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Summary 

A 9-node co-rotational curved quadrilateral shell element with novel treatment for rotation at 

intersection of folded and multi-shell structures is presented. The element’s co-rotational reference 

frame is defined by the two bisectors of the diagonal vectors generated using the four corner nodes 

and their cross product. In reference frame, the element rigid-body rotations are excluded in 

calculating the local nodal variables from the global nodal variables. Rotations are not represented 

by axial (pseudo) vectors, but by components of polar (proper) vectors, of which additivity and 

commutativity lead to symmetry of the tangent stiffness matrix. In the global coordinate system, the 

two smallest components of the mid-surface normal vector at each node of a smooth shell, or at 

nodes away from the intersection of non-smooth shells, are defined as rotational variables. In 

addition, of the two nodal orientation vectors at intersections of folded and multi-shell structures, 

two smallest components of one vector, together with one smaller component of another vector, are 

employed as rotational variables, leading to the desired additive property for all nodal variables in 

a nonlinear incremental solution procedure. In the local coordinate system, the two smallest 

components of the mid-surface normal vector(s) at any node of a smooth shell, or in each smooth 

patch of non-smooth shell, are defined as rotational variables. Different from other existing co-

rotational finite-element formulations, the resulting element tangent stiffness matrix is symmetric 

owing to the commutativity of the local nodal variables in calculating the second derivative of strain 

energy with respect to these nodal variables. To alleviate membrane and shear locking phenomena, 

the membrane strains and the out-of-plane shear strains are replaced with assumed strains, using the 

Mixed Interpolation of Tensorial Components (MITC) approach, for obtaining the element tangent 

stiffness matrices and the internal force vector. Finally, a series of benchmark, challenging smooth, 



folded and multi-shell structures undergoing large displacements and large rotations are analyzed to 

demonstrate the reliability and computational accuracy of the proposed formulation. 

Keywords: Curved quadrilateral shell element; Co-rotational approach; Vectorial rotational variable; 

Folded and multi-shell structures; Locking free; Assumed-strain method 

 

1. Introduction 

Folded and multi-shell structures are widely used in engineering practice, such as thin-walled 

steel beams and columns, pressure vessels, silos, liquid and gas storage tanks, tubular towers, 

branching and intersecting pipelines, etc. In most of such multi-shells, the adjacent elements are 

usually stiffly connected to each other. But there also exist simply connected and partly simply 

supported shell junctions as well as the elastically and dissipatively deformable shell junctions [1-

5]. In this paper, only rigid junctions (the deformation of the multi-shell structure has no effect on 

the angle between the middle surfaces of the two shells at the junction) are considered, and the 

intersection of irregular shell structures are treated as curved lines between different smooth shell 

patches with their mid-surface interconnected non-smoothly. 

Different rotation parameters can be employed in shell elements [6-14]. In most existing finite 

element formulations based on classical shell theory, even though the rotation around the normal to 

the shell mid-surface are disregarded, these elements still demonstrate satisfying performance in 

modeling of smooth shell structures. Classical shell theory did not, however, achieve the same level 

of success in finite element modeling of non-smooth shell structures (such as folded shells and 

multi-shells) and connections of shells with beams, columns and stiffeners. The absence of a rotation 

component around the shell director makes it difficult to impose continuity at the branching points, 

or provide a compatible connection with a beam model [15-17]. To circumvent such problems, some 

researchers attempt to impose appropriate kinematic constraints at the branching points [17], or 

work in a local coordinate system which is aligned with the shell boundary [17]. Unfortunately, the 

former is sensitive to numerical ill-conditioning in shallow shell geometry, while the latter is 

cumbersome in numerical implementation [17]. To facilitate the modeling of non-smooth shell 

structures, some researchers introduced the drilling rotation component in developing finite element 

formulations, leading to shell finite elements with three rotation parameters per node [17-26]. 

Ibrahimbegovic and Frey [17-19] proposed a consistent formulation of geometrically-linear shell 



theory with drilling rotations by consistent linearization of geometrically non-linear shell theory. 

Chroscielewski et al.[20] proposed constitutive relations for composite shells within the framework 

of 6-parameter shell theory with drilling degree of freedom. Fox and Simo [21] obtained a three 

rotational degree of freedom formulation by enforcing weakly the kinematic constraint to identify 

the drilling rotation via a Lagrange multiplier term appended to the variational principle of the 

classical model. Since the corresponding Lagrange multiplier is shown to vanish at equilibrium, it 

is possible to construct a regularization of this constrained variational principle which yields the 

equilibrium equations for any value of the regularization parameter. Witkowski [22] presented a 4-

node C0 shell element with drilling degrees of freedom within the nonlinear 6-field shell theory, 

where kinematics of the shell is described by the vector field of translations and the orthogonal 

tensor field of rotations, and no restriction is applied on magnitudes of displacements and rotations. 

Ibrahimbegovic and Wilson [23] obtained a unified formulation for triangular and quadrilateral flat 

shell finite-elements with 6 nodal degrees of freedom by superposing discrete Kirchhoff plate 

bending elements and the membrane elements with drilling degrees of freedom. Kebari and Cassell 

[24] presented a nine-node degenerate stress-resultant shell element with 6 degrees of freedom at 

each node and the sixth dof is incorporated by using the penalty function method. 

Some difficulties are encountered in numerically implementing shell finite elements with 

drilling rotations, since the stiffness due to three rotations arises merely from the intersection of 

surfaces, whereas the stiffness due to the drilling rotation at any node away from the intersection of 

non-smooth shell is very low or even zero, thus numerical problems arise if a drilling rotation is 

employed at every node. This problem can be prevented by a classification of nodes – either located 

in the smooth areas or on the intersections. There is no general criterion to automatically distinguish 

these two types of nodes, thus requiring a manual classification. Alternatively, some kind of drilling 

rotation stabilization can be used [27-28]. To handle geometries with junctions and allowing for 

arbitrary intersections of patches, Dornisch and Klinkel [28] presented an enhanced isogeometric 

Reissner-Mindlin shell formulation which neither requires drilling rotation stabilization, nor user 

interaction to quantify the number of rotational degrees of freedom for every node. They assigned 

control points with corresponding physical location to one common node for the finite element 

solution, and defined a nodal basis system in every control point, which ensures an exact 

interpolation of the director vector throughout the whole domain. To avoid the problem of drilling 



degrees of freedom, several researchers developed solid-shell elements [29-33], in which nodal 

displacements are the only degrees of freedom, thus finite-rotation axial (pseudo) vectors and their 

complex update procedures are entirely avoided. Effective treatments for shear locking, membrane 

locking, trapezoidal locking, and Poisson thickness locking must, however, be introduced [29-33]. 

