern, resulting in modest neutralizing serum titres against autologous-contemporaneous virus, yet stronger responses against earlier strains (d1135 vs. d336; Table 4.2). Further analysis of the ability of this patient’s serum to neutralize a panel of diverse strains revealed that the Nab activity was broadly directed (Table 4.3), although with average titres compared to other studies (Mahalanabis et al., 2009a, Sather et al., 2009, Binley et al., 2008). Thus, antiviral activity mediated by such a response may not be untypical.

It is possible that depletion of B cells had an indirect impact on VL through modulation of CD4⁺ or CD8⁺ T cell subsets. While we cannot exclude this, the mechanism for such an indirect effect is not clear and no impact on CD8⁺ T cell responses has been observed in the SIV models quoted above (Miller et al., 2007). The delay of several weeks that is seen between rituximab treatment and the change in VL is consistent with the observed decline in antibodies, which have a half life of approximately 21 days (Morell et al., 1970). Conversely, disrupting direct B cell/T cell interactions would be expected to take effect immediately. Additionally, changes in the prevailing sequences (ie. reversion and subsequent reselection of a mutated NAb epitope) are consistent with relaxation and reapplication of NAb-mediated selection pressure.

Declining antibody responses have not been reported by all human and animal studies of rituximab-mediated B cell depletion (reviewed in (Lund and Randall)), which does not deplete CD20⁺ long-lived plasma cells (Ahuja et al., 2008). However, rituximab therapy will prevent de novo production of antibodies, which probably led to declining antibody titres in this case, particularly as B cells of HIV-1 infected individuals have relatively short half lives (Moir et al., 2004). In order to match rapid rates of virus evolution, the antibody response must evolve in parallel (Richman et al., 2003). Therefore, B cell
depletion may have preferentially depleted (or prevented) HIV-1 specific antibody responses that were most relevant to virus circulating at the time of rituximab therapy.

The impact of T cell responses on the control of VL is highly variable, with possession of the most favourable HLA allele (B57) delivering a mean affect on VL to the order of one log (Kiepiela et al., 2004). Additionally, subsets of elite controllers have been shown to have strong functional CTL responses directed at sites in HIV-1 Gag (Betts et al., 2006, Emu et al., 2008, Migueles et al., 2002, Sarez-Cirion et al., 2007, Streeck et al., 2008, Pereyra et al., 2008b, Potter et al., 2007). Although NAbs are low or absent in some elite controllers with detectable CTL responses, there is no evidence to suggest that T cell responses control VL independently of humoral immune system in the majority of cases. Likewise, it is not suggested that T cell responses were absent in this patient, particularly as sequence changes were detected at known HLA restricted epitopes prior to rituximab therapy. However, this individual did not have a B57 allele or any other HLA-type associated with HIV control, and it may be that the absence of an effective CD8+ T cell response allowed us to detect a NAb effects on VL.

The impact of other reactivating viruses on HIV-1 load is complex. Rituximab treatment has been shown to reactivate hepatitis B virus (HBV) (Aksoy et al., 2007) in patients with previously controlled infection (HBsAg-ve, HBeAb +ve). This implicates B cells in long-term control of HBV; a virus where CD8+ T cells also play an important role in acute disease. The relationship between HBV VL and HIV VL is not fully understood, but overall they appear to be independent (Rockstroh, 2006). In this case HBV and HIV VL rose within a similar timeframe. However, HIV-1 load was brought under control, while HBV load remained high, indicating that they were differentially regulated.

Overall, our findings support previous suggestions of paralleled evolution of virus and NAbs (Richman et al., 2003, Frost et al., 2005a). The speed and extent to which quantitative changes occurred following rituximab therapy, not only to the virus, but also to the evolving antibody response, are testament to the fragility of this balance. These findings appear at odds with previous studies that fail to confirm an
association between long-term virus control and Nab responses (Bailey et al., 2006, Bradney et al., 1999, Deeks et al., 2006c), but these studies have focused on patients with either strong or poor HIV-1 control, in whom other factors (such as T cell response) may be more important.

Cross-sectional studies of VL set-point and neutralizing activity are unlikely to confirm or refute the findings we report here because they overlook the dynamic complexity of the virus/host interaction. Modest Nab activity contributed to VL control in this patient, which implies that serum titres may be ineffective at gauging the clinical impact of NAbs. Furthermore, VL set-point may not be the most informative marker of viraemia control. Notably, VL remained above 10^5 copies per ml for more than two years prior to rituximab, despite strong evidence that antibodies subsequently controlled viral replication. Therefore, there is a need to assess both neutralizing titre and the continuously adapting virus in evaluating their overall relationship in vivo. Questions relating to the generaliseability of this case might be answered by longitudinal analyses of NAb response and virus evolution in subjects exhibiting significant changes in VL under other clinical circumstances.

This unique case study suggests that B cells, and their secreted NAbs, can impact upon HIV VL in chronic infection. This evidence, derived directly from observations in man, may inform the rational design of future immunotherapies and HIV-vaccines.
Chapter 5

The neutralizing response to HIV-1 following short course antiretroviral therapy in PHI
5.1 Introduction

Chapter 4 provided evidence for antibody-mediated control of HIV-1 VL in a single patient. However, there were several irregularities with this case, so it was necessary to investigate the importance of NAbs under more-typical circumstances.

Broadly-specific NAb activity has been detected in a minority of patients with suppressed viraemia and there is circumstantial evidence supporting a protective role for NAbs in control of VL set-point (Doria-Rose et al., 2009, Mahalanabis et al., 2009b, Deeks et al., 2006a, Richman et al., 2003, Rong et al., 2009, Wei et al., 2003). The most convincing of these demonstrate antibody-selection of neutralization-resistant viruses (Richman et al., 2003, Rong et al., 2009, Wei et al., 2003). Envelope mutations that confer antibody-resistance become fixed in HIV-1 quasispecies as early as 12 weeks after transmission, implying that humoral responses can eliminate neutralization-sensitive founder populations (Goonetilleke et al., 2009). Sequential rounds of selection could feasibly contribute to control of VL, yet several cross-sectional studies have failed to identify clinical correlates of NAb activity detected in vitro (Bailey et al., 2006, Euler et al.).

Passive transfusions of NAbs in macaques challenged with SHIV were shown to lower VL and delay early disease onset (Haigwood et al., 2004, Mascola et al., 2000). In humans, passive transfusion of NAbs and natural antibody responses may delay viral rebound after structured interruptions of ART (Montefiori et al., 2001, Trkola et al., 2004, Trkola et al., 2005). However, studies of treatment interruption in chronic infection are confounded by pre-existing antibody responses and immune-escape variants present pre-ART. Additionally, antiviral effects of NAbs are masked by the inter-dependence of Env-antigen load with antibody production. By contrast, studies of recently infected individuals undergoing treatment interruption are potentially more straightforward because the duration of antigen exposure is short and the clinical history is known.
The SPARTAC clinical trial considers the long-term impact of structured-intervention with short courses of ART administered during PHI. This international randomised-controlled trial compares the effect of ART taken for 48 weeks or 12 weeks with a no-intervention arm. Upon ceasing therapy, all patients continue to have regular blood samples taken with VL and immunology assessments. This trial provided a valuable platform for a longitudinal study of early antibody responses and the associated kinetics of VL, which rebound after discontinuing ART.

Following the termination of ART, autologous Env-pseudotyped viruses were used to assess neutralizing responses with the β-gal-based microneutralization assay described in chapter 4. The extent of neutralizing activity detected against autologous viruses positively correlated with VL, yet within the same system, delayed viral rebound was observed in those patients with detectable responses immediately post-ART. There was no evidence for NAb-mediated control after viral-rebound. However, the dynamic inter-dependency of neutralizing titre with viraemia helps to explain the limitations of cross-sectional analyses as a means of assessing the role of NAbs in vivo.
5.2 Results

5.2.1 Patient demographics

A total of 43 individuals were recruited from the SPARTAC cohort. All patients received either 12 weeks or 48 weeks ART following diagnosis of PHI and were selected for study on the basis of partial or complete VL suppression while on therapy. Those patients with CD4 counts that fell below 350 cell/mm3 within 48 weeks of stopping primary ART were started on long-term ART and were excluded from this sub-study, so that neutralizing responses could be assessed from plasma samples that did not contain antiretroviral drugs. Most patients (32/43) presented with one or more symptoms characteristic of PHI. Seventeen patients had a non-specific, flu-like or glandular fever-like illness, with fever and rash being the commonest specific symptoms. The following criteria were used to confirm PHI: i) positive HIV-1 serology following a negative test within 6 months, ii) low level “incident” result (<0.6) using a detuned HIV-1 ELISA, iii) rising antibody levels detected by progression of protein bands on Western blot, or iv) positive HIV-1 proviral PCR or p24-antigen ELISA in the absence of HIV-1 specific antibodies (Fidler et al., 2002). The median duration of infection prior to the first dose of ART was 12 weeks (inter-quartile range (IQR): 8.8-14.3 weeks) (Table 5.1).

Most patients were European males of median age 35 (n=33, IQR: 32 – 40), while ten patients were South African females recruited at a median age of 28.5 (IQR: 21.75 – 38.5). All the men were infected with HIV-1 subtype B and the women with HIV-1 subtype C. This bias was unintentional and reflects the high rates of male to male transmission of HIV-1 subtype B in Europe and the high prevalence of subtype C infections in women living in Sub-Saharan Africa (UNAIDS, 2008 report) (Garcia-Calleja et al., 2006). There was no significant difference in baseline log$_{10}$ VL between males and females (Mean ± SD, 4.6 ± 1.0 vs. 4.3 ± 0.8, P=0.3, student t-test) (Figure 5.1). Females infected with subtype C virus had significantly fewer CD4 T cells at enrolment into the trial compared with males infected with
Table 5.1 Patient demographics and clinical manifestations during PHI

<table>
<thead>
<tr>
<th>Patient number</th>
<th>Gender</th>
<th>Age</th>
<th>PHI Pre-ART duration (days)</th>
<th>Symptoms during PHI</th>
<th>HIV-1 Clade</th>
<th>CD4 (cells/mm²)</th>
<th>Baseline VL</th>
<th>Autologous neutralization assessed</th>
<th>Heterologous neutralization assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>F</td>
<td>47</td>
<td>125</td>
<td>Yes</td>
<td>C</td>
<td>384</td>
<td>291633</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>M</td>
<td>36</td>
<td>73</td>
<td>Yes</td>
<td>B</td>
<td>486</td>
<td>60621</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S7</td>
<td>M</td>
<td>24</td>
<td>129</td>
<td>Yes</td>
<td>B</td>
<td>400</td>
<td>41840</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S8</td>
<td>M</td>
<td>43</td>
<td>46</td>
<td>Yes</td>
<td>B</td>
<td>670</td>
<td>736055</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S9</td>
<td>M</td>
<td>40</td>
<td>41</td>
<td>Yes</td>
<td>B</td>
<td>380</td>
<td>186805</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>M</td>
<td>29</td>
<td>68</td>
<td>Yes</td>
<td>B</td>
<td>680</td>
<td>29060</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S11</td>
<td>M</td>
<td>55</td>
<td>93</td>
<td>Yes</td>
<td>B</td>
<td>550</td>
<td>36191</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S14</td>
<td>M</td>
<td>31</td>
<td>44</td>
<td>Yes</td>
<td>B</td>
<td>550</td>
<td>2950628</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S17</td>
<td>M</td>
<td>44</td>
<td>69</td>
<td>Yes</td>
<td>B</td>
<td>420</td>
<td>245502</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S19</td>
<td>F</td>
<td>37</td>
<td>86</td>
<td>Yes</td>
<td>C</td>
<td>472</td>
<td>5583</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S21</td>
<td>F</td>
<td>24</td>
<td>93</td>
<td>Yes</td>
<td>C</td>
<td>575</td>
<td>15026</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S24</td>
<td>M</td>
<td>45</td>
<td>96</td>
<td>Yes</td>
<td>B</td>
<td>743</td>
<td>3099</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S31</td>
<td>F</td>
<td>40</td>
<td>118</td>
<td>Yes</td>
<td>C</td>
<td>453</td>
<td>86620</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S33</td>
<td>M</td>
<td>32</td>
<td>99</td>
<td>Yes</td>
<td>B</td>
<td>790</td>
<td>399142</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S35</td>
<td>M</td>
<td>22</td>
<td>108</td>
<td>Yes</td>
<td>B</td>
<td>800</td>
<td>24580</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S37</td>
<td>M</td>
<td>32</td>
<td>18</td>
<td>Yes</td>
<td>B</td>
<td>660</td>
<td>362</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S41</td>
<td>M</td>
<td>29</td>
<td>64</td>
<td>Yes</td>
<td>B</td>
<td>677</td>
<td>221523</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S46</td>
<td>F</td>
<td>20</td>
<td>123</td>
<td>Yes</td>
<td>C</td>
<td>599</td>
<td>3416</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S51</td>
<td>M</td>
<td>31</td>
<td>72</td>
<td>Yes</td>
<td>B</td>
<td>930</td>
<td>16349</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S61</td>
<td>M</td>
<td>39</td>
<td>81</td>
<td>Yes</td>
<td>B</td>
<td>550</td>
<td>476</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S79</td>
<td>M</td>
<td>43</td>
<td>42</td>
<td>Yes</td>
<td>B</td>
<td>784</td>
<td>3055</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S84</td>
<td>M</td>
<td>40</td>
<td>95</td>
<td>Yes</td>
<td>B</td>
<td>600</td>
<td>486534</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S94</td>
<td>M</td>
<td>34</td>
<td>108</td>
<td>Yes</td>
<td>B</td>
<td>397</td>
<td>24293</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S99</td>
<td>F</td>
<td>21</td>
<td>72</td>
<td>Yes</td>
<td>C</td>
<td>417</td>
<td>2614</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S101</td>
<td>M</td>
<td>43</td>
<td>113</td>
<td>Yes</td>
<td>B</td>
<td>830</td>
<td>2614</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S116</td>
<td>M</td>
<td>34</td>
<td>117</td>
<td>Yes</td>
<td>B</td>
<td>660</td>
<td>99410</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S119</td>
<td>M</td>
<td>35</td>
<td>44</td>
<td>Yes</td>
<td>B</td>
<td>770</td>
<td>62948</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S128</td>
<td>M</td>
<td>36</td>
<td>9</td>
<td>Yes</td>
<td>B</td>
<td>728</td>
<td>386758</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S130</td>
<td>M</td>
<td>35</td>
<td>88</td>
<td>Yes</td>
<td>B</td>
<td>1310</td>
<td>166</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S132</td>
<td>M</td>
<td>40</td>
<td>71</td>
<td>Yes</td>
<td>B</td>
<td>400</td>
<td>9250</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S147</td>
<td>M</td>
<td>35</td>
<td>77</td>
<td>Yes</td>
<td>B</td>
<td>870</td>
<td>129037</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S150</td>
<td>M</td>
<td>57</td>
<td>86</td>
<td>Yes</td>
<td>B</td>
<td>530</td>
<td>130687</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S152</td>
<td>M</td>
<td>35</td>
<td>40</td>
<td>Yes</td>
<td>B</td>
<td>720</td>
<td>43730</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S162</td>
<td>M</td>
<td>34</td>
<td>18</td>
<td>Yes</td>
<td>B</td>
<td>660</td>
<td>500000</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S165</td>
<td>M</td>
<td>38</td>
<td>84</td>
<td>Yes</td>
<td>B</td>
<td>410</td>
<td>313742</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S171</td>
<td>F</td>
<td>39</td>
<td>137</td>
<td>Yes</td>
<td>C</td>
<td>482</td>
<td>1268</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S178</td>
<td>M</td>
<td>34</td>
<td>63</td>
<td>Yes</td>
<td>B</td>
<td>626</td>
<td>11143</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S181</td>
<td>F</td>
<td>25</td>
<td>109</td>
<td>Yes</td>
<td>C</td>
<td>482</td>
<td>273423</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S183</td>
<td>F</td>
<td>32</td>
<td>117</td>
<td>Yes</td>
<td>C</td>
<td>748</td>
<td>20894</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S185</td>
<td>F</td>
<td>19</td>
<td>109</td>
<td>Yes</td>
<td>C</td>
<td>570</td>
<td>28160</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S191</td>
<td>M</td>
<td>46</td>
<td>60</td>
<td>Yes</td>
<td>B</td>
<td>520</td>
<td>67580</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>S194</td>
<td>M</td>
<td>33</td>
<td>58</td>
<td>Yes</td>
<td>B</td>
<td>625</td>
<td>4503</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S199</td>
<td>M</td>
<td>30</td>
<td>87</td>
<td>Yes</td>
<td>B</td>
<td>807</td>
<td>10667</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 5.1. Details are shown for 43 patients undergoing assessment of neutralizing antibody activity against autologous and/or heterologous viruses. Clinical data were collected upon enrolment to the SPARTAC clinical trial prior to the first dose of ART.
Figure 5.1 Pre-ART CD4 counts and VLs were not significantly affected by gender or HIV-1 subtype

Baseline VL (log RNA copies/ml)

Male Subtype B Female Subtype C
All patients n=43

Male Subtype B Female Subtype C
Autologous NAb assessments n=22

Baseline CD4 count (cells/mm³)

Male Subtype B Female Subtype C
All patients n=43

Male Subtype B Female Subtype C
Autologous NAb assessments n=22

P<0.05 NS

NS NS
Figure 5.1 Viral load (top panel) and CD4⁺ T cell counts (bottom panel) recorded at enrollment into the SPARTAC trial (baseline) are shown for European males infected with HIV-1 subtype B (grey boxes) and South African females infected with HIV-1 subtype C (white boxes). Boxes show the interquartile ranges and the verticle lines extend to the minimum and maximum values. Median values are shown as horizontal lines within each box. Data are shown for all 43 patients and the 22 patients for whom autologous neutralizing responses were assessed.
subtype B virus (Mean ± SD, 518 ± 106 vs. 651 ± 19, student t-test, P=0.04). From these forty-three patients, sixteen men and six women were selected for neutralization studies with autologous viruses (n=22). The women in this smaller subset of patients had lower baseline CD4 T cell counts (P=0.2) and Log_{10} VL (P =0.12) than the men although the differences were not statistically significant (Figure 5.1).

