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Abstract A 3-node co-rotational triangular elasto-plastic shell element is developed. The local 

coordinate system of the element employs a zero-‘macro spin’ framework at the macro element 

level, thus reducing the material spin over the element domain, and resulting in an invariance of 

the element tangent stiffness matrix to the order of the node numbering. The two smallest 

components of each nodal orientation vector are defined as rotational variables, achieving the 

desired additive property for all nodal variables in a nonlinear incremental solution procedure. 

Different from other existing co-rotational finite-element formulations, both element tangent 

stiffness matrices in the local and global coordinate systems are symmetric owing to the 

commutativity of the nodal variables in calculating the second derivatives of strain energy with 

respect to the local nodal variables and, through chain differentiation with respect to the global 

nodal variables. For elasto-plastic analysis, the Maxwell-Huber-Hencky-von Mises yield criterion 

is employed together with the backward-Euler return-mapping method for the evaluation of the 

elasto-plastic stress state, where a consistent tangent modulus matrix is used. Assumed membrane 

strains and assumed shear strains---calculated respectively from the edge-member membrane 

strains and the edge-member transverse shear strains---are employed to overcome locking 

problems, and the residual bending flexibility is added to the transverse shear flexibility to 

improve further the accuracy of the element. The reliability and convergence of the proposed 

3-node triangular shell element formulation are verified through two elastic plate patch tests as 

well as three elastic and three elasto-plastic plate/shell problems undergoing large displacements 

and large rotations. 

 

Keywords: co-rotational approach, elasto-plasticity, triangular shell element, assumed strain, 

vectorial rotational variable, zero-‘macro spin’ 



1. Introduction 

Shell structures with different geometry, thickness, loading and boundary 

conditions are widely applied in engineering practice. Shell finite elements play an 

important role in analyzing, designing and optimizing shell structures. An optimal 

shell element should (1) be applicable to arbitrary shell geometries for both thick and 

thin structures, (2) provide accurate displacements and stresses with low 

computational cost, and (3) be robust with low sensitivity to element distortion [1-7]. 

Formulations for flat 3-node triangular shell elements are simpler, and 

computationally more efficient, than for curved triangular elements with more than 3 

nodes. Furthermore, 3-node triangular mesh is the most robust and efficient option of 

mesh generation. As a result, reliable and computationally efficient 3-node triangular 

shell elements have important applications in modeling shell structures with arbitrary 

and complex geometries [8].  

A 3-node triangular shell element can be formulated by combining a membrane 

element and a bending element [9-12], or by relying on three-dimensional continuum 

mechanics with the Reissner–Mindlin kinematic hypothesis and the plane-stress 

assumption [8,13]. Existing 3-node triangular shell elements can be categorized into 4 

types: Type 1 with only 3 displacement degrees-of-freedom (dofs) per node [14-22]; 

Type 2 with 3 displacement dofs and 2 rotational dofs per node [23-25]; Type 3 with 3 

displacement dofs at the vertices and the rotational dofs at side nodes [26-27]; Type 4 

with 3 displacement dofs and 3 rotational dofs per node [28-33]. Most existing 3-node 

rotation-free triangular shell elements are based on the Kirchhoff assumption, 

ignoring shear deformation, can therefore only be employed in modeling thin plate 

and shell problems [21]. To extend rotation-free flat 3-node triangular shell elements 

with transverse shear deformation effects, Zárate and Oñate [21] added two transverse 

shear angles to the element curvatures which are calculated over the domain formed 

by the element itself and the three adjacent triangular elements. These two transverse 

shear angles are considered as rotational degrees of freedom for thick shell problems, 

and they vanish for thin shell problems. A flat shell element with 5 

degrees-of-freedom per corner node can be obtained by combining a conventional 



triangular membrane element with a standard 9-dof triangular bending element. On 

the other hand, if several elements of this type sharing the same node are coplanar, it 

is difficult to achieve inter-element compatibility between membrane and transverse 

displacements, and the assembled global stiffness matrix is singular in shell analysis 

due to the absence of in-plane rotation degrees-of-freedom [9-12,34]. In addition, flat 

shell elements with 5 degrees-of-freedom per node lack proper nodal degrees of 

freedom to model folded plate/shell structures, making the assembly of elements 

troublesome [35]. To avoid the singularity of the assembled global stiffness matrix, 

some researchers defined the displacement degrees-of-freedom at the vertices and the 

rotational degrees-of-freedom at side nodes of flat shell elements [26-27]. This type of 

elements cannot, however, be easily matched with other types of elements in 

modeling of complex structures. Alternatively, some researchers [9-12] added a sixth 

degree of freedom (the drilling rotation) at each node of flat triangular shell elements 

by combining a bending element and a membrane element with drilling rotational 

degrees-of-freedom. Such shell elements are very convenient for engineering 

applications since no special connection scheme is necessary at the shell edges and 

intersections, and no particular care needs to be taken when coupling shell and rod 

elements [36]. Such approach renders, however, the numerical method inconsistent, 

possibly leading to a poor element convergence [37]. Then, Reissner [38], Hughes and 

Brezzi [39], and Hughes et al. [40-41] endeavored to develop variational formulations 

employing independent rotation fields so as to obtain a theoretically sound and 

practically useful formulation for engineering application. 

A major difficulty in developing flat 3-node triangular shell elements is to 

overcome locking phenomena arising in bending dominated situations without 

destroying the ability of the procedure to accurately capture membrane dominated and 

mixed behaviors [7]. In general, flat 3-node triangular shell element cannot well 

approximate the pure bending displacement field; thus, locking problems are serious 

and inevitable. As the shell thickness decreases, the convergence of the finite element 

solution rapidly deteriorates [8]. Researchers developed methods to overcome locking 

phenomena in flat triangular shell elements, such as the Mixed Interpolation of 



Tensorial Components method used in the MITC3 element [8], the line integration 

method used in TRIA3 element [42], the mixed or hybrid formulation [43-45], 

incompatible displacement methods [46-47], stabilization methods [29,48-54], 

assumed strain methods [19,28,55], etc. 

