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Highlights

• A deep belief net (DBN) is trained to detect vessel interior, centreline and

edges.

• Particle filtering is used to quantify vasculature by using the output of the

DBN.

• A vessel profile is represented with probability profiles of centreline and

edges.

• The appearance of vessels in fundus images is considered in a vessel ge-

ometry model.

• The lack of labelled data for segmentation was tackled using a probabilistic

approach.
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Abstract

Deep networks have recently seen significant application to the analysis of

medical image data, particularly for segmentation and disease classification.

However, there are many situations in which the purpose of analysing a medical

image is to perform parameter estimation, assess connectivity or determine

geometric relationships. Some of these tasks are well served by probabilistic

trackers, including Kalman and particle filters. In this work, we explore how

the probabilistic outputs of a single-architecture deep network may be coupled to

a probabilistic tracker, taking the form of a particle filter. The tracker provides

information not easily available with current deep networks, such as a unique

ordering of points along vessel centrelines and edges, whilst the construction of

observation models for the tracker is simplified by the use of a deep network.

We use the analysis of retinal images in several datasets as the problem domain,

and compare estimates of vessel width in a standard dataset (REVIEW) with

manually determined measurements.

Keywords: Particle filtering, deep neural network, Deep Belief Net, fundus

image, width estimation, tracking
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With the increased adoption of deep learning for semantic labelling, it is easy

to forget that the labelling task may not be an end goal in itself. For example,

the segmentation of a medical image is often merely an input to some further

process, such as rendering or measurement. In this paper, we investigate the use5

of deep networks as inputs to tackle the problem of tracking. A key insight is that

probabilistic outputs of networks can be useful inputs to probabilistic tracking

algorithms, and methods of parameter estimation. We focus this paper on a

problem domain in which measurement is important, and for which meaningful

comparisons might be made about the performance of tracking and parameter10

inference. This domain – retinal image analysis [1, 2] – is one that contains

well-established and open datasets for which results of manual and automated

measurement processes are available.

The retina provides a convenient way to image fine vasculature optically.

Both organ-specific diseases, such as diabetic retinopathy or glaucoma and also15

systemic disorders such as diabetes, hypertension and cardiovascular diseases

induce early changes in the retina. Moreover, the brain, which is closely located

to the eye, shares similar characteristics to retinal vasculature.

Potential associations between the changes on the retinal vasculature geom-

etry and the presence of some diseases have been the subjects of demographic20

studies [3, 4, 5, 6]. The changes on the vasculature, which may be subtle, can be

on vessel width, curvature and branching angles. In order to detect and measure

these changes, quantitative analysis is helpful. This involves steps beyond mere

segmentation, such as estimating the locations of vessel centerlines [7] and edges

to sub-pixel precision, at a basic level, and vessel widths and curvatures, at a25

more sophisticated level. However, the quality of fundus images captured in

large screening programmes varies. The variable image quality [8] can present

a challenge even to the best segmentation algorithms, let alone any attempt to

obtain automatic estimates of vessel width. This may be sometimes complicated

by the complex topology and global geometry of the vasculature, where vessels30

can be very close or overlap; moreover, vessel appearance may be affected by

pathologies, the central light reflex or uneven illumination.
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In the literature, the majority of methods for the quantitative analysis of

vasculature use binary vessel maps obtained by segmentation as a priori infor-

mation to locate vasculature. Techniques for obtaining quantifiable measures35

include model fitting [9, 10, 11, 12, 13], graphs [14] or active contours [15].

The location of pixels inside vessels can be obtained from vasculature skeletons

generated by thinning binary vessel maps [10, 11]. Because of reliance on seg-

mentation, these approaches may not take into account missing or false vessels

inherited from the segmentation.40

On the other hand, a few methods, not included in the former group, re-

quire prior knowledge of vessel parameters only to start a largely autonomous

estimation process. For example, tracking methods (see Salih et al. [16] for a

general review of visual tracking, and [17] for techniques that integrate deep

networks for video-tracking) sequentially estimate vessel trajectory and geom-45

etry parameters, given a prior estimate of a point on a vessel and relevant pa-

rameters [18, 19, 20, 21]. These approaches are well-aligned with the principles

of Bayesian estimation. As an example, Chutatape et al. [18] used an extended

Kalman filter, Yin et al. and Zhang et al. Maximum a Posteriori (MAP) and,

Wu et al. generalized particle filters [21]. In all of these approaches, a key50

factor influencing the performance of tracking seems to relate to how well the

likelihood function reflects the actual vessel geometry and appearance in the

original image data [19, 20].

To date, approaches to Bayesian vessel tracking have used likelihood func-

tions that describe the appearance of vessel cross-section in the original, or at55

most band-pass filtered, image data. For example, the cross-sectional vessel

intensity profile has been approximated with one-dimensional Gaussian func-

tions, [18, 19, 20]. However, the intensity profile can be easily affected by many

factors, such as the presence of pathologies, the central light reflex, uneven il-

lumination of the retina, noise, the contrast of vessels, the focus of the camera;60

the latter may lead choroidal vessels being superimposed on retinal vasculature.

These factors may make the Gaussian approximation too optimistic for vessel

parameter estimation. As reported by Zhang et al. [20], adding “vesselness” – a

5
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measure of how likely a particular pixel is to belong to a blood vessel – informa-

tion in a longitudinal direction to the likelihood function led to an improvement65

in the tracking performance obtained by Yin et al. [19], who used only vessel

profiles in the likelihood function.

In contrast, this study introduces a new way to represent vessel cross-

sections: using probability maps for vessel interior, centerline and edge locations.

The probability maps are produced by a single deep network, thus maintaining70

the relations between the vessel parts, significantly simplifying the construction

of a likelihood function. Then, the likelihood function is used in a sequential

Bayesian method, particle filtering, which extracts a comprehensive and pre-

cise representation of vasculature, through the estimation of parameters that

describe vessel geometry. We introduce a new model for particle filtering to75

improve the flexibility in the search of best fitting parameters to actual vessel

geometry.

Finally, we suggest a new way to evaluate the performance of tracking in vas-

culature, which considers the dependency of vessel profiles in a vessel segment.

This approach to performance evaluation is suggested to better identify vessels80

where there is large disagreement between reference and estimated values. The

experiments indicate that the method can cope with various characteristics of

a dataset without re-training the network on unseen datasets. Moreover, where

vessels are very small and of low contrast, the method appears to be more reli-

able than human observers at detecting vessel boundaries. Figure 1 presents a85

general overview of the approach.

