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ABSTRACT

This paper presents a new model for characterizing temporal dependence in
exceedances above a given threshold. Our model is based on a class of station-
ary, infinitely divisible stochastic processes known as trawl processes. For use with
extreme values, our model is constructed by embedding a trawl process in a hierarchi-
cal framework. This ensures that the marginal distribution is a generalized Pareto, as
expected from classical extreme value theory. We also consider a modified version of
this model that works with a wider class of generalized Pareto distributions (GPDs)
and has the advantage of separating marginal and temporal dependence properties.
The model is illustrated via various applications to environmental time series; thus,
we show that the model offers considerable flexibility in capturing the dependence
structure of extreme value data.
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1 INTRODUCTION

Modeling dependencies in extreme value data is a topic of growing importance,
with applications in a number of fields such as hydrology (de Haan and de Ronde
1998), oceanography (Coles and Tawn 1991), financial risk management (Embrechts
et al 1997; Ledford and Tawn 2003) and environmental science (Davison et al 2012;
Heffernan and Tawn 2004).

The main contribution of this paper is a new extreme value model that can account
for serial dependence in the extremes; this extends the hierarchical setup of Bortot and
Gaetan (2014). The starting point for this model is the observation that the marginal
distribution of exceedances converges to a generalized Pareto distribution (GPD;
see Davison and Smith (1990)). Bortot and Gaetan (2014) use a decomposition of the
GPD to construct a hierarchical model for exceedances that preserves this distribution
marginally. We adopt this hierarchical structure and then proceed to introduce a new
model incorporating the properties of so-called trawl processes. The original approach
of Bortot and Gaetan (2014) involved using a Markov chain to generate dependence
in the exceedances. By using a trawl process instead of a Markov chain, we obtain a
more flexible dependence structure. Moreover, the trawl process framework provides a
unified procedure for generating processes with a given infinitely divisible distribution
and autocovariance function, whereas Bortot and Gaetan (2014) consider two different
specifications for the latent Markov chain with the same marginal distribution and
autocovariance function.

We also consider a modification of the new model that makes it suitable for use
with any GPD, thus removing the restriction (inherited from the original model of
Bortot and Gaetan (2014)) that the shape parameter of the GPD has to be positive.
This means that our modified model can be used for processes with less heavy tails
(often to be found in environmental applications), as illustrated by its application to air
pollution data. The modification also improves the interpretability of the parameters
and appears to make the estimation procedure more efficient.

We remark that our new dynamic model for environmental variables (such as pre-
cipitation and ozone levels) can also be used as a basis for designing suitable hedges
through weather derivatives. Weather derivatives on rainfall have been traded in the
past and there is current interest in setting up derivatives that will allow us to hedge
against other climate variables.

This paper is structured as follows. Section 2 introduces the latent trawl process
model for dependent extremes in a hierarchical setup. Section 3 discusses parame-
ter estimation and inference, and develops a measure for the extremal dependence
structure that is adapted to the model. Section 4 applies the model to two differ-
ent examples of environmental time series (rainfall and air pollution), and Section 5
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concludes. Details of our estimation procedure are presented along with the proof of
our theoretical results in the online appendix.

2 LATENT TRAWL PROCESS MODEL

2.1 Basic structure

This subsection introduces the hierarchical structure used for the extreme value model,
which is taken from Bortot and Gaetan (2014). Throughout the paper, we work on a
probability space (§2, ¥, P). Consider a discrete-time stochastic process denoted by
{Y;} that is assumed to be strictly stationary. We assume that we observe the process
at times j = 1,...,k for k € N, looking at extreme values of Y;, meaning that
Y; > u for a fixed threshold u.

In order to focus on extreme values only, we will consider the values and occurrence
times of any exceedances. To this end, we define the exceedances X as follows:

X; = max(Y; —u,0), j=1,... .k 2.1)

From standard extreme value theory (see, for example, Davison and Smith 1990;
Pickands 1975), assuming {Y; } are in the domain of attraction of some extreme value
distribution, the conditional exceedances {X; | X; > 0} converge to a GPD for an
appropriate sequence of thresholds u, — oo. Based on this result, we will assume
that the conditional distribution of X; given X; > 0 can be approximated by a GPD
for a sufficiently large threshold u. The density of the GPD is written as

o x —(a+1)
fGPD(x|auB)=_(1+_) , x=20,a,8>0,
B B+

where y4 = max(0, y), which is a reparameterization of the standard density with
shape parameter £ = 1/« and scale parameter 0 = 8/«.

Following Reiss and Thomas (2007) as well as Bortot and Gaetan (2014), the GPD
can be represented as a mixture of an exponential random variable with a gamma-
distributed parameter, motivating a hierarchical specification for the exceedance pro-
cess {X;}. In particular, we assume that the distribution of X; depends on the value
of a latent process A at time j, denoted by A;. This latent process determines both
the probability of observing an exceedance (corresponding with X; > 0) and the
distribution of the exceedances.