In the present 3-node elasto-plastic triangular shell element formulation, 3 

displacement dofs and 2 vectorial rotational dofs are employed at per node, the 

Reissner-Mindlin theory is used, in which both the thickness deformation and the 

normal stress in the direction of the shell thickness are ignored, and an assumed strain 

method is employed to alleviate the membrane and shear locking phenomena. Here, 

the assumed membrane strains are calculated from 3 edge-member membrane strains 

of the 3-node triangular shell element, while the assumed transverse shear strains are 

evaluated from the 3 edge-member transverse shear strains [42]. In addition, the 

residual bending flexibility is added to the transverse shear flexibility to improve the 

accuracy of the element further. For elasto-plastic modeling, the fibre approach which 

can describe the plastic zone spreading process in shell structures undergoing large 

elastoplastic deformation [56-59] is adopted, the Maxwell-Huber-Hencky-von Mises 

yield criterion for isotropic hardening case [60-64] is introduced, and the material is 

assumed to be linear hardening. A backward-Euler return-mapping integration 

algorithm [60-61] is used to trace the yield surface, and a consistent elasto-plastic 

tangent modulus matrix is employed. To exclude the influence of element rigid-body 

rotations from the local displacement field, a zero-‘macro spin’ co-rotational 

framework, which can significantly reduce the rigid-body rotations of infinitesimal 

segments at different material points within the element domain in an aggregate sense 

[65], is employed for the present element to simplify the stress-strain constitutive 

relation. Compared to other existing co-rotational element formulations [61-66], the 

present 3-node triangular elasto-plastic shell element formulation has several features: 

i) All nodal variables are additive in a nonlinear incremental solution procedure, and 

as a result, updating the element matrices is simple and efficient; ii) Symmetric 

element tangent stiffness matrices are obtained in both the local and global coordinate 

systems, leading to computational efficiency and significant computer storage saving; 



and iii) The element tangent stiffness matrix is updated using the total values of the 

nodal variables in an incremental solution procedure, making it advantageous for 

solving dynamic problems [67-70]. The present 3-node triangular shell element 

demonstrates satisfying convergence and reliability in solving elastic and 

elasto-plastic plate/shell problems undergoing large displacements [36,71-81]. 

The outline of the paper is as follows. Section 2 presents the kinematics of the 

3-node triangular shell element in the local co-rotational system. Section 3 describes 

the local element response, the assumed-strain procedure used to alleviate locking 

problems, the calculation of the shear strain correction coefficients corresponding to 

the residual bending flexibility, and the consideration of elasto-plasticity within the 

element formulation. Section 4 presents the transformation matrix between the local 

and global systems, and the element formulation in the global coordinate system. In 

Section 5, several elastic patch tests and elastic/elasto-plastic plate/shell problems are 

solved to demonstrate the reliability and convergence of the proposed element 

formulation. Concluding remarks are given in Section 6. 

 

2. Element kinematics in the local co-rotational system 

The optimal orientation of the local reference system provides a rotated 

undeformed configuration such that the relative spin of the material in the current 

deformed configuration to that in the rotated undeformed configuration is zero. In 

developing the current triangular shell element formulation, the local co-rotational 

system is based on zero-spin at the macro element level [65], which reduces the 

material spin in an aggregate sense over the element domain, and maintains the 

benefits of invariance to nodal ordering and symmetry of the tangent stiffness matrix. 

The local and the global Cartesian coordinate systems, and the natural coordinate 

system, are defined respectively as in Fig. 1. The local coordinate system always 

rotates with the element rigid-body rotation in the deformed configuration, but doesn’t 

deform with the element. 
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Fig. 1. Description of the co-rotational framework and the natural coordinate system 

(Note: The vectors t3 and r2 are associated with the local coordinate system o-x-y-z, whereas the 

vectors d3, p20, p2, v120, v12, v130, v13, ex0, ey0, ez0, ex, ey and ez are associated with the global 

coordinate system O-X-Y-Z.) 

In Figure 1, 0ijv  and ijv  are the vectors connecting Node i to Node j in the 

initial configuration and the current deformed configuration, respectively. 

000 ijij XXv −= ,     3,2,1, =ji  and ji ≠                (1a) 

 ijijij ddXXv −+−= 00 ,    3,2,1, =ji  and ji ≠              (1b) 

where, the vector 0iX  ( 321 ,,=i ) contains the coordinates of Node i in the global 

coordinate system; the vector id ( 321 ,,=i ) represents the displacement of Node i in 

the global coordinate system. The orientation vector 0xe  of the local x-axis as being 

aligned with edge 1-2 of the element in the initial configuration, 
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0 v
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and the orientation vector ze of the local z-axis in the current deformed configuration 

is defined as  



1312

1312

vv
vve

×
×

=z                                              (3) 

 

Fig. 2. Definition of the zero-‘macro spin’ local coordinate system 

The zero-‘macro spin’ local coordinate system is generated as follows: A unit 

square area defined by the two orthogonal unit vectors xe and ye  (the orientation 

vectors of the x- and y-axes in the deformed configuration, respectively) is subjected 

to a uniform planar ‘stretch’ operation in any two orthogonal directions (see Fig. 2). 

Under this planar stretch operation, the vectors xe and ye  will be transformed into 

vectors xe′ and ye′ , respectively. The vector xe is always obtained as the normalized 

sum of xe′  and n
y
'e , where n

y
'e  is a planar rotation of ye′  by 2

π− ; likewise, the 

vector ye is always obtained as the normalized sum of ye′  and n
x
'e , where n

x
'e  is a 

planar rotation of xe′  by 2
π . Then, the orientation vectors xe and ye of the local 

coordinate system in the current deformed configuration can be obtained from the 

stretched vectors as:  

 n
yx

n
yx

x '

'

ee
ee

e
+′

+′
= ,   zy

n
y eee ×′=' ,  xzy eee ×=              (4a,b,c) 

and the stretched vectors xe′ and ye′  in the current deformed configuration are 

calculated as 

 232121 vve xxx aa +=′                                       (5a) 

 232121 vve yyy aa +=′                                       (5b) 



Considering that the orientation vectors 0xe , 0ye and 0ze  of the local coordinate 

system in the initial configuration can also be obtained by the same procedure as xe , 

ye  and ze : 

23021201
120

120
00 vv

v
vee xxxx aa +===′                            (6a) 

23021201
120230120

120230120
0000 vv

vvv
vvveeee yyxzyy aa +=

×
××

=×==′          (6b) 

then, the constants used in Eqs. (5a,b) can be determined from Eqs. (6a,b) as 

120
1

1
v

=xa ,        02 =xa                        (7a,b) 

( )2230
T
120120

230
T
120

1
1 eev

ee

−
−=ya ,  ( )2230

T
120230

2
1

1

eev −
=ya           (7c,d) 

There are 15 degrees of freedom for each element in the local coordinate system. 

In addition to the three translational displacements, two components of the 

mid-surface normal vector at each node are defined as vectorial rotational variables. 

The vector of the local nodal variables is given below 

 T
,3,3333,2,2222,1,1111L yxyxyx rrwurrwurrwu υυυ=u      (8) 

where iii wu ,,υ  are the three displacement dofs of Node i, while yixi rr ,, , are the two 

vectorial rotational dofs of Node i, and are the two components of the mid-surface 

normal vector ir  in the local coordinate system.  