2. A Probabilistic Tracking Method For Retinal Vasculature

2.1. Problem Definition

Tracking of retinal vasculature can be described as a recursive estimate of

vessel geometry parameters, considering the smooth variations on vessel thick-90

ness and curvature over a vessel branch. The recursion can be initiated with

an initial estimate of the geometry parameters given at iteration k = 0. For

6
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Figure 1: A general overview of the proposed method.

example, at k = 2, the geometry parameters are initially estimated given the

parameter estimates at k = 1, and then corrected by evaluating the fitness

of the initial predictions to measurements obtained from the vessel part under95

tracking. The evolution of the geometric parameters and the relation between

the geometry parameters and the measurements can be modeled with (1-2).

zk+1 = G(zk,vk) (1)

yk+1 = O(zk+1,uk+1) (2)

where G(·) is a model of vessel geometry, which captures the evolution during

tracking of the parameters describing vessel geometry in a recursive way. O(·)
is an observation model, which relates a set of the geometry parameters to a set100

of measurements. The state vector z, contains geometric parameters describing

the vessel being tracked, and v and u, respectively, represent the uncertainty in

the geometry and observation models.

2.2. Bayesian Approach to Solution

The estimation of the geometry parameters given the observations can be105

defined with the prediction of the posterior probability distribution of the ge-

ometry parameters P (zk+1|yk+1) from the Bayesian point of the view. The

7
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posterior probability distribution can be calculated from Bayes’ rule in (3).

P (zk+1|y0:k+1) ∝ P (zk+1|y0:k) · P (yk+1|zk+1) (3)

where P (zk+1|y0:k) and P (yk+1|zk+1) respectively denote show the prior prob-

ability distribution of the geometry parameters and their likelihood at iteration110

k + 1.

The prior probability distribution reflects our belief about vessel parameters,

which is represented with the updated initial estimate of the geometry parame-

ters at the start of each iteration, k. When k = 0, this prior could be initialised

by manual input, or a method that detects vessel tracks as they leave the op-115

tic disc [20]. As iterations proceed, the prior probability distribution could be

evolved according to the geometry model G(·) in (1), where the posterior proba-

bility distribution of the geometry parameters at iteration k is used as the prior

probability distribution of the geometry parameters for iteration k + 1. The

role of the noise, v, in (1) is to explain how much change in vessel geometry is120

foreseen over an iteration.

The prior probability distribution over geometric parameters could then

updated with (3), according to the fitness of this distribution to measure-

ments obtained from the image, described by the likelihood. The likelihood,

P (yk+1|zk+1) incorporates the observation model, O(·), in (2).125

2.2.1. Particle Filtering

Particle filtering [22], a technique based on recursive Bayesian estimation,

can capture an arbitrary posterior probability distribution of geometry param-

eters at iteration k + 1, with a set of particles {znk+1}Nn=1 and their weights

{Wn
k+1}Nn=1. Each particle, znk+1, hypothesizes a set of geometric parameters130

(see Section 2.3) at iteration k + 1. According to the Law of Large Num-

bers [23], a sufficient number of particles can approximate the distribution;

P (zk+1|yk+1) ≈∑N
n=1W

n
k+1δ(z− znk+1).

Particle filtering often relies on importance sampling [24] to estimate the

posterior probability distribution. Importance sampling initially samples parti-135
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cles from a proposal distribution, then the weights of the particles are updated

with the importance weights [25]. In the case of the proposal distribution be-

ing the prior probability distribution, and using resampling after each weight

update, the recursive update to the importance weights is simplified to (4) [24]:

Wn
k+1 ∝ P (yk+1|znk+1) (4)

where Wn
k and Wn

k+1 are the weights of nth particle at iteration k and k +140

1 consecutively. P (yk+1|znk+1) denotes the likelihood of the n-th particle at

iteration k + 1.

The expectation of the posterior probability distribution can be calculated

with (5), returned as the geometry parameters estimated at iteration k + 1:

z̄ ≈
N∑

n=1

Wn
k+1z

n
k+1 (5)

2.3. A Geometry Model

The three-dimensional shape of a vessel can be assumed to be a tube with

a width (diameter) w and a centerline location C, and oriented in a direction145

D. The change on its geometry over a small distance s (related to the step size

during tracking) can be assumed to be smooth, even though sudden changes

can occasionally occur due to pathologies such as vessel beading. Regarding the

geometry model in (1), the change on the geometry can be modelled by using

a normal distribution, which accounts for the noise v. Although we can model150

the vessel geometry with the diameter w, centerline location C, direction D and

step size s with the tube model, it is difficult to infer these parameters from the

appearance of vessels in fundus images without considering factors influencing

its appearance, such as optical characteristics, imaging parameters, noise and

pathologies.155

To date, many Bayesian tracking methods [18, 19, 20] have modelled the

appearance of the cross-section of a vessel segment conditional on centerline

location, diameter and orientation, by Gaussian functions. Though analytically

convenient, it is not realistic when the shape of the intensity profile changes due
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to uneven illumination, pathologies or other noise components. The differences160

between the shape of the intensity profile of a vessel without the central light

reflex, and a Gaussian function describing it may appear as (i) the intensity

profile is skewed to one of vessel edges [10] and (ii) the intensities at edges of

the same vessel may be different [11]. These characteristics of the intensity

profile have been addressed by Lupacscu et al. and Araujoa et al.[10, 11] in165

their parametric models to improve the estimates of vessel widths. However,

these characteristics have not been applied in Bayesian tracking methods.

In this study, we factorise the probability profile of vessel cross-section to

vessel centerline and edge probability profiles. This factorisation allows us to

relax the symmetry in appearance models implied in using Gaussians to model170

vessel profile; in other words, the peaks of Gaussian functions being in the middle

of the intensity profile. Therefore, we can model a skewed vessel appearance

over a profile by using two parameters for vessel width: the distance between

an arbitrary location, A, inside the vessel and left edge wL and that between

the location and right edge wR. The state vector of the vessel parameters at175

iteration k can be written zk = [Dk, Ak, w
L
k , w

R
k ]. The evolution of the state

vector over iterations is given in (6)-(9):

Dk+1 = Dk + εD (6)

Ak+1 = Ak +Dk+1 · s+ εA (7)

wR
k+1 = wR

k + εwR (8)

wL
k+1 = wL

k + εwL (9)

where ε represents a normal distributed noise variable (εD for direction vector,

εwR and εwL for width and εA for the arbitrary interior location). s is a con-

stant and denotes the step size for tracking. (x)⊥ denotes a direction vector180

perpendicular to arbitrary vector, x.