In accordance with previous studies, chronic VL set-points were calculated from geometric means of log_{10} VL measurements assessed longitudinally, starting 40 weeks after treatment cessation (the longest period observed before vireamia reached steady state levels) (Hollingsworth et al. 2010). The males had significantly higher VL set-points than the females (3.4 ± 0.6 vs. 4.5 ± 0.7, P=0.002) (Figure 5.2). Viral load set-points were used to assign patients to three groups: Low level viraemia (n=10 VL <3 log_{10} RNA copies per ml), intermediate viraemia (n=8 VL 4-5 log_{10} RNA copies per ml) and high level viraemia (n=4 ,VL >5 log_{10} RNA copies per ml). These groups were chosen to represent a diverse range of VL set-points and were used to compare the neutralizing activity of patient’s plasma against autologous Env-pseudotyped viruses and against a panel of heterologous Env-pseudotyped reference strains.
Figure 5.2 Men infected with subtype B virus had higher VL set-points than women infected with subtype C virus.

Figure 5.2 Viral load set-points were calculated from mean Log_{10} VL measurements assayed every 4-12 weeks from 40 weeks after ART cessation. Boxes show the IQ ranges and the vertical lines extend to the minimum and maximum values within each patient group. Data are shown for twenty-two patients who were assessed for levels of autologous neutralization. Grey boxes show VL set-points for men (n=16). White boxes show VL set points for women (n=6).
5.2.2 Neutralizing responses were variably detected within 4-12 weeks of stopping ART.

In order to assess neutralization after the cessation of ART, virus pseudotyped with cloned envelopes were neutralized with contemporaneous-autologous plasma (n=22). Plasma collected from 11 patients after 4 weeks was used for HIV-1 envelope cloning, but due to difficulties in amplifying env from plasma containing low quantities of virus (≤ 50 RNA copies per ml in some cases), plasma collected after 12 weeks post-ART were used in the remaining 11 cases (see section 3.2.1). Importantly, contemporaneous-neutralizing plasma titres sampled at week 4 and week 12 were not statistically different (Mean IC\textsubscript{50} ± SD; wk 4 31.0 ± 24.0 vs. wk 12 43.2 ± 49.4, p=0.52, unpaired student T test) (Table 5.2).

Plasma neutralized Env-pseudotyped viruses in a concentration-dependent manner and virus infectivity was not inhibited by pooled plasma collected from HIV-1 uninfected individuals. Furthermore, patient plasma did not inhibit a VSV-G pseudotyped NL4-3Δenv virus, ruling out neutralization by residual concentrations of ART (Figure 5.3). From these data it was deduced that neutralization was HIV-1 Env specific and, therefore, antibody-mediated.

Approximately half of the patients (12/22) had no detectable neutralizing activity against their contemporaneous virus (IC\textsubscript{50}<20) and the majority of these patients (10/12) developed low VL set-points (group 1: VL <4 log). In contrast, eight of the remaining ten patients, who had detectable levels of neutralization immediately post-ART (IC\textsubscript{50} 1:20 to 1:153), developed VL set-points greater that 104 RNA copies per ml (Figure 5.4A) (p=0.04, independent T-test). Prolonged exposure to high levels of Env-antigen are known to stimulate the production of NAbhs, but it was not clear why high VL set-points were associated with preceding neutralizing responses.

It was hypothesized that antibody responses were primed prior to the initiation of ART. Hence, the extent of viraemia and the duration PHI prior to ART would be expected to influence post-ART NAb
<table>
<thead>
<tr>
<th>Patient</th>
<th>HIV-1 clade</th>
<th>V3 crown sequence</th>
<th>Follow-up (weeks)</th>
<th>Log₁₀ VL set-point</th>
<th>NS</th>
<th>Weeks post ART-cessation</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>C</td>
<td>I/GPGQ</td>
<td>96</td>
<td>2.6</td>
<td></td>
<td>4 12 24 36 40 48 60 72 84 96 108 120 132 144</td>
</tr>
<tr>
<td>194</td>
<td>B</td>
<td>I/GPGK</td>
<td>108</td>
<td>2.67</td>
<td></td>
<td><20* <20 <20</td>
</tr>
<tr>
<td>99</td>
<td>C</td>
<td>I/GRGR</td>
<td>84</td>
<td>2.87</td>
<td></td>
<td><20* <20 <20</td>
</tr>
<tr>
<td>181</td>
<td>C</td>
<td>I/GPGQ</td>
<td>84</td>
<td>2.92</td>
<td></td>
<td><20* <20 <20</td>
</tr>
<tr>
<td>37</td>
<td>B</td>
<td>I/GRGR</td>
<td>120</td>
<td>3.17</td>
<td></td>
<td><20* <20 <20</td>
</tr>
<tr>
<td>199</td>
<td>B</td>
<td>I/GRGR</td>
<td>144</td>
<td>3.32</td>
<td></td>
<td><20* <20 <20</td>
</tr>
<tr>
<td>171</td>
<td>C</td>
<td>n/a</td>
<td>120</td>
<td>3.43</td>
<td></td>
<td>32* 78 134 137 138 212 805 480 518 437 516</td>
</tr>
<tr>
<td>21</td>
<td>C</td>
<td>I/GPGQ</td>
<td>108</td>
<td>3.5</td>
<td></td>
<td><20* <20 <20</td>
</tr>
<tr>
<td>94</td>
<td>B</td>
<td>I/GRGR</td>
<td>80</td>
<td>3.81</td>
<td></td>
<td><20* <20 42 65 74 102</td>
</tr>
<tr>
<td>185</td>
<td>C</td>
<td>I/GPGQ</td>
<td>108</td>
<td>3.84</td>
<td></td>
<td><20* <20 <20</td>
</tr>
<tr>
<td>132</td>
<td>B</td>
<td>I/GRGR</td>
<td>48</td>
<td>4.35</td>
<td></td>
<td>45* 431</td>
</tr>
<tr>
<td>35</td>
<td>B</td>
<td>I/GRGR</td>
<td>48</td>
<td>4.37</td>
<td></td>
<td>51* 496</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>I/GPGQ</td>
<td>84</td>
<td>4.57</td>
<td></td>
<td><20* <20 <20 <20 51 94 60 54 109</td>
</tr>
<tr>
<td>128</td>
<td>B</td>
<td>I/GRGR</td>
<td>96</td>
<td>4.8</td>
<td></td>
<td><20* 57 162 404 359 183</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>I/GRGR</td>
<td>144</td>
<td>4.89</td>
<td></td>
<td>73* 55 127 173 250 335 363 1065 347 406 156 147</td>
</tr>
<tr>
<td>41</td>
<td>B</td>
<td>I/GAGR</td>
<td>108</td>
<td>4.72</td>
<td></td>
<td><20* 415 183 485 1729 2946 539</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>I/GRGR</td>
<td>48</td>
<td>4.83</td>
<td></td>
<td>58* 374</td>
</tr>
<tr>
<td>17</td>
<td>B</td>
<td>I/GRGR</td>
<td>48</td>
<td>4.99</td>
<td></td>
<td>153* 370 332 759 650</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>I/GRGR</td>
<td>48</td>
<td>5</td>
<td></td>
<td>54* 793</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>I/GRGR</td>
<td>48</td>
<td>5.17</td>
<td></td>
<td>31* 33 57 113 230 408 399 1083</td>
</tr>
<tr>
<td>116</td>
<td>B</td>
<td>I/APGR</td>
<td>144</td>
<td>5.2</td>
<td></td>
<td>118* 345 1264 1862 1220 1056 801 1379 1037 1742 1033</td>
</tr>
<tr>
<td>33</td>
<td>B</td>
<td>I/GRGR</td>
<td>48</td>
<td>5.42</td>
<td></td>
<td><20* 32 34 40 95</td>
</tr>
</tbody>
</table>

Table 5.2 Reciprocal plasma-titres that reduced autologous-Env pseudovirus infections by half (IC₅₀) are shown. Potent neutralizing responses are indicated by darker shades of grey. Patients are shown in ascending order of VL set-point calculated from 40 weeks post-cessation of ART. (*) denotes neutralizing response tested with virus and plasma from the same time points. All other plasma were tested against the same “earlier” pseudovirus. Patients S7, S14, S35, S132 were not tested regularly owing to limited availability of plasma. Titres reported as “<20” inhibited less than 50% of virus infections at the highest plasma concentration tested (1:20). The amino acid sequence of the conserved V3 crown motif is shown in column 3.
Figure 5.3: VSV-G pseudotyped virus was not neutralized by patient plasma

Figure 5.3: Virus pseudotyped with VSV-G was incubated with 1:20 dilutions of patient plasma for 1 hour before titrating onto TZM-bl reporter cells. Plasma derived from patients S7, S14, S35 and S132 was tested. Images show FFU detected by X-Gal staining and counted using an AID ELISpot reader. The number of infected cells counted by the ELISpot reader software is shown below each figure. The image on the far right shows FFU produced by VSV-G pseudotyped virus in the absence of plasma.
Figure 5.4: VL detected during PHI correlated with chronic VL set-points.

Figure 5.4A: Patients with detectable NAb responses after ART-cessation went on to develop significantly higher VL set-points compared to patients with undetectable NAb titres (reciprocal IC$_{50}$<20).

Figure 5.4B: Patients with detectable NAb response tended to have higher VL prior to the first dose of ART (Not statistically significant).

Figure 5.4C: Post-ART VL set-points correlated with single VL measurements recorded pre-ART (linear regression with F-test).
levels. This could explain the association between NAb responses and subsequent VL set-points, because prolonged seroconversion illnesses, characterized by high levels of viraemia, have been associated with high VL set-points at later stages of infection (Madec et al., 2005b, Mellors et al., 1995). In fact, VLs assessed prior to the first dose of ART were approximately 0.5 log higher in patients with post-ART neutralizing activity than patients without detectable responses, although there was considerable variation in both groups and the difference was not statistically significant (mean ± standard deviations; 5.1 ± 5.2 vs. 5.6 ± 6.0, P=0.24) (Figure 5.4B). However, pre-ART VL measurements strongly correlated with VL set-points detected during the chronic stages of their infection (Figure 5.4C), suggesting that levels of vireamia in PHI were linked to subsequent neutralizing responses and high levels of VL detected post-ART.

The estimated duration of PHI prior to initiation of ART was not significantly different between patients with detectable neutralizing responses and patients without neutralizing responses (77 ± 36 vs. 86 ± 33 days, respectively). Furthermore, no correlation was observed between the duration of PHI and chronic VL set-points. However, clinical histories were not available for all patients so it was not possible to validate the estimated dates of infection. No correlation was detected between baseline CD4+ counts and post-ART neutralizing responses, despite a two-fold discrepancy between the highest and lowest CD4 T cell count measurements (397 to 807 cells per mm³). However, CD4+ T cell counts are known to fluctuate during PHI and additional data were not available to validate these one-off measurements (Schacker et al., 1996).

High levels of VL were not always predictive of high levels of NAb response detected after ART was discontinued. For instance, patient S33 had a pre-ART VL of 4×10^5 RNA copies per ml and went on to develop the highest VL set-point of all patients (5.42 log), yet NAb activity was not detected with week
12 plasma against his contemporaneous Env-pseudotyped virus. Additionally, patient S181 had a pre-
ART VL of 2.73×10^5 RNA copies per ml prior to ART, yet failed to develop a NAb response post-ART (Table
5.2).

In summary, the correlation between VL and neutralizing activity suggests that NAb responses were
primed prior to the initiation of ART in patients with high levels of viraemia. However, the correlation
between pre-ART VL and post-ART NAb responses was weak, thus implying that factors other than VL
are also important in controlling the production of NAbs. However, from these single assessments it was
unclear whether patients with undetectable levels of neutralization had low levels of NAbs, or
neutralization resistant virus. Because previous studies have demonstrated that virus is less sensitive to
neutralization by contemporaneous plasma than plasma derived later in infection, neutralizing
responses were assessed longitudinally to determine whether all patients went on to develop
detectable levels of neutralizing activity (Frost et al., 2005b, Richman et al., 2003, Wei et al., 2003).
5.2.3 Longitudinal assessment of NAb responses following discontinuation of early ART

Neutralizing responses were assayed longitudinally by testing sequential samples of autologous plasma against the same pseudovirus derived post-ART. Only plasma at week 4 and week 48 was available for patients S7, S14, S35 and S132. For the remaining patients, neutralization was assessed, on average, at 4-12 week intervals and the total follow-up period averaged 102 weeks (range: 60-144 weeks) (Figure 5.5A longitudinal assessments for patient S171 are shown). Throughout the follow-up period, 7/10 patients with VL set-points below 10^4 RNA copies per ml showed no improvement in IC$_{50}$ plasma-titres, which were maintained below the 1:20 cut-off. A notable outlier was patient S194, who exhibited low-level neutralization 12 weeks after treatment cessation (IC$_{50}$ 1:75) and subsequently developed an IC$_{50}$ of 1:375 by week 48, despite maintaining a VL set-point below 10^3 copies per ml (Figure 5.5B).

All patients with intermediate and higher VL set-points (>4 logs) exhibited a significant increase in IC$_{50}$ neutralizing-plasma titres by week 48, (paired sample T-test, p<0.001) (Figure 5.6A). Correspondingly, analysis of week-48 plasma responses stratified according to the three original sub-groups revealed a positive correlation with set-point vireamia (ANOVA, p<0.01; Figure 5.6B). In cases where neutralization was detected after ART-cessation, IC$_{50}$ plasma titres reached peak levels after 36-108 weeks post-ART. Increases in neutralizing activity lagged behind rebounding-viraemia. Time taken to reach peak levels of neutralizing activity weakly correlated with time-to-peak viraemia, calculated from ART-cessation to the first VL not succeeded by a lower or similar measurement within 0.1 logs (P<0.05, r2=0.472) (Figure 5.7). This lends further support to a causal link between antigen-load and NAb production.
Figure 5.5 Neutralizing responses rebounded after cessation of early ART

A

Wk 12 Wk 36 Wk 48 Wk 72 Wk 96 Wk 120

Neutralization %

Plasma Dilution (log scale)

B

116 High viraemia
171 Intermediate viraemia
194 Low viraemia

Viral Load (RNA copies ml⁻¹)

Time post ART cessation (days)

VL IC₅₀ titre
Figure 5.5 Neutralizing responses rebounded after cessation of early ART

Figure 5.5 A. Neutralizing plasma-responses against autologous Env-pseudotypes were assessed longitudinally from the point at which ART was stopped and at 4 to 12 week intervals (week 0; x-axes). Virus derived 12 weeks post-ART cessation was neutralized with sequential samples of plasma and inhibition of infection was assessed using the X-Gal neutralization assay. Six alternate assessments out of twelve are shown for patient S171. IC\textsubscript{50} neutralizing titres were calculated from interpolations shown as red lines. The corresponding neutralizing titres are shown in Table 5.2.

