A Logic-Based Reasoner for Discovering
Authentication Vulnerabilities between
Interconnected Accounts

Erisa Karafili!, Daniele Sgandurra?, and Emil Lupu?

! Department of Computing, Imperial College London
{e.karafili, e.c.lupu}@imperial.ac.uk
2 Information Security Group, Royal Holloway, University of London
daniele.sgandurra@rhul.ac.uk

Abstract. With users being more reliant on online services for their
daily activities, there is an increasing risk for them to be threatened by
cyber-attacks harvesting their personal information or banking details.
These attacks are often facilitated by the strong interconnectivity that
exists between online accounts, in particular due to the presence of shared
(e.g., replicated) pieces of user information across different accounts. In
addition, a significant proportion of users employs pieces of information,
e.g. used to recover access to an account, that are easily obtainable from
their social networks accounts, and hence are vulnerable to correlation
attacks, where a malicious attacker is either able to perform password
reset attacks or take full control of user accounts.

This paper proposes the use of verification techniques to analyse the
possible vulnerabilities that arises from shared pieces of information
among interconnected online accounts. Our primary contributions in-
clude a logic-based reasoner that is able to discover vulnerable online
accounts, and a corresponding tool that provides modelling of user ac-
counts, their interconnections, and vulnerabilities. Finally, the tool allows
users to perform security checks of their online accounts and suggests
possible countermeasures to reduce the risk of compromise.

Keywords: Logic-Based Reasoner - Logic Analyzer - Authentication -
Interconnected Accounts.

1 Introduction

With reliance on Information Technology (IT) growing, more and more services
are being gradually digitised, and users are getting accustomed to use online
accounts to handle almost all their digital life, from banking accounts to day-to-
day communications — the so called “digital footprint” [6JI0]. Typically, when
registering for an online account, besides creating his/her credentials, a user is
required to enter an email address for verification as well as providing answers to
a set of predefined questions as a way for password recovery (also called cognitive
passwords). Depending on the nature of the online account created, users may



also be asked to provide other pieces of information, such as a billing address,
birthday, name of their pet and so on. However, different accounts end up be-
ing logically connected by virtue of having the same owner, e.g. because they
share a common password, or because some pieces of information (e.g., date of
birth) are shared across these accounts. This allows attackers to perform attacks
such as credential stuffing cyber-attacksﬂ where stolen account credentials (i.e.,
username/email address and passwords) are used to gain unauthorized access
to user accounts on online services through large-scale automated login requests
(e.g., using tools such as Sentry MBA [3]) on critical websites (e.g., to perform
e-banking activities). The danger in this type of attacks comes from the fact
that many users reuse credentials across many different websites and, therefore,
the compromise of one account, typically on non-critical websites having few
resources and/or motivations to protect those credentials, can have widespread
repercussions to other accounts as well. Therefore, the automated analysis of
security flaws within interconnected accounts is an important issue.

Another example that shows how interconnections between online accounts
pose security threats to users are recovery security questions. Consider a user
having an online account with a recovery security question “What is your date of
birth?”. However, empirical studies have found out that a significant proportion
of users have security information which are easily attainable on social networks,
and hence are vulnerable to reset attacks [20]. A real life example would be that
of Mr. Mat Honan, who came under media scrutiny when his online accounts
were hacked progressively, starting from his iCloud account. In fact, attackers
obtained the last four digits of his credit card number through Amazon [IS].
Then, the attackers were able to fool the Apple technical support staff into giving
them a temporary password to Honan’s iCloud account as they assumed his
identity by providing the partial credit card number. From there, the attackers
continued to gain access to Honan’s Gmail and Twitter accounts using the iCloud
account previously compromised. Furthermore, since iCloud Keychain keeps and
remembers passwords for online and offline accounts across authorised devices,
attackers were in turn able to gain access to all accounts linked to this service.
This incident shows how conflicting security policies of different online services
can be a disadvantage for users, and it also highlights the chain reactions among
accounts that can occur after a single account is compromised.