10
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2.4. An Observation Model

In this study, we introduce three sources of information, namely: from vessel

centerline, edge, and interior probability maps. How these maps are generated

will be explained in Section 2.4.3. We utilise profiles through the edge and185

centerline probability maps, rather than from the intensity images, to perform

tracking. Figure 2 compares the probability profiles for a large and thin vessel,

obtained along the red lines from the centerline and edge probability maps shown

in Figure 9, with those taken from reference vessel maps. The former figure

exemplifies the typical characteristics of the probability profiles: (i) these curves190

are virtually free of either noise components, or intensity variations that are

present within the fundus images in Figure 9. (ii) these curves have maxima at

locations which almost overlap with significant points (e.g. centerline locations)

of the reference vessel profiles. The small disagreement between reference and

estimated profiles is acceptable: locating precise boundaries is difficult even for195

human observers, and subject to significant inter-observer variability [26, 27, 15].

Pixel Position

P
ro

b
a
b
il
it

y

Edge Profile

Figure 2: Probability profiles in the left side belong to the larger vessel and those in the right

side to the thinner one in Figure 9. (Best viewed in color.)

The probability profiles are sampled from an arbitrary search region. Apart

from Yin et al. [19] who used an adaptable semi-elliptical search curve for each

iteration, our search region contains hundreds of adaptable lines (see Figure

3(a)). The spatial distribution of these lines is driven by the normally dis-200
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tributed noise in (6)-(9). The ends of a line correspond to hypothesised edge

locations, calculated with (11) with respect to a parameter set sampled from

the prior probability distribution. A search line is divided into 4 segments of

equal length by sampling at 3 predetermined locations. The locations were se-

lected in a way that they can capture the overall shape of the probability profiles205

illustrated in Figure 2.

Figure 3: (a) Some hypotheses over a vessel part sampled from the prior probability dis-

tribution according to (6)-(9). Each search line accounts for a set of hypothesized vessel

parameters (e.g. centerline location, width and direction) and is named with H. In order to

show hypothetic vessel edges represented by each hypothesis, the lines are accompanied with

perpendicular short lines at hypothetical edges. (b) Edges EL,R
k+1 and the sampling locations

χj ; j = 1 : 3 in (10) are shown on the line Hn. The distance between neighbouring sample

locations given a particular hypothesis is the same and equal to one forth of the length of the

line |L|. (Figure best viewed in color.)

The observation model, providing the likelihood of each hypothesis, is given

in (10):

12
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P (yk+1|zk+1) = P
′
e · P

′
c · Pc(Ak+1) · Ps (10)

P
′
e =

∏

i={L,R}
Pe(E

i
k+1) · (1− Pc(E

i
k+1))

P
′
c =

∏

j={1,2,3}
Pc(χ = χj) · (1− Pe(χ = χj))

Ps =
∣∣∣zDk+1 ·

−→
E (Ak+1)

∣∣∣

where Pe and Pc are profiles respectively obtained from edge and centerline

probability maps between hypothesized edge locations EL
k+1 and ER

k+1. Ps210

denotes the similarity of hypothesized vessel direction Dk+1 to eigenvector
−→
E (Ak+1) at hypothesized arbitrary interior location Ak+1. Sampling locations

from the probability profiles are χ1 =
(3EL

k+1+ER
k+1)

4 , χ2 =
(EL

k+1+ER
k+1)

2 and

χ3 =
(EL

k+1+3ER
k+1)

4 (see Figure 3(b)).

Equation (10) has three main components to be maximized: P
′
e, P

′
c and Ps.215

The first one calculates the probability of edge locations and increases when the

edge estimates of the tracker become closer to vessel edge locations, where edge

probabilities and the complements of centerline probabilities are the maximum.

The second one aims to maximize centerline probability in order to make sure

of the centerline estimates of the tracker to be inside the vessel under tracking.220

This component is important in terms of avoiding the tracker tracing boundaries

of two different vessels that are in close proximity. When the centerline esti-

mates of the tracker are inside the vessel, P
′
c is far larger than when it is between

vessels. This is due to the centerline probabilities and the complement of edge

probabilities being large inside the vessel and almost zero outside the vessel.225

The third component measures the similarity between an eigenvector indicating

the direction of the vessel and the direction hypothesized by the tracker. Both

vectors are obtained from the vessel interior probability map at hypothesized

centerline locations. Even if the hypothesized edge locations fall on the edges

of a vessel, this does not guarantee that the tracker will estimate accurate ge-230

ometry parameters unless the orientation of the probability profiles consistently
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aligns with the orientation of the vessel cross-section. Therefore, the term Ps

in (10) contributes to the consistency of width estimations by assigning larger

likelihoods to hypothesized edge locations that have similar alignment to the

vessel cross-section.235

2.4.1. Estimating Vessel Edges

After calculating the expectation of the posterior probability distribution

with (5), the locations EL,R
k+1 for the left and right edges of a vessel may then be

calculated using the state parameters according to

EL,R
k+1 = Ak+1 ± (wL, wR)k+1 · (zDk+1)⊥ (11)

2.4.2. Strong and Weak Hypotheses

Figure 4 exemplifies the likelihoods of one strong and one weak hypothesis.

The strong hypothesis estimates edge locations closer to the peaks of the edge

probability profile, while the weak one predicts one of the edges outside the240

vessel and the other inside the vessel. In order to simplify the comparison of their

likelihoods, two assumptions are made for both hypotheses: (i) the orientation

of hypothesized vessel cross-sections is the same, (ii) hypothesized centerline

locations are in the middle of the hypothesized edge locations. Considering

the heights of the arrows denoting probabilities, it is obvious that the tracker245

assigns significantly far lower likelihood to the weak hypothesis (Figure 4 (b))

than the strong hypothesis (Figure 4 (a)) by reducing its contribution to the

expectation of the posterior probability distribution; it is this weighting that

ultimately determines the eventual estimate of the geometry parameters.

Figure 5 illustrates three cases, where (i) the search line in blue finds rela-250

tively better edge locations, (ii) the search line in red is located between edges of

different vessels and (iii) the search line in green is oriented parallel to the vessel.

Among these search lines, the blue one has significantly larger likelihood. Also,

the likelihood of the red line is much lower than that of the green line, which

indicates that the proposed observation model can convincingly remarkably dis-255

criminate edges of the same vessel from than those of different vessels.
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(a)

(b)

Figure 4: The calculation of likelihoods of two hypotheses, on (a) for a strong and (b) for

a weak hypothesis, which are shown with H4 and H8 in Figure 3(a) consecutively. EL
k+1

and ER
k+1 denote hypothesized edge locations and χ1, χ2 and χ3 sampling locations in (10).

centerline probability profile P (c) and its complement 1 − P (c) are shown with red solid

lines, and samples from these profiles with red arrows. Similarly, an edge profile P (e) and its

complement 1 − P (e) are demonstrated with blue solid lines, and samples with blue arrows.