Figure 5.5 B. Reciprocal IC\textsubscript{50} titres (dashed lines; right y-axis) are shown with VLS (continuous lines; left y-axis) for three representative patients from each clinically defined subgroup: High VL (S116), intermediate VL (S171) and low VL (S194)
Figure 5.6 Rebounding neutralizing responses were associated with high VL set-point

Figure 5.6A. Post-ART neutralizing plasma titres (IC$_{50}$) are compared with neutralizing responses assessed 36-48 weeks later. Patients with a mean VL greater than 10^4 RNA copies per ml (black lines) exhibited significantly higher neutralizing titres over the follow-up period (paired sample T-test, p<0.001). In comparison, titres of plasma from patients with a mean VL set-point below 10^4 RNA copies per ml (red lines) did not change significantly in 7/10 cases (Independent T-Test, low viraemics vs. intermediate and high viraemics, P<0.001).

Figure 5.6B. Neutralizing plasma responses detected 48 wk post-ART cessation (y-axis) show a positive association with patient sub-groups defined by VL set-point (x-axis) (ANOVA; p<0.01). Horizontal lines represent mean values for each group. Non-detectable neutralization titres are shown at half the detection limit of the neutralization assay (1:10) (*).
Figure 5.7 Neutralizing responses followed rebounding VLs

Univariate linear regression analysis showed a positive correlation of time-to-peak VL with time-to-peak IC₅₀. The number of weeks taken to reach peak-levels of VL and peak-levels of neutralizing activity are show for all patients with IC₅₀ neutralizing plasma titres <20¹.

Figure 5.7 Univariate linear regression analysis showed a positive correlation of time-to-peak VL with time-to-peak IC₅₀. The number of weeks taken to reach peak-levels of VL and peak-levels of neutralizing activity are show for all patients with IC₅₀ neutralizing plasma titres <20¹.
5.2.4 NAb responses were associated with delayed viral rebound after cessation of early ART

To determine whether contemporaneous-autologous neutralizing responses affected the kinetics of VL-rebound when ART was terminated, the time taken for each patient to reach peak-viraemia was analysed. For this analysis, intervals were estimated from ART-cessation to the first VL that was not followed by a lower or similar measurement within 0.1 log (Figure 5.8A). Patients S46 and S116 were excluded from this analysis because neither patient suppressed VL <10^3 RNA copies/ml while on ART. Peak levels of viraemia were reached within one to four clinic visits (V1-V4) at average intervals of 5, 13, 26 and 37 weeks from ART cessation (standard deviations; V0-V1 ± 1.7, V1-V2 ± 3.1, V2-V3 ± 2.1, V3-V4 ± 3.3). An important caveat to this analysis is that actual peak VLs could have been reached before or after this measurement. Therefore, visit numbers rather than patient-specific time intervals were compared between patients. Patients with post-ART neutralizing responses detected with contemporaneous-autologous plasma took longer to reach peak viraemia than those patients with undetectable responses (p=0.03; Mann-Whitney U Test) (Figure 5.8B).

Neutralizing plasma titres were low immediately following-ART cessation (IC_{50} range 1:31 to 1:118) and may not have been sufficient to control viraemia. However, all but one patient developed IC_{90} titres at time points prior to peak VL. Furthermore, the actual levels of virus inhibition observed with the 1:20 dilution of the contemporaneous plasma ranged from 70% to 92%, while none of the other patient’s plasma neutralized more than two standard deviations above background levels recorded with HIV-1 seronegative plasma. Potentially, neutralizing responses may have contributed to virus control and delayed viral rebound in these patients. However, as mentioned in the previous section, patients with detectable neutralizing responses at treatment-cessation tended to develop higher levels of viraemia. Therefore, the observed delay in viral rebound could simply represent the extra time required to reach VL set-points (Figure 5.8A). However, peak levels of viraemia between patients with neutralizing responses and those without neutralizing responses were not statistically significant (log_{10} RNA copies per ml, 4.3 ± 0.7 vs. 4.3 ± 0.8, p=0.3)
Figure 5.8 Neutralizing responses against autologous-contemporary Env-pseudovirus were associated with delayed viral rebound.

A

Figure 5.8A. Rebounding patterns of viraemia are shown for patients with contemporaneous–autologous neutralizing responses (left panel) and those without detectable responses (right panel) at ART cessation. Black lines give rebounding VLs prior to peak vireamia. Grey lines give VL data from peak viraemia up to 250 days after ART cessation.

B

Figure 5.8B compares the time-intervals from ART-cessation to peak viraemia for patients with neutralizing responses and those without (left and right panels, respectively). VLs for patients with no detectable neutralizing activity (IC50>20^{-1}) decreased or plateaued to steady set-point levels sooner than those with detectable neutralizing responses.
5.2.5 Clade specific differences of VL and NAb response

The six females infected with subtype C virus fell within the low VL group and three of these had VL set-points below 10^3 RNA copies per ml. Only one of these patients exhibited any neutralizing activity against their autologous virus throughout the follow up period. Interestingly, two of the four clade C viruses that were not neutralized by the patient’s own plasma had unusual V3 domains (Table 5.2). Typically, clade C viruses possess a conserved isoleucine at position 309 followed by a GPGQ motif at the crown of the V3 loop, whereas envelope consensus sequences for patients S21 and S99 revealed a V/GPGQ and I/GPGR motif, the latter of which is more commonly found in clade B viruses.

In contrast to the findings we report here, previous studies have shown strong autologous responses associated with recently transmitted clade C viruses that tend to have shorter, less glycosylated envelopes. We did not observe a difference in sequence length or glycosylation across C2V3 sequences of clade B and clade C clones. However, the sequenced regions only covered the C2V3 region and did not include the hypervariable V1/V2 regions that are more commonly associated with subtype C variation after transmission. Sequencing was not intended to identify genetic correlates of neutralization. Envelopes were sequenced to confirm that each patient clone closely resembled direct-consensus PCR sequences, to rule-out cross-contamination between patient samples.

5.2.6 Neutralization of heterologous HIV-1 Env-pseudotypes

The breadth and potency of neutralizing responses against diverse heterologous isolates were assessed for thirty-eight patients using plasma sampled two years after enrolment onto the clinical trial. Plasma from an additional twenty-one patients with clade B infection and five patients with clade C infection were included in this analysis, while patients S171, S35, S128, S41 and S17, could not be investigated because plasma samples were not available.
Plasma samples were tested against an HXB2 Env-pseudotype virus and a diverse panel of clade-matched reference isolates. These panels are widely used to identify broad antibody responses, and consist of envelope clones from diverse HIV-1 field isolates grouped according to neutralization sensitivity (Li et al., 2005, Bailey et al., 2006). Tier 1B isolates are generally more sensitive to neutralization by heterologous plasma than tier 2 isolates. Table 5.3A shows IC\textsubscript{50} plasma titres for patients infected with subtype B virus, while Table 5.3B gives heterologous responses for those infected with subtype C virus. Plasma from patients infected with clade B virus exhibited detectable levels of neutralization against HXB2 with IC\textsubscript{50} titres ranging from 1:20-1:2712. In general, HXB2-pseudovirus was more readily neutralized than the patient’s own autologous virus (Mean IC\textsubscript{50} with standard deviations; 278 ± 711 vs. 666 ± 278, P<0.001, paired sample T-test). Comparison of mean neutralizing titres stratified according to VL set-point revealed a similar pattern to that observed for the autologous virus (Figure 5.9 A). However, we observed dissociation between responses against autologous virus and HXB2, particularly for patients with low-level viraemia (Figure 5.9 B). Notably, four patients with undetectable titres against their own virus (IC\textsubscript{50}<20) neutralized HXB2 (IC\textsubscript{50} 58-477), suggesting that undetectable levels of autologous neutralizing activity did not reflect absent titres of HIV-1 Env-specific immunoglobulin. Clearly, these patients had antibodies that failed to neutralize their own virus.

Plasma derived from patients infected with subtype C virus exhibited significantly less HXB2-neutralization than plasma from subtype B HIV-1 infected patients (p<0.01, independent sample T-test), despite similar mean VLs in each group (average log VLs: 4.3±0.8 vs. 4.1±1, for clade B and C, respectively). Furthermore, neutralization of tier 1B viruses was not always predictive of neutralizing activity against tier 2 isolates. In particular, patient S1 poorly neutralized two Tier 1B isolates (reciprocal IC\textsubscript{50} ≤ 30, HXB2 and ZM109F), yet neutralized three tier 2 isolates with IC\textsubscript{50} titres ranging from 1:130 to 1:556. Plasma from S84, infected with a clade B virus, neutralized the full panel of clade B reference isolates, including a tier 2 isolate (QH0692c3) with an IC\textsubscript{50} titre of 1:1421.
Table 5.3A Breadth and potency of neutralizing responses assayed in chronic infection.

Clade B isolates.

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Log VL set point</th>
<th>HXB2 Tier 1B</th>
<th>6535, c3 Tier 1B</th>
<th>QH0692 Tier 2</th>
<th>SC 422661.8 Tier 2</th>
<th>TRO, c11 Tier 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>5.3</td>
<td>1432*</td>
<td>75</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S8</td>
<td>4.9</td>
<td>541*</td>
<td>47</td>
<td>329</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S10</td>
<td>4.9</td>
<td>236*</td>
<td>108</td>
<td><20</td>
<td>25</td>
<td><20</td>
</tr>
<tr>
<td>S33</td>
<td>5.5</td>
<td>462*</td>
<td>161</td>
<td>25</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S37</td>
<td>3.6</td>
<td>58*</td>
<td>50</td>
<td><20</td>
<td><20</td>
<td>n/t</td>
</tr>
<tr>
<td>S7</td>
<td>4.9</td>
<td>457*</td>
<td>147</td>
<td>31</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S14</td>
<td>5.0</td>
<td>2712*</td>
<td>942*</td>
<td>58</td>
<td><20</td>
<td>168</td>
</tr>
<tr>
<td>S132</td>
<td>4.4</td>
<td>1194*</td>
<td>161</td>
<td>54</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S94</td>
<td>4.0</td>
<td>957*</td>
<td>84</td>
<td>29</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S116</td>
<td>5.0</td>
<td>1208*</td>
<td>111</td>
<td>217</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S194</td>
<td>2.8</td>
<td>662*</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S199</td>
<td>3.5</td>
<td>477*</td>
<td>78</td>
<td>23</td>
<td><20</td>
<td>n/t</td>
</tr>
<tr>
<td>S119</td>
<td>3.6</td>
<td>928*</td>
<td>n/t</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S84</td>
<td>4.8</td>
<td>696*</td>
<td>141</td>
<td>1421*</td>
<td>20</td>
<td>136</td>
</tr>
<tr>
<td>S162</td>
<td>4.8</td>
<td>1256*</td>
<td>29</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S165</td>
<td>5.0</td>
<td>236*</td>
<td>190*</td>
<td><20</td>
<td>20</td>
<td><20</td>
</tr>
<tr>
<td>S79</td>
<td>5.1</td>
<td>294*</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S9</td>
<td>5.2</td>
<td>823*</td>
<td>140</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S147</td>
<td>3.9</td>
<td>1987*</td>
<td>250</td>
<td><20</td>
<td><20</td>
<td>142</td>
</tr>
<tr>
<td>S11</td>
<td>4.1</td>
<td>336*</td>
<td>89</td>
<td>20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S191</td>
<td>4.3</td>
<td>358*</td>
<td>64</td>
<td><20</td>
<td><20</td>
<td>63</td>
</tr>
<tr>
<td>S152</td>
<td>4.4</td>
<td>521*</td>
<td><20</td>
<td>20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S150</td>
<td>4.6</td>
<td>264*</td>
<td>180</td>
<td><20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>S130</td>
<td>2.6</td>
<td>143*</td>
<td>91</td>
<td>71</td>
<td><20</td>
<td>n/t</td>
</tr>
<tr>
<td>S178</td>
<td>3.3</td>
<td>280*</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>n/t</td>
</tr>
<tr>
<td>S101</td>
<td>3.5</td>
<td>357*</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>n/t</td>
</tr>
<tr>
<td>S61</td>
<td>3.6</td>
<td>403*</td>
<td>112</td>
<td><20</td>
<td><20</td>
<td>n/t</td>
</tr>
<tr>
<td>S24</td>
<td>3.6</td>
<td>116*</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>n/t</td>
</tr>
<tr>
<td>S51</td>
<td>3.7</td>
<td>186*</td>
<td><20</td>
<td>63</td>
<td><20</td>
<td>n/t</td>
</tr>
</tbody>
</table>
Table 5.3B Breadth and potency of neutralizing responses assayed in chronic infection. Clade C isolates.

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Log VL set point</th>
<th>HXB2 Tier 1B</th>
<th>ZM109F Tier 1B</th>
<th>ZM197M Tier 1B</th>
<th>ZM233M Tier 2</th>
<th>Du172.17 Tier 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S46</td>
<td>2.6</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S181</td>
<td>3.0</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>70</td>
</tr>
<tr>
<td>S99</td>
<td>3.2</td>
<td>128*</td>
<td><20</td>
<td>43</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S185</td>
<td>4.0</td>
<td>109*</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>40</td>
</tr>
<tr>
<td>S31</td>
<td>4.8</td>
<td>261*</td>
<td><20</td>
<td>803*</td>
<td><20</td>
<td>26</td>
</tr>
<tr>
<td>S19</td>
<td>5.0</td>
<td>364*</td>
<td><20</td>
<td>557*</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>S1</td>
<td>5.1</td>
<td>30</td>
<td>20</td>
<td>556*</td>
<td>201*</td>
<td>130*</td>
</tr>
<tr>
<td>S183</td>
<td>5.2</td>
<td>252*</td>
<td>24</td>
<td><20</td>
<td>20</td>
<td>42</td>
</tr>
</tbody>
</table>
Table 5.3 Breadth and potency of neutralizing responses assayed in chronic infection.

Table 5.3A: Half maximal neutralizing titres of plasma (IC\textsubscript{50}), collected after 108 weeks post-seroconversion are shown for subtype B standard-reference pseudoviruses (NIH, NAIDS) (Li \textit{et al}., 2005). Patients infected with subtype B virus were identified by nucleotide sequencing of \textit{env} and \textit{pol} genes. Plasma was tested against an HXB2-Env pseudovirus along with two neutralization-sensitive (tier 1B) strains and two less-neutralization susceptible viruses (tier 2). Plasma responses that neutralized virus by 90% or more are marked with an asterisk (*).

Table 5.3B. Plasma collected from patients with subtype C virus were sampled 108 weeks post-seroconversion. Heterologous neutralizing activity was tested against HXB2 and an additional set of subtype-matched tier 1B and tier 2 pseudoviruses (Bailey \textit{et al}., 2006). Serum responses that neutralized virus by 90% or more are marked with an asterisk (*).
Figure 5.9 Neutralization of Tier 1B heterologous strains weakly correlated with VL and autologous NAb titre.
Figure 5.9 Neutralization of Tier 1B heterologous strains weakly correlated with VL and autologous NAb titre.

Figure 5.9 A: Neutralizing plasma responses against heterologous virus (y-axis) are shown for patients included in investigations of autologous neutralization (solid black squares) and additional patients not included in autologous neutralization studies (open squares). Neutralization is shown for two Tier 1B reference isolates, HXB2 and 6365. The observed trend was not statistically significant for either virus (NS, ANOVA).

Figure 5.9 B: Linear regression of autologous-neutralizing plasma titres revealed a significant positive correlation with neutralizing responses against heterologous HXB2-pseudotyped virus ($R^2=0.64$, P<0.001). The scatter plot highlights notable outliers with incalculable IC$_{50}$ plasma titres against their own virus, despite having potent responses against a HXB2 pseudotype (dashed parentheses).
5.3 Discussion

For the majority of patients stopping ART, neutralizing responses exhibited progressively increasing titres that lagged behind rebounding VL. This is consistent with the theory that antibody production is a function of antigenic stimulation in early HIV-I infection (Piantadosi et al., 2009). In accordance with this, week 48 NAb responses strongly correlated with VL set-points and peaks of viraemia correlated temporally with peaks in neutralizing plasma titre. In contrast to these findings, Deeks et al. observed a weakly-negative correlation between VLs and autologous-NAb titres in individuals infected with HIV-1 for an average of 5.4 years (Deeks et al., 2006a). Additionally, Bailey et al. failed to detect an association between VLs and neutralizing responses in chronic progressors and elite controllers (Bailey et al., 2006).

In these previous studies, there was substantial variation in duration of HIV-1 infection, which is an important determinant of NAb breadth and potency, even after several years of infection (Sather et al., 2009). Consequently, a major advantage of this study is that the time from transmission to the first dose of ART was similar for all patients. Knowing approximate exposure-times to viral antigen we could assess the relative importance of antigenic load on the development of NAb responses.