Specifically, we assume that, conditional on the latent process A, the random
variables X; are independent and

Xj | (Xj >0, Aj) ~ EXp(Aj). (2.2)
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To ensure the threshold exceedances follow the GPD, we can use any stationary
stochastic process A that has a gamma marginal law. The precise specification of A
will be discussed in Section 2.2.

Next, following Bortot and Gaetan (2014), we assume that

P(X; >0]Aj) =e Y, 2.3)

where the parameter k > 0 is linked with the proportion of the occurrence of
exceedances above the threshold u. Combining (2.2) and (2.3), we find that the
conditional density of X; given A; = A; has the following functional form:

1—e 4, x; =0,

(2.4)
e kA /\je_)“fxf, x; >0,

S(xj | Aj) =

where the density f is defined with respect to the measure p(dx;) = do(dx;) +
dx;. This construction shows that the exceedance X; is generated by a two-stage
process, conditional on the value of A;. First, X; is set to zero with probability
1 — ™%/ Second, the distribution of X; given {X; > 0, A; = A;} is exponential
with parameter A;. The latent process A may be interpreted as an inverse intensity,
as higher values of A give a lower probability of exceeding the threshold v and a
smaller expected value of exceedances.

Since we require the observations X; to be independent for the distinct values
of j, conditional on the corresponding values of A, the conditional joint density of

(X1, ..., Xy) factorizes and can be written as
k
SO x| A a) = T £y 1A, 2.5)
j=1
This specification implies that any dependence between observations Xi,..., Xg

comes from the dependence between corresponding elements of the latent process A.

To complete the GPD mixture construction, the latent process requires a gamma
marginal law, that is, A; ~ Gamma(x, B) for o, > 0. This implies that the
corresponding density is given by

fa, (x) = BT (@) 'x* e ¥ forx >0,
and the characteristic function is given by
E(exp(iud;)) = exp(C(u, A})),

where C(u, Aj) = —alog(1 —iu/p) denotes the corresponding cumulant function,
which is the distinguished logarithm of the characteristic function (see Sato 1999,

Journal of Energy Markets www.risk.net/journals



A latent trawl process model

p- 33). This specification introduces the restriction @ > 0, meaning that the model
can only capture data belonging to the Fréchet distribution class. Section 2.4 presents
a modified version of the model that removes this restriction.

A straightforward computation shows that, when using the above specification,
the exceedances {X;: X; > 0} have a GPD(«, B + «) marginal law. Further, the
unconditional probability of observing an exceedance is given by

P(X; >0) = Egle ™4 = (1 + %)_a. (2.6)

2.2 Latent trawl process

The previous subsection describes a general hierarchical model setup, using the same
structure that is found in Bortot and Gaetan (2014). So far, the latent process A
has been specified as having a gamma marginal law only. Now we depart from the
approach used in Bortot and Gaetan (2014), in which the latent process is assumed
to be a Markov chain (specifically a Gaver and Lewis process (G-LP) or a Warren
process (WP)). Instead, we consider a new model in which A is a trawl process.
In principle, any stationary process with gamma marginal law could be used in this
construction. We will argue, however, that processes belonging to the “trawl” class are
particularly suited to the purpose, since they allow us to model the serial correlation
and the marginal distribution independently of each other.

The conditional independence assumption of the hierarchical model means that any
dependence between observations comes from the latent process; hence, this process
should have a flexible dependence structure. This explains our use of a trawl process
capable of capturing a wide range of dependence structures (as discussed below).
Using a trawl process also means that the observations X; can be seen as coming
from a continuous-time process (X;), which is useful for statistical applications where
there may be missing or irregularly spaced data.

Bortot and Gaetan (2014) consider two particular classes for the latent Markov
chain, the G-LP and the WP, and proceed to show how these two classes result in
different asymptotic properties of the extremes, even though they have the same
autocorrelation function. In contrast, the latent trawl process in our model is specified
by its trawl set, which corresponds with a particular autocorrelation function. As will
be shown in Section 3.2, the resulting process is asymptotically independent, and the
form of the dependence structure is influenced by the trawl set.

2.2.1 Definition and properties of the trawl process

Let us now define the class of trawl processes and present the key properties common
to all processes in this class. Trawl processes were introduced by Barndorff-Nielsen
(2011) and have been further developed by Barndorff-Nielsen et al (2014), Shephard
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and Yang (2016, 2017) and Veraart (2018). They are stationary, infinitely divisible
stochastic processes that are made up of two components: the Lévy basis and the
trawl set. In order to define these components, we need to introduce the relevant
notation first.

To this end, let S be a Borel set in R?, with the associated Borel o-algebra § =
B(S) and Lebesgue measure A-°. Let B, (S) be the subsets of S with finite Lebesgue
measure, ie, Bp(S) = {4 € 8: A®(4) < oo}. The purpose of the following
definition is to set out what we mean by a homogeneous Lévy basis, which is the
source of randomness in the trawl process.