The right and left plots respectively represent the calculation of P
′
e and P

′
c in (10). Ignoring

the effect of Pc(Ak+1) · Ps in (10), the likelihood of the strong hypothesis is a million times

larger than that of the weak hypothesis. (Figure best viewed in color.)

2.4.3. Generating Probability Maps For the Observation Model

In this study, we aim to generate probability maps of vessel interior, center-

line and edge pixels with a single network. The latter two probability maps are

directly used in the likelihood calculation in (10) while the former one is utilised260

to calculate eigenvectors to estimate vessel directions. The network selected

was a specific version of Deep Belief Nets (DBNs) [28], trained to transform

one image to another. With this approach, for example, fundus images can be

converted to their vessel probability maps, a way of describing the segmenta-

15
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Figure 5: Search lines and their likelihoods:(i) the blue search line is between edges of the

vessel under tracking, (ii) the red search line is between edges of two vessels and (iii) the

green search line is inside the vessel but oriented parallel to it. (b) Corresponding edge Pe

and centerline Pc probability profiles are indicated by dashed and solid lines consecutively,

and with colors matching those of (a). The likelihood is 1.00e−5 for the blue one, 9.15e−12

for the red one and 9.56e−8 for the green one. Note that Ps in (10) was not included in the

likelihood calculation of these lines. (Figure best viewed in color.)

tion task. This network was observed to require considerably less training time265

but producing comparable segmentation performance on the detection of vessel

interior pixels in pilot experiments (a performance comparison can be found in

Section 4.2), when compared to alternative approaches to the same task (e.g.

U-Net [29] and other CNN based segmentation methods [30, 31]).

Training the network. DBNs are often initially trained as a deep feature extrac-270

tor in a generative manner, then fine-tuned with stochastic gradient descent to

accomplish a target task, usually classification. In this study, a DBN is initially

trained in a generative way to learn the relation between fundus images and

their label maps (e.g. vessel interior, centerline and edges), which may be ex-

pressed as f :
{
If , Ii, Ic, Ie

}
→
{
If , Ii, Ic, Ie

}
, where f(·) is a function to learn275

the representation of its input.
{
If , Ii, Ic, Ie

}
represents the concatenation of

fundus images, If , vessel interior, Ii, centerline, Ic and edge, Ie label maps,

respectively, and {· · ·} denotes the joint representation learned by the DBN.
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The concatenation of these images is demonstrated in Figure 6, where the con-

catenated images correspond to a sample in the training dataset. Then, the280

DBN is fine-tuned to transform fundus images to their label maps by learning

a function g : If → {Ii, Ic, Ie}, where g(·) converts a fundus image to a trio of

probability maps representing vessel interior, Ii, centerline Ic and edge Ie.

Denoising. The interaction between pixels at the same locations, but belong-

ing to either the fundus image or one of its label maps, can be more efficiently285

learned by combining the generative training of DBNs with the denoising pro-

posed by Vincent et al. [32]. The spirit of the denoising is to hide some in-

formation in the training data on which a network is trained, encouraging the

network to predict the missing information in the training data. Sticking to this

spirit, we randomly replace either a fundus patch or its label maps with zeros in290

a training sample, but motivate the network to estimate unaltered pixel values

in the sample; f
(
{0, Ii, Ic, Ie} or

{
If , 0

} )
=
{
If , Ii, Ic, Ie

}
. Because this type

of denoising is applied at pixel level, we call it image-wise denoising. Figure 7(a)

shows how to combine the image-wise denoising with the training of the first

hidden layer of a DBN. The second and upper hidden layers of the DBN can be295

trained by applying denoising in a unit-wise manner as originally proposed [32],

as demonstrated in Figure 7(b). Denoising is only introduced during generative

training.

After completing the training, the DBN layer-wise (see Figure 8(a)), its

weights connecting layers are “unfolded” [33], resulting in a deep autoencoder300

(see Figure 8(b)). Finally, the unfolded DBN is modified by removing weights

not contributing to the image transformation task (see Figure 8(c)) and, the

modified network is fine-tuned with a simple stochastic gradient descent algo-

rithm with L2 loss.
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Original Data

Figure 6: Generating noisy training samples: A training sample consists of a fundus image

and its vessel interior, centerline and edge label maps. In order to generate noisy training

samples, a sample can be multiplied with {0, 1, 1, 1} or {1, 0, 0, 0}, where 1 is represented with

white squares while 0 with black squares.

A Training
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Target
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Figure 7: Integrating denoising with the training of a DBN: (a) The training of the first

hidden layer L1 of the DBN, where denoising is applied image-wise. Red crosses show images

to replace with zero for denoising; (b) The training of the second hidden layer L2 of the DBN,

where denoising is applied unit-wise. Squares illustrate the activations of units in the first

hidden layer when they are fed with a training sample. The vector of activations is denoted

by A1. The units whose activations are suppressed for denoising are shown with red crosses.

This type of denoising can be applied to following layers of the DBN (e.g. the third hidden

layer). (Figure best viewed in color.)

3. Experimental Setup and Results305

3.1. Dataset

The REVIEW dataset [34] contains images collected in the diabetic retinopa-

thy clinic at Sunderland Eye Infirmary during clinical routine. This dataset has

4 sub-datasets: the high resolution image set (HRIS), the vascular disease image
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Figure 8: (a) The DBN trained in a generative way as demonstrated in Figure 7, (b) Unfolding

the DBN in (a), (c) Modifying the unfolded DBN in (b) for fine-tuning.

set (VDIS), the central light reflex image set (CLRIS) and the kick point image310

set (KPIS). Some properties of the sub-datasets are summarized in Table 1.

Table 1: The properties of the sub-datasets in the REVIEW dataset.

Name Camera FOV Resolution No. Of Images No. Of No. Of

(pixels) Healthy Diseased Ves. Segment Profiles

HRIS Cannon 60 UV 60o 3584 x 2438 - 4 90 2368

VDIS Zeiss & JVC 3CCD 50o 1360 x 1024 2 6 79 2249

CLRIS
Zeiss FF 450

& JVC 3CCD
50o 2160 x 1440 - 2 21 285

KPIS Canon 60UV 60o 3300 x 2600 2 - 3 164

HRIS and KPIS provide a performance evaluation at a sub-pixel accuracy

because images in these datasets were down-sampled by a factor of 4 after

receiving estimates of widths by observers; therefore, the accuracy of width

estimation was limited to an error of ±0.25 pixels. In HRIS, two of images were315

graded with severe and one with moderate and the other one with minimal
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non-proliferative retinopathy. Apart from other sub-datasets, vessel profiles in

KPIS were marked through detecting kick points on thicker and non-tortuous

vessel segments between bifurcation locations.