There are 15 degrees of freedom in the global coordinate system. The nodal 

variable vector is given by 

 T,3,3333,2,2222,1,1111G 332211 mnmnmn ppWVUppWVUppWVU=u  (9) 

where iii WVU ,,  are the three displacement dofs of Node i, and 
ii mini pp ,, ,  the 

vectorial rotational dofs, and are the two smallest components of the mid-surface 

normal vector ip at Node i  in the ZY,X, directions of the global coordinate system. 

This definition avoids ill-conditioning in the resulting equations [82]. 



The local nodal coordinates are calculated from those in the global coordinate 

system as follows 

000 ii vRx =                                                  (10) 

where  000
T
0 iiii zyx=x , [ ]000

T
0 zyx eeeR =  and 1000 XXv −= ii . 

The relationships between the local nodal dofs and the global nodal dofs are given 

by 

( ) 000 iiii vRvdRt −+=                                      (11a) 

000 ihi pRθ =                                               (11b) 

ihi pRθ =  ,      i=1,2,…,3                                (11c) 

where the components of the vector  iiii wu υ=Tt  are the three displacement 

dofs of Node i in the local coordinate system; the following matrices contain the unit 

basis vectors [ ]00
T

0 yxh eeR = ; [ ]zyx eeeR =T ; [ ]yxh eeR =T ；the components of the 

vector  iiii WVU=Td  are the three displacement dofs of Node i in the global 

coordinate system; xe , ye  and ze are updated by using id  obtained at each 

iteration of every incremental loading step (referred to Eqs.(1b),(3),(4a-c) and (5a,b) ); 

the vectors iθ and 0iθ  are respectively the sub-vectors of the deformed and the initial 

mid-surface normal vectors ir  and 0ir at Node i in the local coordinate system; 

 yixii rr ,,
T =θ ;  yixii rr ,0,0

T
0 =θ ; the vectors ip  and 0ip  are respectively the 

deformed and the initial mid-surface normal vectors at Node i in the global coordinate 

system. In Eq. (11a), the vectors 00 ivR  and ( )0ii vdR +  are respectively the local 

coordinates of Node i in the initial and deformed configurations. 

For the description of the geometry and of the displacement field in the 3-node 

triangular shell element, the interpolation functions used are: 

ηξ −−=11N ,  ξ=2N ,  η=3N                         (12a,b,c) 



In the initial configuration, the local coordinates  zyx=Tx  at any point on 

the element mid-surface are obtained as: 

 ∑
=

=
3

1
0),(

i
iiN xx ηξ                                            (13) 

The same shape functions are used to interpolate the displacement and rotation 

fields, leading to an isoparametric formulation: 

∑
=

=
3

1
),(

i
iiN tt ηξ
                                          (14a) 

∑
=

=
3

1
h ),(

i
iiN θr ηξ
                                         (14b) 

where the components in the vector  wvu=Tt  are the local displacement fields, 

and the components in the vector  yx rr=T
hr  are the local rotation fields. 

The initial mid-surface normal vector at each node of the triangular shell element 

is obtained by calculating the cross-product of the tangent lines along two natural 

coordinate axes, i.e., 

( )ii

i
ηξηξ ,

00
0 ∂

∂
×

∂
∂

=
XXp ,     3,2,1=i                          (15) 

where ( ) 0

3

1
0 , j

j
jN XX ∑

=

= ηξ  represents the global coordinates of a point on the 

mid-surface of the element; ),( ii ηξ  takes the natural coordinates of Node i (referred 

to Fig.2). 

To minimize the discontinuity between the slopes of adjacent elements at Node i , 

the mean value of the normal vectors from the surrounding elements is adopted: 

∑

∑
=

0

0

0

0

0

i

i

i

i

i

p
p

p
p

p ,     3,2,1=i                            (16) 



the symbol∑ in Eq. (16) is the summation on the number of elements having the 

same common Node i. 

On the other hand, if the true mid-surface of the curved shell is not smooth along 

the inter-element edges, the normal vector of each shell element must be obtained 

independently, and three global rotation degrees of freedom would then be required 

for each node along the edges of slope discontinuity. In general, the two smallest 

components of one orientation vector and one smaller component of another 

orientation vector at a node can be selected as global rotational variables, and these 

vectors can be oriented to three global coordinate axes in the initial configuration or 

defined as those of the beam element presented in [83-85]. 

 

3. Local elasto-plastic element formulations 

3.1 Local Response 

The general virtual work statement can be expressed as: 

L
T

V

T dVW ufεσ δδδ ext−= ∫
                               (17) 

where V is the volume of the element, σ  the stress vector, extf  the external force 

vector, and ε  the material strain vector; in the case of our shell element, the 

Reissner-Mindlin theory is adopted, ε  is the Green-Lagrange strain specialized for a 

shallow curved shell [61,71-72]. For the convenience of calculating the assumed 

strains below, the material strain vector ε  is split into three parts, mε , χlz  and γ , 

representing the membrane strains, bending strains and out-of-plane shear strains, 

respectively. It follows that Eq. (17) can be rewritten as: 

L
T

V

T dVW uf
γ

χε
σ δδδ ext

lm z
−







 +

= ∫                               (18) 

The internal force vector in the local coordinate system is therefore obtained as: 

∫ 






 +
==

V

T

dVσ
B

BB
ff

s

blm
ext

z
                                     (19) 



where mB , blz B , and sB are respectively the first derivatives of the membrane strain 

vector mε , the bending strain vector χlz , and the out-of-plane shear strain vector γ  

with respect to the local nodal variable vector Lu ; the details of these matrices are 

given in Appendix A. 

By differentiating the internal force vector with respect to the local nodal variables, 

the local tangent stiffness matrix of the 3-node triangular shell element is determined 

as: 

  ∫∫ 












∂
∂

+






 +







 +
=

V

T

T
LV T

T

T dVdV σ
0
u
B

B
BB

D
B

BB
k

m

s

blm

s

blm zz
  (20) 

where TD is a symmetric consistent tangent modulus matrix [61,71-72], T
Lu

B
∂
∂ m  is the 

second derivative of the membrane strain vector mε with respect to the local nodal 

variable vector; the details are given in Appendix A. The first term on the right-hand 

side of Eq. (20) is symmetric; the second term is also symmetric due to the 

commutativity in calculating the second derivative of the membrane strain vector 

mε with respect to the local nodal variable vector. Thus the element tangent stiffness 

matrix Tk  is symmetric. 