Even if it is simple to devise measures to prevent attacks for a small number
of accounts (e.g., avoiding the use of the same password across different account),
however, an analysis of data from more than 20,000 users in 2015 found that
the average user has 90 online accounts [4], and so even simple policies are
difficult to be enforced in such large contexts. In addition, this analysis found
that in the U.S. there is an average of 130 accounts assigned to a single email
address. Hence, there are too many pieces of information to be remembered, and
too many interconnections among accounts that are potential vulnerabilities. As
such, there can be multiple ways of exploit for the attacker, and it is impractical
and inefficient for a user to go through all of his/her accounts to find flaws.

3 https://www.owasp.org/index.php/Credential _stuffing


https://www.owasp.org/index.php/Credential_stuffing

Therefore, there is a need for an automatic reasoner that is able to analyse
all the accounts and their interconnections looking for known vulnerabilities or
potential ones.

This paper introduces a logic-based approach to identify security flaws in
interconnected user accounts. To this end, we propose a reasoner to model ac-
counts, identify threats and propose countermeasures. The proposed reasoner
supports different types of online accounts and enables users to find compromised
accounts as well as corresponding countermeasures to protect these accounts. We
have developed a prototype tool that, given as input the user’s accounts infor-
mation, returns the compromised accounts and proposes countermeasures. In
addition, further vulnerabilities or connections between accounts can be added
to perform a ’what-if’ analysis. Then, given the interconnected accounts and
their related vulnerabilities, the tool shows the steps of the possible exploitation
of an account. Finally, the tool focuses on the accounts where the exploits are
simpler and easier to achieve, and provides a set of countermeasures to reduce
the risk of account exploitation.

The main contributions of this paper are:

— We formalize the problem of vulnerabilities that derive from interconnected
devices.

— We propose a reasoner to model user accounts and vulnerabilities, and the
interconnections among different accounts.

— We implement a tool that, given the user accounts, finds the relations be-
tween accounts and shows the dependences between interconnected accounts
that can be exploited by malicious users.

The rest of the paper is structured as follows. In Section[2] we describe related
works. Then, in Section |3] we describe the proposed framework, which is used
(i) to formally represent online accounts, (ii) to model existing vulnerabilities
in interconnected accounts, (iii) to simulate interactions across accounts, (iv) to
analyse security flaws, and (v) to generate corresponding countermeasures. In
Section [4 we describe the implementation of the reasoner, while in Section [5 we
report some preliminary evaluations of our framework. Finally, in Section [6] we
conclude the paper.

2 Related Work

Model checking is a viable way to analyse security flaw in interconnected ac-
counts as it supports partial verification [2]. There is no need to provide a com-
plete specification and, hence, more focus can be put on essential properties
which need to be fulfilled. Besides, when a property is invalidated, diagnostic
information is provided through the trace and this is particularly useful when
determining countermeasures for these vulnerabilities. There are, however, cer-
tain disadvantages to using model checking as a technique for verification. In
particular, model checking suffers from the state space explosion problem and,
if the number of states required is very large to be efficiently represented on the



computer memory, then the computation may take a long time [2I]. MulVAL
is a logic-based framework which models the interaction of software bugs with
system and network configurations [I7] and analyse security vulnerabilities of
the network. MulVAL is implemented first by capturing the database of known
vulnerabilities, then scanning the system for configuration information and also
at the same time matching the known vulnerabilities to the system. These pieces
of information are then encoded using Datalog, a subset of the Prolog language.
MulVAL captures system interactions using a set of pre-defined rules, and anal-
ysis on the security level of the system is carried out once this preparation is
done.

Attack graphs (AGs) have long been used as an effective way of assessing
security threats in a network system. AGs provide a visual representations of
how an exploit, or a series of exploits, can affect different hosts in a network
in terms of node compromise. In the literature, there are mainly two types of
attack graphs: the first one, state-based AGs, shows how an attack happens,
while the second one, logical AGs, shows why an attack happens. State-based
AGs [9124] result in directed graphs, where each node represents the state of
the whole network after a successful atomic attack. However, state-based AGs
also suffer from state explosion issues, and empirical data has shown that graph
generation procedure takes a much longer time compared to the model checking
phase [23]. Moreover, these graphs contain duplicate attack paths that differ
only in the order of the attack steps, which also increase the complexity of the
graph, limiting the applicability of state-based representations to very small net-
works [8I16]. Therefore, state-based AGs do not scale well for a large number
of accounts. The scalability problems of state-based representations are over-
come with logical AGs, which are bipartite graphs that represent dependencies
between exploits and security conditions [II]]. These representations rely on the
monotonicity principle: this principle states that an attacker never relinquishes
privileges once obtained. Nevertheless, a suitable method to model the system
needs to be chosen before generating the attack graph. The uncertainty about
the attacker’s behaviour makes Bayesian networks more suitable to model AG
as well as to perform static and dynamic security risk assessment. For this rea-
son, several techniques have also been proposed in the literature for performing
inference on Bayesian attack graphs (BAGs). For example, forward-backward
propagation is proposed in [I9] to compute the unconditional probabilities. More
recently, the JT algorithm was proposed in [I3] for exact inference in BAGs to
efficiently compute the exact unconditional probabilities by using a probabilistic
message passing scheme. However, the applicability of JT to large networks is
limited, especially when the AGs are dense. Therefore, the work in [14] shows
how approximate inference techniques can be applied to attack graphs, so that
the analysis scales linearly in the number of nodes for both static and dynamic
analysis, making such analyses viable for larger networks.