In the present 9-node co-rotational curved quadrilateral shell element formulation for smooth, 

folded and multi-shells, the Reissner-Mindlin theory is employed, allowing for shear deformation. 

Rotation is represented not by axial (pseudo) vector, but by components of polar (proper) vector, of 

which additivity and commutativity lead to symmetry of the tangent stiffness matrix. At any node 

of a smooth shell, or at a node away from the intersection of non-smooth shells, the two smallest 

components of the mid-surface normal vector in the global coordinate system are selected as 

vectorial rotational variables [34]. Such vectorial rotational variables had been successfully 

employed in developing 4-node and 9-node quadrilateral elements, 3-node and 6-node triangular 

elements accommodating elastic or elasto-plastic or composite behavior for smooth shells 

undergoing large displacement and large rotations [35-40]. On the other hand, at a node on the 

intersection edge of non-smooth shells, we introduce a novel treatment of rotation (without using 

an axial rotation vector) by using two smallest components of one vector and one smaller component 

of another vector of a triad oriented initially to three axes of the global coordinate system as vectorial 

rotational variables. These vectorial rotational variables could be different components of the same 

(polar / proper) vector(s) even at the same node in different incremental steps of a nonlinear 

incremental solution procedure. Two smallest components of the mid-surface normal vector are 

defined as vectorial rotational variables at any node of smooth or non-smooth shells in the local 

coordinate system. To alleviate the membrane and shear locking phenomena, the membrane strains 

and the out-of-plane shear strains are replaced with assumed strains in calculating the element strain 

energy. The tying point scheme used in the MITC approach [41] is employed in the calculation of 

the assumed strains. Different from the MITC isotropic quadrilateral shell finite element 

formulations using linear covariant natural strain tensor, in the present 9-node curved quadrilateral 

shell element formulation:  

1) The linear covariant natural strain tensor is replaced with the Green-Lagrange strains 

specialized for shallow curved shell (with nonlinear terms);  

2) A co-rotational framework is adopted in calculating the local internal force vector and 



element tangent stiffness matrix.  

In other existing co-rotational element formulations, most researchers employed axial vectors 

to represent rotations, and thus used non-vectorial rotational variables, enforcing the semi-tangential 

behaviour of nodal moments through a correction matrix to the conventional geometric stiffness 

matrix [42-48]. Felippa and Haugen [45] presented a co-rotational formulation, using spin (coming 

from the derivative of the rotation matrix) instead of rotation axial vector as nodal degree of freedom, 

that lead to non-symmetric geometric tangent stiffness matrix, and thus non-symmetric tangent 

stiffness matrix. Due to the non-commutativity of finite rotations about fixed axes, this method 

always leads to a non-symmetric tangent stiffness matrix [43-54]. Crisfield and his co-workers 

[43,46] also encountered this phenomenon, and artificially symmetrized the element tangent 

stiffness matrix by excluding the non-symmetric term. While this treatment can greatly improve the 

computational efficiency, quadratic convergence of solution, however, can not be expected. Crisfield 

[43] and Simo [49] suggested that a symmetric tangent stiffness matrix could be achieved if a certain 

set of additive rotational variables were employed in a co-rotational element formulation. Battini 

and Pacoste [55-56] parameterized the global rotations based on the Euler parameters (quaternion) 

[44], and obtained additive rotation variables, and thus symmetric tangent stiffness matrix. 

Ibrahimbegovic et al. [9] proposed a vector-like parameterization of three-dimensional finite 

rotation expressed through the well-known Rodrigues formula [6,44,57]. Even though these rotation 

parameters are additive, and lead to symmetric tangent stiffness, they are, however, not valid 

globally due to singularities that require additional treatments. To eliminate the singularities of the 

vector-like parameterization and the associated ill-conditioning problem, Ibrahimbegovic [10] 

employed incremental vector-like rotation parameters by restricting the size of the incremental 

rotation, where the finite rotations in each increment are updated by an iterative procedure, in which 

the material form of the incremental rotation vector is first updated by adding its iterative increment 

to the incremental rotation vector. The total spatial rotation is next obtained from its updated material 

representation by making use of the exponential mapping.  

Compared with other existing co-rotational element formulations, the present curved 9-node 

quadrilateral shell element formulation has several features:  

1) The vectorial rotational variables are defined as components of polar vectors, and thus all 

nodal variables (displacements and rotations) in the global coordinate system are additive in an 



incremental nonlinear solution procedure;  

2) All nodal variables are commutative in calculating the second derivatives of the element 

strain energy with respect to local nodal variables to obtain the local element tangent stiffness matrix 

and the local variables with respect to the global nodal variables to obtain the transformation matrix 

from local to global coordinate systems, resulting in symmetric element tangent stiffness matrices 

in the local and global coordinate systems;  

3) The element tangent stiffness matrix and the transformation matrix from the local to global 

coordinate systems are updated using the total values of the nodal variables in an incremental 

solution procedure, making it advantageous for solving dynamic problems [58-59].  

To verify the reliability and computational accuracy of the present 9-node co-rotational curved 

quadrilateral shell element, one smooth shell and six non-smooth plate/shell problems with large 

displacement and large rotation [60-63] are analyzed. 

The outline of the paper is as follows. Section 2 presents the co-rotational framework defined 

for the 9-node curved quadrilateral shell element and the element kinematics. Section 3 describes 

the local and global element formulations, and the assumed strain procedure used to alleviate 

locking problems. Section 4 describes the treatment of special load and boundary conditions. 

Section 5 introduces the nonlinear solution procedure adopted in solving the following examples. 

In Section 6, one smooth shell and six folded or multi-plates/shells problems undergoing large 

displacements and large rotations are analyzed to demonstrate the reliability and computational 

accuracy of the proposed element formulation. Concluding remarks are presented in Section 7. 

 

2. Kinematics  

The Reissner-Mindlin theory is adopted in the present shell element. Only rigid junctions at 

the intersection of folded and multi-shell structures are considered. The intersections of irregular 

shell structures are treated as curved lines with the mid-surfaces of different shell patches 

interconnected non-smoothly. A co-rotational approach is used to exclude the influence of element 

rigid-body rotations from the local displacement field, leading to an element-independent 

formulation. 



2.1. Co-rotational framework 

In Figure 1, XYZ defines the global coordinate system, while xyz defines the local co-rotational 

system which rotates rigidly with the element as it deforms. The x and y axes of the local coordinate 

system are defined to be coincident with the bisectors of the diagonal vectors generated from the 

four corner nodes [34], while the local z axis is defined as orthogonal to the x-y axes.  