VDIS contains images with pathologies and higher noise. The images were320

observed to have a larger variance of vessel profiles provided by observers [34].

6 of the images were captured from patients with various types of Diabetic

Retinopathy. CLRIS consists of images showing signs of atherosclerosis, which

are the exaggeration of the central light reflex and changes in vessel walls.

Marking Vessel Edges. Vessel profiles were detected by three experts, two of325

them with an experience in retinal vessel analysis and the other one trained to

locate vessel edges. The experts independently located vessel edges at the same

vessel segments. Then, the edge locations were edited by an algorithm to ensure

even spaces between neighbor profiles [34]. The average of edge locations marked

by the experts is used as reference data to reduce inter-subject variability on330

detected vessel boundaries.

3.2. Experimental Settings

3.2.1. Overview

Although the performance of the tracker was evaluated on the REVIEW

dataset, this dataset does not include the vessel maps required for segmentation.335

In order to deal with the problem, we used knowledge transfer, where we trained

the network with a well-known fundus image dataset, the DRIVE [26] then used

the trained network to generate label maps for the REVIEW dataset. The main

challenge with this approach is that the resolution of the REVIEW dataset is

much larger than that of the DRIVE. Therefore, the resolution of the REVIEW340

dataset was reduced by down-sampling before being fed into the network and its

resolution was brought the original level prior to being used for tracking. This

solution was acceptable for the present research, because the probability maps

were only used in the likelihood calculation, which contributes to the calculation

of the posterior probability distribution with relative fitness of the hypothesized345
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geometry parameters. The sub-sampling factors were 2 for VDIS, 3 for CLRIS

and 4 for HRIS. No sub-sampling was applied to KPIS.

The centerline and edge images required for training were generated by ap-

plying a standard thinning algorithm [35] and a Prewitt edge detection algo-

rithm [36] respectively to the reference vessel maps. The training of the network350

was realized patch-wise, where we randomly selected patches from each fundus

image map and its corresponding vessel interior, centerline and edge label maps,

at the same locations. The size of an image patch was 16 by 16 pixels. Because

the DRIVE has two vessel maps for each image in its training set, we used

the maps produced by the first expert as reference, complying to the general355

practice [26].

In order to increase the representation of vessel pixels in the training dataset,

we performed denser patch sampling inside the Field-of-View (FOV) masks

as follows: initially, we multiplied FOV masks with the green channels of the

fundus images, so pixels outside FOV regions became zero. After randomly360

and densely sampling image patches, we removed patches completely outside

the FOV masks. The number of the patches in the final stage was roughly

1, 800, 000. The fundus image patches were normalized patch-wise in the range

of [0, 1], which was visually observed to better reveal vessels on patches with

lower contrast.365

3.2.2. Network Parameters

Because the network goes through different types of training, the configu-

ration of the network is altered accordingly; this is typical of DBN methods

[37, 28]. Initially, the network has the input layer of 256× 4 = 1024 units and 3

hidden layers, with each having 400 units during the generative training. After370

’unfolding’ and reshaping it for fine-tuning, the network contains the input layer

of 256 units, the output layer of 256× 3 = 768, units and 5 hidden layers of 400

units.

The network was trained with mini-batches of 100 sets of image patches

for both the generative training and fine-tuning. In the generative training,375
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the network weights were initialized by sampling from a normal distribution

N (0, 0.001). Then, the network was trained for 50 epochs with a learning rate

of 0.005. A momentum of 0.5 was initially used in the first 5 epochs. Later, this

number was increased to 0.9. The learning rate for fine-tuning was 0.08 for 120

epochs. The squeezing function for all layers was sigmoid.380

3.2.3. Tracking Parameters

The number of particles for tracking was 700 and step size was 2 pixel. The

standard deviations of the normal distributed noise variables, with zero mean,

εD, εA, εRw and εLw in (6)-(9) were experimentally determined. The standard

deviations of the noise distributions were respectively 0.1 for εD, 0.5 for εRw385

and εLw, and 0.5 for εA. When k = 0, vessel centerline and width parameters

of each vessel segment were initialized with the reference data in the REVIEW

dataset. In the same way, vessel direction is assigned the direction from the first

reference centerline location to second one, similar to [20]. Therefore, the prior

probability distribution for each vessel parameter at k = 0 becomes a normal390

distribution with a fixed standard deviation given above and with a mean value

depending on the reference data. In the case of ground truth data not to be

available, an expert can pick a location inside a vessel and can roughly estimate

vessel width at the location to initialise tracking. The direction of the vessel

can be assumed to be the eigenvector with larger eigenvalue [38], obtained as395

a result of eigen-analysis of Hessian matrix of related vessel interior probability

map. We prefer vessel interior probability maps over original fundus images

because the former ones are usually far less noisier than the latter ones.

3.3. Evaluation Criteria

We used the standard deviation, σw, of error in estimating vessel width,

(12), and mean absolute error, ∆w, in (13), which are commonly used to assess

estimates of vessel widths to reference widths [11, 12, 14, 15].

σw = std(wr − we) (12)

∆w = mean(|wr − we|) (13)
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where wr denotes reference width while we represents the estimate.400

In vessel width estimation, relative widths, rather than actual widths, over

a fundus image are usually used in assessment [9]. One good argument for

this is to have relative assessments of vessel diameter changes (within subject)

that are approximately independent of optical magnification. Al-Diri et al. [34]

also points out that consistent biases or scale factors in measurement can be405

removed by simple linear transforms of width estimates. In line with other

studies, we use σw to assess the success of a method, rather than ∆w because of

the possible effect of constant bias on the ∆w measure. Therefore, even though

∆w is reported in following experiments, it is primarily for completeness.

In addition to σw and ∆w, the percentage of vessel profiles whose width410

estimates are meaningful was also reported in previous studies [9, 10, 12, 14,

15, 39]. This measure indicates the ability of a method to deal with different

challenges (e.g. noise, pathology) without compromising the performance of

width estimation [15].

4. Results415

4.1. Generated Probability Maps by the Network

The trained network is used to produce probability maps for vessel interior,

centerline and boundaries as shown in Figure 9, where two image patches, each

containing a thick or a thin vessel, are shown, along with their aforementioned

probability maps. Because the patches are normalized in the range of [0, 1],420

the contrast of vessels seems very similar despite the significant difference be-

tween their thickness. Thus, despite varying vessel thickness and noise levels,

the network-generated smooth probability maps are consistent with the ground

truth vessel masks.