3 A Logic-Based Reasoner to Model Online Accounts

In this section, we describe how the proposed reasoner models online accounts,
simulates interactions across accounts, analyzes security flaws, and generates
corresponding countermeasures.

3.1 Modelling of Online Accounts

Our logic-based reasoner represents the various accounts by firstly uniquely iden-
tifying them through their service provider and username, and then by associat-
ing them with other pieces of information regarding the user, e.g. password. In
addition, the reasoner considers the user information associated to an account
as either private or public, and allows users to select the type of authentica-
tion procedure used for every account, e.g. using a single sign-on or using the
specific service provider. Another important entity modelled by our framework
is the user, which is represented through the following attributes: name, gen-
der, date of birth, mobile number, city, home-town, location, workplace, job and
address (other fields can be easily added). To analyse possible vulnerabilities,
every account is associated with an access policy which states who should be
able to access the account. Anyone outside of this group of people/entities, who
are allowed access to the account, should not be able to access the account, or
it will be considered a violation of this policy. In case an entity/user, which is
not part of the entities/users that are allowed to access the account, accesses the
account, then this is considered a violation of the policy, and this is modelled in
our reasoner as:

policyViolation(Account, Access) <— hasAccessed(Account, Access),
not allowAccess(Account, Access).

where the left side of “4” represents the conclusion of the engine policy (also
called rules), while the right side represents the preconditions that should be
satisfied for the rule to be triggered and the conclusion to be satisfied. For the
sake of simplicity and presentation purpose, in our rules’ representations we do
not use the AND logical connector (“A”), but we substitute it simply with “”
— we still use the OR logical connector and represent it with “v”.

Finally, the reasoner is also used to represent generic attackers that car-
ries out exploits by using stolen/retrieved /inferred account’s information. In the
reasoner, there are three main categories of exploits that an attacker can use to
compromise an account:

— the attacker is able to find the credentials of the account;

— the account uses single sing-on verification and the attacker is able to exploit
it;

— the attacker knows the username and is able to reset the password of the
account.



3.2 Vulnerabilities of Accounts

We now describe the list of vulnerabilities that we have modelled in our reasoner.
We consider vulnerabilities for individual accounts, as well as vulnerabilities
that arise when linking different accounts. In the following, we describe these
vulnerabilities together with their representation in our reasoner.

Vulnerabilities for Individual Accounts. The vulnerabilities for individual ac-
counts are vulnerabilities independent from the connection between accounts,
and these are:

— Publicly-available username: namely, when the chosen username can be ob-
tained easily. This might happen in some online forums where the used nick-
names or avatars replicates the username. This vulnerability is modelled as:

vul Exists(publicU sername, X) < account(X), username(X, U), public(U).

— Publicly-available email: usually service providers request an email address
from the user, often used for password recovery. When a user forgets his/her
password, a reset link is sent to this address to allow the user to change/reset
the password. As a result, having this piece of information available means
that the attacker can use some of his/her efforts in exploiting this email
account as well. This vulnerability is modelled as:

vul Exists(publicEmail, X) < account(X), email(X, E), public(E).

— Commonly-used passwords: a list of commonly used passwords are published
every year by several institutions [5]. If the user selects such a password, the
attacker does not even need to carry out a dictionary attack to obtain the
password of the particular account. This vulnerability is modelled as:

vul Exists(commonPW, X ) + account(X), pwAccount(X, pw),
commonPW (pw).