 
Figure 1. Definition of co-rotation framework and nodal orientation matrix 

The co-rotational system at the initial configuration is defined by the orientation vectors 130v  

and 240v , as obtained from:  

1030130 XXv −= ;            2040240 XXv −=    (1a,b) 

where 0iX  is the global co-ordinates of Node i in the initial configuration. 

The corresponding normalized unit vectors of ( 130v , 240v )---called the “cross” vectors, each in the 

direction of a pair of opposite corner nodes---- are defined by: 

130

130
130 v

vc = ;           
240

240
240 v

vc =   (2a,b) 

With the adopted definition of the local system, the initial triad vectors ( 0xe , 0ye , 0ze ) of the local 



co-rotational system are therefore determined as [34]:  

240130

240130
0 cc

cce
−
−

=x ;        
240130

240130
0 cc

cce
+
+

=y ;              000 yxz eee ×=   (3a,b,c) 

We note here that defining the pair of orthogonal vectors 0 0( , )x ye e  along the bisectors of the 

“cross” vectors 130 240( , )c c [64] is similar to the method in Hughes and Liu [65-66], Hughes [67], 

and Belytschko et al. [68, p.569, Eq.(9.5.16)].1  Similarly, in the deformed configuration, the co-

rotational framework is defined by the orientation vectors ( 13v , 24v ): 

1313013 ddvv −+= ;                2424024 ddvv −+=   (4a,b) 

where id   is the translational global displacement vector of Node i   in the global coordinate 

system, with iiii WVU=Td .  

The corresponding unit vectors are determined from: 

13

13
13 v

vc = ;           
24

24
24 v

vc =   (5a,b) 

leading to the triad ( xe , ye , ze ) of the co-rotational system in the deformed configuration: 

2413

2413

cc
cce

−
−

=x ;        
2413

2413

cc
cce

+
+

=y ;      yxz eee ×=   (6a,b,c) 

In the global system, the element employs either five or six degrees of freedom at each node, 

depending on the type of node: 

T
9

T
9

TTT
1

T
1

T
ggiigG ndndndu =   (7) 

At every node, there are three global nodal translational degrees of freedom contained in the matrix 

                                                        
1 The difference is that the local coordinate system here is defined for the entire element, whereas the 
local coordinate system in Belytschko et al. [68, p.568, Eq.(9.5.13)] is based on two tangent vectors to 
the two coordinate lines in a shell lamina (a surface within a shell, at a constant transverse coordinate), 
and is pointwise, i.e., at a specific point within the shell lamina.  
 



iiii WVU=Td . At a node away from a shell intersection, there are two vectorial rotational 

degrees of freedom in minigi pp ,,
T =n  , where ( nip ,  , mip ,  ) are the two smallest global 

components of the nodal normal vector ip . At a node on the intersection of non-smooth shell, there 

are three vectorial rotational degrees of freedom in nizmiyniygi eee ,,,
T =n  , where 

miyliy ee ,, ≥ , niyliy ee ,, ≥  and nizmiz ee ,, ≥ , with {n,m,l} being circular permutation of {X, Y, 

Z},  are assumed at the preceding incremental loading step to keep the signs of liye ,  and mize ,  

unchanged at the present incremental loading step. The value of n, m and l may be different at 

different node, and may change at different incremental step in an incremental solution procedure. 

In other words, ,iy me  and ,iy ne  are the two smallest components of vector iye  at Node i, whereas 

,iz ne  is the smallest, or next to smallest, component of vector ize  at Node i. 

Three other components of iye and ize can be calculated from ( niye , , miye , , nize , ) at the present 

incremental loading step as follows  

                (8a) 

                 (8b) 
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                 (8c) 

where the sign symbols ( 1s , 3s ) take numerical value 1 or –1, and have the same signs as those of 

the components
 liye ,  and mize , , respectively, in last incremental step, and 312 sss ⋅−= . 

Vector ixe is the cross-product of Vector iye and Vector ize , 

iziyix eee ×=                                         (9) 

In the local coordinate system, the element has 45 degrees of freedom: 

T
9

T
9

TTT
1

T
1

T θtθtθtu  iiL =   (10) 

2 2 2 2 2 2
, , , , 1 , ,1 1 ( )iy iy l iy m iy n iy l iy m iy ne e e e s e e|| || = + + = ⇒ = − +e

2 2 2 2 2 2
, , , , 3 , ,1 1 ( )iz iz l iz m iz n iz m iz n iz le e e e s e e|| || = + + = ⇒ = − +e



where iiii wu υ=Tt  is the translational displacement vector of Node i in the local system, and 

iyixi rr=Tθ represents the two local components of the nodal normal vector ip  along the local 

x - and y -axes, respectively. 

The relationship between the local and global nodal translational displacements is explicitly 

given by: 

00 )( iii vRRRdt −+=     9,,2,1 =i   (11) 

where 0R   and R   are the orientation matrices of the co-rotational framework at the initial 

configuration and the current configuration, respectively, defined as: 

[ ]000
T

0 zyx eeeR =    [ ]zyx eeeR =T  (12) 

with 

9000 XXv −= ii , 9,,2,1 =i  (13) 

representing a vector oriented from Node 9 to Node i. 

In transforming the global nodal displacements to local nodal displacement according to 

Eq.(11), the initial local reference system is first rotated about Node 9 to the same orientation of the 

current reference system, though the centre of rotation is actually unimportant, and the local 

translations excluding rigid body rotation are measured from the initially rotated configuration, as 

illustrated in Figure 1. 

The relationship between the local components and the global components of the nodal normal 

vector of mid-surface at a node away from the intersection of shell are obtained from: 

000 ii pRr =                                                  (14a) 

                ii Rpr =  (14b) 

where 0ip  and ip  are the initial and current global components of the nodal normal vector at 

Node i, respectively; 0ir   and ir   contain the initial and current local components of the nodal 

normal vector at Node i, respectively. 



With the two smallest global components of the normal vector ip  used as vectorial rotational 

degrees of freedom at Node i, which is away from the intersection of shell mid-surface, the 

remaining component is obtained from: 

2
,

2
,4, 1 minili ppsp −−=     9,,2,1 =i                   (15) 

where 14 ±=s  takes the same sign as used for lip ,  at the previous incremental step of load, and 

( nip ,  , mip ,  ) represent the two smallest components of ip   used as global rotational degrees of 

freedom at Node i. 