4.2. Segmentation425

Because there is no direct way to asses how well probability maps represent

vessel parts in an image, we consider the performance of the network on vessel
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Figure 9: Fundus image patches and the typical probability maps generated by the deep

network: the top row belongs to a large vessel and bottom row to a fine vessel. Columns

from the left to right side show a normalized fundus image patch, its manually labeled vessel

interior map, generated vessel interior, centerline and edge probability maps. Red lines show

the locations that profiles in Figure 2 are obtained. (Best viewed in color.)

interior segmentation as an overall indicator of its performance on probability

maps and measured its performance with standard performance metrics of ac-

curacy, sensitivity, specificity and Area-Under-Curve (AUC). Apart from the430

former three metrics, AUC is calculated independently of a subjective thresh-

old, and shows the certainty of the method on discriminating vessel pixels from

non-vessel pixels; in other words, it is an indication of the robustness and qual-

ity of the vessel interior probability maps. Table 2 compares the performance

of the network and that of recent state of the art methods using supervised435

methods, regarding AUC, accuracy, sensitivity and specificity, whose definitions

can be found in [40]. Referring to the table, the present study is among the best

performing studies regarding AUC.

4.3. Width Estimation

We now assess the performance of the tracker on the estimation of vessel440

width, in the REVIEW dataset. The conventional way to evaluate the reliability

of vessel width estimation is to compare estimated widths to the reference ones

over predetermined profiles where the estimated and reference profiles either
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Table 2: The comparison of segmentation performance of the proposed method with the

performances of state of the art methods on the DRIVE dataset.

Year Method AUC Accuracy Sensitivity Specificity

2017 The proposed method 0.9761 0.9542 0.7752 0.9800

2017 U-net [29] * 0.9790 - - -

2016 Liskowski and Krawiec [30] 0.9710 0.9515 0.7520 0.9806

2015 Wang et al. [41] 0.9475 0.9767 0.8173 0.9733

2015 Li et al.[40] 0.9738 0.9527 0.7569 0.9816

2014 Cheng et al. [31] 0.9648 0.9474 0.7252 0.9798

2012 Fraz et al. [42] 0.9747 0.9480 0.7406 0.9807

* The result was taken from https://github.com/orobix/retina-unet not from

[29].

share only the same centerline locations or both centerlines and orientations

[10, 11, 12, 14, 15]. However, such a one to one comparison was not possible445

for the current method because both centerline locations and the orientations

of the vessel cross-sections were autonomously estimated by the tracker.

In order to reduce a potential discrepancy between the locations of widths

estimated by the method and those given in the reference data as much as

possible, we used bi-cubic spline interpolation to sample 100 locations, from both450

reference and estimated widths. Then, the evaluation criteria were calculated

over interpolated values. However, it should be noted that because the locations

of interpolated profiles from both reference and estimations were not guaranteed

to overlap, this evaluation also has potential limitations. Also, vessel segments

with less than 2 reference profiles could not be traced because these profiles are455

either used to start tracking or to stop it.

4.3.1. Evaluation Over A Dataset

Traditionally, the performance of width estimation is compared over all pro-

files in the sub-dataset, regardless of vessel identification [11, 12, 14, 15]. Table

3 compares the performance of the proposed method to that of previous studies,460

reporting ∆w, σw, and the percentage of meaningful width estimations. The
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proposed method is able to obtain meaningful estimates of width for the entire

set of vessel profiles, whereas the majority of methods fails to predict plausi-

ble widths for some profiles in CLRIS, HRIS and VDIS; this includes the best

performing methods of Zhang et al. [20] and Yin et al. [19].465

The best σw results were obtained by Araújoa et al. [11], who used a su-

pervised model-fitting method. However, because they did not present the per-

centage of meaningful width estimations, it is not clear if the results reflect the

performance – in terms of σw – of overall sub-datasets, or only those corre-

sponding to the successfully estimated profiles. The performance of Araújoa et470

al.’s method [11] is followed by that of tracking methods [19, 20], whose per-

formance mostly surpasses that of other supervised and unsupervised methods

[9, 10, 14, 15, 39].

Amongst tracking approaches (see Table 3), the performance of the proposed

method closely follows that of Zhang et al.’s method in the measure of σw. This475

dataset has been generally found challenging by many methods [20], due to

containing the central light reflex along vessel segments. For the HRIS dataset,

the σw values of the proposed method are slightly worse than those of Zhang et

al. [20] and of Yin et al. [19].

For VDIS, the proposed method has larger σw values than that of Zhang et480

al. [20] and that of Yin et al. [19], but the proposed method predicts all widths

for this dataset while Zhang et al. [20] and Yin et al. successfully estimated

only 94.2% and 92.7% of widths, respectively. For KPIS, the proposed method

gives the lowest σw values among tracking methods, which is in the same range

as that among supervised and unsupervised methods.485

4.3.2. Evaluation For Each Vessel Segment

In contrast to the traditional performance evaluation, which implicitly ac-

cepts that vessel profiles are independently sampled from a dataset and summa-

rizes the performance with a single number, we also assessed the performance

of the proposed approach for each vessel segment in REVIEW dataset, based490

on the fact that profiles selected from the same vessel segment are highly prob-
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Table 3: The performance comparison of the proposed method with those of previous studies

on the REVIEW dataset, where % represents the percentage of meaningful width estimations

CLRIS HRIS VDIS KPIS

Method Year ∆w σw. % ∆w σw % ∆w σw % ∆w σw %

Observer 1 0.61 0.57 0.23 0.29 0.35 0.54 0.34 0.42

Observer 2 0.11 0.70 0 0.26 0.06 0.62 0.11 0.32

Observer 3 0.72 0.57 0.23 0.29 0.3 0.67 0.23 0.33

Tracking M.

The proposed method 2017 0.92 1.15 100 0.32 0.40 100 1.01 0.85 100 1.51 0.34 100

Zhang et al. [20] 2014 0.37 1.13 98.3 0.08 0.30 100 1.37 0.59 94.2 0.74 0.37 100

Yin et al. * [19] 2012 0.77 1.41 93.1 0.01 0.39 96.2 1.41 0.56 92.7 0.69 0.43 100

Zhou et al. ** [39] 1994 7.5 4.14 98.6 0.54 0.90 99.6 3.07 2.11 99.9 2.57 0.4 100

Supervised M.