In the present elasto-plastic shell element, we adopt a condensed elastic 

constitutive relationship in combination with a yield surface based on the five stress 

components excluding the normal out-of-plane stress [66,71-72]. This adoption avoids 

the need for elasto-plastic condensation of the normal out-of-plane stress and achieves 

the same results with a relatively simple formulation based only on five stress and 

corresponding strain components. We adopt the Maxwell-Huber-Hencky-von Mises 

yield criterion together with an isotropic strain hardening. The Maxwell-Huber- 

Hencky-von Mises yield function is expressed as 

yef σσ −=                                                   (21) 



where eσ is the equivalent uniaxial stress at the current stress state:  

( )22222 3 zxyzxyyyxxyyxxe τττσσσσσ +++−+=
                        (22) 

 yzxzxyyyxx τττσσ=Tσ  represents the current stress state, yσ  is the current 

value of uniaxial yield stress, dependent on the accumulated equivalent plastic strain: 

λσ Hf += yy
                                               (23) 

in which yf is the initial value of uniaxial yield stress, H is the hardening parameter, 

and λ  is the plastic strain multiplier. 

In a nonlinear incremental solution procedure, the incremental material strains 

 i
jyz

i
jxz

i
jxy

i
jyy

i
jxx

i
j εε γγγ ∆∆∆∆∆=∆
Tε , which, under elastic deformation, leads to a 

stress increment i
jσ∆  and an elastic stress state i

jσ . If 0>f , the stress state i
jσ  

falls outside the yield surface, then a plastic material strain increment i
jpε∆  must be 

introduced so that the solution satisfies the flow rule and stays on the yield surface. 

The backward-Euler return-mapping procedure is then used due to its efficiency and 

the fact that it results in a symmetric consistent tangent modulus matrix [61]. The 

details of developing the consistent tangent modulus matrix and the elasto-plastic 

formulation can be found in [71-72]. 

 

3.2 Strategies for overcoming locking problems 

Eqs. (19) and (20) represent the conforming element formulation for the 3-node 

triangular shell element in the local coordinate system. In solving thin shell problems, 

membrane and shear locking phenomena could lead to deterioration in the 

computational efficiency and accuracy of the conforming element. Therefore, to 

improve the performance of the triangular shell element, the membrane strains and 

out-of-plane shear strains are replaced with the corresponding assumed strains [42]; 

accordingly, the modified element formulations are given as follows: 

∫ 






 +
=

V

T

dV~~
~

σ
B

BBf
s

blm z                                     (24) 



∫


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




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





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










∂
∂

+






 +







 +
=

V

T

T
LT

T

T dV~
~

~
~

~
~

σ
0
u
B

B
BBD

B
BBk

m

s

blm

s

blm zz               (25) 

where the matrices mB~ and sB~ are respectively the first derivatives of the assumed 

membrane strain vector mε~ and the assumed out-of-plane shear strain vector γ~ with 

respect to the local nodal variable vector Lu ; the matrix T
L

~

u
B
∂
∂ m  is the second 

derivative of the assumed membrane strain vector mε~  with respect to the local nodal 

variable vector Lu ; the details of these matrices are given in Appendix A. The stress 

vector σ~  is obtained by replacing the incremental material strains i
jε∆  with the 

incremental assumed material strains i
jε~∆  [61,71-72], and the incremental assumed 

material strains i
jε~∆  is accumulated from the initial iteration to the jth iteration of the 

ith incremental loading step to avoid the occurrence of “spurious unloading” during 

the iterations.  

The first term in the right-hand side of Eq. (25) is symmetric, and the second 

term is also symmetric due to the commutativity in calculating the second derivative 

of the assumed membrane strain vector mε~  with respect to the local nodal variable 

vector. Thus the modified element tangent stiffness matrix Tk  is still symmetric. 

The assumed material strains are calculated as: 

 






 +

=
γ

χε
ε ~

~
~ lm z

                                            (26) 

where the distribution of membrane strains are assumed to be: 

Pαε =m
~                                                  (27) 
















=

100
010
001

P                                              (28) 

 321
T ααα=α                                          (29) 



and the distribution of the transverse shear strains and the torsion of the top face of the 

element relative to the bottom face (Fig. 3) are assumed to be: 

Pβγ =








tγ~
~

                                              (30) 

 321
T βββ=β                                         (31) 

with iα and jβ  (i,j=1,2,3) being undetermined assumed strain coefficients.  

 

Fig. 3. Torsion of the top face of the element relative to the bottom face 
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Fig. 4. Member strains and edge-member transverse shear strains for present shell element 

Inspired by the line integration approach proposed by MacNeal [42], the member 

strains (namely, the edge-member membrane strains in the direction of each side of 

the element) corresponding to the membrane strains of the present 3-node triangular 

shell element are related to the displacements at two neighboring nodes, and are 

evaluated by 



( ) 2

0
2
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where the ordered triplets ),,( jik  are given by (A,1,2), (B,2,3) and (C,3,1) (see Fig. 

4a), and 

000 ijij xxa −=                                               (33) 

The relationships of the edge-member strains kε and the membrane strains 

 T
xyyyxx γεε=ε at Point k (k=A,B,C) are approximately expressed as 

xykkyykxxkk scsc γεεε ++= 22                                       (34) 

where kkc ψcos= , kks ψsin= , and C)B,A,( =kkψ is the angle from the x-axis to the 

i-j edge of the element. The natural coordinates ( )kk ηξ ,  of Points k=A,B,C take the 

values shown in Table 1: 

Table 1. The natural coordinates of Points A,B and C 

k A B C 

kξ  0.5 0. 5 0.0 

kη  0.0 0.5 0.5 

Considering Eq. (27), the edge-member strains kε (k=A,B,C) (see Fig. 4a) can be 

evaluated in terms of the assumed membrane strain coefficients: 

{ } Γα=kε ,     k=A,B,C                                     (35a) 
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From Eqs. (27) and (35a,b), the assumed membrane strains can be expressed in 

terms of the edge-member strains kε (k=A,B,C) as 

{ }km ε1~ −= PΓε ,     k=A,B,C                                 (36) 

Similarly, the edge-member transverse shear strains kγ (k=A,B,C) along the 3 



edges of the 3-node triangular shell element (see Fig. 4b) are related to the 

displacements at two neighboring nodes. Considering that the components of the 

mid-surface normal vectors r  and 0r  along these line segments are linear functions 

of distance, the edge-member transverse shear strain kγ  of the edge i-j can be 

evaluated by 
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where the ordered triplets ),,( jik  are given by (A,1,2), (B,2,3) and (C,3,1); the first 

term of Eq.(37) gives the ratio of the incremental out-of-plane displacement from 

Node i to Node j with respect to the length of Edge ij; the second term is the average 

of the two projections of the incremental mid-surface normal vectors, at Node i and at 

Node j, on the Edge ij. 