The relationship between the local components and the global components of the nodal normal 

vector of mid-surface at a node on the intersection of shell are obtained from: 

000 ii pRr =                                          (16a) 

                    00
T

iiii pRRRr =                                         (16b) 

The orientation matrices 0iR  and iR  of Node i on a shell intersection correspond to the 

initial configuration and current configuration, with  

[ ]000
T
0 iziyixi eeeR =                         (17a) 

[ ]iziyixi eeeR =T                           (17b) 

For convenience, the initial orientation matrix 0iR  is defined as being coincident to the 

orientation matrix of the global coordinate system, i.e., 

001T
0 =ixe                                    (18a) 

010T
0 =iye                                    (18b) 

100T
0 =ize                                    (18c) 

and the triad of current orientation matrix iR  is evaluated from three nodal rotational variables as 

Eqs.(8a-c) and Eq.(9). 



2.2. Evaluating mid-surface normal vector of smooth and non-smooth shell  

Lagrangian interpolation functions are adopted to describe the geometry and the displacement 

field of the 9-node curved quadrilateral shell element: 

( )( ) ( )( )( , ) 1, 2, ,9
( )( ) ( )( )

j k J K
i

l j l k L J L K

h i
ξ ξ ξ ξ η η η ηξ η
ξ ξ ξ ξ η η η η
− − − −

= =
− − − −

  (19) 

where ( )Ll ηξ ,   represent the natural co-ordinates of Node i  , with   and 

 representing the natural co-ordinates of the remaining nodes. 

In the initial configuration, the local coordinates at any point within the element are obtained 

as: 

00 ),(
2
1),( iiii hah rxx ηξζηξ∑ +=   (20) 

where ζ  is the natural co-ordinate in the direction of the element thickness, 0ir  the initial normal 

vector at Node i in the local coordinate system, and a the thickness of element. 

The local coordinates of Node i , required in Eq.(20), can be obtained from the corresponding 

nodal coordinates in the global coordinate system as: 

000 ii vRx =  (21) 

The same Lagrangian shape functions are used to interpolate the translational and rotational 

fields, leading to an isoparametric formulation: 

∑= iih tt ),( ηξ  (22) 

∑= iih h θr ),( ηξ  (23) 

where t is the vector of local translational fields, and hr  the vector of local rotational fields. 

The global components of the initial normal vector at Node i of the curved shell element are 

obtained from the cross-product of the tangent lines corresponding to independent variation in the 

two natural coordinates: 

( )ii
i ηξηξ ,,0,00 XXp ×=       (24) 

j k lξ ξ ξ≠ ≠

J K Lη η η≠ ≠

1,2, ,9i = 



where 

( ) 0

9

1
0 , j

j
jh XX ∑

=

= ηξ  

with 0jX  representing the global co-ordinates of Node j. 

To minimize any discontinuity of slope between adjacent elements at Node i  , due to the 

parametric definition of the element shape in terms of nodal co-ordinates with polynomial functions, 

the mean value of the normal vectors from the surrounding elements within the same piece of 

smooth shell is adopted: 

∑

∑
=

0

0

0

0

0

i

i

i

i

i

p
p

p
p

p                  9,,2,1 =i  (25) 

On the other hand, if the true mid-surface of the curved shell is not smooth along the inter-

element edges, the normal vector of element at node i shared by multiple elements within different 

adjacent pieces of smooth shell must be obtained independently, and three global rotational degrees 

of freedom would then be required for each node along the edges of the slope discontinuity. The 

normal vector of element at node i in the current configuration is updated as follows:  

00
T

iiii pRRp =                                    (26) 

where the rotation matrices 0iR  and iR  correspond respectively to the initial orientation and the 

current orientation of Node i at the inter-element edge of non-smooth shell, as presented in Eqs.(8a-

c), (9), (17a-b) and (18a-c).  

 

3. Local and Global Element Formulations 

The total potential energy of the 9-node curved quadrilateral shell element is calculated from, 

e
T WdV

2
1dV

2
1

V 2V 1
T −+=Π ∫∫ γDγεDε   (27) 

where Π  is the total potential energy function, ε  the in-plane strain vector, γ  the transverse 



shear strain vector, V  the volume of the element, eW  the work done by external forces, with 

1D  and 2D  being the elastic-moduli matrices, 
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where 1k  is the shear factor, and 
6
5

1 =k  or 
12

2

1
π

=k , E  the Young’s modulus, and μ the 

Poisson’s ratio. 

The Green-Lagrange strains specialized for shallow curved shell [43] are adopted in calculating 

the element strain energy. For convenience, the in-plane strain vector ε  is split into two parts, a 

membrane strain vector mε  and a bending strain vector χlz , resulting in Eq.(27) being rewritten 

as 
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The derivatives of the nodal variables with respect to the local coordinates can be calculated 

from 
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The variation of the potential energy of the element with respect to the local nodal variables is 

given by  

( ) ( ) 0]dVdV[
V 2V 1

T =−+++=Π ∫∫ ufuBDγBBDχε δδδ γ extL
T

blmlm zz  (32) 

Where the matrices mB , blz B , and γB  are respectively the first derivatives of the membrane 

strain vector mε , the bending strain vector χlz , and the out-of-plane shear strain vector γ  with 

respect to the local nodal variable vector. The expressions of these derivatives are given in Appendix 

A. 

The internal force vector in the local coordinate system is given by 
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By differentiating the internal force vector with respect to the local nodal variables, the tangent 

stiffness matrix of the 9-node curved quadrilateral shell element is obtained 
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where T
L

m

u
B
∂
∂

 is the second derivative of the membrane strain vector mε  with respect to the local 

nodal variable vector; see the details in Appendix A. 

Eq.(33) and Eq.(34) are the conforming element formulations for the 9-node curved 

quadrilateral shell element in the local coordinate system. Due to the commutativity of the local 

nodal variables in calculating the second derivatives of the potential functionalΠ , the resulting 

element tangent stiffness matrix Tk  is symmetric. 

In solving thin-shell problems, the membrane and shear locking phenomena will not only lead 

to inaccurate results, but also deteriorate the convergence and the computational efficiency of the 

element formulations. To improve the performance of the present curved quadrilateral shell element 

formulation, the membrane strains, the out-of-plane shear strains, and their first and second 

derivatives with respect to the local nodal variables are replaced, respectively, with assumed strains 

and their derivatives with respect to the local nodal variables. The improved element formulations 

are then given as follows 
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The Mixed Interpolation of Tensorial Components (MITC) approach [41] is employed in 

calculating the assumed strains by replacing the membrane strain and out-of-plane shear strain 



components in natural coordinates with the membrane strains and the out-of-plane shear strains in 

Cartesian coordinates.  

