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In this supplementary material, we provide an extensive discussion on the resilience of the state
preparation to optical and mechanical decoherence, initial mechanical thermal noise and imperfect
optical driving.

A. Perturbative regime

The Magnus expansion relies on the perturbative
regime k = g

ωm
� 1, and it is essential to gauge the

range of applicability of the perturbative approximation.
To this end, we compare the dynamics obtained with the
Magnus expansion in third- and fourth-order approxima-
tion.
Applying the same procedure we have presented so far,
we find the dynamics of the mirror after N mechanical
periods at fourth order
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with ζ(4) = (πk2η)2N cot(π/N). Hence, we recall an
important figure of merit, i.e. the state fidelity between
two quantum states %A and %B , which is defined as
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This quantity can be used to provide an estimate of the
accuracy of the state preparation computed at the third
order in Magnus, %3, by comparing it with %4, obtained
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FIG. S1: Fidelity between the state of the mirror computed
via a third and a fourth order Magnus expansion as a function
of the integration time, expressed in terms of mechanical driv-
ing periods. The experimental parameters are set as η = 20,
k = 1/60. The graph indicates that high fidelity is obtained
up to 20 driving periods: F3,4 & 0.985.

by numerically propagating Eq.(S1). Fig. S1 depicts F3,4

as function of the driving time in terms of mechanical
periods. We infer that the deviations between %3 and %4
are in the permille regime for the first 10 driving periods,
and even at N = 20, the third order approximation is
accurate within ' 1%. We deem an error of 1% below
the accuracy of what could be achieved experimentally
within the next years, and thus feel that the perturbative
treatment is highly adequate for the present purpose.

B. Experimental imperfections

It is appropriate to gauge how unavoidable experimen-
tal imperfections will affect the desired process. To this
end, we analyse the impact of optical and mechanical de-
coherence, initial thermal excitations in the mirror and
imperfect phase shifts of the driving fields. Since the dy-
namics takes place in a high-dimensional Hilbert spaces
of both mechanical and optical degree of freedom, this
discussion is necessarily restricted to approximate meth-
ods. Together with the verification of the quality of the
perturbative expansion (discussed in B 1 below), this
seems adequate to estimate the order of magnitude of
imperfections.

1. Optical decoherence

Due to experimental difficulties, the most delicate as-
pect affecting the unitarity of the evolution, and conse-
quently the preparation of the desired mechanical state,
is attributable to optical losses. The leakage of pho-
tons from the cavity is quantified by the decay rate κ,
which is defined as the inverse of the time light remains
in the cavity. A common approach to include the effects
of such photon losses in the dynamics is to express the
evolution of the system density matrix ρ in terms of the
Master equation ρ̇ = −i [H, ρ] + κLa[ρ], where H is the
system Hamiltonian and La[ρ] is the Lindblad operator
La[ρ] = (aρa† − {a†a, ρ}/2).
When operating in the so called resolved sideband regime
with κ � ωm, that is realised in many current experi-
ments [1–4], the impact of photon loss can be captured
by looking at the perturbative solution of the Master
equation. To this end, we consider the Master equation
for ρ̃ = V †(t)ρV (t), where V (t) satisfies iV̇ = HV , as
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obtained in the main text (see Eq.6).
Solving this perturbatively, yields the contribution of

photon loss to the dynamics in terms of powers of κ/ωm.
The integration for a generic time t assumes a rather
complex form and correlations between field and mirror
are created because of dissipation. However, thanks to
the very specific bi-chromatic driving pattern many terms
cancel out at the end of the evolution. Actually, our
proposed set of constant phase shifts {ϕk} is crucial to
suppress the majority of these unwanted non-unitary and
de-coherent contributions, including all correlation terms
proportional to the driving amplitude η.

More specifically, in leading order in k and κ, we obtain
at t = NT an expression that is completely independent
of η and is thus well suited to describe the strong driving
regime

ρ̃(NT ) ' ρ̃(0) + κNT

(
ãρ̃ã† − 1

2
{ã†ã, ρ̃}

)
, (S3)

with

ã = ae
g
ωm

(b−b†) . (S4)

This result has a very clear physical interpretation: since
the light-matter interaction conditionally displaces the
mirror by an amount proportional to the number of pho-
tons in the cavity, each photon that has leaked out of
the resonator should then be matched with a missing

displacement eg(b−b
†)/ωm of the mirror as indicated in

Eq.(S4).
Fig.S2 depicts the state fidelity (see Eq.(S2)) after

N = 20 mechanical periods as a function of the ratio
κ/ωm between the full state of the system (cavity plus
mirror) obtained in the leaking scenario in Eq.(S3) and
the ideal one discussed in the main text. As one can see,
a loss rate satisfying κ/ωm < 10−2 results in a reduction
of the fidelity by . 3%. This condition, together with
the strong driving regime, is in accordance with Ref.[5],
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FIG. S2: Fidelity between the final state of the system (cavity
plus mirror) in case of photon losses and the ideal scenario as
a function of the cavity decay rate κ for an evolution lasting
20 mechanical periods.

where the resolved sideband regime and the condition
g/κ > 1 were theoretically derived as requirements to
resolve the granularity of the photon stream and fully
exploit the non-linearity of the system to observe purely
quantum features.