Approximately half the patients (10/22) had detectable neutralizing responses within 4/12 weeks of stopping ART. This was surprising as neutralizing responses were detected using Env-pseudotyped virus and plasma derived from the same time-point. In contrast, a previous study detected rebounding autologous responses within 2-4 weeks after structured ART interruptions in 4/9 subjects treated during chronic infection (Montefiori et al., 2001), but only one of these patients had detectable levels of neutralization against contemporaneous virus. Different assay sensitivities could explain this discrepancy; particularly as pseudoviruses are generally more sensitive to neutralization than wild-type primary isolates which were used in the aforementioned study (Fenyo et al., 2009). Alternatively, NAb responses may have been augmented by early interventions with ART. A possible mechanism for this
may be derived from studies that show preserved immune function and lower rates of viral evolution in response to ART-mediated VL suppression (Altfeld et al., 2001, Hecht et al., 2006, Malhotra et al., 2000). Specifically, B cell number and B cell phenotype have been shown to normalize in response to ART (Hart et al., 2007, Moir et al., 2008b, D'Orsogna et al., 2007, Fondere et al., 2003). The effects of ART on NAb responses will be determined once the SPARTAC trial is unblinded, when patients who received early therapy can be compared with participants randomized to receive no therapy.

It is likely that NAb responses were primed during PHI because patients with detectable levels of neutralizing activity after short-course ART tended to have high levels of VL during PHI. Although the association was not statistically significant, a causal relationship was inferred by the fact that pre-ART VL and post-ART NAb responses both correlated with VL set-points reached later in infection. Moreover, the median duration of PHI prior to the first dose of ART was 3 months, which corresponds to the initial detection of NAb responses reported by others (Gray et al., 2007, Richman et al., 2003, Wei et al., 2003, Aasa-Chapman et al., 2004). However, it was not possible to confirm that neutralization pre-ART corresponded to the levels detected after treatment cessation, because baseline plasma was not available for this investigation.

Although we did not detect a direct correlation between NAb responses and baseline CD4+ T cell counts, women with subtype C infections tended to have fewer CD4+ T cells than the men infected with subtype B. The men tended to develop higher levels of neutralizing activity with higher VL set points, so it is possible that neutralization was affected by early changes to CD4+ T cell number and/or function. The major antibody isotype of HIV-1 neutralizing responses is IgG, which is produced from B cells following CD4+ T cell-dependent mechanisms of isotype switching and affinity maturation (Aruffo et al., 1993) (reviewed in [Parker, 1993]). Additionally, IgG antibody production requires the production of cytokines, such as IL-4, IFN-γ and TGF-β that are produced from activated CD4+ Th1 and Th2 lymphocytes (reviewed
Wide-spread immune hyperactivation in PHI is associated with a “cytokine storm” that can lead to B cell hyperactivity, hypergammaglobulinaemia and depletion of B cell germinal centres (Hart et al., 2007, Moir et al., 2008a). Therefore, it is possible that high levels of VL could have augmented the production of NAbs indirectly, by stimulating cytokine production from CD4+ T cells. Additional data on CD4+ T cell number, phenotype and function will become available when the SPARTAC trial is unblinded. It will be interesting to see if changes in neutralizing activity correlate with rates of CD4+ T cell decline.

Five patients exhibited up to 0.3-0.9 log decreases in neutralizing plasma titres. The reasons for this are unclear, particularly in the case of patient 116, who maintained a VL above 0.5x10^5 copies per ml (Figure 5.5B). This patient failed to suppress VL while on ART, so it is possible that declining neutralizing titres were caused by B cell exhaustion and B cell germinal-centre depletion in response to sustained levels of viraemia (Carotenuto et al., 1998a). Alternatively, declines in neutralizing titre may have resulted from changes in antibody-affinity, leading to a loss of binding to the earlier Env-pseudovirus. In support of this, Richmann et al, also reported waning neutralizing titres against ‘earlier’ HIV-1 Env-pseudotypes, despite observing sustained levels of neutralization over time against contemporaneous virus (Richman et al., 2003). The observation that NAb activity declined in some patients highlights the importance of using a longitudinal models to compare neutralizing responses between patients.

High levels of VL were associated with the rapid development of autologous NAb responses in all patients with VL set-points greater than 10^4 RNA copies/ml. It is, therefore, unclear how patient S194 rapidly developed a neutralizing antibody response, despite maintaining a VL below 10^3 copies per ml. Doria-Rose et al. demonstrated broad and potent neutralizing responses in 25% of patients with elite control of viraemia (Doria-Rose et al., 2009). The longitudinal data for patient S194 adds to this finding by demonstrating the speed at which NAb responses can develop in the presence of low antigenaemia.
This is encouraging for HIV-1 vaccine research which aims to induce a strong antibody response in the absence of replicating virus. A second notable outlier was patient S33, who had a pre-ART VL of 4x10^5 and a VL set-point of 5.42x10^5 RNA copies per ml, yet failed to develop detectable levels of neutralizing activity until 6 months after the termination of ART. Patients S33 and S194 illustrate that factors other than VL are clearly important in controlling the production of NAbs. Possible explanations may relate to physiological variations in B cell sensitivity to Env-antigen, or variations in immune dysfunction during in PHI (Hart et al., 2007, Moir et al., 2008a). Alternatively, differences in the immunogenic potential of the Env-antigen could also result in variable levels of B cell stimulation and antibody production (reviewed in Forsell et al., 2010)). More work is needed to understand why some patients respond well to low quantities of virus, while others fail to respond to high levels of virus replication.

Autologous neutralizing responses failed to suppress viraemia, despite half-maximal neutralizing titres exceeding 1:10^3. Why then did we fail to detect declines in VL following increases in NAb activity? Firstly, T cell responses and other host factors are known to be important in the control of viraemia and may well have been more important than NAb-responses in the cases examined here (Pereyra et al., 2008a, Pereyra et al., 2009). Secondly, small reductions of VL resulting from increases in neutralizing titre are likely to be overwhelmed by the reciprocal effect of antigen-stimulation, resulting in the production of more antibodies. Consequently, partially effective NAb responses in patients with higher VLs cannot be ruled out.

Patients with detectable NAb responses after ART-cessation took longer to reach peak levels of VL. The higher VL set-points observed in these patients may be the sole reason for this discrepancy. However, it is unclear why rates of VL increase tended to plateau in patients with detectable levels of neutralizing activity, while VL rebounded more abruptly in patients with undetectable responses. Additionally, peak VLs were not significantly different between these two groups. Previous studies of macaques and
humans have demonstrated that NAbS can delay viral rebound after treatment interruption in acute and chronic infections (Trkola et al., 2004, Trkola et al., 2005). Therefore, it is possible that neutralizing antibodies were responsible for delayed rebounds observed in this study. However, there is a caveat to our analysis: So long as the SPARTAC trial remains blinded to treatment arm, it is not possible to exclude the possibility that length of ART (either 12 weeks or 48 weeks) influenced the kinetics of rebound post-ART. Although patients who failed to suppress VL below 10^3 copies per ml were excluded from this analysis, patients S132 and S8 exhibited incomplete suppression of VL while on treatment (65 and 195 RNA copies per ml, respectively). Nevertheless, these patients took longer to reach peak viraemia than the majority, suggesting that incomplete suppression did not lead to rapid VL rebounds.

Five of the six patients infected with HIV-1 clade C virus failed to develop neutralizing responses against their autologous virus. This conflicts with previous reports showing rapid development of NAbS in clade C infections (Derdyn et al., 2004, Blish et al., 2009, Li et al., 2006a). Li et al. reported a trend towards higher levels of neutralizing responses in patients infected with subtype C virus, compared with those infected with subtype B (Li et al., 2006a). However, in contrast to our findings, the majority of these patients developed VL set-points $>10^4$ copies per ml. Therefore, the low VL set-points of the subtype C infected patients is the most-likely reason for the discrepancy with previous reports and suggests that VL maybe more important than virus subtype in controlling the humoral response.

A major target of gp120-specific antibodies in subtype B infections is thought to be the V3 loop which is consequently, more variable than that of subtype C viruses (Gorny et al., 2004, Wei et al., 2003, Zolla-Pazner et al., 2004). All patients infected with subtype B virus, including those without detectable responses against autologous virus, neutralized HXB2 pseudotyped virus by at least 50% and most had IC$_{90}$ titres greater than 1:60. It is known that HXB2, and to a lesser extent 6535, are susceptible to NAbS targeting epitopes within the V3 loop. These antibodies are commonly found in HIV-1 infected patients,
but are thought to be ineffective against most primary viruses due to the cryptic nature of the V3 epitopes within trimeric conformations of Env (Moore et al., 1995, Sattentau et al., 1993, Sullivan et al., 1995, Xiang et al., 2002). Antibodies targeting the V3 loop are often dismissed as being clinically unimportant, since they fail to slow progression to AIDS (Hogervorst et al., 1995, Loomis-Price et al., 1998) and to protect against maternal-fetal transmission (Robertson et al., 1992). However, the impact of depleting these antibodies on virus infectivity has not been investigated. Maintaining resistance to V3-specific NAbs may incur a fitness cost to the virus in terms of replicative capacity and susceptibility to other neutralizing antibodies. Accordingly, studies of viral evolution in a laboratory worker accidentally infected with a TCLA strain, Lai/IIIB, revealed an accumulation of mutations in V3 that induced resistance to broadly specific NAbs and soluble CD4 (Beaumont et al., 2004, Beaumont et al., 2001).

The clade C HIV-1 infected patient with the greatest neutralizing breadth and potency against a panel of clade C Tier II/III reference strains also had the lowest activity against the more sensitive Tier IB viruses. This finding highlights a caveat relevant to studies aiming to identify potential Env-antigen vaccine candidates by tiered assessment of neutralizing antibody responses (Mascola et al., 2005). Had we adhered to recommendations of limiting tier 2 tests to those plasma that neutralized tier 1 isolates, we would not have detected this neutralizing response. It will be interesting to see if this patient develops broader cross-clade neutralizing responses at a later stage of infection.

The strength of the association between VL and neutralization was greater for autologous assessments than heterologous assessments, and there was no correlation between VL and breadth of neutralizing response against diverse isolates. Using autologous viruses to assess the impact of neutralizing antibody responses in early infection is more informative than heterologous responses, which are a poor surrogate marker of neutralizing activity against the patient’s own virus. Additionally, longitudinal assessments of VL and autologous antibody responses during early infection could be the only window
of opportunity for delineating cause from effect in vivo. This last point is illustrated by the fact that three patients with low VL set-points (<4 logs) showed increases in IC₅₀ titre by the end of the follow-up period, suggesting that over time, NAb responses may begin to normalize across VL-stratified patient groups.

In conclusion, these data show that NAb responses develop during the early stages of infection in response to high VL, in agreement with previous studies of chronic infection (Doria-Rose et al., 2009, Sather et al., 2009). However, the dynamics of the neutralizing response are highly variable between patients and other factors are also likely to be important. The weak association between baseline NAb responses and time-to-peak viraemia is interesting, but needs to be confirmed by larger studies with shorter intervals between VL and NAb measurements. Our data suggest that if neutralizing antibodies afford any degree of protection in vivo, they do so within a complex inter-dependent system that cannot be observed by means of cross-sectional analyses of viraemia and total NAb response alone.
Chapter 6

Conclusions
6.1 Conclusions

The antibody response to HIV-1 has been studied extensively to meet global demands for a protective vaccine. The modest success of the RV144 HIV-1 vaccine trial, which failed to elicit NAbs or CTL responses, has prompted speculation that non-neutralizing antibodies were responsible for the protective effects observed (Rerks-Ngarm et al., 2009). Although the antiviral effects of NAbs may be enhanced by Fc-dependent mechanisms of cell-mediated cytotoxicity, there is no direct evidence to suggest that ADCC alone protects against transmission of HIV-1, *in vivo* (Hessell et al., 2007). On the other hand, passive transfer studies in macaques have shown that infection with SHIV can be blocked with broadly-specific NAbs (Baba et al., 2000, Emini et al., 1992, Mascola et al., 1999, Mascola et al., 2003, Mascola et al., 2000, Putkonen et al., 1991, Zhang et al., 2004a). A fundamental hurdle to the development of a successful HIV-1 vaccine is the elicitation of antibodies capable of neutralizing diverse strains. A possible alternative may be the use of recombinant adeno-associated virus vectors to deliver genes encoding NAbs and NAb-like proteins to non-immune tissues (Johnson et al., 2009). This strategy has been shown to protect macaques against infection with SHIV, yet issues regarding the safety of gene therapy need to be resolved before studies can take place in humans. For now, eliciting immune responses by vaccination is the most-realistic approach towards curbing the HIV-1 pandemic.

The neutralizing activities of patient plasma and monoclonal NAbs were measured using a pseudovirus infectivity assay adapted to use automated-counting procedures to quantify infected TZM-bl reporter cells. In order to ensure that pseudoviruses could be constructed for all patients, envelope genes were cloned using MACH1 bacteria that were partially-resistant to the toxic effects of HIV-1 envelope. Unexpectedly, different envelope genes were shown to be variably toxic to transformed K12 strains of *E.coli* that are commonly used for HIV-1 envelope cloning. Only envelope genes *cis*-linked to transcriptional promoters inhibited bacterial growth, confirming the mechanism of cytotoxicity involved
envelope expression. It is possible that the discrepancies observed between different envelope isolates in this study relate to differential fusogenic potentials of gp41 (Chernomordik et al., 1994, Arroyo et al., 1995, McDonald and Burnett, 2005). Although this was not investigated, previous studies in E.coli suggest that gp41 can permeabilize cell membranes independently of virus receptors. Further investigations could determine whether particular HIV-1 envelopes mediate viral-cytolysis in mammalian cells independently of virus receptors, as this may uncover correlates of CD4⁺ T cell depletion, in vivo. Use of MACH1 strains improved the success rate of envelope cloning. Additionally, the modifications described for the X-gal-based pseudovirus neutralization assay provided a high-throughput and cost-effective system to characterize NAb responses in vitro. The final optimized assay could be used in a variety of research and clinical settings, including phenotypic assays of virus infectivity, co-receptor typing and antiretroviral-resistance screening.

A primary aim of this study was to understand the factors that control the development of NAb responses in early infection. Autologous NAb activity was assessed in twenty-two patients who went on to develop VL set-points ranging from 3 to 5 log₁₀ RNA copies per ml. As demonstrated, plasma derived from HIV-1 infected patients exhibited variable levels of neutralizing activity against autologous and heterologous viruses. All patients exhibited VL rebounds after ART-cessation. Seven patients who subsequently controlled their viraemia below 4 log₁₀ RNA copies per ml failed to develop detectable levels of neutralizing activity, while patients with higher VL set-points developed peak-level neutralizing titres (IC₅₀) ranging from 95⁻¹ to 2946⁻¹. The positive association between VL and NAb activity supports previous studies (Bailey et al., 2006, Piantadosi et al., 2009, Sather et al., 2009). However, low levels of VL were sufficient to stimulate the production of antibodies that neutralized an HXB2 Env-pseudotype. These data confirm that the production of HIV-1 specific antibodies is optimal in the presence of high concentrations of viral antigen. Furthermore, high levels of viraemia may need to be sustained in order to develop antibodies capable of neutralizing autologous viruses.
Two possible mechanisms could explain the concentration-dependant effect of VL on NAb production. Firstly, high levels of Env-antigen may be required to directly cross-link BCRs, leading to the differentiation and proliferation of antibody-producing plasma cells. Alternatively, high levels of viral replication could stimulate the production of NAbs indirectly, by activating CD4⁺ T cell responses. The former mechanism is more likely to be dominant as CD4⁺ T cell counts assessed prior to the initiation of ART did not correlate with levels of neutralizing activity. Additionally, wide-spread immune-activation in early infection leads to depletion and dysfunction of CD4⁺ T cells and B cells, which would be expected to inhibit the development of neutralizing responses (Doria-Rose and Connors, 2009, Hart et al., 2007, Moir and Fauci, 2009b, Moir et al., 2004). Nevertheless, it will be interesting to see if NAb responses correlate with CD4⁺ T cell number and function, assessed during the chronic stages of infection and this will be assessed when the SPARTAC trial has been unblinded. By extending this study to investigate those patients randomized to receive no therapy it will be possible to assess whether neutralizing antibody responses were augmented by short-course ART.