 

Figure 2. Tying positions of the curved quadrilateral shell element 

The assumed strains are interpolated by using the conforming strains at the well-chosen tying 

points on the shell mid-surface (see Figures 2a-e), 
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where the first subscript i  in the right side of the conforming strain ixxε , iyyε , ixyγ , ixzγ  and 

iyzγ  represents the position of the tying point with natural coordinates ( Ll ηξ , ). For the normal 

strain xxε~   and transverse shear strain xzγ~  , the interpolating functions are 
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= . For the in-plane shear strain xyγ~ , the interpolating functions 

are 
( )
( )

( )
( )KL

K

jl

j
iN

ηη
ηη

ξξ
ξξ

−
−

−
−

=  . For the normal strain yyε~   and transverse shear strain yzγ~  , the 



interpolating functions are 
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=  . In these interpolation functions, 

kjl ξξξ ≠≠   and KJL ηηη ≠≠   are the natural coordinates of the tying points, and take the 

values of 0, a± , b±  or c± , with 
3

1
=a , 

5
3

=b , 1=c .  

After introducing the assumed strains, the resulting element tangent stiffness matrix is still 

symmetric. 

The internal force vector gf of the curved quadrilateral shell element in the global coordinate 

system can be calculated from that in the local coordinate system, 

fTf T=g   (38) 

where TT  is the transpose of the transformation matrix T  , which can be calculated from the 

relationships of the nodal variables in the local and global coordinate systems as follows [see  

Eq.(11), Eqs.(14a,b), and Eqs.(16a,b)] 
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with the details of the sub-matrices of T  given in Appendix B.                  

The element tangent stiffness matrix TGk  in the global coordinate system is calculated by 

differentiating gf  with respect to the global nodal variable vector Gu to yield 
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  (41) 

with the details of the sub-matrices of T
Gu

T
∂
∂

 given in Appendix B. In the right side of Eq.(40), the 

first term is symmetric. Owing to the commutativity of the global nodal variables in the 

differentiation of Eq.(41), the second term of Eq.(40) is also symmetric, consequently leading to the 

element tangent stiffness matrix in the global coordinate system being symmetric.2 

The derivation of the symmetry of the term f
u
T

T

T

G∂
∂

in Eq.(40) begins with writing Eq.(39) with 

indices as follows, 
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with the subscripts “L” and “G” meaning “Local” and “Global”, respectively, whereas i is the row 

index and j the column index. Then the force gf  can be written with components as 
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since 

                                                        
2 While symmetry of the tangent stiffness matrix would be relevant for traditional finite-element codes 
it is not relevant for multibody-dynamics codes, in which both rigid bodies and flexible bodies can co-
exist with complex connections among them, since all second-order ODEs are converted to first-order 
ODEs so many advanced Higher-Order Time INTegrators (HOTINT) can be used, resulting in non-
symmetric “tangent-stiffness” matrix  [71][72]. 
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It follows that the second term f
u
T

G∂
∂ T

 of Eq.(40) is symmetric. 

 

4. Treatment of special load and boundary condition 

Different from other existing co-rotational shell elements --- which use rotation axial vectors 

(pseudo-vectors) or the related spin tensors as degrees of freedom, leading to non-symmetric tangent 

matrix --- the present element formulation employs vectorial rotational variables that are 

components of polar (proper) vectors to develop a co-rotation framework for large displacement and 

large rotation problems. Any existing applied moments that correspond to the rotation axial vectors 

are transformed into equivalent loads for the corresponding vectorial rotation variables [70]. 

Assuming that vector ne is rotated through infinitesimal rotations of 

T
x y zδ δθ δθ δθθ =  to become vector 1+ne , then an approximate relationship of ne  and 

1+ne can be given as  

                         (46) 

where I  is a 3×3 unit matrix, and  a skew-symmetric matrix of components of the 

corresponding spin tensor [44] 
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Eq.(46) can be rewritten as 

( ) ( ) θeSeθSee δδ nnnn −==−+1                            (48) 

or 

( ) θeSe δδ nn −=                                        (49) 

Thus the relationship between the orientation vectors  at Node i and the nodal axial 

rotation vector  can be written as  
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Furthermore, the relationship between the incremental vectorial rotation variables and the nodal 

axial rotation variables can be given as 
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where )(, iykjS e  and )(, izkjS e  are respectively the components of )( iyeS  and )( izeS  at jth row 

and kth column. 

In calculating the equivalent components of the external force vector with respect to vectorial 

rotation variables, the work done by the equivalent components must be equal to that done by the 

corresponding moments at Node i , that is,  
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where eqjM (j=1,2,3) are the equivalent components of the external force vector with respect to 

vectorial rotation variable, and αiM  ( zyx ,,=α ) the moment components applied at Node i. 

Substitute Eq.(51) into Eq.(52), the equivalent components of the external force vector with 

respect to vectorial rotation variables can be calculated as 
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                  (53) 

If the direction of a constraint of nodal displacement is not coincident with any axis of global 

coordinate system, a modification of the element tangent stiffness matrix TGk  is necessary. A new 

orientation matrix cR  is defined at the node with special constraint, part of its orientation vectors 

is selected to be coincident to the directions of constrained displacements, then a relationship 

between the constrained displacement cid  and its components id  in global coordinate system is 

established through the new orientation matrix 



icci dRd =   or   icci dRd ∆=∆                                     (54) 

Similarly, the relation between the load components in the constraint directions and those in the 

directions of global coordinate axes is obtained as follows 

icci PRP =   or   icci PRP ∆=∆                                     (55) 

In an incremental nonlinear solution procedure, substitute Eq.(54) and Eq.(55) into the element 

force-displacement relation in global coordinate system 

eGTG Puk ∆=∆                                     (56) 

to obtain the force-displacement relation 
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where, TGkα  ( FBA ,,, =α ) are the sub-matrices of TGk ; the column matrices 1Gu∆ , id∆

and 3Gu∆  are the sub-matrices of Gu∆ ; likewise, the column matrices 1P∆ , iP∆ and 3P∆  are 

the sub-matrices of eP∆ . 

Using the orthogonality of the orientation matrix , Eq.(57) can be rewritten with the matrix 

 appearing in the tangent stiffness matrix as follows 
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The element tangent stiffness matrix expressed in Eq.(58) is then assembled into the global 

stiffness matrix, which incorporates the displacement constraints via the orientation matrix . 