The edge-member transverse shear strain at Point k (k=A,B,C) is calculated from 

the transverse shear strains and the torsion of the top face of the element relative to 

the bottom face [42]: 

tyzkxzkk sc γγγγ ++=                                     (38) 

Considering Eqs. (30) and (38), the edge-member transverse shear strain kγ  can 

be expressed as: 

{ } Ωβ=kγ ,    k=A,B,C                               (39a)
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According to Eqs. (30) and (39a,b), the assumed shear strains can be given as 
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,     k=A,B,C                          (40) 

To improve further the accuracy of the present 3-node triangular shell element, the 

residual bending flexibility is added to the shear flexibility matrix coupling xzγ~  and 



yzγ~  by dividing the three edge-member transverse shear strains by a correction 

coefficient, respectively. These coefficients are selected to give correct results for 

cubic bending in directions perpendicular to the three sides of the triangle [86-87], 

and are calculated as 

 ( ) 2
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hμ124
L51ρ
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+= k
k                                        (41) 

where kL is the height of the triangle corresponding to the edge-member transverse 

shear strain kγ (see Fig. 4b), and h the thickness of the element. 

In MacNeal [42], the flexibility assigned to tγ  was treated as a free parameter to 

be selected to improve particular test results; the value of this flexibility is 

unimportant, and is ignored in the presented 3-node triangular shell element. 

The incremental form of the assumed material strains is given by 
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in which the vectors mε~∆ and γ~∆  are respectively the incremental form of mε~  and 

γ~ ; these increments can be obtained by the first-order Taylor expansion of Eqs. (36) 

and (40)  with it∆ , ir∆ , iw∆ accumulated from the initial iteration to the current 

iteration of the present incremental loading step in a nonlinear incremental solution 

procedure.  

 

4. Transformation of local to global response 

The global nodal force vector gf of the triangular shell element can be obtained as 

a transformation of the local nodal force vector f  according to: 

fTf T=g                                                   (43) 

where T is a 1515× transformation matrix consisting of the first derivatives of the 

local dofs with respect to the global nodal dofs, and can be readily determined from 



Eqs. (11a,c).   

For convenience, the local nodal dofs and the global nodal dofs are rewritten 

below 

 T
3

T
3

T
2

T
2

T
1

T
1

T
L θtθtθtu =                                 (44) 

 T
3g

T
3

T
2g

T
2

T
1g

T
1

T
G ndndndu =                              (45) 

where  ykxkk rr ,,
T =θ  represents the two local vectorial rotational dofs at Node k  

in the local coordinate system, and  kk mknkk pp ,,
T
g =n  denotes the two global 

vectorial rotational dofs. Accordingly, the transformation matrix is given as follows: 
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with the details of the sub-matrices of T  presented in Appendix B. 

The element tangent stiffness matrix TGk  in the global coordinate system can 

now be obtained as follows: 
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with: 
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where the various second derivatives in Eq.(48) are given in Appendix B. In the right 

side of Eq. (47), the first term is symmetric. Considering the commutativity of the 

global nodal variables in the differentiation of Eq. (48), the second term (its 

component at jth row and kth column is ∑
= ∂∂

∂15

1 GG

L

i
i

kj

i f
uu

u
, j, k=1,2,…,15; iuL  and if  

are respectively the ith components of Lu  and f ; juG  and kuG  are respectively 

the jth and kth components of Gu ) in the right side of Eq. (47) is also symmetric, so 

the element tangent stiffness matrix in the global coordinate system is symmetric.  

 

5. Numerical examples 

In the present newly developed 3-node co-rotational triangular shell element 

(abbreviated to “TRIS3” element in the following examples), assumed membrane 

strains and shear strains are employed to alleviate membrane and shear locking 

problems. To demonstrate the reliability and convergence of the TRIS3 element in 

solving elastic and elasto-plastic plate/shell problems with large displacements, (1) 

two plate patch tests, (2) three elastic plate/shell problems, and (3) three elasto-plastic 

plate/shell problems are analyzed using this element. With regard to numerical 

integration over the thickness, 2 Gauss points are adopted for the two patch tests 

(Example 5.1) and the three elastic plate/shell problems (Examples 5.2-5.4), and 6 

Gauss points are adopted for the three elasto-plastic plate/shell problems (Examples 

5.5-5.7) in accordance with the corresponding references considering these examples. 

Meanwhile, one Gauss point is adopted in numerical integration over the element 



domain for all examples. The results are also compared to those from the 

corresponding 3-node co-rotational triangular shell element employing conforming 

strains (abbreviated to “CTRIS3” element in the following examples) using the same 

integration schemes as above and those from other researchers [36,73-81]. 

 

5.1 Patch tests 

Two patch tests for the membrane behavior and the transverse out-of-plane 

bending behavior of plate and shell elements were suggested by MacNeal and Harder 

[73]. For these patch tests, consider a rectangular plate with a length 24.0L = , width 

12.0b =  and thickness 001.0h = , Young’s modulus 610E = , and Poisson’s ratio 

25.0μ = . Here, ten TRIS3 elements are employed (Fig. 5). 
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Fig. 5. Patch tests for in-plane membrane/out-of-plane bending plates 

In the membrane patch test, the displacements WVU ,, at the boundary nodes of 

the rectangular plate (Fig. 5) are prescribed by ( )2
YX10 3 += −U , ( )2

XY10 3 += −V  

and 0=W . If the problem were solved as a linear problem, the displacements at any 

point of the plate could be calculated using the above equations. The theoretical 

solution of this plate is a constant in-plane membrane stress field as shown below: 

1333== yx σσ      400=xyτ  

The linear solutions from the TRIS3 element are presented in Table 2 and Table 3.  



Table 2. Displacements at four internal nodes of the plate 

Node 

number i 

TRIS3 element Theoretical results 

iU  
iV  

iW  
iU  

iV  

1 5.0000e-5 4.0000e-5 0.0000 5.0000e-5 4.0000e-5 

2 1.9500e-4 1.2000e-4 0.0000 1.9500e-4 1.2000e-4 

3 2.0000e-4 1.6000e-4 0.0000 2.0000e-4 1.6000e-4 

4 1.2000e-4 1.2000e-4 0.0000 1.2000e-4 1.2000e-4 

 

Table 3. Stresses at the integration points of the inner element top surface 

Integration 

points 
xσ  

yσ  
zσ  

xyτ  
xzτ  

yzτ  

1 1333.3333 1333.3333 0.0000 400.0000 0.0000 0.0000 

 

To construct a constant stress state of the plate under out-of-plane bending, the 

displacements ),,( WVU  and rotations ( )YX ,θθ  at any point of the plate mid-surface 

should be prescribed by 

0==VU , ( )
2

10
22

3 YXYXW ++
= − , 

( )2
XY10 3

X += −θ ,       ( )2
YX10 3

Y +−= −θ  

For a linear problem, the theoretical solution for the stresses at the top and bottom 

surfaces of the plate is 

667.0±== yx σσ ,   200.0±=xyτ  

In the present triangular shell element formulation, vectorial rotational dofs are 

defined. These can be calculated from the prescribed rotations, 
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The linear results from the TRIS3 element agree very well with the theoretical 

results (see Table 4 and Table 5). 