Araújoa et al [11] 2017 0.01 0.56 - 0.00 0.22 - 0.00 0.69 - 0.00 0.30 -

Aliahmad and Kumar [12] 2016 0.33 1.56 98 0.24 0.65 99.4 0.45 1.14 97.8 0.72 0.45 100

Lupaşcu et al. [10] 2013 0.00 1.15 100 0.00 0.44 100 0.02 1.07 100 0.02 0.32 100

Unsupervised M.

Xu et al. [14] 2011 0.08 1.78 94.3 0.21 0.567 100 0.53 1.43 96 1.14 0.67 99.4

Al-Diri et al. [15] 2009 1.9 1.47 93 0.28 0.42 99.7 0.05 0.77 99.6 0.96 0.33 100

Lowell et al. ** [9] 2004 6.8 6.02 26.7 0.17 0.70 98.9 2.26 1.33 77.2 1.65 0.34 100

* These results were taken from [20]. ** These results were taken from [12].

able to have similar widths, and also similar types of problems, such as the

presence of the central light reflex. Therefore, we calculated σw for each vessel

segment and obtained σw distributions for each sub-dataset to observe if poor

or good performance of the method on the sub-dataset may be related to the495

performance on specific vessel segments.

Figure 10 shows the distributions of the σw values of vessel widths produced

for CLRIS, HRIS and VDIS with box-plots. Because KPIS does not have a

sufficient number of vessel segments for this demonstration, its results are, in-

stead, summarized in the text. The figure shows three outliers for both CLRIS500

and HRIS, and four outliers for VDIS,with σw of over 1 pixel, which indicates

abnormal disagreements between reference and estimated widths on the vessel

segments responsible for the outliers. It should be noted that this information

was not revealed in Table 3. The values of σw for CLRIS, HRIS and VDIS

in the table are, respectively, 1.15, 0.40 and 0.85 pixels, which are far larger505

than the medians of the σw distributions illustrated in the figure. Also, accord-

ing to the figure, the median σw for CLRIS and that for VDIS are almost the

same; however, the σw values of outliers in CLRIS are much larger than those
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in VDIS. Obviously, these extreme outliers can be taken to be responsible for

CLRIS having larger σw values than that of VDIS in Table 3.510

In addition to results presented in the figure, KPIS was observed to have

σw values of 0.35, 0.31 for the first and second vessel segment in the first image

respectively and, that of 0.37 for the single segment in the second image. These

results are mainly consistent with those for σw given in Table 3.

We argue that the proposed way of calculating the evaluation criteria is more515

appropriate than the traditional way [11, 12, 14, 15], because the former can

identify vessel segments for which a given method yields significantly different

widths from reference data. The identification of the challenging vessel segments

in this manner is useful when developing new approaches to tracking or width

estimation. We will closely examine vessel segments that have been found to520

be challenging in order to appreciate the sources of disagreement between our

estimations and the reference data.

Outliers in the Box-Plot. The vessel segments producing largest σw values for

HRIS, VDIS and KPIS in Figure 10 are demonstrated with estimated widths

and reference ones on both fundus images and edge probability maps in Figure525

11.

Figure 11(a) shows a vessel segment from CLRIS, with a σw value of 1.3. The

subtle change on vessel width seems not to be captured by human observers, in

contrast to the proposed method. This situation can also be observed in Figure

11(b), which demonstrates an image from VDIS, with a σw value of 0.98. This530

vessel segment can be characterized with abnormal width changes. Similar to

former image pair, vessel widths are estimated reasonably consistently by the

proposed method, following the changes on actual vessel width in pathologies.

The superiority of the current method to human observers becomes more

obvious in Figure 11(c), where an image pair from HRIS, with the σw value of535

0.98, is demonstrated. The vessel edges in this figure are mis-detected by the

observers.

Apart from imperfection of human observers to accurately estimate vessel
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widths, the discrepancy between estimates and reference data can also be due to

predicting widths along slightly different profiles as appearing in Figure 11(d).540

This figure illustrates a vessel segment from VDIS, with a σw value of 0.97.
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Figure 10: The distributions of the σw values for vessel width estimates calculated for indi-

vidual vessel segments in CLRIS, HRIS and VDIS. The maximum length of each whisker is

1.5 times of the interquartile range of related distribution.(Best viewed in color.)

4.3.3. Challenging Vessels

In the literature, some vessels have been found more challenging than others;

such as (i) those with the central light reflex [9, 15], (ii) close vessels [15, 43],

(iii) those in junction regions [39, 43] and (iv) those with high curvature or, (v)545

low contrast or high noise. We now discuss each of these in turn.

(i) The central light reflex is a bright strip around the vessel centerline,

which may be confused with vessel edges by some methods [44]. In the presence

of this reflection, the intensity profile across vessels deviates from a Gaussian-

like appearance, which may be compensated for by increasing the complexity550

of models for the intensity profile, such by using multiple Gaussian functions

[10, 11, 13]. Another way may be to combine a method using the intensity profile

as the main information source with additional sources, for example line detector

responses [20]. On the other hand, the proposed method does not need to take

extra measures to deal with the reflection, which is naturally suppressed during555

the network training. Figure 12 shows a vessel with the central light reflex from

CLRIS and the probability maps generated by the network, where no sign for
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Figure 11: Estimated vessel profile locations (green lines) and interpolated locations (red

lines). The interpolated locations provide a means of comparing our width estimates with prior

work (see text for details), and are shown on the vessel segments with the worst performance

of the proposed method: (a) segment 2− 8 in CLRIS, (b) segment 8− 3 in VDIS, (c) segment

1− 26 in HRIS, (d) segment 8− 10 in VDIS. The left and right images for each image couple

respectively show a fundus image and its edge probability map. The images in the top row

have the size of 60 × 60 pixels and 122 × 122 pixels respectively while those in the bottom

row have the size of 66 × 66 pixels and 100 by 100 pixels consecutively. (Figure best viewed

in color.)

the reflection appears. Figure 13(a)-(c) show estimated and reference profiles

for vessels with the reflection. As may be seen, the presence of the reflection

does not degrade the consistency of width estimations.560

(ii) In some cases, vessels can be close to each other, which makes it difficult

to estimate vessel geometry: it may not possible to identify vessel edges due to

the presence of the other nearby vessels [15, 43]. However, the proposed method

can be observed to successfully trace a vessel with the central light reflex and low

contrast, without being distracted by a closely passing one, as shown in Figure565

13(c). When the figure is examined closely, it appears that the edge probability

map of the traced vessel is affected by the nearby vessel to a large extent, which
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Figure 12: The intensity profile I(x, y) of a vessel with the central light reflex, a part of

the vessel in Figure 13(a), and its probability profiles Pi(x, y), Pc(x, y) and Pe(x, y), which

respectively denote vessel interior, centerline and edge locations.

is manifested with far lower and diffused probabilities for the left edge of the

traced vessel. Despite the large uncertainty along this edge, the tracker manages

to identify both vessel boundaries correctly and tracks the vessel without any570

disruption. This may be attributed to the existence of the prior probability

distribution keeping the memory of the previously traced path.