 

5. Nonlinear solution procedure 

In the present nonlinear solution procedure, the incremental force-displacement relation at the 

start of the ith  loading increment is given as follows 

PUK iii
110 λ∆=∆                                             (59) 

cR

cR

cR



where i
0K  is the assembled global tangent stiffness matrix at the start of the incremental loading 

Step i ; i
1U∆  the increment of the global variables; P  the prescribed external force vector; and 

i
1λ∆   the increment of the loading parameter, calculated in accordance with the general 

displacement control procedure [70]:  

( ) 2
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1
11 1 GSPni λλ ∆−=∆                                      (60) 

where GSP  is the General Stiffness Parameter, with n being the number of times that the sign of 

GSP   changes, and 1
1λ∆   a prescribed initial incremental loading parameter, which can be 

evaluated through an advanced trial. The GSP  is calculated as follows 
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where the matrices 1
11U  , 1

11
−iU  , and i

11U   are obtained from solving the linear problems 
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1
0  , PUK =−− 1

11
1

0
ii  , and PUK =ii

110  , respectively, with 1
0K  and 1

0
−iK  being the 

assembled global tangent stiffness matrices at the start of the 1st and the  (i-1)th incremental loading 

steps, respectively. 

The equilibrium equation at the jth  iteration of the ith  loading increment is given by 
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i
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i
j

i
j PPUK +∆=∆− λ1      2≥j                    (62) 

where i
j 1−K is the assembled global tangent stiffness matrix at the end of the thj )( 1−  iteration, 

i
jU∆  the increments of the global variables obtained at the jth  iteration, resP  the residual or 

unbalanced loading vector at the end of last iteration, and i
jλ∆  the incremental loading parameter 

calculated in accordance with the general displacement controlling procedure [70] as follows 

 

i
j

i

i
j

i
i
j

1

T1
11

2

T1
11

UU

UU
−

−

−=∆λ                                   (63) 



For convenience, Eq.(62) can be rewritten as 
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i
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i
j 11   (64a) 
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i
j PUK =− 21   (64b) 

and the increments of the global variables given by 
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Considering that all the global variables are additive in the present incremental nonlinear 

solution procedure, the global variables iU  at the end of the ith  load increment are updated by 
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where 1−iU  is the state of the global variables at the end of the thi )1( −  load increment, and 

m  the number of iterations at the ith  load increment. 

The iterative process is terminated when the following convergence criterion is satisfied 
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where err   represents a small error tolerance. In the numerical examples below, we set 

610−=err . 

 

6. Numerical examples  

To demonstrate the reliability and computational accuracy of the present 9-node co-rotational 

quadrilateral shell element, designated as the Quad9 element, a hyperbolic-paraboloid shell with 

smooth mid-surface and six folded and multi-shell problems, all involving large displacement and 

large rotation are analyzed. The results are compared to those from other researchers [60-63]. 

6.1. Hyperbolic-paraboloid shell subjected to concentrated moment 

Consider a hyperbolic-paraboloidal shell (Figure 3) with the geometry described by the 



equation 
40

22 XYZ −
= , and with thickness ma 2.0= . Its projection in the X-Y plane is a square 

with the two corners A and B lying in the X-Z plane of symmetry. The side length of the projected 

square is mL 20= . The corners A and B are not sharp, but are snipped by a cut normal to the X-

Z plane, making an edge with width b, so only quadrilateral elements are used in the discretization. 

The shell material Young’s modulus is 2
410 m
kNE =  , and Poisson’s ratio 0.0=µ  . This 

hyperbolic-paraboloidal shell is supported at two corners A and B (Figure 3) in such a way that these 

points of support can undergo displacements in the directions normal to the shell mid-surface at 

those points, whose displacements are constrained in the direction tangent to the curved symmetric 

line ADB that is the intersection of the shell and the X-Z plane of symmetry, which halves the shell 

into two mirror-image parts. Two opposite distributed moments bfM ⋅⋅= ρ  are applied at the 

supported corner edges A and B, with f being the load factor, m
mkN ⋅= 5ρ  the density of the 

distributed moment, and b the width of the supported edges. This example was proposed by Basar 

and Ding [60] for testing large-rotation shell theory and for assessing shell finite elements in flexure 

with warped meshes. 

 



 

Figure 3. Hyperbolic paraboloidal shell loaded by two opposite moments along supported edges 

Due to symmetry, only a quarter of the hyperbolic-paraboloidal shell (the colored zone in 

Figure 3) is modeled and analyzed using a mesh of 24×8 QUAD9 elements. The mesh is generated 

by reducing projected element lengths onto X-axis with a constant ratio of 175.1/1=q  in the 

direction of DA, while the projected element lengths onto Y-axis is divided equally. Figure 4 depicts 

the relationship between the applied load and the displacement of Point B relative to Point D. For 

comparison, the results from Chroscielewski et al. [61] using 8×3 CAMe16 elements (Lagrange 

family of 16-node displacement-rotation based shell elements), 12×4 SEMe9 elements (9-node 

stress resultant based semi-mixed shell element), 24×8 SEMe4 elements (4-node stress resultant 

based semi-mixed shell element), 12×4 ASCe9 elements (9-node assumed strain shell elements) 

and 24 × 8 ASCe4 elements (4-node assumed strain shell elements), respectively, are also 

represented in this figure. The solutions from using 24×8 QUAD9 elements agree well with those 

from using 8×3 CAMe16, 12×4 SEMe9, 12×4 ASCe9 and 24×8 ASCe4 elements, respectively. 



 

Figure 4. Applied load vs displacement of Point B relative to Point D 

The deformed shapes of the hyperbolic-paraboloidal shell subjected to different magnitudes of 

applied moment (with load factor λ=0, 2, 3, 5, 7.23, respectively) calculated by using 28×4 QUAD9 

elements are presented in Figure 5, where large displacements and large rotations can be clearly 

seen.  

 

Figure 5. Deformed shapes of hyperbolic-paraboloidal shell subjected to  

different magnitudes of applied moments. 
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6.2. A right-angle cantilever subjected to distributed tip force/moment 

Chroscielewski et al. [61] presented a right-angle cantilever plate clamped at one end, and loaded 

either by distributed force or distributed moment at the free end (Figures 6a,b). The plate has 

Young’s modulus 7103E ×= , Poisson’s ratio μ=0.0, with dimensions, length L=12, width b=3, 

and thickness a=0.03. 