Variation in the rates at which antibody responses mounted in response to rebounding viraemia has implications for vaccine development because the window-of-opportunity to prevent chronic HIV-1 infection is limited to the first few days following transmission, before latent pools of HIV-1 become established (Haase, 2010, Virgin and Walker, 2010). Although neutralizing responses against autologous virus developed in most patients, the majority failed to develop antibodies capable of neutralizing Tier 2 heterologous Env-pseudotypes at 2 years post-infection. Clearly, high levels of VL were not sufficient to induce cross-reactive NAbs and longer durations of infection may be necessary to detect such responses (Sather et al., 2009, Piantadosi et al., 2009). This is not surprising as antibodies that contribute to broad neutralizing activity in vivo target conserved epitopes on functional Env trimers, particularly the CD4bs, although antibodies targeting the MPER region of gp41 may also be important in a minority of cases (Moore et al., 1994, Binley et al., 2008). The CD4bs-specific NAbs that have been isolated to date are
characterized by long CDR3 loops (Prabakaran et al., 2006, Saphire et al., 2001, Wilkinson et al., 2005, Zhang et al., 2004b) and high levels of affinity maturation (Zhou et al., 2010). The former requires an atypical V(D)J recombination event and the latter involves successive rounds of AID-dependant point mutations. A continual supply of envelope antigen is required for affinity-guided selection of B cells and the likelihood that these processes will give rise to CD4bs-specific antibodies increases with time. With this in mind, in order to elicit protective titres of NAb by vaccination, it may be necessary to administer several doses of Env antigen over long periods of time.

A second objective of this study was to determine whether NAb contribute to the control of HIV-1 VL in established HIV-1 infection. The answer to this question has implications for the development of vaccines which aim to limit disease progression in vaccinated individuals that become infected. Additionally, it is important to understand why some patients are able to control levels of viraemia, while others maintain high VL set-points and progress rapidly to AIDS. If the immunological correlates of long-term non-progression can be established, it may be possible to develop therapeutic vaccines and immunotherapies aimed at inducing clinically-beneficial responses in HIV-1 infected patients (reviewed in Cadogan and Dalgleish, 2008). Although several studies have shown that high levels of neutralizing activity are most-frequently detected in patients with high levels of viraemia, neutralizing activity has been detected in a minority of elite controllers and it is unclear if these responses contribute to the control of VL in these patients (Doria-Rose et al., 2009, Mahalanabis et al., 2009b). Additionally, it is not known if NAb or non-neutralizing antibodies contribute to the control of VL at high set-point levels.

The interaction between the adapting NAb response and the counter-adapting virus has been likened to the Red Queen principle of evolutionary dynamics. The term is taken from Lewis Carroll's Through the Looking-Glass and What Alice Found There, in which the Red Queen tells Alice, "It takes all the running you can do, to keep in the same place" (van Valen, 1973). This analogy explicates how constant VL set-
points are maintained despite successive rounds of escape from co-evolving neutralizing responses (Frost et al., 2005a). However, until now, there was no direct evidence to suggest that low-levels of virus-neutralization detected with contemporaneous-plasma could contribute to the control of VL, in vivo. To take the analogy further, it was not clear what the consequences would be if Alice were to stop running.

In a unique case, rituximab-mediated B cell depletion led to a decline in antibody titre and increases in HIV-1 and Hepatitis B VL. Although the transient decline in NAb titre was not sufficient to attribute a causal link with the observed changes in VL, the impact of NAbs on viral replication was confirmed by evolutionary studies that showed site-specific selection of Env variants that were less susceptible to neutralization by autologous plasma and NAb, b12. These findings concur with previous studies that implicate the same sites in mechanisms of NAb escape (Duenas-Decamp et al., 2008, Duenas-Decamp et al., 2009, Scanlan et al., 2002). While HBV co-infection and B cell-associated changes in HIV-1 specific T cell activity may have contributed to the initial loss of viraemia control, there are no known mechanisms to link these factors to the sequence changes observed in Env.

In chapter 5, three patients (S194, S8, S41) were shown to exhibit fluctuations in IC$_{50}$ titres of a similar magnitude to that observed following B cell depletion. Why then, did we not observe reciprocal associations between VLs and NAb titres in all patients? A possible explanation is that changes in neutralizing titre detected after ART-cessation reflects counter-adaption of the antibody response to mutating viral-envelopes and fluctuating VLs. On the other hand, decreased neutralizing activity detected after rituximab therapy occurred independently of changes in Env, which prevented the humoral response from counter-adapting to the evolving virus. By depleting CD20$^{+}$ B cells, de novo antibody responses to the evolving virus would have been inhibited, thus specifically affecting antibodies targeting the contemporaneous strain. At the same time, rituximab therapy does not deplete
archived CD20⁺ plasma cells (Ahuja et al., 2008), which may continue to produce antibodies capable of neutralizing the “early” Env-pseudotypes but not the contemporaneous virus. In support of this suggestion, antibody-binding titres to HBsAb and the CD4bs of gp120 exhibited disproportionately greater decreases than total immunoglobulin concentrations.

In summary, longitudinal follow-up of HIV-1 infected patients in separate clinical settings revealed positive and negative correlations between levels of viraemia and levels neutralizing activity. As hypothesized, a positive correlation was detected between levels of viraemia and autologous NAb responses after the cessation of early ART, yet in a separate case study, decreases in NAb titre led to significant increases of HIV-1 VL. While these findings appear to conflict, they are not mutually exclusive, as distinct mechanisms are responsible for i) the affect of VL on the production of NAbs and ii) the affect of NAbs on the control of VL. Therefore, neutralizing titres are not predictive of antibody-mediated control of HIV-1 VL, because the relationship between VL and the neutralizing antibody response is interdependent.

The hypotheses of this thesis were constructed with the intention of resolving a question that is nearly as old as the discovery of HIV-1 itself: Are NAbs important in the control of HIV-1 VL? It is true that antibody responses must inhibit HIV-1 replication in cases where positive selection of NAb-resistant virus is detected. Chapter 4 is a case in point: the antibody resistant virus that emerged following B cell depletion did so only after neutralization-sensitive variants were eliminated. If antibodies eliminate neutralization-susceptible virus, then neutralizing responses must contribute, somewhat, to the immune control of HIV-1; to say this explicitly is almost a tautology. Despite this, many groups continue to suggest that neutralizing antibodies are not clinically important, or less important than other components of the immune response (Bunnilk et al., 2010, Bailey et al., 2006, Euler et al., 2010,
Piantadosi et al., 2009). A major conclusion of this thesis is that it is unscientific to speculate on the clinical importance of the antibody response.

Karl Popper, the father of critical rationalism, makes the following demarcation between scientific and non-scientific theory. ‘Every "good" scientific theory is a prohibition: it forbids certain things to happen...the scientific status of a theory is its falsifiability, or refutability, or testability’. (Popper, 1962) There is currently no consensus as to what constitutes a clinically important antibody response and there are no unifying measures that consolidate both sides of the dynamic relationship between antibody and virus. Therefore, it is currently not possible to falsify, refute or even test the theory that HIV-1 antibody responses are clinically important.

From a clinical perspective, defining the role of antibodies in HIV-1 pathology is less important than finding ways to enhance the protective effects of NAbs, in vivo. Perhaps the most interesting finding of this thesis was the observation that B cell depletion appeared to enhance control of VL set-point after an initial flare in viraemia. With this in mind, a working hypothesis is proposed to explain this finding: In subjects with evidence of antibody-mediated inhibition of viral replication, rituximab-mediated B cell depletion will cause transient losses of viral load control, sensitization of virus to NAb responses and enhanced control of viral load set-point when antibody responses rebound.

Theoretically, relaxing antibody-selective pressure will promote evolution of neutralization-susceptible virus that may be beneficial in the long-term. This hypothesis could be tested using SHIV-infected macaques and the ethical arguments against animal experimentation may be overcome using animals infected as part of vaccine trials. Not only would this corroborate or refute the hypothesis, B cell depletion may also help to determine if non-sterilizing immune responses, induced by vaccination, are clinically beneficial in controlling subsequent viral load set points.
In the proposed study, full-length envelope genes would be sequenced longitudinally subjected to time-structured Phylogenetic and CODEML analyses, as described in chapters 2 and 4, in order to detect antibody-mediated positive selection. B cell depletion would be targeted to cases where effective antibody response are evident. As an experimental control, B cell depletion could be conducted on infected animals without evidence of positive selection, but with evidence of genetic drift and diversification in env, indicative of an ineffective antibody response (see Footnote 1).

Knocking-out positive selective pressure should promote reversion to a neutralization-sensitive phenotype. Additionally, temporarily inhibiting B cell development should also relax antibody-mediated negative selection, leading to virus diversification and the acquisition of mutations that further sensitize the virus to the rebounding antibody response (see Footnote 2). If B cell depletion were to be sustained so that the least mutated genome carried at least one deleterious mutation, the decrease in viral fitness will become fixed in the viral population leading to enhanced control of viral load set-point; a mechanism known as Mullers Ratchet (Muller, 1964).

In conclusion, longitudinal follow-up of the neutralizing response in HIV-1 infected patients has revealed a dynamic, yet fragile, evolutionary balance between antibodies and virus. B cell depletion interferes with this relationship with surprising consequences and further work into this particular area could help elucidate the true potential of neutralizing antibodies in the control of HIV-1 viral load.
6.2 Footnotes

Footnote 1: It would be necessary to confirm that anti-CD20 therapy depleted those neutralizing antibodies responsible for the selection event. This would be done by isolating those B cell subclones that produce antibody capable of binding to autologous Env prior to, but not after, the selection event, using recently described techniques pioneered by Scheid et al., 2010. The antibody would subsequently be used in neutralization assays and competitive binding assays with serum collected prior to and after B cell depletion using autologous gp140 as the target protein. If rituximab effectively depletes the relevant antibody, binding competition would only be observed with serum derived prior to B cell depletion.

Footnote 2: It may also be possible to further promote evolution of a neutralization-susceptible virus while limiting the flare in viraemia expected from B cell depletion. Chloroquine has been shown to reduce viral load while inhibiting glycosylation of viral envelope leading to losses of N-link glycosylation sites and shortening of Env variable regions (Sperber et al., 1995 and 1997, Savarino et al., 2001 and 2004); a phenotype likely to be associated with increased susceptibility to NAbs.
References

(OARAC) (December 2009) Guideline for the use of antiretroviral agents in HIV-1-infected adults and adolescents.

Immunodeficiency Virus Type 1 gp120 Results in an Enhanced Ability To Induce Neutralizing Antibody Responses. *J. Virol.*, 82, 638-651.

ROBERTSON, M., CASIMIRO, D, DE ROSA, S, ET AL (2008a) Immunological characterization of subjects from the STEP Study: a phase IIIB test of Concept Trial of the MRKAd5 HIV-1 Gag/Pol/Nef Trivalent vaccine. 15th Conference on Retroviruses and Opportunistic Infections. Boston, MA.

ROBERTSON, M., MEHROTRA, D, FITZGERALD, D, ET AL (2008b) Efficacy results from the STEP Study: A phase II Test of Concept trial of the MRKAd5 HIV-1 Gag/Pol/Nef Trivalent vaccin. Presented at the 15th Conference on Retroviruses and Opportunistic Infections. Boston, MA.

234

A one-step SYBR Green I-based product-enhanced reverse transcriptase assay for the quantitation of retroviruses in cell culture supernatants

Massimo Pizzatoa, Otto Erlweina, David Bonsalla, Stephen Kayea, David Muirb, Myra O. McClurea

a Jefferiss Trust Laboratories, Wright-Fleming Institute, Imperial College, London W2 1PG, United Kingdom
b Department of Clinical Virology, Imperial College Health Trust, St. Mary’s Campus, London W2 1NY, United Kingdom

1. Type of research

Assays for the routine quantitation of retrovirus particles are essential tools in research areas addressing the biology of retroviruses and the development and use of viral vectors for gene transfer. To this end, ELISA-based techniques for the quantitation of retroviral Gag proteins are often expensive and require extensive sample dilution, because they are linear only over a limited range of antigen concentration. RT-PCR strategies to detect and quantify virion-associated retrovirus genomes rely on sequence-specific primer design and require RNA isolation procedures which make it expensive and labour intensive. In contrast, biochemical assays which estimate the amount of virion-associated reverse transcriptase (RT-assays) can universally detect and quantify retrovirus particles. The enzymatic activity of RT, present in all retroviruses, is measured using an RNA template which is reverse transcribed in vitro by the retroviral enzyme. The resulting DNA product (cDNA) is then quantified as a measure of the amount of virions present. Conventionally, quantitation of the cDNA is achieved by measuring the amount of nucleotides incorporated using radioactively labelled reagents or colorimetric techniques. However, during the last 15 years product-enhanced RT (PERT) assays have been developed using PCR techniques to amplify the cDNA and to allow the detection of even single retrovirus particles (Chang et al., 1997; Fan et al., 2006; Heneine et al., 1995; Pyra et al., 1994; Silver et al., 1993; Yamamoto et al., 1996). Furthermore, the adaptation of real-time PCR techniques based on the fluorogenic 5′-nuclease chemistry (F-PERT) to one- or two-step assays has coupled the high sensitivity given by the PCR to the quantitative capacity given by real-time analysis of product amplification, making it linear over six orders of magnitude (Arnold et al., 1998; Lovatt et al., 1999; Maudru and Peden, 1998; Sears and Khan, 2003). PERT and F-PERT assays can be used to detect low amounts of retroviruses in biological samples (Garcia Lerma et al., 1998; Pyra et al., 1994), replication-competent recombinant retroviruses in cultures producing vectors for gene transfer (Sastry et al., 2005) and endogenous retroviruses (Bisset et al., 2007; Khan and Sears, 2001).

SYBR Green I-based systems offer a popular alternative to fluorescent probe-based real-time PCR techniques and are based on its ability to produce a 100-fold increase of fluorescence when bound to double-stranded DNA. Because the binding of SYBR Green I to nucleic acid is not sequence-specific, the fluorescent signal produced when in complex with DNA is directly proportional to the length and amount of DNA copies synthesized during the reaction, making this technique very precise and sensitive. Given the popularity of the SYBR Green I-based systems and their cost efficiency, the SYBR Green I chemistry has been adapted to a one-step PERT (SG-PERT). Several attempts were required in order to identify crucial reaction conditions and develop a robust and sensitive assay.
assay, which is proposed as a fast and economic tool for the routine quantitation of divergent retroviruses.

2. Time required for a 20 sample experiment: 1 h 50 min

(i) Sample preparation: 20 min
(ii) Reaction set-up: 10 min
(iii) RT and PCR reactions: 1 h 10 min
(iv) Data analysis: 10 min

3. Materials

3.1. Cells and viruses

Human endothelial cells HEK 293T, human fibrosarcoma cells HT1080 and Hela-derived TZM-BL indicator cells were grown in DMEM (Invitrogen, Paisley, UK). Human lymphoblastoid Jurkat E6.1 cells were grown in RPMI (Invitrogen, Paisley, UK). Media were supplemented with 10% fetal calf serum (Invitrogen, Paisley, UK) and cell cultures were maintained at 37 °C and 5% CO2.

HIV-1 was generated using the proviral construct pNL4-3 (Adachi et al., 1986). Recombinant murine leukemia virus (MLV) vector was produced using the gag-pol expression plasmid, pHIT-60 (Soneoka et al., 1995), the VSV-G (G protein from the vesicular stomatitis virus) expression plasmid, pMDG (Naldini et al., 1996) and the retroviral vector, pCNCG-GFP (Neil et al., 2001). Recombinant PFV vector was produced using the vector plasmid, pMH71 (Heinkelein et al., 2003) and pczHPFVenv encoding the HFV (human foamy virus) envelope glycoprotein (Pietschmann et al., 1999).

3.2. Special equipment and software

- LightCycler 2.0 (Roche Diagnostics, Burgess Hill, UK).
- LightCycler software 4.0 (Roche Diagnostics, Burgess Hill, UK).
- 7900HT Real-Time PCR system and software (Applied Biosystems, Warrington, UK).

3.3. Chemicals and reagents

- 1 kb plus DNA molecular weight marker, Sybr Green I, deoxynucleotides and Platinum Taq (Invitrogen, Paisley, UK).
- Recombinant HIV-1 reverse transcriptase and AmpliTaq Gold polymerase (Ambion/Applied Biosystems, Warrington, UK).
- Ammonium sulphate, potassium chloride, magnesium chloride, manganese chloride, Tris–HCl, diithiothreitol, Triton X-100, Dnase and RNase-free water, glycerol, 1,4-dithioerythritol (DTT) and agarose (Sigma–Aldrich, Gillingham, UK).
- Bovine serum albumin (New England Biolabs, Hitchin, UK).
- Hot-start Taq polymerase (MBI Fermentas, York, UK).
- Brome mosaic virus RNA and RNAsin ribonuclease inhibitor (Promega, Southampton, UK).
- Forward (5′-GGTCTCTTGTAGAGATTACAGTG-3′) and reverse (5′-CGTCTGTTACACGAGACTTACCT-3′) primer oligonucleotides (Invitrogen, Paisley, UK).
- LightCycler 20 μl capillaries (Roche Diagnostics, Burgess Hill, UK).
- Saquinavir (NBSC, Potters Bar, UK).
- PUU ultra, PUU turbo and EasyA (Stratagene, Amsterdam Zuidoost, The Netherlands).
- Murex HIV antigen mAB ELISA assay kit (Abbott Murex, Maidenhead, UK).
- X-Gal (5-bromo-4-chloro-3-indolyl-b-galactopyranoside) (Melford, Chelsworth UK).