DEFINITION 2.1

(1) A random measure on (S, B(S)) is a collection of R-valued random vari-
ables {M(A): A € Bp(S)} such that, for any sequence A;, As,... of dis-
joint elements of By(S) with | J;Z; 4; € Bp(S), we have M(J72, 4)) =
>_721 M(A;) almost surely.

(2) A random measure M on (S,4d) is independently scattered if, for any
sequence Ap, Az, ... of disjoint elements of By (S), the random variables
M(Ay), M(A,), ... are independent.

(3) A random measure M on (S, ) is said to be infinitely divisible if, for each n €
N, there exist n independent and identically distributed (iid) random measures
Z71,...,Z) such that M Lz T +---+ Z,. In particular, infinite divisibility
implies that, for any finite collection Ay, ..., A, of elements of By (S), the
random vector (M (A1), ..., M(A,)) is infinitely divisible in R”.

(4) A random measure on (S, §) is deemed stationary if, for any point s € S and
finite collection A1, A3, ..., Ay € Bp(S) such that A; + s C S, we have

(M(A; +5), M(As +5), ..., M(Ay +5)) = (M(A1), M(As), ..., M(Ay)).

(5) A homogeneous Lévy basis L on (S, 4) is a random measure that is indepen-
dently scattered, infinitely divisible and stationary.

Let L denote ahomogeneous Lévy basis on (S, 4). Then, the characteristic function
satisfies the fundamental relation

Elexp{iulL(A)}] = exp{)LLeb(A)K(u)}, for A € Bp(S), 2.7)
where

K@) = iup — tu*o® + / (€™ — 1 —iuzljz<;)v(dz) (2.8)
R
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for constants ;& € R, 02 > 0 as well as a Lévy measure v (see, for example, Barndorff-
Nielsen 2011; Rajput and Rosinski 1989). Since (2.8) takes the form of the cumulant
function of an infinitely divisible random variable, we can associate a Lévy seed
(denoted by L") with the Lévy basis L, which may be defined as arandom variable with
law characterized by (2.8). We can then write C (1, L") = K(u) for the corresponding
cumulant function, leading us to conclude that

Elexp{iuL(A)}] = exp{A"®(A)C(u, L")}, for A € Bp(S). 2.9)

This shows that the law of L(A) is fully determined by the Lévy seed L’ and the
Lebesgue measure of the set A.
We can now define the class of trawl processes.

DEFINITION 2.2 Let A be any set in 85 (R x R), and define a collection of trawl
sets { A; } by shifting A along the R-axis corresponding with the last coordinate, which
represents time: A, = A 4+ (0,¢) := {(a1,a2 +t): (a1,a2) € A}. Let L denote a
homogeneous Lévy basis. The trawl process (A;);er is then defined by evaluating
the homogeneous Lévy basis over the trawl set, ie, by setting A, = L(A;) fort € R.

The trawl process definition can be written as a stochastic integral that will become
useful for our calculations in the following. Specifically, we write

A= [ LaEoL@ad) = [ LEs- L)
RxR RxR
where points in R? are denoted by (£, s5) for £ € R, s € R, so that the last component
corresponds with the time axis. We define the stochastic integral in the same sense
that it is used in Rajput and Rosinski (1989) (see Barndorff-Nielsen et al (2015) for
a review of the relevant integration theory).

From the definition of the trawl process, we can immediately deduce that the process
is stationary and infinitely divisible, and that the characteristic function is given by
(2.9) since A, < Ap. Moreover, the stochastic integral representation implies that
the trawl process is also a so-called mixed moving-average process; it was shown
in Fuchs and Stelzer (2013) that mixed moving-averge processes are mixing, so it
follows that trawl processes are mixing and ergodic.

2.2.1.1 A slice representation for the finite-dimensional distributions. Next,
we study the finite-dimensional distributions of a trawl process and derive what we
call a slice representation for its characteristic function, which will be very useful for
simulation and inference purposes later on.

To this end, consider a sequence 0 < #; < --- < #; with & € N. Let us now
derive the joint characteristic function of (Ay, ..., Ay ). We write A; = Ay, to
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simplify the exposition. Typically, we will choose ¢; = j. We consider the union
AV = Ule Ay, . Using the inclusion—exclusion principle, we construct what we
call a “slice” partition {S1,..., Sy, } of AYk where ny denotes the number of ele-
ments in the partition. In addition to {Si,...,S,, } being a partition of AYK | we
require the partition to be such that each trawl A;, can be written as a union of ele-
ments of that partition. A further requirement is that the intersection of any number
of trawl sets and trawl set complements is a union of subsets in the partition. For gen-
eral trawls, one would need n; = 2k_1, whereas for monotonic trawls this number
reduces to k(k + 1)/2. For example, in the case where k = 2, a suitable slice partition
of Ay, U A, is given by {A;; N Asy, Agy \ Asy, Asy \ Asy )

ProPOSITION 2.3 For uy,...,ur € R, we have (using the notation introduced
above) that

k ng
E(exp (iZujAj)) = exp ( Z A (S, C (0, L’)),

Jj=1 m=1
+ . ,
foru, = E Uj.