 

a) Distributed tip force    b) Distributed tip moment 

Figure 6. A right-angle cantilever subjected to distributed tip force/moment 

Both cases of distributed tip force and tip moment are analyzed using the same mesh of (12+12)

×2 QUAD9 elements. The load-displacement curves for these two cases are depicted in Figure 7 

and Figure 8, respectively. For comparison, the results obtained using the finite-element program 

ANSYS 18.0 [62] with a mesh of (12+12)×2 “Shell-81” elements (4-node quadrilateral shell 

element with six degree of freedoms per node, including a drilling rotation) are also depicted in 

these figures, showing a good agreement between the present QUAD9 element and the “shell-81” 

element of ANSYS [62]. 



 

Figure 7. Load-displacement curve of right-angle cantilever subjected to distributed tip force 

 

Figure 8. Load-displacement curve of right-angle cantilever subjected to distributed tip moment 

The deformed shapes are presented in Figs. 9a,b, respectively, with clear large displacements 

and large rotations. 
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a)                                                b) 

Figure 9. Deformed shapes of right-angle cantilever under different magnitudes of  

distributed tip force and moment 

6.3. Cantilever sickle shell subjected to lateral tip force 

A cantilever sickle shell is subjected to a lateral force at the free end (Figure 10). The sickle 

shell has dimensions, radius R=5, length L=10, width B=1, and thickness a=0.01. The material 

parameters are Young’s modulus 7103E ×= , and Poisson’s ratio 3.0μ = . 

 

Figure 10. A cantilever sickle shell subjected to a lateral tip force 

The sickle shell is discretized using (10+10)×2 QUAD9 elements, with the load-deflection 

curves at the midpoint of its free end given in Figure 11. The results from Chroscielewski et al. [61] 

using (10+10) × 2 SEMe9 elements and  (10+10) × 2 SELe9 elements (9-node standard 

degenerated shell element with six degree of freedoms per node, including a drilling rotation) are 



also presented in this figure. The results from using (10+10)×2 QUAD9 elements compare 

favourably with those from using (10+10)×2 SELe9 elements. 

 

Figure 11. Load-displacement curves of cantilever sickle shell subjected to lateral tip force  

 

Figure 12. Deformed shape of cantilever sickle shell under different tip force magnitudes 

The deformed shapes of the sickle shell at different magnitudes of the lateral tip force are 

presented in Figure 12.  

6.4. Cantilever I-beam subjected to transversal tip force  

Figure 13 depicts a cantilever I-beam subjected to a transverse tip force lying in the plane X-
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Z, and located at the center of the free end. The beam geometry is characterized by length 

L=4800mm, flange width b=300mm, web height hw=300mm, and thickness for both flange and web 

a=25mm. The beam’s material properties are Young’s modulus 2
5102E mm

N×= , and Poison’s 

ratio 3.0μ = .  

 

Figure 13. Cantilever I-beam subjected to transverse tip force 

A mesh of (2+2+2)×8 QUAD9 elements is used to model this I-beam. To determine the critical 

load, a perturbation tip force, orthogonal to the applied force P and lying in the plane Y-Z, with 

magnitude P/1000, is applied at the centre of the free end before the beam approaches a critical state. 

Once instability occurs, i.e., when the beam begins to bend sideways, this perturbation load is 

subsequently removed. The load-displacement curves at the centre of the I-beam are presented in 

Figure 14. For comparison, the results from Chroscielewski et al. [61] using the meshes with (2+2+2)

×8 CAMe16 elements, (2+2+2)×8 CAMe9 elements (Lagrange family of 9-node displacement-

rotation based shell elements with drilling rotations), (2+2+2)×8 SEMe4 elements and  (2+2+2)

×8 SEMe9 elements, respectively are also presented in this figure. The solutions from using (2+2+2)

×8 QUAD9 elements fits very well with those from using (2+2+2)×8 CAMe16 elements. 



 

Figure 14. Load-displacement curves of cantilever I-beam subjected to a transverse tip force  

The deformed shapes of the I-beam under the force magnitudes 1570=λ  and 2931=λ , 

with refPP λ=  and NPref 1000= , are presented in Figure 15, from which large displacement 

and large rotation can be observed. 

 

Figure 15. Deformed shapes of cantilever I-beam subjected to transverse tip force 

 



6.5. Cantilever stiffened doubly-curved cylindrical panel 

Shown in Figure 16 is a stiffened doubly-curved cylindrical panel fixed at one end, and 

subjected to a transverse force at the free end. The parameters for the shell geometry are length L=2, 

radius R=1, web height H=0.4, flange curvature angle o45=α , and thickness a=0.01. The shell 

material properties are Young’s modulus 510E = , and Poisson’s 25.0μ = . 

 

Figure 16. Cantilever stiffened doubly-curved cylindrical panel subjected to transverse tip force 

The cantilever stiffened cylindrical panel is analyzed using a mesh of (4+4+2)×6 QUAD9 

elements, with the resulting load-displacement curves at Points A and B presented in Figure 17. For 

comparison, the results from Chroscielewski et al. [61] using, respectively, (5+5+2)×6 CAMe16 

elements, (4+4+2)×6 CAMe9 elements and  (4+4+2)×6 SEMe9 elements, are also reported in 

this figure.  



 

Figure 17. Load-displacement curves of cantilever stiffened cylindrical panel  

subjected to transverse tip force 

The deformed shapes of the stiffened cylindrical panel at two different load levels are presented 

in Figure 18. 

 

Figure 18. Deformed shapes of cantilever stiffened cylindrical panel  

at two different load magnitudes 

6.6. Intersecting-plate structure 

A structure consisting of three intersecting flat plates is subjected to six concentrated forces at 



six different points, as shown Figure 19. The boundary conditions and reference loads are selected 

to bend the front plate and induce a torsional deflection of the middle plate. Consequently the 

induced torque must be supported by the clamped plate. The geometric dimensions of the 

intersecting plates are presented in Figure 19. The thickness of all three plates is 02.0=a . The 

material properties are Young’s modulus 7102E ×=  , and Poisson’s 25.0μ =  . All loads are 

controlled by a load factor and the same reference load 2P =ref   in the incremental nonlinear 

solution procedure. 

 

Figure 19. Intersecting plates subjected to six concentrated forces 

A mesh with 3(8×24) QUAD9 elements is used to model the intersecting-plate structure, 

resulting in the load-displacement curves at Point A as depicted in Figure 20. The results obtained 

using, respectively, 3(8×24) CAMe16 elements [25], 3(12×36) and 3(36×72) EANS4 elements 

(a 4-node C0 shell element with drilling degrees of freedom) [63] are also reported in this figure for 

comparison. The results from using 3(8×24) QUAD9 elements agree well with those from using 

3(8×24) CAMe16 elements [25] and 3(36×72) EANS4 elements [63]. 