Table 4. Displacements at four internal nodes of the plate 

Node 

Number i 

TRIS3 element 
Theoretical 

results 

iU  iV  iW  iW  

1 0.0000 0.0000 1.4000e-6 1.4000e-6 

2 0.0000 0.0000 1.9350e-5 1.9350e-5 

3 0.0000 0.0000 2.2400e-5 2.2400e-5 

4 0.0000 0.0000 9.6000e-6 9.6000e-6 

 

Table 5. Stresses at the integration points of the inner element top surface 

Integration 

points 
xσ  yσ  zσ  xyτ  xzτ  yzτ  

1 -0.6667 -0.6667 0.0000 -0.2000 0.0000 0.0000 

 

5.2. Clamped annular plate strip subject to transverse uniformly-distributed end 

load 

An annular plate strip has a geometry of the internal radius r=6m, the external 

radius R=10m, and the thickness h=0.03m. Its elastic modulus and Poisson’s ratio are 

E=2.1×108KN/m2 and µ=0.0, respectively. The plate is laid horizontally, and clamped 

at one end and uniformly loaded on the other end. The load is in downward direction 

along the free edge (see Fig. 6), q=6KN/m. 

 

Fig. 6. Clamped annular plate under uniformly distributed line load 



The load-deflection curves at Points A and B of the plate calculated respectively 

by using a 4×32×2 TRIS3-element mesh ( the 1st two numbers ‘4×32’ represents a 

mesh of quadrilateral elements, with the 3rd number ‘×2’ indicating that each 

quadrilateral element is further subdivided into 2 triangular elements), a 8×64×2 

TRIS3-element mesh, and a 16×128×2 TRIS3-element mesh are presented in Fig. 7, 

where it can be observed that the results obtained with the 4×32×2 TRIS3-element 

mesh are already accurate compared with the even more accurate results using the 8×

64 × 2 TRIS3-element mesh or the 16 × 128 × 2 TRIS3-element mesh. For 

comparison purpose, the results from Campello et al.[36] and Buechter & Ramm [74] 

are also depicted in this figure. The solutions obtained from using 4×32×2, 8×64×2 

and 16×128×2 lower order TRIS3 elements compare favourably with those from 

Campello et al.[36], employing 8×64 higher order six-node triangular shell elements, 

and Buechter & Ramm [74], employing 2×16 higher order bi-cubic quadrilateral shell 

elements. 

 

Fig. 7. Load-deflection curves at Points A and B of the clamped annular plate 

 



 

 

Table 6. Deflections at Points A and B of the clamped annular plate under end load q=6KN/m 

Element mesh Deflection at Point A Deflection at Point B 

CTRIS3-4×32×2 -0.5550m -96.47% -0.4189m -96.56% 

TRIS3-4×32×2 -15.1581m -3.48% -11.6028m -4.67% 

CTRIS3-8×64×2 -1.6239m -89.66% -1.2134m -90.03% 

TRIS3-8×64×2 -15.4847m -1.40% -11.9445m -1.86% 

CTRIS3-16×128×2 -4.0081m -74.48% -2.9526m -75.74% 

TRIS3-16×128×2 -15.7051m -- -12.1711m -- 

 

To evaluate the convergence of the solutions obtained with the TRIS3 or CTRIS3 

element using respectively the 4×32×2, 8×64×2 and 16×128×2 meshes, the 

deflections at Points A and B of the clamped annular plate under end loading 

q=6KN/m and their relative errors based on the results from the highest-density 

16×128×2 TRIS3-element mesh are presented in Table 6.  

The deformed shape of the clamped annular plate under end load q=6KN/m 

obtained using 4×32×2 TRIS3 elements is presented in Fig. 8, where large 

displacements and rotations are evident. 

 

Fig. 8. Deformed shape of the clamped annular plate under end load q=6KN/m 

 

5.3. Lateral buckling of L-shaped plate strip 



A flat L-shaped plate strip is fully clamped on one edge and subjected to an 

in-plane point load at the free end (Fig. 9), having Young’s modulus E=71,240N/mm2, 

and Poisson’s ratio μ=0.31. The plate has a geometry of L=240mm, b=30mm, and 

h=0.6mm. 

 

Fig. 9. Fully clamped L-shaped plate strip subject to in-plane point load at free end 

To investigate the lateral stability of the L-shaped plate, a very small perturbation 

load (F/250,000) is imposed on the free edge in the out-of-plane direction to trigger 

the post-critical lateral deflection (see Fig. 9). The meshes used for this analysis are a 

64×2 TRIS3-element mesh (where, ‘64’ represents quadrilateral elements, ‘×2’ means 

that each quadrilateral element is further subdivided into 2 triangular elements), a 

256×2 TRIS3-element mesh, and a 1024×2 TRIS3-element mesh; the results are 

presented in Fig.10. To verify the reliability of the present TRIS3 element, the results 

from a mesh with 136 six-node triangular shell elements [36] and a mesh with 68 

four-node EAS elements [75] are also represented in Fig. 10. 
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Fig. 10. Out-of-plane lateral deflection at free end of L-shaped plate 

 

Fig. 11. L-shaped plate: Initial and deformed shape 

The deformed shape of the L-shape plate (with the 64×2 TRIS3-element mesh) at 

the load level of F=2.5N is presented in Fig. 11, where large displacement and large 

rotation can be observed in the post-buckling stage of the L-shape plate. 

 

5.4. Pull-out of open cylindrical shell 

An open cylindrical shell has a geometry of L=10.35, R=4.953, and h=0.094. Its 

material properties are E=10.5×106 and μ=0.3125, respectively. The cylindrical shell 

is pulled by two diametrically opposite point forces F (Fig. 12). For symmetry reasons, 

only one-eighth of the cylindrical shell (i.e. the colored part) is analyzed. 

 



 

Fig. 12. Open cylindrical shell subject to two diametrically opposite point forces 

Three meshes with 4×8×2, 8×16×2 and 16×32×2 TRIS3 elements are employed 

respectively to calculate the deflection at the loading point A of the cylindrical shell. 