— Password contains name of user: it is not uncommon to find users using just
their name as passwords. This vulnerability is modelled as:

vul Exists(sameName& PW, X)) < account(X ), nameofUser(X, N),
pwAccount(X, pw),
(N = pw V similar(N, pw)).

We use the similar(N, Pw) predicate as the password can be a simple vari-
ation of the name, thus, they are not exactly the same but similatﬂ

— Password contains username of user: even if some website disallows the use
of the username as password, not every website enforces this rule. This vul-
nerability is modelled as:

vul Exists(samel sername& PW, X) + account(X), username(X,U),
pwAccount(X, pw),
(U = pw V similar (U, pw)).
4 The predicate similar(A, B) states that A and B are very similar to each other and
by knowing A the attacker can infer easily B, and vice versa.



— Password is weak: while several websites provide a password robustness
check, users are able to find (sometime ingenious) alternative ways to bypass
these checks and provide a weak password. This vulnerability is modelled as:

vul Exists(weak PW, X) < account(X), pwAccount(X, pw), weak PW (pw).

— Password unchanged for too long: a password which has not been changed for
long, if weak, can be easily found due to dictionary attacks. This vulnerability
is modelled as:

vul Exists(oldPW, X) < account(X), pwAccount(X, pw), old PW (pw).

Vulnerabilities due to Account Connections. In the following we describe those
vulnerabilities that involve linkage across different accounts that are owned by
the same user/entity, which are:

— Repeated passwords: many users use the same passwords across different
accounts. This means that if an attacker knows (or is able to retrieve) the
password to an account, he/she also can access all the accounts which reuses
this particular password. This vulnerability is modelled as:

vulEzists(repeatPW, X,Y) < account(X), account(Y), X #Y,
pwAccount(X, pwy), pwAccount(Y, pws),
bwy = pwa.

— Repeated usernames: suppose an attacker knows the username of a specific
account, the attacker can attempt to log in a different online account with the
same username to check if the account exists. This vulnerability is modelled
as:

vul Exists(repeatUsername, X,Y) < account(X), account(Y), X #Y,
username(X, Uy), username(Y, Us),
U, = Us.

— Information required for password reset available (publicly or through the
use of another account). There are mainly two methods used for password
reset: the first method entails sending a recovery link to the associated email
address, while the second one requires the user to answer a set of security
questions. In this last case, the information required for answering security
questions may be available publicly or in another account that the attacker
already has access to. This means that the attacker can use this piece of in-
formation to compromise the account of the user by resetting the passwords.
This vulnerability is modelled as:

vul Exists(publicRecoverylInfo, X) <— account(X), recovery(X, Info),
public(Info).

)
vul Exists(recoverylnfolnAce, X,Y) < account(X), recovery(X, Info),
account(Y), X £Y,
inAccount(Y, Info).



In Figure [[] we show a graphical representation of the dependencies between
accounts and possible vulnerabilities that might allow attackers to get access to
a particular account, which we have modelled in our reasoner.

/ Account \

SSO Username
Authentication Private
Email Public Email Private

Access to SSO / 'L
A t
ccount Access to Other
Username Account

Public
Same Weak Password F(’:a::tgicr:]r: Access to Reset
Password Password Expired i Account
Information
Information Information Reset Public Reset Private
Public Private Information Information
Access to Access to
Account Account
/ Information / Information
Public Reset
Password Password

Access to
Current
Account

Fig. 1. Attack Tree of an Account based on the Attackers’ Knowledge

3.3 Metrics for Account Compromise Analysis

Let us now give a brief overview of the metrics we have introduced in our rea-
soner to provide a measure of the extent of compromised accounts. The first
two metrics are non-path analysis metrics while the remaining ones are metrics
related to the paths that attackers can follow to access the account.

— An interesting metric to use is the network compromise percentage (NCP) [12],
which measures the proportion of the network that was compromised/attacked
successfully by the attacker. In our reasoner, this metrics represents the pro-
portion of accounts that are compromised by the attacker. The reasoner al-
locates a higher weight to accounts that hold sensitive information, e.g. bank
or card details, or to accounts that have information about other accounts.