 

Figure 20. Load-displacement curves at Point A of intersecting-plate structure  

subjected to six concentrated forces 

The initial shape and subsequent deformed shape of the intersecting-plate structure at the force 

magnitude 04.7=λ  are presented in Figure 21.  

 

Figure 21. Initial and deformed shapes of intersecting-plate structure 
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7. Conclusions 

A 9-node co-rotational curved quadrilateral shell element formulation is proposed in this paper 

for smooth, folded and multi-shell structures undergoing large displacements and large rotations. 

Different from other existing shell element formulations, additive and communative vectorial 

rotational variables are employed, resulting in symmetric element tangent stiffness matrices in both 

local and global coordinate systems. These vectorial rotational variables are components of normal 

vector or orientation vectors, which are (additive and commutative) polar / proper vectors, and not 

(non-additive and non-commutative) rotation axial / pseudo vectors. A sign-determination procedure 

for these vectorial rotational variables is introduced to update these variables in a nonlinear 

incremental solution procedure. To overcome membrane and shear locking phenomena, the 

membrane strains and the out-of-plane shear strains are replaced with assumed strains, using the 

Mixed Interpolation of Tensorial Components approach, for obtaining the element tangent stiffness 

matrices and the internal force vector. The reliability and computational accuracy of the present shell 

formulation are demonstrated in a number of smooth, folded and multi-shell problems involving 

large displacements and large rotations. 

  



APPENDIX A: Various derivatives of strains with respect to local nodal variables 

The first derivatives of membrane strains with respect to local nodal variables: 

0B0BB 91 mmm =                                        (A-1a) 

   i=1,2,…,9            (A-1b) 

where, 

ηξ ,
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12,
1

11, iixi NJNJN −− +=                                             (A-2a) 

ηξ ,
1

22,
1

21, iiyi NJNJN −− +=                                             (A-2b) 

( )2,1,1 =− kjJ jk  
is the component of inverse Jacobian matrix at jth row and kth column; ξ,iN and

η,iN are respectively the first derivative of the shape function Ni with respect to ξ andη . 

The first derivatives of shear strains with respect to local nodal variables: 
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The first derivatives of bending strains with respect to local nodal variables: 

91 bbb B0B0B =                                        (A-4a) 
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The second derivatives of membrane strains with respect to local nodal variables: 
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 i,j=1,2,…,9.                    (A-5) 

where, three subscripts outside the parentheses in the right side of (A-5) represent the position of 

the component at the three dimensional matrix. The values of other unmentioned components of the 

three dimensional matrix are equal to zero. 

APPENDIX B: Sub-matrices of transformation matrix T and its first derivatives with respect 

to global nodal variables 

Sub-matrices of transformation matrix T: 
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If Node k is away from intersections of non-smooth shell, two vectorial rotational variables are 

employed in global coordinate system, thus, the corresponding sub-matrices of T are evaluated as 

following,  
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In Eqs.(B-1) and (B-2) 
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In Eqs.(B-1)~ (B-6), k, l=1,2,…,9. 
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in (B-11), j=1 or 3, and if j=1, then, “± ” takes the value of  “–”, else if j =3, it takes the value of 

“+”. For other cases, the right side of (B-11) is a zero matrix. 
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in (B-12), j=2 or 4, and if j=2, then, “± ” takes the value of  “–”, else if j =4, it takes the value of 

“+”. For other cases, the right side of (B-12) is a zero matrix. 
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in (B-13), Xkp , , Ykp , and Zkp ,  represent the three components of shell mid-surface normal vector 

kp  in the directions of global coordinate axes -X,-Y and –Z, respectively. nkp , and mkp , are the 

two vectorial rotational variables at Node k, they are the two smallest components of Xkp , , Ykp ,

and Zkp , , and 
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 in (B-14a~c), mnl ≠≠ , { }ZYXmnl ,,,, ∈ , and they may take different values at different 

node of the same element. Other components not mentioned are equal to zero in Eq. (B-13). 

If Node k locates at an intersection of non-smooth shell, three vectorial rotational variables are 

employed in global coordinate system, they are three smaller components of the triad vectors of 

orientation matrix at Node k, and 

00
T

T

T

T00
T

TT iii
y

x

j
iii

j

h

j

i pRR
e
e

d
pRR

d
R

d
θ













∂
∂

=
∂
∂

=
∂
∂

                           (B-15) 

[ ] 00T00T

T

T iiiziyix
gj

hijii
gj

i
hij

gj

i pReee
n

RpR
n
RR

n
θ

∂
∂

=
∂
∂

=
∂
∂ δδ                (B-16) 

The first derivative on the right side of Eq. (B-15) is the same as Eqs.(B-4)-(B-12), and the first 

derivative on the right side of Eq. (B-16) is evaluated as following, 
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The components in Eqs. (B-18) and (B-19) are calculated as following, 
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in Eqs.(B-20f)~(B-20h), 
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The first derivatives of transformation matrix T’s sub-matrices with respect to global nodal 

variables: 
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In (B-22)~(B-24) , i, j=1,2,…9, and the sub-matrices are presented as following, 
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If Node k is away from intersections of non-smooth shell or the mid-surface of shell is smooth, 
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In (B-25)~(B-28), i, j, k=1,2,…,9, the first derivatives in Eqs.(B-25) and (B-27) are calculated as 

Eqs.(B-4)-(B-12), and Eqs. (B-13)-(B-14c). 
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in Eqs.(B-29)~(B-30) , j, k=1,2,3,4. 
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In (B-37), j,k=1 or 3, and if j=1, then, the first “± ” takes the value of  “–”, else if j =3, it takes the 

value of “+”; if k=1, then, the second “± ” takes the value of  “–”, else if k=3, it takes the value of 

“+”;  For other cases, the right side of (B-37) is a zero matrix. 
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In (B-38), j,k=2 or 4, and if j=2, then, the first “± ” takes the value of  “–”, else if j =4, it takes the 

value of “+”; if k=2, then, the second “± ” takes the value of  “–”, else if k=4, it takes the value of 

“+”;  For other cases, the right side of (B-38) is a zero matrix. 
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in (B-39), j, k=1,2,3,4. 
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in (B-40)~(B-42c), i=1,2,…9.  

If Node k locates at an intersection of non-smooth shell, 
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The second derivatives on the right hand side of Eq. (B-43) are the same as Eqs.(B-29)-(B-39). 
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The first derivatives in Eqs.(B-44) and (B-46) are calculated as Eqs.(B-4)-(B-12), and Eqs. (B-18)-

(B-21c). The second derivatives in Eqs.(B-45) and (B-46) are calculated as following, 
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