2. Thermal initial state of the mirror

Since the evolution operator V (see Eq.6 of the main
text) factorises into a propagator for the mirror and a
propagator for the cavity, one obtains a product state
of mirror and cavity for any initial product state. That
is, there is no fundamental need to require the mirror
to be initially cooled exactly to the ground state, but
initial thermal excitation of the mirror will affect the non-
classicality of the final state.

Fig.S3 depicts cuts through the Wigner function of the
mirror after 20 periods of driving for different initial ther-
mal populations with 〈nthm〉 = 1 and 〈nthm〉 = 10, i.e.
above the experimental threshold of 〈nthm〉 ∼ 0.2 achiev-
able with sideband cooling (at a mechanical frequency
ωm = 2π × 107Hz) [2, 6]. The strong oscillatory be-
haviour with negative values of W is clearly displayed
for an initial state with 〈nthm〉 = 1. Only for 〈nthm〉 = 10,
i.e. substantially above the limits of side-band cooling,
the quantum mechanical features are mostly outshined
by the thermal contributions.
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FIG. S3: Comparison of the cut profiles p = 0 of the Wigner
function of the state of the mirror after an evolution lasting 20
mechanical periods with the mirror initially in its ground state
(blue dotted line) and two thermal states with respectively
〈nth

m 〉 ∼ 1 (green dashed line) and 〈nth
m 〉 ∼ 10 (red line). The

experimental parameters are set as η = 20, k = 1/60 and
ωm = 2π × 107Hz.

3. Mechanical decoherence

The main source of mechanical decoherence for a
cooled optomechanical resonator arises from mechanical
damping, which is characterised by the rate γm at which
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a phonon excitation is lost in the environment. In case
of non-zero temperature, however, the unwanted absorp-
tion of thermal excitations should also be taken into ac-
count. The process is conceptually analogous to optical
photon losses from the cavity which happen at rate κ.
Current experiments have achieved mechanical damping
substantially below photon loss (γm � κ), what sug-
gests that mechanical decoherence will not be a limiting
factor. Since, however, highly non-classical, coherent su-
perpositions of macroscopically distinct states are par-
ticularly sensitive to decoherence, a critical assessment
of motional decoherence is in order. To this end we
analyse the dynamics induced by the Master equation
ρ̇ = −i[H, ρ] + γm[(〈nthm〉 + 1)Lb[ρ] + 〈nthm〉Lb† [ρ]], where
Lb and Lb† are the Lindblad operators for phonon absorp-
tion and emission, defined similarly to Sec. B 1. Thanks
to high mechanical quality factors Q = ωm/γm � 1 be-
ing achieved in various experimental realizations, a per-
turbative solution of the Master equation provided reli-
able estimates. At the end of the state preparation, the
system state ρ̃ in the frame defined by V (t) (defined in
Sec. B 1) at leading order in γm and κ reads

ρ̃(NT ) = ρ̃(0)+γm

[
(〈nthm〉+ 1)Lm[b̃, ρ] + 〈nthm〉Lm[b̃†, ρ]

]
,

(S5)
with

b̃ = b− κ(a†a+
η2

2
) . (S6)

The result is compact, as satisfactorily, many terms get
simplified at the end of the evolution because of the very
specific choice of the driving profiles. Fig.S4 depicts the
state fidelity after N = 20 periods of driving as a function
of Q−1, both in the case of a zero-temperature environ-
ment (in blue) and for a thermal state with 〈nthm〉 ∼ 1
(red), as obtained in recent experiments [2, 6]. In both
cases the impact of mechanical damping on the state fi-
delity is smaller than in the case of optical decoherence.
In particular at zero temperature the impact is almost
negligible (within the per-mille regime) and even with
thermal noise, reductions of the fidelity are limited to a
few percent.

4. Optical and mechanical decoherence

After having analyzed mechanical and optical decoher-
ence separately, we finally assess their combined impact
on state preparation in a non-perturbative analysis. To
this end, we numerically solve the full master equation
for mirror and cavity for the whole driving time interval,
which is necessarily limited to a finite (low) dimensional
subspace. We performed our numerical simulations trun-
cating the cavity field and the mirror respectively to 15
and 35 excitations. This lower truncation of the Hilbert
space restricts the range of safely explorable mechanical
states to the subset 〈nm〉 . 5, which, leaving all others
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FIG. S4: Fidelity between the final state of the system (cavity
plus mirror) in case of a mechanical damped evolution and
the ideal scenario as a function of the mechanical damping
γm/ωm. Blue points are referred to the zero bath tempera-
ture case, while red points to 〈nth

m 〉 ∼ 1. The total evolution
is supposed to last 20 mechanical periods with the mirror ini-
tially in its ground state and the dimensionless driving and
coupling respectively set as η = 20 and k = 1/60.

parameters unchanged, requires to account for smaller
couplings (we have chosen k = 1/90).