(iii) Vessels in junction regions are difficult to analyze because vessel bound-

aries may become completely indistinguishable [39, 43]. The edge pixels in

junctions can have lower edge probabilities, which is visible in Figure 13(e).575

Because of the prior information implicit in the tracking process, the region of

lower edge probabilities can be traced confidently.

(iv) Curvy vessels may pose a big challenge for tracking methods due to their

fast changing directions. However, vessels with high curvature are observed to

not pose significant problems for the proposed method, because of the use of580

estimated vessel direction, and incorporated in the Ps term of 10). Figure 13(f)

shows estimated widths for a curvy vessel.

(v) Human observers can also fail at estimating the right locations for vessel

edges, particularly, if the contrast of vessels is poor or their calibers are small.
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Figure 13(d),(g)-(h) illustrate profiles located by the observers and the proposed585

method. On fundus images, both reference and estimated locations seem ac-

ceptable to the naked eye. This may align with the inter-observer variability

in locating vessel boundaries on ground truth images, a problem acknowledged

in [26, 27]. However, considering the disagreement between the values in the

edge probability maps at the edge locations estimated by the observers (see590

Figure 13(g)-(h)) and those of the proposed tracker, we argue that our method

estimates better edge locations in these images than human observers.
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Figure 13: Estimated vessel profile locations (green lines) and interpolated locations (red lines,

see text for details) for challenging vessels: (a)-(c) from CLRIS, (d)-(f) from VDIS and (g)-(h)

from HRIS. The left and right images for each image couple respectively show a fundus image

and its edge probability map. The sizes of images are respectively 63×63 pixels in (a), 64×64

pixels in (b), 98× 98 pixels in (c), 130× 130 pixels in (d), 424× 424 pixels in (e), 207× 207

pixels in (f), 31× 31 pixels in (g) and 25× 25 pixels in (h). (Best viewed in color.)
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5. Conclusion

In this study, we propose a Bayesian method 1 to estimate vessel geometry

parameters, and evaluated the performance of the method on width estimation595

on the REVIEW dataset. In contrast to previous methods, which have used

the intensity profiles across vessel edges for parameter estimation, we utilized

probability profiles sampled from vessel interior, centerline and edge location

probability maps generated by a single deep network. As far as we are aware, it

is the first method for retinal vessel analysis – or any vascular data – that uses600

probability maps as inputs to a tracking and vessel width estimation process.

The method addressed four challenges encountered in width estimation.

The first is that probability maps for vessel parameter estimation can better

explain the uncertainty and subjectivity at detecting vessels and, particularly,

edge locations, appearing in the ground truth data [26, 34]. Due to these maps605

serving a Bayesian method, particle filtering, the uncertainty in these maps is

efficiently utilized for vessel parameter estimation. For instance, the proposed

approach could make reasonable estimates of vessel width: even when there

is not sufficient information available for vessel parameter estimation (e.g. in

junction regions), or when the information is vague (e.g. for thin and low610

contrast vessels, and vessels in a close proximity to another vessel). Estimating

all sets of vessel profiles in the REVIEW dataset reinforces the effectiveness of

this approach. Moreover, having edge probability maps facilitated an evaluation

of the consistency of reference vessel profiles.

Secondly, despite the lack of training data for vessel segmentation specific615

to the REVIEW dataset, the proposed method was able to generate useful

probability maps for vessel geometry. Specifically, training the network with

low resolution and almost healthy fundus images, provided in the DRIVE, was

observed to produce sufficient quality of probability maps for the REVIEW

1The code producing results reported in this paper can be found at https://bitbucket.

org/fzehra/a-recursive-bayesian-approach-to-describe-retinal-vasculature.
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dataset, which has high resolution and mostly pathological images. This suc-620

cess may be attributed to two factors. Firstly, the generalization capability of

the network was adequate for the purpose of the presented method. Secondly,

using particle filtering for vessel parameter estimation might compensate any

imperfections in the probability maps.

Thirdly, to date, the performance of a method on width estimation has625

been assessed with the independent evaluation of the profiles. However, this

approach ignores the spatial dependence of vessel profiles for particular vessel

segments. In this study, we also assessed the performance of the method on

individual vessel segments, which allowed us to immediately spot disagreements

between reference measurements in the REVIEW data and estimates from the630

proposed method at the level of vessel segments. Moreover, we could evaluate

the reliability of the reference data to some extent: our analysis seems to have

uncovered some errors in the reference data, revealed by our way of performance

evaluation.

Finally, the proposed method can be viewed as being superior to methods635

based on supervised model fitting [10, 11, 12], whose performance strongly de-

pends on the characteristics of the training datasets. If the datasets have any

errors or bias in their reference data, the estimates made by the supervised

methods [10, 11] are highly probable to have the same issues, despite having

close agreement with reference data. See [45] for another interesting approach640

that implicity addresses the difficulty in constructing likelihood functions.

Currently, this work only considers tracing vessel segments for parameter

estimation. However, we are working on a method to detect junction locations

in fundus images, which will be integrated with the proposed method to trace

complete vessel trees. More generally, the principle of using the probabilistic645

outputs of deep networks as inputs to probabilistic trackers seems a promising

approach to address the challenge of constructing ad hoc likelihood functions

for observation models.
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[7] A. Sironi, E. Türetken, V. Lepetit, P. Fua, Multiscale centerline detection,

IEEE Transactions on Pattern Analysis and Machine Intelligence 38 (2016)675

1327–1341.

[8] K. Daniel Chaves Viquez, O. Arandjelovic, A. Blaikie, I. Ae Hwang, Syn-

thesising wider field images from narrow-field retinal video acquired us-

ing a low-cost direct ophthalmoscope (arclight) attached to a smartphone,

in: Proceedings of the IEEE Conference on Computer Vision and Pattern680

Recognition, pp. 90–98.

[9] J. Lowell, A. Hunter, D. Steel, A. Basu, R. Ryder, R. L. Kennedy, Measure-

ment of retinal vessel widths from fundus images based on 2-D modeling,

IEEE Transactions on Medical Imaging 23 (2004) 1196–1204.
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