1<j<k:
Atj DSm

An immediate consequence of Proposition 2.3 is the following corollary stating the
second-order properties of a trawl process.

COROLLARY 2.4  Consider a trawl process with finite second moment. Then, for all
t €R, h =0, wehave E(A;) = AX°(A)E(L’), Var(A;) = AX*(A) Var(L'), and

AL (A N Ap)

Cor(Ata At-‘rh) = A,Leb(A)

2.2.2 Marginal distribution

In the context of our latent trawl model, we are exclusively interested in the case of
a marginal gamma law. Specifically, we fix a set A in 85 (S) and let the Lévy seed
have a normalized gamma distribution, that is,

, o
L' ~ Gamma ()LLT(A) ,3). (2.10)

Thus, the trawl process defined by A; = L(A;) has a Gamma(c, ) distribution.
Combining trawl process A with the hierarchical model presented in Section 2.1,
we obtain a stochastic process (X;) with finite-dimensional densities given by

fx1,...,xk) = /k (1_[(1 _e—ldj))( 1_[ Aje—lj(w-xj)) dF(A1,..., A ),
Ry

Jj€lo JEI>
2.11)
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where Io = {j € {l,...,k}: x; =0}and I. = {j € {l,...,k}: x; > 0}. These
densities depend on the joint distribution F of (A, ..., Ax), which is fully specified
by the trawl set A and the Lévy seed L’, as shown in Proposition 2.3.

2.2.3 Trawl set

To complete the definition of trawl process A, it now remains to specify the trawl set
A. For our model, we use the so-called exponential trawl set; this is the trawl obtained
by setting

A={(.5):5<0,0<& < dexp(s)} C[0,1] x (—00,0],
for deyp(s) = exp(ps), for some p > 0.

The resulting process is called the exponential trawl process, via which we obtain a
hierarchical model with parameters (p, «, 8, k).

The autocovariance function of the trawl process is given by ¢(h) = A®(4 N
Ap) Var(L') and, used with the exponential trawl, it gives AL°*(4) = p~1, AP (4 N
Ap) = e ?"p~1. Combining it with (2.10) gives Var(L') = (ap)/p?, resulting in
the autocovariance function

oh) = e_ph% = e " Var(A,).

Thus, the autocorrelation function of the exponential trawl process has the same decay
rate as the trawl function deyp,, Which is a particular property of the exponential trawl.

We can also consider a general exponential trawl set constructed from linear com-
binations of basic exponential trawls. To do so, we define the general exponential
trawl set of order p to be bounded above by the function d, (x) = Zf’ —, wieP* with
> ; w; = 1. The latter restriction is necessary to make the parameters identifiable,
as any scaling factor in the weights w; will scale the area of the trawl and thus be
canceled by the normalization in (2.10). When using the general exponential trawl
set, the resulting trawl process has an autocorrelation function r (k) given by the cor-
responding linear combination of e i*. This construction can be seen as a special
case of a superposition-type trawl where the decay parameter p is randomized, as in
Barndorff-Nielsen ef al (2014, Section 4) (see Barndorff-Nielsen (2001) for a similar
approach applied to Ornstein—Uhlenbeck-type processes). Other relevant choices for
trawl sets beyond the exponential setting are discussed in Barndorff-Nielsen et al
(2014), and we also remark that the trawl need not be restricted to an R? setting but
could be considered in higher dimensions if necessary.

To summarize, we have constructed a trawl process A with a marginal gamma
distribution and an exponentially decaying autocorrelation function. Using such a
discretized trawl process as the latent process in the hierarchical structure results in a
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discrete-time process (X ), where the exceedances { X; > 0} have a GPD. Further, the
model allows for dependence between observations { X}, which is derived directly
from the dependence in the latent trawl process.

2.3 Autocovariance structure

We now consider the mean and the autocovariance structure of the exceedance process
(X;) from the latent model, which we summarize in the following proposition.

PROPOSITION 2.5 The mean of the exceedance process (X;) is, forall j € NU{0},
given by
(L+«/B)*(B +«)

a—1

E[X]:= E[X,] = > 1.

Since X is a stationary process, it has the autocovariance function p(h) = E[XoXp]—
E?[X], where for h € N,

© oo bo\n bo.n buvo
i [ 3005 3
K K

2.12)

whereb; = —a AL (B;) /AL (A) fori € {(O\h). (0. ), (1\O)} with Bo\y = Ao\ Ap,
BO,h = Ag N Ap, Bh\O = Ay \ Ay. Note that bO\h = bh\O-

The integral in (2.12) can be computed numerically to obtain the autocovariance
of X for given parameters («, B, p, k), where the parameters b; are functions of p and
h.

The trawl process separates the parameters controlling the marginal and depend-
ence properties of the model. However, this is not the case when considering the full
hierarchical model, as the parameters ¢, 8 and k in the marginal distribution also influ-
ence the autocovariance structure of the process. This is illustrated in Figure 1, which
shows the two different autocorrelation functions obtained by varying the parameters
a and B (solely for illustrative purposes, the plot is provided in a continuous-time
setting). This conflation of marginal and dependence parameters motivates the model
in the following subsection.