4. Detailed procedure

4.1. Sample preparation

4.1.1. Production of viruses and recombinant retrovirus vectors

Jurkat E6.1 cells were infected with HIV-1 NL4-3, previously generated by transfection of HEK 293T cells with pNL4-3 and passaged for more than 2 weeks to establish chronic infection.

Recombinant MLV and PFV (prototypic foamy virus) vectors were produced by transfection of HEK 293T cells. Briefly, 1.5 million cells, seeded in T25 flasks 1 day earlier, were transfected using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions with pHIT-60, pMDG and pCNCG-GFP (MLV) and pMH71 and pczHPFVenv (PFV). Vector-containing supernatants were harvested 48 h after transfection. After clarification by low-speed centrifugation, supernatants were prepared for infectivity assay and SG-PERST analyses by filtering through a 0.45 μm pore filter.

4.1.2. Infectivity assays

T2M-BL or HT1080 target cells were seeded onto 48-well plates (2 × 105 cells/well) 1 day before infection or transduction. Virus and vector supernatants were serially diluted 10-fold in triplicate in culture medium and target cells inoculated with 0.4 ml of each dilution. Virus supernatant was replaced with fresh medium 24 h later and end-point titers evaluated 72 h post-infection (T2M-BL cells) or post-transduction (HT1080 cells). To ensure that HIV-1 infection of TZM-bl resulted in a single cycle of replication, target cells were treated with 1 μM of the protease inhibitor saquinavir. HIV-1 infection of TZM-bl cells was evaluated by staining infected cells with X-Gal as previously described (Pizzato et al., 2001). The infectivities of MLV and PFV GFP vectors were evaluated by counting fluorescent foci by fluorescence microscopy through transduced HT1080 cells. Clusters of stained cells were attributed to a single infection event and titre was expressed as infectious units (i.u.).

4.1.3. Measurements of p24 and HIV-1 RNA in virus supernatants

P24 antigen was measured in cell culture supernatants using the Murex HIV antigen mAB ELISA assay kit following the manufacturer’s guidelines. HIV-1 RNA was quantified by Siemens Versant HIV-1 bDNA (branched-chain DNA) assay, after the sample was diluted 105-fold in normal human plasma to obtain a concentration falling within the range of the assay.

4.1.4. Preparation and storage of SG-PERST assay buffers

All buffers were prepared using RNase-free reagents:
- 2 × virus lysis buffer (0.25% Triton X-100, 50 mM KCl, 100 mM TrisHCl pH 7.4, 40% glycerol) was stored at −20 °C. RNase inhibitor (0.4 U/μl) was added to the volume of buffer needed for virus disruption immediately before use.
- 10 × sample dilution buffer (50 mM (NH4)2SO4, 200 mM KCl and 200 mM Tris–HCl pH 8.3) was stored in aliquots at −20 °C.
- 2 × reaction mix (10 mM (NH4)2SO4, 40 mM KCl and 40 mM Tris–Cl pH 0.3, 10 mM MgCl2, 0.2 mg/ml BSA, 1/10,000 SYBR Green I, 400 μM dNTPs, 1 μM forward primer, 1 μM reverse primer, 1.2 μg/ml BMV RNA) was stored in aliquots at −80 °C. Hotstart Taq was added (0.2 U/reaction) immediately before use.

4.1.5. Preparation of virus lysates

Five microliters of undiluted or diluted virus supernatant, or 5 μl of recombinant HIV-1 RT diluted in sample dilution buffer, were mixed with 5 μl of 2 × virus lysis buffer in a 1.5 ml microfuge tube. After 10 min incubation at room temperature, 90 μl of sample dilution buffer were added and the tube vortexed to obtain a 10-fold dilution.
4.2. Reaction set-up

Ten microliters of the diluted virus lysate samples were mixed immediately with 10 μL of 2× reaction mix already aliquoted into the reservoir of pre-chilled 20 μl capillaries (lightcycler) or optical tubes (HT7900). The capillaries or tubes were briefly centrifuged to sediment the reaction components and applied to real-time platforms. Thermal cycler conditions used were: 30 min RT reaction at 37 °C, 5 min hot-start Taq activation at 95 °C and 45 cycles of amplification. Each amplification cycle was composed of 5 s denaturation at 95 °C, 5 s annealing at 55 °C, 15 s extension at 72 °C, 7 s acquisition at 83 °C, using the lightcycler; 5 s denaturation at 95 °C, 5 s annealing at 55 °C, 20 s extension at 72 °C, 11 s acquisition at 83 °C, using the 7900HT platform.

Where indicated, the 20 μl PCR products were visualized after electrophoretic separation in 1.8% agarose gel and stained with ethidium bromide.

4.3. Data analysis

Amplification curves and melting temperatures were generated by recording fluorescence at 530 nm and analyzed using the LightCycler software 4. For each amplification curve the software calculates the crossing point, defined as the cycle number at which the fluorescence of a sample rises above the background fluorescence. The fit points method with arithmetic background correction was used to calculate the crossing points and generate the standard curves following the operator’s manual. First, the noise band was adjusted using the software automatic option. The maximum number of fit points fitting the linear portion of the curve was then added. The software option “minimize errors” was chosen to automatically adjust the threshold line for the calculation of crossing points. The regression analysis of crossing points versus dilution factors of virus supernatants or recombinant RT was automatically calculated by the software. The slope of the curve, which is referred to as the efficiency of the reaction, indicates the efficiency of the amplification, the perfect value being 2. Melting peaks were calculated automatically by the software.

For data acquired with the 7900HT system, crossing points were calculated automatically by the software.

5. Results

5.1. SG-PERT reaction conditions

A one step real-time based PERT assay was established using the BMV RNA template and primer set which have already been described (Silver et al., 1993) and which amplify a 168 bp fragment at the 3′ end of the BMV genome. After screening several thermophilic DNA polymerases, the hot-start Taq-polymerase from MBI Fermentas was chosen for the PCR amplification because it was found to lack significant RT activity (not shown), as already suggested (Fan et al., 2006; Maudru and Peden, 1997).

Since the binding of SYBR Green I to DNA is sequence-independent, non-specific PCR fragments can contribute to the fluorescent signal recorded by the instrument. A melting curve analysis of the PCR products obtained was therefore, performed to confirm the presence of the specific DNA fragment which correlates with a distinct melting peak at 86 °C (Fig. 1a). Accordingly, agarose gel electrophoresis analyses of the PCR product obtained in the light cycler confirmed the presence of the predicted 168 bp specific fragment and the absence of non-specific products (Fig. 1b). Primer–dimer formation was often detected in negative or weakly positive samples, characterized by a melting peak at 79 °C (Fig. 1b).

5.2. SG-PERT detection of recombinant HIV-1 RT

A one step real-time based PERT assay was established using the BMV RNA template and primer set which have already been described (Silver et al., 1993) and which amplify a 168 bp fragment at the 3′ end of the BMV genome. After screening several thermophilic DNA polymerases, the hot-start Taq-polymerase from MBI Fermentas was chosen for the PCR amplification because it was found to lack significant RT activity (not shown), as already suggested (Fan et al., 2006; Maudru and Peden, 1997).

Since the binding of SYBR Green I to DNA is sequence-independent, non-specific PCR fragments can contribute to the fluorescent signal recorded by the instrument. A melting curve analysis of the PCR products obtained was therefore, performed to confirm the presence of the specific DNA fragment which correlates with a distinct melting peak at 86 °C (Fig. 1a). Accordingly, agarose gel electrophoresis analyses of the PCR product obtained in the light cycler confirmed the presence of the predicted 168 bp specific fragment and the absence of non-specific products (Fig. 1b). Primer–dimer formation was often detected in negative or weakly positive samples, characterized by a melting peak at 79 °C (Fig. 1b).
and 1c). To avoid non-specific signal detection of primer dimers, fluorescence was acquired at 83 °C (Fig. 1c). The melting temperature of the PCR product was found to remain constant when recombinant MLV RT or different virus supernatants were tested (not shown), indicating no need to adjust the acquisition temperature.

5.2. Sensitivity of the assay

The sensitivity of the SG-PERT was tested with the lightcycler using 10-fold serial dilutions of recombinant HIV-1 RT, starting from 1 mU. The assay provided a detectable and reproducible signal down to the 10^{-7} dilution equivalent to 100 pU of HIV-1 RT (Fig. 2a), indicating a sensitivity close to that reported by other real-time PCR-based RT-assays for the detection of HIV-1 RT (Arnold et al., 1998; Lovatt et al., 1999; Maudru and Peden, 1997). The diagram generated by plotting the crossing points against the enzyme dilution factor shows linearity over six orders of magnitude (Fig. 2b).

The ability of SG-PERT to detect HIV-1 virus particles in cell culture supernatants was then tested in the lightcycler using cell culture medium derived from Jurkat E6.1 producing HIV-1NL4,3. This virus suspension had an infectious titre of 3 × 10^{5} i.u./ml, a p24 content of 355 ng/ml and a virus load of 11.6 × 10^{3} HIV-1 RNA copies/ml. The SG-PERT could detect RT activity down to the 10^{-5} dilution (Fig. 3). Because only 0.5 μl of virus sample is added to the 20 μl reactions, it can be concluded that the assay detects RT activity associated with six HIV RNA copies (three virions) or 1.7 × 10^{-3} pg of p24. To establish whether SG-PERT can be performed with equal sensitivity using different real-time PCR platforms, the same virus supernatant was tested using the 7900HT apparatus. As shown in Fig. 3, the sensitivity and linear range of the assay remain similar using both real-time PCR platforms.

5.3. Specificity of the assay

The performance of SG-PERT was evaluated for the quantitation and detection of virus particles and recombinant retroviral vectors based on divergent retroviruses. For this purpose, serial dilutions of cell culture supernatants from cells producing HIV and recombinant MLV or PFV GFP transducing vectors were tested in parallel and in triplicate using the lightcycler. End-point infectious titres were first determined to be 4.0 × 10^{5} i.u./ml for the HIV-1 sample, 7.4 × 10^{2} i.u./ml for the PFV sample and 4.2 × 10^{6} i.u./ml for the MLV sample. Results show that for all three types of retrovirus the assay is linear over five to six orders of magnitude and detects RT-activity in supernatants containing less than 10 i.u./ml (Fig. 4). As shown in Table 1, for all three types of virus and for all dilutions tested, the coefficient of variation ranges between 0.19% and 2.08%. Reaction efficiencies of 1.995, 1.997 and 1.894 for HIV-1, MLV and PFV, respectively indicate that SG-PERT can be reliably used as a tool for the quantitation of divergent retroviruses.

Retrovirus-free supernatants from uninfected cell cultures were used as negative controls. Rarely and randomly was a weak signal detected with crossing point above 39 PCR cycles. This signal most likely results from the activity of eukaryotic polymerases associated with cellular debris, as reported elsewhere (Voisset et al., 2001). Only samples generating a signal at an earlier PCR cycle than the virus-free control are, therefore, considered positive in these cases.

5.4. Reproducibility of the assay

Reproducibility of the assay was evaluated by testing serial dilutions of the same HIV-1 virus suspension in independent experiments using the lightcycler. Four serial dilutions of an HIV-1 virus supernatant were tested in 18 experiments performed using stocks of lysis buffers and reaction mixtures prepared in three independent occasions. The coefficient of variation ranged from 4.1% to 7.6% (Fig. 5).

![Fig. 3](image-url) SG-PERT detection of HIV-1 with two different real-time PCR platforms. Crossing points obtained with the lightcycler and the ABI 7900HT using 10-fold serial dilutions of HIV-1NL4,3 retroviral supernatants containing 3 × 10^{5} i.u./ml. Results of triplicate samples and linear regression are shown.

![Fig. 4](image-url) Detection of divergent retroviruses by SG-PERT. Crossing points and linear regressions obtained with 10-fold serial dilutions of retroviral supernatants performed in triplicate in the lightcycler, using HIV-1NL4,3 (infectious titre 4 × 10^{5} i.u./ml), MLV GFP vector (transducing titre of 4.2 × 10^{6} i.u./ml) and PFV GFP vector (transducing titre of 7.4 × 10^{5} i.u./ml).

Table 1: Detection of divergent retrovirus particles and intra-assay variation with SG-PERT.

<table>
<thead>
<tr>
<th>Virus dilution</th>
<th>Crossing point and coefficient of variationa</th>
<th>HIV-1</th>
<th>MLV</th>
<th>PFV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neat</td>
<td>13.47 (0.28%)</td>
<td>17.08 (1.00%)</td>
<td>18.15 (1.26%)</td>
<td></td>
</tr>
<tr>
<td>10^{-1}</td>
<td>16.12 (0.31%)</td>
<td>19.18 (0.64%)</td>
<td>21.64 (0.70%)</td>
<td></td>
</tr>
<tr>
<td>10^{-2}</td>
<td>19.33 (0.26%)</td>
<td>22.52 (0.76%)</td>
<td>25.09 (0.74%)</td>
<td></td>
</tr>
<tr>
<td>10^{-3}</td>
<td>22.92 (0.64%)</td>
<td>26.11 (0.61%)</td>
<td>28.71 (0.98%)</td>
<td></td>
</tr>
<tr>
<td>10^{-4}</td>
<td>26.20 (0.19%)</td>
<td>29.70 (1.07%)</td>
<td>32.45 (0.30%)</td>
<td></td>
</tr>
<tr>
<td>10^{-5}</td>
<td>29.79 (1.19%)</td>
<td>33.48 (0.66%)</td>
<td>35.64 (2.08%)</td>
<td></td>
</tr>
<tr>
<td>10^{-6}</td>
<td>33.30 (0.68%)</td>
<td>36.32 (1.97%)</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>10^{-7}</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
</tbody>
</table>

n.d.: not detected.

a Crossing point calculated with the fit points methods. Values are average of triplicate dilutions values. Intraexperimental coefficient of variation is indicated in parenthesis.
percentage of the respective mean crossing point value.

Intraexperimental variation. Results of 18 SG-PERT independent experiments performed with the lightcycler using the same four HIV-1NL4.3 dilutions and three independent lysis and reaction buffer stocks. Coefficient of variation is indicated as percentage of the respective mean crossing point value.

6. Discussion

A SYBR green I-based real-time PERT assay (SG-PERT) for the quantitation and detection of HIV-1 and other divergent retroviruses is described. The assay is linear over six orders of magnitude and requires less than 2 h from sample preparation to data analysis when performed using the lightcycler.

Although PERT was originally established as a two-step assay (Heneine et al., 1995; Lovatt et al., 1996; Maudru and Peden, 1998; Pyra et al., 1994; Yamamoto et al., 1996) the one-step assay, previously proposed using the fluorescent probes techniques (Arnold et al., 1998), adds convenience and minimizes sample handling, which may cause cross-contaminations and decreases quantitative reliability.

Based on the quantitation of viral RNA copies in a cell culture supernatant containing HIV-1 particles, a 1/1500 ratio of infectious units/total HIV-1 particles was established, a value within the range reported in literature (Dimitrov et al., 1993; Kimpton and Emerman, 1992). It was therefore estimated that the SG-PERT assay can detect the presence of three HIV-1 particles in the reaction tube. Because the virus sample represents only 5% of the 20 μl reaction, the assay can reveal RT-activity in HIV-1 supernatants containing 6000 virions or 4 i.u./ml. While this satisfies most needs of a retrovirus research laboratory, the detection capacity of the assay can reveal RT-activity in HIV-1 supernatants containing 6000 virions or 4 i.u./ml. While this satisfies most needs of a retrovirus research laboratory, the detection capacity of the assay can reveal RT-activity in HIV-1 supernatants containing 6000 virions or 4 i.u./ml.

6.1. Trouble-shooting

The effects of several chemicals and reagents on the performance of the assay were investigated and are discussed here.