— To analyse the generated graphs the reasoner uses the weakest adversary
metric, which measures the security of the weakest component in the net-
work [7]. Using this metric, the reasoner assumes that the set of accounts
are as secure as their weakest component.

— The first path metric the reasoner checks is the shortest path [15], which
represents the smallest number of steps leading to the attack goal. Know-
ing the shortest path helps the reasoner in developing a countermeasure,
as we expect the attackers to choose the most efficient way to reach their
target. Please note that the shortest path is not necessarily the easiest path.
Therefore, this metric does not always provide a consistent evaluation of the
attacks.

— Another metrics in the reasoner is the number of paths, which represents
the number of different attacks/exploits that can be carried out to com-
promise the same account [15]. This metrics can also be used to define the
account with the highest risk of being compromised, as the higher the num-
ber of exploits, the higher the number of vulnerabilities that can be used by
the attacker. Having a higher number of vulnerabilities does not necessarily
mean that the vulnerabilities have higher chances on being exploited as no
information is provided on their difficulties on being exploited.

— The mean path length [I1] is the arithmetic average of all the paths lengths
that, starting from an initial state, bring to the goal account. This metric
is relevant in determining the average level of effort required to compromise
an account [9]. Its drawback is that the value might be the same even when
there is an increase in the number of paths.

— To evaluate which are the outliers when it comes to different exploits, the
reasoner uses the standard deviation of path lengths. This metrics is useful
when generating countermeasures, as we want to focus on specific attack
paths that are more likely to be exploited.

— The reasoner also uses the mode and median of path lengths as they are less
likely to be influenced from outliers values. The normalised mean path length
gives a better security estimate as it is based on both the number of paths
as well as the path lengths, hence addressing the key criticism of the mean
path length metric. The reasoner aggregates the functions of both the mean
path length and the total number of paths.

The different metrics pertain to different types of conclusions a user can draw
from the generated graph. In more detail, the number of paths, shortest path and
mean path length metrics quantify the overall security level of the network or an
individual account. Therefore, these metrics can be used as a basis of comparison
before and after a countermeasure is implemented to find out the effectiveness of
such a countermeasure. Instead, the mean path for an individual account and the
standard deviation can be employed together to find which account requires the
greatest attention. For instance, suppose the user wishes only to secure the most
vulnerable accounts, the reasoner can present countermeasures only pertaining
to accounts with mean path length below the network mean or below a certain
percentage.



In the following we first describe the threat model used in the reasoner, and
how the reasoner selects the countermeasures.

3.4 Threat Model and Countermeasure Analysis

In the threat model, we make the assumption that every attacker has all the
possible pieces of information that it can obtain, which is not necessarily true
as sometimes the attacker cannot find connections between accounts or cannot
identify the public information needed for compromising an account. Similarly,
we assume that an attacker knows a piece of information in case it is public, or if
the information is stored in an account where the attacker has access to. In addi-
tion, we assume that an attacker can compromise an account if s/he has the login
credentials or can reset the password or if s/he knows the login credentials of the
single-sign-on account associated with it. Finally, we assume the attacker may
retrieve the login credentials if there are existing vulnerabilities in the account,
e.g. weak password or connections with other accounts. These strong assump-
tions make the vulnerability analysis more robust, as any countermeasure to
these threats is able to cover also other threats with less resources.

At the end of the vulnerability analysis, the reasoner returns a set of counter-
measures aimed at reducing the overall risk for the user’ accounts. The proposed
countermeasures are based on the single action removal principle, in which the
reasoner evaluates the impact of removing a single step/move from the attacker
strategy. Please note that some vulnerabilities are not as easy to remove as
others. For example, let us suppose a set of accounts shares the same common
password and username. Instead of changing all the passwords, it is more feasible
to ensure that the username will never be leaked. Hence, the reasoner provides
a minimum critical set of countermeasures ensuring that the vulnerabilities are
eliminated using as less resources as possible. The minimum critical set is de-
veloped using a greedy algorithm. The reasoner provides different set of attack
paths, each representing an “or” relation. In other words, for every possible ex-
ploit, the reasoner represents each step of the exploit as an element in a set, and
the set represents a single exploit. There might be different sets representing
the different independent ways an attacker can compromise an account, and the
reasoner iteratively selects an element (attack step) that is present in the largest
number of sets, until all of the sets are covered [J].