2.4 Marginal transformation model

This subsection considers a modification of the latent trawl model that has the effect
of separating the marginal and dependence properties. This modification allows the
model to have GPDs with negative shape parameter. The original restriction regarding
the shape parameter, specifying positive values only, was highlighted as a potential
problem in the conclusion of Bortot and Gaetan (2014), where a similar modification
was suggested but not explored further.

Journal of Energy Markets www.risk.net/journals
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FIGURE 1 Autocorrelation functions of latent trawl models.

0.20+

0.15+

0.10

Autocorrelation

0.054

Solid line corresponds to a model with @ = 4, B = 4. Dashed line corresponds to @ = 9, B = 1. Both models set
p = 0.2 and « such that the probability of an exceedance equals 0.05.

The model resulting from our modification is easier to interpret, as the role of each
parameter is uniquely defined in terms of whether it controls

e the marginal distribution,
o the probability of exceedance, or

e the dependence properties.

This also contributes to the identifiability of the parameters. In particular, we found
that the estimation procedure appears to be more efficient with the modified model.

The modified model is derived from the original model in two steps. First, we fix
the parameters «, 8 of the latent gamma distribution such that only the parameters
associated with the trawl set will influence the trawl process and thus the dependence
of the exceedances. In the following, we work witha = B = 1, such that the marginal
law of the exceedances is given by GPD(1, 1 + «).

Second, we add an extra layer to the modified model, using a standard probability
integral transform to give the marginals a GPD(£, o), specifically

Zj = FG_PlD(‘g',a)(FGPD(l,1+K)(Xj)) =g(X;), §€R, 0>0.
The above construction implies that

o

§

§
s =2 (14 155) 1) me s = ot sy

1+«
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This modified version will be called the marginal transformation (MT) model. It has
parameters (p, «, &, 0), where £ = 1/a, 0 = /«, and conditional density is given
by

I — exp{—a;}. zj =0,

R R P

where
fGPD(g,a) (zj)

) = fapp1,1440)(€71(2)))

with respect to the measure p(dz;) = 8o(dz;) + dz;. This follows since we note
that the transformation g maps the event {X = 0} to {Z = 0}, leaving the atom at
zero unchanged. By contrast, the transformation of the continuous part on {X > 0}
introduces a standard Jacobian term.

Nowlet [p = {j € {1,...,k}:z; =0}and I. = {j € {1,...,k}: z; > O}.
Then, the finite-dimensional densities of the MT model can be represented by

fz1, .., zp) = /k ( 1_[(1 —exp{—/c)tj}))

RY \elo

X ( 1_[ J(zj)A; exp{—A;(k + g_l(zj))}) dF(A1,..., Ar).

VS ES

When using the MT model in an application, the empirical observations of the
exceedances will be described by the (Z;) and not by the (X;) as in the earlier
model specification.

3 MODEL FITTING AND EVALUATION

3.1 Pairwise likelihood

We now consider parameter estimation for the latent trawl model described above.
The parameter vector of interest is denoted by 8 = (p, k, £,0)T € ©, where ® C R*
gives the parameter space.

As in Section 2.1, we transform a set of observations {Y;} from a stationary time
series to obtain exceedances X; := max(Y; —u,0), j = 1,...,k. We assume /
positive observations X, , ..., X, as well as m observations X, ..., X, taking
the value zero, which we will call exceedances and nonexceedances, respectively.
Further, we note that [ +m = k.

Journal of Energy Markets www.risk.net/journals
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The likelihood of the observations { X } under the original latent trawl model now
follows from (2.11) and can be written as

Fx1,... . xp) = / ]‘[A,,, exp{—(xp, + K)Ap, }

+r1

x ]‘[(1 —exp{—iAg ) AF (A1, ..., Ap),
s=1

where F' is the joint density function of the trawl process observations Ay, ..., A.
The above integrand can be expanded to obtain a sum with 2" terms. To do so, we first
define 4; as a collection of subsets of {q1, ..., qm} of size ¢, letting u, = x,, + k.
This gives

m 1
DD DT [T Ao expi—urdp,} [ expt—xas; ).

t=0 €8 r=1 Sj €Mt

with the convention [, o (---) = 1. This can be rewritten as

“ 0
Z Z (_1)t+l aul a—ulexp{ Zu APr Z K/\Sj}.

t=0ms€4; §j €My

Using this expression and exchanging integrals and partial derivatives, we see that
the full likelihood reduces to

i

m
0
DL
;ngt( D Jup  Oduy
/k exp{ Zur Dr — Z KA

} dF 1y hg)

sjEm;
_ 1 99
_;)nét( D up ouy

[exp{ Zu Ap, — Z KASj}:|,

S; €My

where the expectation is with respect to the corresponding variables {A,, } and { Ay, }
determined by ;.