6.1.1. BSA requirement

SYBR Green I is offered currently by different providers in ready-to-use real-time PCR and RT-PCR kits. As the formulation of the reaction mixtures is generally proprietary and, therefore, unavailable, the optimal reaction conditions for the reverse transcription and amplification of BMV RNA in glass capillaries were first investigated using 1 mU of recombinant HIV-1 RT, 5 mM MgCl2 and a 1:20,000 dilution of SYBR Green I, already reported to be compatible with a real-time PCR system (Karsai et al., 2002). After testing numerous buffer formulations, it was established that efficient PCR amplification requires BSA at a final concentration of 0.1 mg/ml (Fig. 6a).

The importance of BSA for the reaction in glass capillaries has been linked to the propensity of the glass surface to sequester some reaction components, such as the taq polymerase (Teo et al., 2002). As shown in Fig. 1, the reaction buffer containing BSA can be successfully used in a real-time PCR platform accepting plastic tubes.

6.1.2. The use of different thermophilic polymerases

Several polymerases from different suppliers were tested. PFU Ultra and PFU Turbo, which are reported to lack RT activity (Arezi et al., 2003) and products specification from suppliers could not be adapted to real-time PCR in the light cycler (not shown). Platinum Taq, AmpliTaq Gold, Easy-A performed very efficiently in the light cycler with SYBR Green I, but generated a strong background signal arising early between cycle 20 and 30 in the absence of added retroviral RT activity. Hot-start Taq-polymerase from MBi Fermentas was selected because it consistently failed to reverse transcribe the BMV RNA in 45-cycle PCR reactions.

6.1.3. Concentration and storage of SYBR Green I

Repeated freeze-thaw cycles were avoided by storing multiple aliquots of the SYBR Green I concentrated stock and the 1/100 diluted aliquots used to make the master mix at −80 °C. The reagent was diluted in TE buffer, pH 8.0, as suggested elsewhere (Karsai et al., 2002). More than two freeze-thawing cycles of the 1/100 diluted SYBR Green I aliquots resulted in a significant loss of assay sensitivity (not shown). The assay sensitivity and strength depend on the SYBR Green I concentration. The effects of different dilutions of the dye ranging from 1/60,000 to 1/10,000 (Fig. 6b) were tested. The 1/20,000 dilution was chosen because it combines high sensitivity with a robust signal.
6.1.4. The effect of different components of the virus lysate on the outcome of the assay

After optimising the reaction using recombinant HIV-1 RT, based on previously described protocols (Heneine et al., 1995; Lovatt et al., 1999; Maudru and Peden, 1998; Pyra et al., 1994; Yamamoto et al., 1996), the assay was tested with a suspension of HIV-1 virions lysed in a buffer supplemented with 0.2 U/μl RNAse inhibitor, 1 mM DTT. The assay repeatedly failed to generate any signal, indicating that the virus lysate could contain inhibitory reagents. We tested the effects of single components of the virus lysate on the SG-PERT efficiency using 1 μl of recombinant HIV-1 RT (Fig. 6c). We established that 0.1 mM DTT acts as a powerful inhibitor, in line with previous reports indicating a negative interference with SYBR Green I-based RT-PCR (Lekanne Deprez et al., 2002; Pastorino et al., 2005; Pierce et al., 2002; Varga and James, 2005). The presence of RPMI culture medium in the reaction was also found to affect negatively the assay when it represented 10% of the final reaction volume. Similarly, when 1.6 U of the RNAse inhibitor was present in the 20 μl reaction the assay failed. In contrast, other components of the virus lysates did not significantly affect the performance of SG-PERT. While DTT can be omitted from the RT reaction without loss of enzyme activity (data not shown and Lekanne Deprez et al., 2002), the inhibitory effects of culture medium and RNase inhibitor were avoided by minimizing the amount of virion lysate added to the reaction mix. Given that the presence of RNAse inhibitor is strictly essential, its negative effects were minimized by treating the virion lysate (which represents the main source of RNAses) rather than the total reaction with a concentrated formulation of RNAse inhibitor. A robust signal was, therefore, obtained only when the virus lysate was not exceeding 5% of the final reaction volume (Fig. 6d).

6.1.5. Divalent cations

Since efficient reverse transcriptase activity is known to require Mg²⁺, MgCl₂ concentrations ranging from 1.25 to 10 mM were tested and found to have no significant effects on the assay sensitivity (not shown). Although gamma-retroviruses are known to prefer Mn²⁺, addition of 2 mM MnCl₂ to the reaction assay resulted in 100-fold lower efficiency of detection of MLV virus suspensions (not shown).

6.1.6. Absolute quantitation of virus suspensions

For experimental purposes, absolute values of the virus suspensions tested can be retrieved from a standard curve created using known amounts of recombinant RT or serial dilutions of a previously characterized virus stock.

6.1.7. Improved primer design

An alternative set of oligonucleotides (forward: 5′-TAGTTGTTGGGCTTCGCTTT-3′; reverse: 5′-TTGTCGGCTTTACCTGC-3′) was designed to avoid primer-dimer formation with SG-PERT under the same conditions described in the article. While this modification does not alter the properties of the assay, it further improves the signal generated by low levels of RT activity.

Essential literature references:

- Arnold et al. (1998)
- Chang et al. (1997)
- Lovatt et al. (1999)
- Maudru and Peden (1998)
- Pyra et al. (1994)
- Silver et al. (1993)

7. Quick procedure

7.1. Sample preparation

- Virus supernatants are harvested, clarified by low-speed centrifugation (400 g) for 10 min and filtered through a 0.45 μm pore filter.
- RNAse inhibitor (0.4 U/μl) is added to 2× virus lysis buffer.
- 5 μl aliquots of 2× lysis buffer are immediately dispensed into 1.5 ml microfuge tubes.
7.2. Reaction set-up (for lightcycler)

- Taq polymerase (0.2 U/reaction) is added to 2× reaction mix.
- Ten microliters aliquots of 2× reaction mix are placed into the reservoir of pre-chilled glass capillaries.
- Virus lysates (10 μl) are diluted with the addition of 90 μl of sample dilution buffer and vortexed.
- Ten microliters of each diluted sample is immediately mixed with the reaction buffer in glass capillaries.
- Capillaries are centrifuged in a microfuge at 3000 rpm for 15 s and inserted into the LightCycler carousel.

References

HIV can be partially contained by host immunity and understanding the basis of this may inform vaccine design. The importance of B-cell function in long-term control is poorly understood. One method of investigating this is in vivo cellular depletion. In this study, we take advantage of a unique opportunity to investigate the role of B cells in an HIV-infected patient. The HIV-1+ patient studied here was not taking antiretroviral drugs and was treated for pre-existing low-grade lymphoplasmacytoid lymphoma by depletion of CD20+ B cells using rituximab. We demonstrate that B-cell depletion results in a decline in autologous neutralizing antibody (nAb) responses and a 1.7 log_{10} rise in HIV-1 plasma viral load (pVL). The recovery of NAbs results in a decline in pVL. The HIV-1 sequences diversify and nAb-resistant mutants are subsequently selected. These data suggest that B-cell function can contribute to the long-term control of pVL, and that NAbs may be more important in controlling chronic HIV-1 infection than previously suspected.

1 Nuffield Department of Medicine and NIHR Biomedical Research Centre, Oxford Martin School, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, UK.
2 Jefferiss Research laboratories, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK.
3 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK. *These authors contributed equally to this work. †These authors contributed equally to this work. Correspondence and requests for materials should be addressed to P.K. (email: paul.klenerman@ndm.ox.ac.uk).
HIV-1 is readily able to evade host defence and establish persistent infection. The virus may, however, be partially contained by host adaptive immunity, including both B- and T-cell responses. There is good evidence that CD8+ T-cell responses have a role in viral suppression. For example, there are strong HLA class I associations with clinical outcome, and in the SIV model, macaques in whom CD8+ T cells are depleted show significant increases in their viral load. These findings have led to a major initiative to develop T-cell-based vaccines, and much work to define the correlates of protection based on assays of T-cell function11. However, as a leading HIV vaccine candidate failed to induce protective T-cell responses12 and recent trial data suggest partial protection from a vaccine including a gp120 component13, the incentive to understand the role of neutralizing antibodies (NAbs) and of B cells in HIV infection has increased considerably14–18.

B cells have a multifaceted role in humoral and cellular responses to HIV-1, yet their impact in containing the virus remains unclear. This is partly because of the complex nature of the antigenic target (gp120)19. Key obstacles to the development of both T- and B-cell defence are the abilities of the HIV-1 genome to integrate and also evolve rapidly in the face of immune selection pressure: the latter feature results from both the high replication rate of the virus and the error-prone nature of the HIV-1 reverse transcriptase, which lacks proofreading capacity20. These mutations are readily accommodated within gp120 because of plasticity of the structure and the capacity to acquire glycosylation sequences that provide a ‘glycan shield’21. Therefore, emerging NAbs repeatedly select mutant viruses that are resistant to neutralization22. The NAb response also evolves through somatic recombination and affinity maturation of proliferating B cells, but is only partially effective against concurrently circulating viruses, while retaining potent activity against strains previously circulating within the patient13–15. Such data have cast doubt on the contribution of NAbs to the control of virus load, despite the counterargument that NAbs must inhibit virus replication to drive the selection of resistant variants.

Monoclonal antibodies have been identified that both cross-recognize and potently neutralize a variety of HIV-1 strains26–19. The targets for these are well defined and include, among others, CD4 and co-receptor binding sites and epitopes within the gp41 fusion subunit20. These areas are under some structural constraint compared with other epitopes, such as in the exposed variable loops. Few potent monoclonal antibodies have been isolated, yet the proportion of gp120-specific antibodies capable of neutralization may be greater than once believed23,24. Recent studies indicate that some individuals possess NAbs that exhibit broad and potent neutralization capacity42,23, but functional data to causally link such antibodies to the control of viremia are lacking. Furthermore, the contribution of B-cell responses to the containment of plasma viral load (pVL) has been difficult to determine, because of other important factors that limit virus replication, such as T-cell response, virus fitness and host genetics25.

Historically, functional importance has been confidently attributed to specific arms of the immune response by means of experiments that delete or transfer that effector arm. Although such data are readily available in animal models, they are rarely available in humans. As recent vaccine studies have highlighted substantial differences between SIV models and HIV, it is important to seek such evidence in human studies.

Rituximab (Rituxan, MabThera; Roche) is a monoclonal antibody targeting CD20 antigen expressed on most B cells, with the exception of the terminally differentiated plasma cells. It has become widely used for treatment of lymphoma and also of antibody-mediated autoimmune diseases24. We report a unique case in which rituximab monotherapy was used in a patient with stable viraemia, in the absence of antiretroviral therapy (ART).

By combined analyses of viral dynamics, viral evolution and autologous NAb responses, we show reversible loss of HIV-1 control following rituximab monotherapy. Loss of control was associated with reduction in titres of NAbs targeting the CD4 binding site, as well as with an increase in genetic diversity and transient reversion to NAb-sensitive virus. As NAb levels later increased, pVL was once more controlled and this was accompanied by further immune selection of NAb-resistant viruses. These data suggest that despite ongoing immune escape, NAbs secreted by CD20+ B cells may have a significant role in control of pVL during chronic HIV-1 infection, a finding of significance for HIV-1 immunotherapies and vaccines.

Results

Clinical course of the study subject. The patient, a Caucasian man, was diagnosed with HIV seroconversion illness at the age of 58 years. Three years earlier, he was diagnosed with low-grade lymphoplasmacytoid lymphoma, for which he did not receive treatment27. Histologically, this was defined as a small lymphocytic B-cell lymphoma with plasmacytoid differentiation mostly expressing CD20 and CD79. The tumour was IgM secreting. His only other medical history of note was an acute hepatitis B infection approximately 30 years earlier. Following HIV-1 seroconversion, the patient was recruited into a prospective, non-randomized observational study of early treatment and received 3 months of highly active antiretroviral therapy28. After 30 months, he developed a rising paraproteinaemia, attributed to his lymphoma, and received thalidomide treatment without clinical effect. He initiated rituximab therapy 1,075 days after HIV seroconversion and received four weekly doses (375 mg m⁻²). He felt unwell 20 weeks after the first dose of rituximab with malaise and fever associated with a marked rise in HIV pVL (increase of 1.7 log₁₀; Fig. 1). In addition, he developed...
biochemical hepatitis (attributed to reactivation of hepatitis B) that resolved with only supportive treatment. Antiretrovirals were initiated 1,392 days after seroconversion.

Impact of B-cell depletion on NAb titres. Following rituximab therapy, the subject’s HIV-1 pVL, previously stable, increased by more than 1.7 \log_{10}, peaking at 737,400 copies per ml 4 months after the final dose of rituximab (Fig. 1). The pVL subsequently returned to baseline levels in the absence of ART. We therefore analysed the impact of rituximab therapy on NAb titres in relation to viral dynamics.

Rituximab therapy led to a 30% reduction in total IgG levels, which reached their lowest peak at the point of virus load (10.8 g/l; normal range 8–16 g/l) and returned to pre-rituximab levels thereafter (Supplementary Table S1). To evaluate NAb activity throughout this period, we generated pseudoviruses derived from autologous envelope sequences. Serum obtained before the first dose of rituximab potently neutralized virus pseudotyped with autologous envelope derived from plasma acquired 2 years previously (day 336 after seroconversion) (Table 1). The same serum neutralized contemporaneous autologous Env pseudotypes, although to a lesser extent, with 1:60 serum dilutions effectively blocking more than 90% infection. Heterologous NAb activity was also observed against HXB2 and 8/12 Tier 2/3 clade-B reference strains (NIH, AIDS) (Table 2). Following rituximab therapy, we observed a marked decrease in neutralizing activity characterized by a drop of more than threefold in IC$_{50}$ serum titres against day 336 Env pseudotypes, which recovered over a 4-month period. Strikingly, these changes coincided with the increase in pVL. Recovery of NAb responses correlated with control of viraemia (Fig. 1).

Analysis of sequence evolution in HIV-1 envelope over time. To evaluate sequence evolution over this period, env products were generated by reverse transcription (RT)–PCR from plasma viral RNA, before and after rituximab therapy (days 1,075–1,392; Fig. 2a). We identified clear sequence diversification as the virus peaked during rituximab treatment (mean genetic distance = 0.02 versus 0.004; $P < 0.0001$). This diversification manifested as an increase in effective population size as measured using BEAST 27 (fivefold change; Fig. 2b). To assess whether these diverse strains represented a re-emergence of archived provirus, we used an identical sequencing strategy to analyse stored peripheral blood mononuclear cell (PBMC) samples available from the time of seroconversion up to day 1,042; these sequences were placed on a time-structured tree (Supplementary Fig. S1). Viruses detected after rituximab treatment did not represent re-emergence of early archived strains; those strains present as pVL peaked were most closely related to strains present in plasma at day 1,042, with a subset related to those strains present as pVL peaked were most closely related to those strains present in plasma at day 1,042.

Immune selection and neutralization of HIV-1 envelope. The apparent in vivo impact of the NAbS in this individual prompted a search for the targets of binding. To identify potential NAb targets, we first analysed immune selection using CODEML, analysing the ratio of non-synonymous to synonymous mutations (dN/dS) at each site. We observed two sites under selection (Fig. 3; Supplementary Fig. S1)—position 339 (dN/dS = 7.6, $P < 0.0001$) and position 363 (dN/dS = 6.977, $P = 0.03$). Residue 363 lies between the β14 and β15 anti-parallel strands of gp120 and is exposed on the surface of the outer domain in close proximity to the CD4 binding loop 28. Computational modelling of atomic level envelope structures has shown that mutations proximal to the CD4 binding loop are critical in conferring resistance to CD4bs antibodies 29. Furthermore, site-directed mutagenesis of site 363 has previously been shown to affect neutralization of the CD4bs antibodies M-14 and b12 30,31. Before the first dose of rituximab (day 1,042 after seroconversion), position 363 was occupied by an arginine in all viral RNA sequences, whereas all proviral DNA clones sampled up to and including day 1,042 had a glutamine at the same position. Following rituximab therapy, R363 variants were temporarily replaced with Q363 variants, which reverted to arginine residues as NAb titres rebounded and viraemia was controlled.

Before rituximab therapy, an asparagine at site 339 formed part of an N-linked glycosylation site. This residue is located within the α3 helix, which is exposed on the surface of the protein according to atomic level structures. A previous study showed that site 339 is involved in recognition by 2G12, a monoclonal antibody the binding of which is carbohydrate dependent 32. However, in addition to this, mutations at site 339 have been reported to affect binding by monoclonal antibody b12: this effect is observed despite site 339 being some distance away from the CD4 binding site, and potentially occurs through conformational perturbation 26. No other sites in the envelope were found to be under positive selection, indicating that mutations at these positions affected NAb binding.