We summarize in Fig.S5 the fidelity of the states ob-
tained with a numerical solution of the full master equa-
tion accounting for photon losses and phonons absorp-
tion and dissipation. Results are in line with analytical
discussions provided in Secs. B 1 and B 3. The over-
all reduction of fidelity remains in the percent regime,
consistent with the above perturbative results.
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FIG. S5: Fidelity between the final state of the system (cavity
plus mirror), obtained from a numerical simulation of the full
master equation, as a function of the mechanical damping
γm/ωm and the optical decay rate κ. We assumed a cooled
mechanical oscillator with a thermal bath at 〈nth

m 〉 ∼ 1. The
total evolution is supposed to last 20 mechanical periods, the
dimensionless driving and coupling are set to η = 20 and
k = 1/90.
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5. Laser driving

The central goal of deterministic state preparation is
achieved through the application of appropriate phase
shifts after each period of driving. Their experimental
implementation seems feasible, since the shifts need to be
applied on a time-scale that is short as compared to the
inverse mechanical frequency. With ωm ∼ 106s−1, this
is orders of magnitude smaller than the optical charac-
teristic frequency. Accurate control of optical phase has
already been demonstrated in Ref.[7], where phase shift
resolutions smaller than ∆ϕ = 10mrad were achieved.
The technique is based on high-speed fiber optical switch-
ers with switching rate shorter than 1ns, which are al-
ready commercially available [8].
Still, despite the relative simplicity of such scheme, we
deem it useful to consider the impact of deviations from
the ideal driving profiles with the step-like phase shifts
ϕs = 2π

N (s− 1). To this end, let us replace the discontin-

uously evolving phase ϕ(t) = 2π
N

∑
s Θ(t − sT ) with the

continuous function

ϕ(d)
c (t) =

2π

N

t

T
+

d∑
l=1

ϕl(t) ,

where 2π
N

t
T is a linearly increasing phase factor and each

term ϕl(t) = Al sin(lωmt) oscillates with frequency lωm
and amplitude Al. The set of amplitudes is chosen such

that at any order d, ϕ
(d)
c (t) is tangent to the step function

in the centre of the step, i.e. for t = (2jπ + 1)/ωm with
j ∈ [0, N − 1] (see Fig.S6 for a graphical representation).

Thanks to the continuous time dependance, it is then
possible to analytically compute the generator with a
Magnus expansion over the entire time window t = NT ,
and subsequently numerically integrate the dynamics
over N mechanical periods. Interestingly, we obtain a
separable propagator at every order d, without corre-
lations between mirror and cavity, and which will still
result in deterministic state preparation.

Most importantly, while resorting to the sole linear
function 2π

N
t
T single-particle terms of the cavity do not

completely cancel out, resulting in a final average pop-
ulation 〈nc〉 ∼ 0.2〈nm〉, these contributions are effi-
ciently suppressed already at the order d = 3, when
〈nc〉 ∼ O(10−7)〈nm〉 (see Fig.S6). This is an essential re-
quirement since cavity excitations could potentially pre-
vent the final readout through back-action-evading inter-
action.

Remarkably, the final non-classical mechanical state of

the mirror obtained with these imperfect driving pattern
presents a very high fidelity F ' 0.98 with the ideal step-
like case.

C. Readout

The final readout of the mechanical motion is a mat-
ter that has already been widely analysed theoretically
[9, 10] and implemented experimentally [6, 11] with
high precision. The most promising technique to per-
form quantum state reconstruction is called back-action-
evading interaction and is based on state transfer. When
the mirror is in the state of interest and the cavity is
empty, a red detuned laser with frequency ωd = ωc−ωm
induces exchange of excitations from the former to the
latter. Hence, tomography of the prepared mechanical
state of the mirror can be carried out through homo-
dyne measurement of the light leaking out of the cavity
[12, 13].
Since we ensure that there are no residual correlations
between cavity and mirror when the measurement pro-
tocol is applied, the desired mechanical quantum state is
deterministically read out.

FIG. S6: Cavity occupation renormalized with respect to the
population of the mirror 〈nc〉′ = 〈nc〉/〈nm〉 as a function of
the order of the decomposition of the step function d. In
the top-right corner we plot an enlargement of the driving

profiles defined by ϕ
(d)
c (t) over the first mechanical period:

linear approximation with d = 0 (black line), d = 1 (blue
dashed-dotted), d = 2 (green dotted) and d = 3 (red dashed).
The experimental parameters are set as η = 20, k = 1/60,
N = 20.
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