The expected values in these terms are joint Laplace transforms and may be derived
from the joint characteristic functions given in Proposition 2.3. They involve the
parameters of the Lévy seed L and the trawl intersection areas; hence, the complete
likelihood reduces to a sum of the partial derivatives of the Laplace transforms.
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The likelihood (as given above) is not easy to compute in practice for two reasons.
First, it requires multiple numerical partial derivatives to be performed. Second, the
number of nonexceedances m is usually close to the number of observations k. This
is because the latent model is defined as having a GPD, and to justify this assumption
we need to consider a sufficiently high threshold for exceedances, often given by a
large percentile of the observations. Now that the first two sums in the likelihood
above have 2" terms in total, the likelihood becomes computationally intractable for
any reasonable sample size k.

Because of the computational issues associated with the sample size, we consider
using a pairwise likelihood approach for the model fitting, that is, a particular kind of
composite likelihood (Cox and Reid 2004; Varin 2008; Varin et al 2011). As stated
in Varin (2008), composite likelihood estimators are well suited to cases when the
data can be seen to consist of roughly independent blocks, that is, the autocorrela-
tion function decays sufficiently fast. Thus, the pairwise likelihood should perform
reasonably well for the latent trawl model with an exponential trawl set.

Given observations x1, . . . , Xg, the pairwise likelihood fpr for the parameter vector
0 = (p,k.£,0)T € ® C R* takes the form

k—1 min(i +A,k)

S @lx o)y =1] ] e,

i=1 j=i+l1

where f(-) is the original bivariate density function and A denotes the maximum
separation between observations. For the latent trawl model, each pairwise likelihood
term f(x;, x;) involves four terms at most from the sum above, and so these terms can
be explicitly evaluated with regard to the parameters of the trawl process. There are
four different cases (since x; and x; can each be an exceedance or a nonexceedance),
and the explicit forms of f(x;, x;) are given in online appendix A.1. The maximum
pairwise likelihood estimator is denoted by

6 = argmaxfpf(O | X1,...,XK).
6

According to Cox and Reid (2004), the pairwise likelihood estimator is unbiased and
asymptotically normal under the usual regularity conditions. When looking at the
asymptotic theory in this context, we assume that we have fixed the threshold when
computing the relevant exceedances. We do not allow for a double asymptotic setting,
in which the threshold increases at the same time as the number of observations. A
more detailed investigation of such a double asymptotic is beyond the scope of this

paper.
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3.2 Conditional tail dependence coefficient

We now consider the extremal dependence structure of our model. A common measure
of dependence at high levels is the extremal index (Leadbetter et al 1983), which can
be characterized as

0= lim P(X; Sun,2<i<ly|X1>un),
n—oo

where u,, is an increasing sequence of thresholds and /, = o(n) (as per Ancona-
Navarrete and Tawn (2000) following O’Brien (1987)).

The extremal index 0 essentially describes the dependence across blocks of obser-
vations whose length tends to infinity; it can also be defined as the reciprocal mean
cluster length, where a cluster represents a collection of exceedances in a block. Thus,
to estimate the extremal index one has to consider very high-dimensional joint dis-
tributions, which makes the estimation analytically intractable in many cases. This
is certainly an issue with our latent trawl model. For the applications detailed in the
following subsections, we will consider simulation-based estimates of the extremal
index instead.

There are other measures of extremal dependence that work on shorter ranges of
observations than the extremal index. Coles et al (1999), for instance, quantify the
dependence between the extreme values of two random variables X, X» in the upper
tail dependence coefficient, given by'

x = lim P(F(X2) > u | F(X1) > u),
u—>

where F is the common marginal distribution of X, X5. In other words, y gives the
limiting probability of X5 exceeding the threshold u given an exceedance X, with
both variables on a uniform scale. When X1, X, come from a stationary time series,
x can be seen as the probability of observing consecutive exceedances given a single
exceedance. To get a broader characterization of the extremal dependence, one may
also consider the complete function

x(ui,uz) = P(F(X2) > uz | F(X1) > uyp),

defined on [0, 1]?, where y(u1,0) = 1 and x(0,u3) = 1 — us.

We would like to use the function y(u1, u2) and the limiting measure y to evaluate
the dependence between two observations X, X, from the latent trawl model as a
function of the lag #, — #;. However, the above definition is based on the assumption
that X, X5 are continuously valued random variables with a distribution function F

'This quantity is sometimes denoted as A7 and should not be confused with the “coefficient of tail
dependence” defined in Ledford and Tawn (1996).
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defined across their entire range. This does not fit with the exceedance framework,
in which the limiting distribution can only be assumed to hold above a threshold.
Certain extreme value models (see Ledford and Tawn (1996), for example) do not
consider exceedances separately but specify the same probability density function f
for the full range of observations; any observations below the threshold u are then
treated as censored so that they have the probability fou f(s) ds. Our model differs in
that it models the occurrence of exceedances explicitly, resulting in a distribution for
exceedances X only with an atom at zero. Hence the standard definition of y cannot
be applied directly. While we may still construct an analog to the tail dependence
coefficient by conditioning on both exceedances being positive, care must be taken
to ensure that the resulting measure is uniform on the u, margin, as shown in the
following definition.