For comparison, we also represent in Fig.13 the results from Campello et al. [36] 

using a 8×16×2 mesh of six-node triangular elements, the results from Jiang & 

Chernuka [76] using a 8×12 mesh of four-node ANS degenerated-shell elements, and 

the results from Sze et al. [77] using a 8×12 mesh of eight-node hybrid-stress 

solid-shell element based on the total Lagrangian framework. 
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Fig. 13. Load-deflection curve at Point A of open cylindrical shell 

To demonstrate the convergence of the present element, the solution calculated 



respectively from using the meshes with 4×8×2, 8×18×2, 16×32×2 and 32×64×2 

TRIS3 elements or CTRIS3 elements are presented in Table 7, with the relative errors 

based on the results from the highest-density 32×64×2 TRIS3 element mesh.  

Table 7. Displacements at Points A and B of the pulled cylinder under end load F=4×104 

Element meshes WA (Displacement at Point A) UB (Displacement at Point B) 

CTRIS3-4×8×2 1.7789 -35.11% -2.8945 -36.41% 

TRIS3-4×8×2 2.7169 -0.90% -4.5083 -0.94% 

CTRIS3-8×16×2 2.2155 -19.19% -3.6410 -20.00% 

TRIS3-8×16×2 2.7207 -0.76% -4.5606 0.20% 

CTRIS3-16×32×2 2.4955 -8.98% -4.0591 -10.82% 

TRIS3-16×32×2 2.7295 -0.44% -4.5553 0.08% 

CTRIS3-32×64×2 2.6626 -2.88% -4.3821 -3.72% 

TRIS3-32×64×2 2.7416 -- -4.5515 -- 

 

The deformed shape of the pulled cylindrical shell at the load level of F=40,000 

obtained using 4×8×2 TRIS3 elements is presented in Fig. 14. 

 

Fig. 14. Deformed shape of the open cylindrical shell 

 
5.5. Square plate subjected to constant pressure load 

A square plate is simply supported along the edges (the out-of-plane 



displacements along its four edges are restrained), and subjected to a deformation 

dependent pressure load q=f×p0 on one side (Fig. 15), where p0=10-2 N/mm2. The 

plate has side length of 2L=508mm and thickness h=2.54 mm, with material 

properties: Young’s modulus E=6.9×104 N/mm2, Poisson’s ratio μ=0.3, initial yield 

stress fy=248 N/mm2 , and hardening parameter H=0.0.  

 

Fig. 15. A simply-supported square plate 

Due to symmetry, only a quarter of the plate (the colored zone in Fig. 15) is 

analyzed using respectively a mesh of 12×12×2, a mesh of 24×24×2, and a mesh 

of 48×48×2 TRIS3 elements. The load-deflection curves at the central point of the 

plate, from our present element, are presented in Fig. 16. For comparison, the 

following results are also presented in this figure: (1) Eberlein & Wriggers [78] using 

15×15 five- or six-parameter quadrilateral 4-node elements with refined mesh toward 

the outer corner, (2) Betsch & Stein [79] using 24×24 quadrilateral 4-node shell 

elements with regular mesh, (3) Valente et al.[80] using more refined mesh of 1375 

S4E6P5 elements and 24×24 S4E6P5 elements with regular mesh. The results from 

the three meshes with 12×12×2, 24×24×2, and 48×48×2 of the present TRIS3 

elements agree well with those from Betsch & Stein [79] and Valente et al.[80].  
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Fig. 16. Load-deflection curves at the central point of the plate 

Table 8. Deflection at the central point of the plate under q=0.6N/mm2 

Element meshes Deflection at Point A 

CTRIS3-12×12×2 92.2436mm -6.01% 

TRIS3-12×12×2 96.9707mm -1.19% 

CTRIS3-24×24×2 95.0619mm -3.13% 

TRIS3-24×24×2 97.6775mm -0.47% 

CTRIS3-48×48×2 96.9858mm -1.17% 

TRIS3-48×48×2 98.1339mm -- 

To evaluate the convergence of the TRIS3 element and the CTRIS3 element, the 

deflections at the central point of the plate under the pressure of 0.6 N/mm2 calculated 

from using the meshes with 12×12×2, 24×24×2 and 48×48×2 TRIS3 elements  

or CTRIS3 elements are presented in Table 8. 

In our analysis, the deformation-dependent pressure load is first decomposed in 

the directions of the three global coordinate axes by multiplying the value of the 

pressure with the mid-surface normal vector at each integration point on the 

mid-surface of the plate, the loads at the integration points are then transformed into 



equivalent nodal loads. The mid-surface normal vectors at integration points are 

updated at each iteration of every incremental step. We omit the geometric stiffness 

matrix corresponding to a pressure load to avoid the occurrence of an asymmetric 

element tangent stiffness matrix within the co-rotational framework. We note, 

however, that the convergence of the iterative solution procedure in the present 

problem is not compromised by such omission. 

The deformed shape of the plate at the load level of q=0.6 N/mm2 obtained using 

24×24×2 TRIS3 elements is presented in Fig. 17, showing large displacement and 

large rotation; plastic zone occurred in the plate.  

 

Fig. 17. Deformed shape of plate under constant pressure of 0.60 N/mm2 

 

5.6 Pinched hemispherical shell 

A hemispherical shell is loaded by two inward and two outward forces at the 

quarter points of its open edge (Fig. 18); the shell has a radius of 10 and a thickness of 

0.5. The material parameters are E=10.0, μ=0.2, fy=0.2 and H=9.0, respectively. 



 

Fig. 18. Hemispherical shell subject to pinched forces 

Due to symmetry, only a quarter of this hemispherical shell is analyzed (see the 

colored zone of Fig. 18), using a mesh composed of three subdomains, with each 

subdomain discretized with either (a) 4×4×2, or (b) 8×8×2, or (c) 16×16×2 

TRIS3 elements. The load-displacement curves at the pinching points A and B are 

depicted in Fig. 19, where it can be observed that the results obtained with three 

subdomains of 8×8×2 TRIS3 elements are already accurate compared with the even 

more accurate results using three subdomains of 16×16×2 TRIS3 elements. These 

results also agree well with those from Bestch & Stein [79] using three subdomains of 

16×16 bi-linear quadrilateral shell elements, and Eberlein & Wriggers [78] using 

three subdomains of 12×12 quadrilateral 4-node elements.  
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Fig. 19. Load-deflection curves at Pinching points A and B of hemispherical shell 



To illustrate the convergence characteristics of the TRIS3 element and the 

CTRIS3 element, the deflections at the pinched points A and B of the hemispherical 

shell under F=0.03 calculated from using a mesh composed of three subdomains, with 

each subdomain discretized with either (a) 4×4×2, or (b) 8×8×2, or (c) 16×16×

2, or (d) 24×24×2 TRIS3 elements or CTRIS3 elements are presented in Table 9, 

with the relative errors based on the results from the highest-density mesh composed 

of three subdomains, with each subdomain discretized with 24×24×2 TRIS3 

element mesh.  