To examine the effect of sequence changes on neutralization susceptibility, pseudoviruses mimicking Q363R and R339N/E were constructed by site-directed mutagenesis. The selected Q363/339E mutation reduced the IC$_{50}$ titres of day 1,042 serum by more than twofold (IC$_{50}$ from >775 to 300). Confirming previous data, the Q363R mutation was also shown to inhibit neutralization by fivefold by antibody b12 31, whereas N339E inhibited neutralization susceptibility by fourfold to the carbohydrate-specific antibody 2G12 2,22.

To further define the site of binding of the patient’s NAbS, we performed a direct competition experiment using well-defined monoclonal antibodies and recombinant clade B envelope as the antigenic target (Fig. 4). This experiment showed strong binding competition between patient sera and antibodies b12, b14, 4.8d (which targets an epitope overlapping with the co-receptor binding site) and 447-52D (which targets the V3 loop). No competition was observed against 2G12. The experiment also revealed a clear decline in competition for binding in samples taken during the peak of viraemia, which recovered as pVL declined, in good accordance with the data obtained from the neutralization experiments, but using an independent system of evaluation (Fig. 4b).

Table 1 IC$_{50}$ neutralizing titres against autologous viruses.

<table>
<thead>
<tr>
<th>Serum (day)</th>
<th>D336 pseudovirus</th>
<th>D1042 pseudovirus</th>
<th>HXB2</th>
<th>VSV-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,042</td>
<td>>775</td>
<td>150</td>
<td>850</td>
<td><20</td>
</tr>
<tr>
<td>1,135</td>
<td>>775</td>
<td>225</td>
<td>1000</td>
<td>N/T</td>
</tr>
<tr>
<td>1,239</td>
<td>220</td>
<td><120*</td>
<td>875</td>
<td>20</td>
</tr>
<tr>
<td>1,295</td>
<td>250</td>
<td>150</td>
<td>325</td>
<td>20</td>
</tr>
<tr>
<td>1,308</td>
<td>360</td>
<td>375</td>
<td>1000</td>
<td><20</td>
</tr>
<tr>
<td>1,353</td>
<td>600</td>
<td>425</td>
<td>3950</td>
<td>N/T</td>
</tr>
<tr>
<td>Negative</td>
<td>< 20</td>
<td>< 20</td>
<td>< 20</td>
<td>< 20</td>
</tr>
</tbody>
</table>

Abbreviations: N/T, virus-serum combinations that were not tested because of limited availability of sera; VSV-G, vesicular stomatitis virus control. The mean half maximal inhibitory concentrations of sera (IC$_{50}$, reciprocal dilutions) are given for three viruses pseudotyped with representative Env clones derived from d336 and d1042 plasma (autologous).

*1120 was the highest concentration of day 1,239 serum that could be tested against day 1,042 virus due to limited serum availability.
We investigated 50 sera processed for the study, and we found no evidence of EBV, HHV-6, HHV-8, or HCV infection. There was no evidence of EBV, HHV-6, HHV-8, or HCV infection. Concurrent with rising pVL, the patient also developed elevated liver transaminases, associated with reactivation of previously controlled hepatitis B virus (HBV) infection. However, control of HIV was observed on the surface of the virus envelope, both of which showed evidence of positive selection, with mutations affecting binding of NAb responses.

In this study, B-cell depletion led to a decline in NAb titres against HIV, concurrent with rising pVL. Recovery of NAb titres coincided on the surface of the virus envelope, both of which showed evidence of positive selection, with mutations affecting binding of NAb responses.

Discussion

in blood. Cytomegalovirus was present only at low copy number (50 copies per ml). A bronchoalveolar lavage was tested for a broad panel of relevant viruses, all of which were negative, including VZV and HSV1/2. Clearly, these tests do not exclude reactivation of a further latent infection, or concurrent superinfection, although the major herpesvirus infections appear unlikely to be contributing significantly.

Table 2 | IC50 neutralizing titres against heterologous viruses.

<table>
<thead>
<tr>
<th>Serum (day)</th>
<th>HXB2</th>
<th>6535</th>
<th>QH0692</th>
<th>PVO</th>
<th>TRO</th>
<th>AC10.0</th>
<th>pREJO 4541</th>
<th>pTRJO 4551</th>
<th>pRHPA 4259</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,042</td>
<td>850</td>
<td>220</td>
<td>120</td>
<td>120</td>
<td>90</td>
<td>90</td>
<td>140</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>1,353</td>
<td>3950</td>
<td>300</td>
<td>170</td>
<td>170</td>
<td>90</td>
<td>130</td>
<td>160</td>
<td>140</td>
<td>120</td>
</tr>
<tr>
<td>Negative</td>
<td><20</td>
<td>20*</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20*</td>
<td><20</td>
</tr>
</tbody>
</table>

The mean half-maximal inhibitory concentrations of sera (IC50, reciprocal dilutions) are given for pseudoviruses derived from a standardized reference panel (NIAID, NIH) (heterologous). Reductions in infected TZM-bl cells by pooled HIV-negative sera (*) were attributed to cellular toxicity which was not observed at concentrations below 1:20.

Analysis of other potential effects of rituximab. We investigated other possible causes for the observations made, particularly the possibility of an indirect impact on cellular immunity. We analysed the sequence of key CTL epitopes over time, and carried out interferon-γ (IFN-γ) ELISPOT analyses. Although some mutations in pre-rituximab sequences were observed, the majority of the epitopes remained stable (Table 3). It is of importance that control over pVL was regained without further escape/reversion at these sites.

Second, immune activation through recrudescence of other infectious agents may have a role in this case. Concurrent with the pVL increase, the patient also developed elevated liver transaminases, associated with reactivation of previously controlled hepatitis B virus (HBV) infection. However, control of HIV was observed at a time when HBV load was still high, suggesting that HBV replication per se was not driving HIV replication (up to day 1,389; Supplementary Fig. S2) in this patient. In the setting of acute illness, there was no evidence of EBV, HHV-6, HHV-8 or HCV in blood.
using African Green monkeys did not reveal any effect of rituximab treatment during acute SIV_{sm} infection; thus, data from human studies are important to resolve this issue.

Figure 4 | Characterization of patient antibodies by competition ELISA. (a) Serial dilutions of patient serum (x axes) collected on days 1,042 (filled diamonds), 1,270 (filled circles), 1,295 (filled triangles) and 1,353 (filled squares) after seroconversion reduced gp120 binding with NAb b12, 447-52D and 4.8d, thereby reducing colorimetric change and light absorption (A_{447-52D}, y axes). Pooled serum collected from HIV-uninfected subjects (stars) did not compete with any NAb for gp120 binding. All sera failed to compete with 2G12 for gp120 binding. (b) The reciprocal dilutions of sera, sampled before and after rituximab therapy, which reduce gp120-NAb binding by 50% (IC₅₀, right y axis). Hundred percent binding was taken as that observed in microtitre wells containing IgGb12 (empty squares), 4.8d (empty triangles) or 447D (empty circles) in the absence of patient sera. Corresponding responses are shown by the red line (left y axis).

It is possible that depletion of B cells had an indirect impact on viral load through modulation of CD4+ or CD8+ T-cell subsets. Although we cannot exclude this, the mechanism for such an indirect effect is not clear and, importantly, no impact on CD8+ T-cell responses has been observed in the SIV models quoted above.⁴³ The delay of several weeks that is observed between rituximab treatment and the change in viral load is much more consistent with the observed decline in antibody titres than a direct B-cell/T-cell interaction, which would be expected to take effect immediately. In addition, the changes in the prevailing sequence (reversion and subsequent re-selection of a mutated NAb epitope; Figs 2, 3; Supplementary Fig. S1) are consistent with relaxation and re-application of NAb-mediated selection pressure.

The impact of other reactivating viruses on HIV load is complex. As in this case, rituximab treatment is known to have the potential to reactivate HBV⁴⁰, even in those with previously controlled infection (HbsAg<–, HBcoreAb+). This points to an important role for B cells in long-term control of HBV—a virus in which CD8+ T cells have an important role in acute disease⁴⁴. The relationship between HBV pVL and HIV pVL is not fully understood, but overall these appear to be independent.^{45,46} In this case, HBV and HIV pVL increased within a similar timeframe; however, control over HIV occurred spontaneously, whereas HBV load remained high, indicating that they were differentially regulated in this patient (Supplementary Fig. S2). However, this does not exclude a secondary impact of HBV through induction of liver inflammation or other consequences of immune activation. In addition, although we did not find other evidence of systemic reactivation of other major pathogens in this individual, it remains possible that local or low-level reactivation could also affect HIV pVL.

Overall, our findings support previous suggestions of an evolutionary balance between virus and NAb responses^{12,14}. At first sight, these findings appear at odds with previous studies that fail to confirm the association between long-term virus control and NAb response, especially in elite controllers.⁴⁷ However, as shown here, the dynamics of immune responses are critical to their interpretation; therefore complex relationships could easily be missed in cross-sectional studies, especially analyses of those with favourable CD8+ T-cell responses.^{14,43,44}

There is a clear relationship between the changes in NAb titre and pVL demonstrated in this study, although the mechanism of action of such NAb in vivo may be complex. Studies using engineered antibodies in which Fc binding was disrupted have shown that interactions of NAb with infected cells, leading to engagement of effector cells, may provide an important component of the protective capacity in vivo^{45,46}. It is also possible that other non-NAb specificities not defined using in vitro NAb assays might have a role in vivo⁴⁷. It is noteworthy that as B-cell responses to HIV envelope

Table 3 | Analysis of CD8+ T cell responses and epitope evolution over time.

<table>
<thead>
<tr>
<th>Epitope</th>
<th>Autologous sequence</th>
<th>Response pre-rituximab Year 1</th>
<th>Response pre-rituximab Year 3</th>
<th>Mutation pre-rituximab</th>
<th>Mutation post-rituximab</th>
</tr>
</thead>
<tbody>
<tr>
<td>A11 gag TK8</td>
<td>TLYCVCYQK</td>
<td>1,200</td>
<td>—</td>
<td>K8N</td>
<td>Q7A</td>
</tr>
<tr>
<td>A11 pol AK11</td>
<td>ACQGVGPPGHK</td>
<td>300</td>
<td>—</td>
<td>—</td>
<td>G9A</td>
</tr>
<tr>
<td>A11 nef QK10</td>
<td>QVPHELPMTYK</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>A11 pol AK9</td>
<td>AIFQCSMTK</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>B8 gag p17 GK9</td>
<td>GGGKQVQLK</td>
<td>—</td>
<td>—</td>
<td>K3R/K7Q</td>
<td>K3R/K7Q</td>
</tr>
<tr>
<td>B8 gag p17 EV9</td>
<td>ELKSLNTV</td>
<td>160</td>
<td>200</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>B8 gag p24 DI8</td>
<td>DIKYRVIW</td>
<td>640</td>
<td>600</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>B8 gag p24 DL9</td>
<td>DCKTLKAL</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>B8 nef WM9</td>
<td>WPKVRQEM</td>
<td>—</td>
<td>—</td>
<td>K3G/E6D</td>
<td>K3R</td>
</tr>
<tr>
<td>B8 nef FL8</td>
<td>FLKENGGL</td>
<td>—</td>
<td>—</td>
<td>KSQ</td>
<td>KSQ</td>
</tr>
<tr>
<td>B57 gag TW10*</td>
<td>TSNLLEQIGW*</td>
<td>—</td>
<td>—</td>
<td>N3T (242)*</td>
<td>N3T (242)*</td>
</tr>
</tbody>
</table>

CD8+ T cell responses were analysed using ex vivo IFN-γ ELISpot assay (spot forming units/million PBMCs are shown). The HLA Class Iα and Class IIβ genotypes are A*0101, A*1101 and B*0801, B*0801. Sequencing of the corresponding peptides was carried out at the time points shown, and mutating residues have been underlined.

* This epitope is a B57 escape mutant, transmitted to, but not recognized by the recipient, and which shows reversion pre-rituximab therapy.
may be poorly sustained, it has been proposed that long-term plasma cell pools may not be established (reviewed in refs 48, 49). As plasma cells are spared the effects of rituximab26 (and total IgG levels therefore remain relatively less affected), it is suggested that the antiviral NAbS identified here, and potentially elsewhere, are maintained by B-cell populations that express CD20.

In conclusion, this unique study suggests that B cells, and their secreted NAbS, can affect HIV viral load in chronic infection. This evidence, derived directly from observations in man, may inform the rational design of future immunotherapies and HIV vaccines.

Methods

Construction of HIV-1 env expression cassettes. The study was approved according to local ethical review (IRB Number 99/IA/161E). Full-length virus env was PCR amplified from cDNA obtained by RT of plasma-derived viral RNA collected 336 and 1,042 days after seroconversion for construction of pre-rituximab Env-pseudotyped virus. The latter time point represented virus present around the time of rituximab treatment. The primers used were envIa (outer sense, 5'-CACCG-GCTTAAGCACGTCCTGACGAGGAAAGA-3'), envIIa (inner sense and RT, 5'-TAGGCTTTCCAGTCCTGCCCCTTTTTTCTTTTA-3'), envI (inner sense, 5'-GGGCTGAGACCGGTGGAAGAAGGTGAGCTGATGATGATG-3') and envIR1/2 (inner antisense, 5'-AAACATGAGGGCCCATGGCACCCTATTCTTA (± TAGC)-3'). Bulk PCR products were restriction-cloned into pCDNA1 (Invitrogen) using sites Apal and XhoI to result in pCDNA1.1, followed by sequencing. Of 20 genetically distinct clones that were most representative of the consensus sequence, 3 were selected for neutralization experiments.

Site-directed mutagenesis. Where stated, 100 ng pCDNA1.1 env was used as a template for PCR amplification using PuFlurall UltraFusion HS (Stratagene) in the supplied buffer supplemented with 250 μM deoxyribonucleoside triphosphates. Mutagenesis primers contained restriction sites inserted by synonymous mutation (underlined): R339Nf (5'-ATTTGAAACATTTCTGAGTATAAGGAA TGACAGCTTAA-3'), R339N (5'-TTAGAGGTGTCCATCTCTACTGAGAAT GTTGATCAAT-3'), R339E (5'-TTAGAGGTGTCCATCTCTACTGAGAAT GTTGATCAAT-3'), Q341E (5'-GGGTCTGCATCCTATTTAAAGAAA-3') and Q363Rf (5'-TTCTGAGGAGCTATTTAAATTTTCTTTTA-3'). After 18 amplification cycles (95°C for 50 s, 60°C for 50 s and 68°C for 9 min), dam methylated PCR templates were eliminated by DpnI restriction digestion. Mutant clones were identified by restriction analysis and confirmed by nucleotide sequencing. Double mutants were constructed by sequential PCR amplifications.

Construction and neutralization of Env-pseudotyped virus particles. Autologous env clones and a heterologous panel of subtype-B reference strains were co-transfected with the HIV-1 backbone pNL4-3 into 293T-17 human epithelial kidney cells using Lipofectamine 2000 (Invitrogen). At 48 h following transfection, supernatants were collected by 0.45-μm filtration and stored at −150°C before titration onto HIV-permissive reporter cell line, TZM-bl, which stably expresses Escherichia coli β-galactosidase under regulatory control of a Tat-responsive HIV-1 LTR. The empirical Bayesian approach implemented by CODEML was used to identify codons that have been subjected to positive selection using site-specific codon models. All models allow dN/dS to vary among sites, with values significantly above 1 indicating sites that had been under positive selection. We compared the fit of models M7 (which does not allow any sites to have a dN/dS of above 1) with M8 (which fits a class of sites with a dN/dS of above 1), using a likelihood ratio test. The rate of evolution and effective population size were estimated from the time-structured sequences, and used in an analysis including only sequences from plasma samples. The rate of evolution and effective population size were estimated from these time-structured sequences, and used in an analysis including only sequences from plasma samples.

References

Acknowledgments

We thank the Wellcome Trust, NIH Biomedical Research Programme (Oxford and Imperial College NHS Trust) and the James Martin School for 21st Century for supporting this work. We thank Quentin Sattentau for his advice and support. Antibodies b12 and 4.8d were gifts from Dennis Burton (Scripps research institute) and James Robinson (Tulane University), respectively.

Author contributions

Additional information

Accession numbers: HIV-1 envelope sequences have been deposited in GenBank under accession numbers HQ241073–HQ241186.

Supplementary Information

accompanies this paper on http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Huang, K.-H. et al. B-cell depletion reveals a role for antibodies in the control of chronic HIV-1 infection. *Nat. Commun.* 1:102 doi: 10.1038/ncomms1100 (2010).

License: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/