DEFINITION 3.1 Consider the latent model defined in Section 2.1 and set

er(x) = P(XO <Xx | X() > O,Xh > 0)
=PXp,<x]|X0>0,X;,>0), forheN. 3.1

The conditional tail dependence function ¢ is defined as
@(h,ur,uz) := P(F2e(Xp) > Uz | F2e(Xo) > u1, Xo > 0, Xp, > 0),
for0 < uq,up <1,
and the conditional tail dependence coefficient is defined as
e(h) :=lime(h,u,u).
utl

We show in Lemma A.2 (see online appendix A.2) that the identity (3.1) holds.

The conditional tail dependence function can be calculated explicitly in terms of
the parameters of the latent trawl model. Specifically, we have the following three
key results (all proved in the online appendix).

PROPOSITION 3.2  Leth € N, and set
By = Ao \ Ap, Bop = Ao N Ap, Bpo = Ap \ Ao,

and b; = —aA®(B;) /A (A) fori € {(0\ h), (0,h), (h \ 0)}. The conditional tail
dependence function for Xo and Xy, in the latent trawl model is given by

Fi02) )” (1 Faetee) )”hw
B+ 2 + F.! (u1) B+« ’

forO<uj,u; <1.

oh,ui,up) = (1 +

Journal of Energy Markets www.risk.net/journals



A latent trawl process model

ProrosiTION 3.3 The conditional tail dependence function satisfies the same
marginal scaling as the original tail dependence index y, namely, ¢(h,u1,0) = 1,
@(h,0,uz) =1 —uy forany 0 < up,up < 1.

THEOREM 3.4 For the original latent trawl model, we have that ¢ (h) = 0 for any
h € N. Thus, according to this measure, the model is asymptotically tail independent.

The speed at which the conditional tail dependence function decays to zero increases
with the value of b\ o; in other words, the larger the intersection of the trawl sets given
by Xo, X}, the slower the model decays to independence as the threshold increases.

It has been pointed out by Coles et al (1999) that the class of asymptotically
independent distributions is of fundamental importance in multivariate extreme value
theory (see also Bortot and Tawn 1998; Bruun and Tawn 1998; Ledford and Tawn
1996, 1997).

4 EMPIRICAL EXAMPLES

In our empirical studies, we need to decide on a suitable threshold to use when consid-
ering the exceedances. In the extreme value literature, various approaches to threshold
selection have been discussed (see Wong and Li (2010) for a recent discussion on this
subject). A popular graphical approach is to use a mean excess plot, since the mean
excess function for the GPD is linear in the threshold. In the following, we con-
sider precipitation data and ozone levels from London. Setting the threshold to the
95th and 97th percentile, respectively, we find the resulting exceedances to be well
approximated by a GPD.

4.1 Heathrow data

In this subsection, we use the latent trawl model to analyze a data set consisting of
daily rainfall amounts accumulated at Heathrow (in the United Kingdom) in the years
between 1949 and 2012, provided by the UK Meteorological Office (2012). We set
the threshold u at the 95th percentile of the original data (8.9 mm), resulting in the
time series of exceedance values shown in Figure 2.

We fit the latent trawl model described in Section 2.2 as well as the latent Markov
chain model of Bortot and Gaetan (2014), using both the G-LP and the WP for the
Markov chain. The parameter estimation was effected using pairwise likelihood (as
described in Section 3.1) with the separation parameter A = 4 (suggested by our
simulation experiments); the resulting estimates are shown in Table 1. We see that the
marginal parameters are similar across all the models; this seems reasonable given
that all the models have a marginal GPD(«, 8 + k) and in view of the fact that «
controls the marginal exceedance probability.
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FIGURE 2 Heathrow rainfall exceedances.
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TABLE 1 Parameter estimates for the various exceedance models.

o B p K
Latenttrawl 6.33 20.12 0.27 12.18
G-LP 6.43 2064 0.70 12.25
WP 6.30 1994 0.78 12.15

Parameters for Heathrow rainfall data estimated via the latent trawl model as well as the latent Markov chain model
with G-LP and WP chains.

The parameter p determines the latent dependence structure of the models. For
the latent trawl process it is the decay parameter of the exponential trawl function,
whereas for the latent Markov chains it enters in the autocorrelation function ¢ (h) =
o" = exp(hlog(p)). Based on this relation, we see from the fitted values of p that all
three latent processes have similar autocorrelation functions, in which the G-LP and
WP have the fastest and slowest rates of decay, respectively.

Figure 3 shows estimates of the extremal index for the latent trawl and latent Markov
chain models. These estimates are based on simulating time series of length 1 000 000
via the fitted models. We then estimate 6 as the inverse cluster length using the R
package evd, which defines a cluster as ending when three consecutive exceedances
fall below the threshold.