Table 9. Deflections at the pinched point A and B under F=0.03 

Element Meshes Displacement at Point A (UA) Displacement at Point B(VB) 

CTRIS3-4×4×2 -2.0451 -48.51% 2.8519 -63.89% 

TRIS3-4×4×2 -3.7003 -2.42% 7.5705 -4.15% 

CTRIS3-8×8×2 -3.3402 -11.92% 6.1397 -22.26% 

TRIS3-8×8×2 -3.7526 -1.04% 7.7905 -1.36% 

CTRIS3-16×16×2 -3.6913 -2.66% 7.4629 -5.51% 

TRIS3-16×16×2 -3.7812 -0.29% 7.8764 -0.27% 

CTRIS3-24×24×2 -3.7539 -1.01% 7.7175 -2.28% 

TRIS3-24×24×2 -3.7922 -- 7.8979 -- 

 

Fig. 20. Deformed shape of a pinched hemispherical shell 

The deformed shape of the complete hemispherical shell at the load level of 

F=0.03 obtained using a mesh composed of three subdomains, with each subdomain 



discretized with 8×8×2 TRIS3 elements is presented in Fig. 20. Plastic zone 

occurred in the pinched hemispherical shell at this load level. 

 

5.7 Pinched cylinder 

Consider a cylinder supported by two rigid diaphragms at its two ends, where only 

the displacement along the longitudinal axis is allowed (see Fig. 21), with length 

2L=600, radius R=300, and thickness h=3. The material properties are E=3000, μ

=0.3, fy=24.3 and H=300. The cylinder is subjected to a pair of pinching concentrated 

loads (Fig. 21).  

 

Fig. 21. A pinched cylinder with two end diaphragms 

Again, owing to symmetry, only one-eighth of the cylinder (the colored zone of 

Fig. 21) is analyzed with three different uniform meshes: (a) 24×24×2, (b) 32×32

×2 and (c) 48×48×2 TRIS3 elements. The load-displacement curves at one pinched 

point are presented in Fig. 22, where it can be seen that the results agree well with 

those from Eberlein & Wriggers [78] using 32×32 four-node quadrilateral shell 

elements, Valente et al. [80] using 32×32 S4E6P5 shell elements, and Miehe [81] 

using 32×32 mixed brick-type shell elements. 
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Fig. 22. Load-displacement curves at one pinched point of the cylinder 

To evaluate the convergence of the TRIS3 element and the CTRIS3 element, the 

deflections at the pinched point of the cylinder under F=2500 obtained from using 

three different uniform meshes: (a) 24×24×2, (b) 32×32×2 and (c) 48×48×2 

TRIS3 elements or CTRIS3 elements are presented in Table 10, with the relative 

errors based on the results of the highest-density 48×48×2 TRIS3 element mesh.  

Table 10. Deflection at the pinched point of the cylinder 

Element meshes Deflection at the loading point 

CTRIS3-24×24×2 193.3528 -19.99% 

TRIS3-24×24×2 234.1663 -3.11% 

CTRIS3-32×32×2 214.7150 -11.15% 

TRIS3-32×32×2 239.6611 -0.83% 

CTRIS3-48×48×2 230.4556 -4.64% 

TRIS3-48×48×2 241.6718 -- 

The deformed shape of the overall cylinder obtained using 24×24×2 TRIS3 

elements at a load level F=2500 is depicted in Fig. 23, showing clear large 

displacements and large nodal rotations; plastic deformation occurs even at a very low 

loading level. 



 

Fig. 23. Deformed shape of the pinched cylinder 

 

 

6. Conclusions 

A 3-node co-rotational triangular shell element formulation has been proposed for 

elasto-plastic plate/shell analysis involving large displacement and large rotation. To 

overcome the locking problems, assumed membrane strains and assumed shear strains 

calculated respectively from the edge-member membrane strains and the 

edge-member transverse shear strains by using the line integration methods are 

employed in the present element formulation. The residual bending flexibility is 

added to the transverse shear flexibility to improve further the accuracy of the element. 

The reliability and convergence of the present shell formulation are demonstrated in a 

number of problems that include linear elastic patch tests together with six 

elastic/elasto-plastic plate and shell problems involving large displacement and large 

rotation.



APPENDIX A: Various derivatives of strains with respect to local nodal variables 

The first derivatives of membrane strains with respect to local nodal variables: 
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( )2,1,1 =− kjJ jk  
is the component of inverse Jacobian matrix at jth row and kth 

column; ξ,iN and η,iN are respectively the first derivative of the shape function Ni with respect to 

ξ  and η . 

The first derivatives of assumed membrane strains with respect to local nodal variables: 
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where, the ordered triplets ),,( jik  are given by (A,1,2), (B,2,3) and (C,3,1); ( )2:10ija  

represents the sub-vector of the vector 0ija  consisting of its first two components. 



The first derivatives of shear strains with respect to local nodal variables: 
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The first derivatives of assumed shear strains with respect to local nodal variables: 
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where, skB  represents the first derivative of the edge-member transverse shear strain at 

Point k (k=A,B,C) with respect to local nodal variables; the ordered triplets ),,( jik  in Eqs. 

(A-5a~e) are given by (A,1,2), (B,2,3) and (C,3,1). 

The first derivatives of bending strains with respect to local nodal variables: 
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The second derivatives of membrane strains with respect to local nodal variables: 
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where, three subscripts outside the parentheses in the left side of (A-7) represent the position of 

the component at the three dimensional matrix. The values of other unmentioned components of 

the three dimensional matrix are equal to zero. 

The second derivatives of assumed membrane strains with respect to local nodal variables: 
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APPENDIX B: Sub-matrices of transformation matrix T and its first derivatives with 

respect to global nodal variables 

Sub-matrices of transformation matrix T: 
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where, Xkp , , Ykp , , Zkp ,  are three components of the mid-surface normal vector ip in the global 
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where, 
ilip , is the biggest component of Vector ip  in the global coordinate axes ZY,X,  

directions; the second derivatives of other two components with respect to the vectorial rotational 

variables are equal to zero.  

2
,

2
,1, 1

iii minili ppsp −−=     3,2,1=i                         (B25) 

1s  is equal to 1 or –1. In an incremental solution procedure, it has the same sign as 
ilip , of the 

last incremental step, and its value will be updated after each incremental loading step. 
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