These estimates indicate that the latent trawl and latent Markov chain models all
manage to capture the main dependence structure in the extremes. The only visible dif-
ference occurs at higher thresholds, where the G-LP model appears to underestimate
0, that is, it overestimates the dependence. This discrepancy (occurring at high levels
only) could be explained by the fact that the G-LP model is asymptotically dependent,
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FIGURE 3 Estimated extremal index for empirical ozone data (solid line) as well as the
latent trawl (dashed), G-LP (dash-dotted) and WP (dotted) models.
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as shown by Bortot and Gaetan (2014), whereas the empirical estimates of  indicate
that the rainfall data is asymptotically independent.

4.2 Pollution data

We now consider a second application that illustrates the marginal transformation
model introduced in Section 2.4. We use this model to analyze a set of ozone levels
measured in Bloomsbury, London. Specifically, our data gives the daily maximum
of the eight-hour running mean, measured in units of micrograms per cubic meter
(Mg/ma). These measurements were obtained from the Environmental Research
Group, King’s College London (2015).

Although the original data displays evident seasonality, this effect diminishes sig-
nificantly as the threshold increases. Thus, we do not adjust for seasonality in the
extreme values for this application, though refinements of this approach could be
considered in future works. For the threshold u, we choose the 97th percentile of the
original data (81 pg/m?), resulting in the exceedances shown in Figure 4.

Fitting the GPD to the data directly indicates a negative £ value (ie, a finite upper
bound) that cannot be captured by the standard model. Thus, we use the transformed
model described in Section 2.4. This corresponds with taking the basic hierarchical
model (based on either a latent trawl or a latent Markov chain as in Bortot and Gaetan
(2014)) and fixing «, B = 1. The next step entails transforming the marginals to
GPD(§,0).

The models were fitted using pairwise likelihood with A = 4. Table 2 shows the
resulting estimates for the marginal transformed versions of the latent trawl and the
latent Markov chain models.
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FIGURE 4 Ozone level exceedances.
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TABLE 2 Parameter estimates for the transformed exceedance models.

g o p K
Latenttrawl —-0.11 20.783 0.17 32.69
G-LP -0.04 21.09 0.56 32.19
WP —-0.11 20.74 0.96 32.44

Estimated parameters for ozone data, generated using transformed versions of the latent trawl model as well as the
latent Markov chain model with G-LP and WP chains.

Figure 5 shows estimates of the extremal index based on simulations of length
1000000, obtained by the same method used for the rainfall data previously. The
estimates of the extremal index indicate that the transformed latent Markov chain
models does not accurately capture the extremal dependence structure in this example.
In particular, the WP model appears to underestimate the extremal dependence (that
is, the resulting 0 values are too high), whereas the opposite is the case for the G-LP
model.

These results show that when the marginal parameters «, 8 are fixed in the latent
layer, the latent Markov process model has less flexibility in the dependence structure
than the latent trawl process model. This indicates that in the original hierarchical
structure, the marginal parameters also have a strong influence on the dependence
structure, a factor that contributes to the flexibility of the model. The transformed
model has the advantage of having parameters that are clearly interpretable as con-
tributing to either the dependence or the marginal distribution. In our experience (from
our simulation studies), the parameter estimation procedure for the transformed model
also appears to be more reliable.
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FIGURE 5 Estimated extremal index for empirical ozone data (solid line) as well as
transformed versions of the latent trawl (dashed), G-LP (dash-dotted) and WP (dotted)
models.

1.01
0.9
0.81
0.7
0.61
0.5
0.4+

Extremal index estimate

0 10 20 30 40 50 60 70 80 90 100
Threshold (u)

5 CONCLUSION

In this paper, we investigated a new model for time series of extremes based on
trawl processes. We constructed an extreme value model that uses the trawl process
framework to obtain a flexible dependence structure. This was achieved by replacing
the latent Markov chain in the setup described by Bortot and Gaetan (2014) with a
trawl process. In contrast with other hierarchical models, our construction has the
advantage of preserving the GPD for the marginals, which is consistent with extreme
value theory.

We also considered a modification to the original model structure that extends the
parameter space, allowing for negative shape parameters. To evaluate the extremal
dependence, we also developed an adapted version of the tail-dependence coefficient
that can be evaluated analytically for the trawl process model.

Both the original and modified models were used to analyze two environmental
time series, and their performance was compared with the latent Markov chain models
of Bortot and Gaetan (2014). For the application of the original model, the results
were very similar in terms of capturing the extremal dependence of the data. The
advantage of using the latent trawl process was clearer when using the transformed
models; in this application, the trawl-based model performed better due to the added
flexibility in its latent dependence structure.

There are several aspects of the latent trawl model that could benefit from further
investigation. For example, we have used a simple exponential trawl throughout this
paper; it would be interesting to look at the results of using different parameterizations
for the trawl set. Another possibility would be to consider a model where the threshold
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u is allowed to vary. If it were to do so, then letting the trawl set depend on u should
result in a wider range of dependence levels across all thresholds.
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