4 Implementation

We have developed a prototype tool to implement the proposed reasoner system.
The reasoner is built upon XSBP|and it includes all the definitions for modelling
user details, account details, vulnerabilities, access policies, exploit rules, hypo-
thetical 'what-if” vulnerability analysis as well as to generate countermeasures.
We have defined a set of pre-defined Prolog rules, which are built into the rea-
soner to capture connections across the different accounts, to identify security

® http://xsb.sourceforge.net/


http://xsb.sourceforge.net/

vulnerabilities, and to define and verify the threat model [22]. Similarly, we have
created a set of pre-built queries that can be launched by users to perform attack
simulations (e.g., “find out who can access the different accounts”). After per-
forming these queries, the reasoner returns to the user a set of results, namely
lists of vulnerable accounts and the steps to perform such attacks. The tool also
provides metrics to give a quantitative view of the security status of the list
of online accounts. This enables the optimisation of countermeasures and se-
curity improvements. For analysing the generated graphs, the proposed system
implements the metrics introduced in Section As a future development, we
envision this tool as a standalone application running on the user computer,
with a plugin integrated with the browser to interact with the user information
(similar to a password manager), as to avoid the user entering the pieces of
information manually in the engine. Of course, in this implementation, all the
pieces of information need to be securely stored on the user computer and only
accessed by the user (similar to a password manager).

4.1 Countermeasures Generation

As recalled previously, the system, after analysing the given accounts together
with their vulnerabilities, proposes a set of countermeasures. Once the user has
selected some of these countermeasures, the system can be re-run to perform
a further analysis to check if further countermeasures should be proposed. For
each vulnerability listed in Section [3:2] we have defined a set of applicable coun-
termeasure‘fl, in particular:

— Password related vulnerabilities. When the user is using a bad/weak /common
password, or contains publicly available information, the reasoner suggests
the user to change the password with a stronger one.

countermeas(change, pw) < account(X), pwAccount(X, pw),
(weak PW (pw) V bad PW (pw)V
commonPW (pw) V. pubInfoPW (pw)).

— Repeated passwords. When the user is using the same password for more
than one account, especially when this account is connected or shares the
same username, the reasoner proposes the user to change the password to a
different one.

countermeas(change, pw;) < account(X), account(Y), X #Y,
pwAccount(X, pwy), pwAccount(Y, pws),
(pwy = pwy V similar(pw, pws)),
((username(X,Uy), username(X, Us),
Uy =Us) V connected(X,Y)).

5 We give together with the countermeasures their corresponding rules as represented
by the reasoner.



— Password reset information available publicly or in another account. When
a piece of information for resetting a password is publicly available or is
available using another account, the reasoner proposes two countermeasures:
(i) to change the recovery question, or (ii) to restrict/remove the access to
the information needed for resetting the password.

countermeas(change, Info) < account(X), recovery(X, Info),
public(Info) V (account(Y),
X #£ Y, inAccount(Y, Info)).

countermeas(makePrivate, Info) < account(X), recovery(X, Info),
public(Info).

5 Preliminary Evaluation of the Framework

We tested our framework by designing a realistic use case in which we have con-
sidered all the possible vulnerabilities described in Section [3] that an attacker
can exploit to access an account. The reasoner was then used to check for pos-
sible violations of the policies, and the proposed countermeasures were put in
place and a further analysis was performed to verify the effectiveness of the
countermeasures in eliminating the vulnerabilities exploited by the attacker.

In detail, we created a set of 35 accounts using the most common online
accounts, e.g. Facebook, Twitter, Ebay and Amazon. For each of these websites
and social networks, we have modelled their different password strategies realis-
tically, as well as their authentication mechanisms. In addition, for each of the
35 accounts, we have provided user information, e.g. username, email, phone
number, and set them as either public or private ones. We have also considered
the reset password procedure for each account and the required information: in
particular, we have associated those accounts with critical information, such as
credit cards details, with stronger passwords than those accounts used in so-
cial settings, e.g. public forums. To make the use case more realistic, we have
manually inserted some vulnerabilities into the accounts. For example, we have
inserted few repetitions of the passwords across accounts as well as minor vari-
ations of the same password. Finally, we have also included several relations
between different accounts, which mainly arise due to shared login credentials,
or recovery email address, or public information used for the recovery.

On this use case, we then have run a what-if vulnerability analysis, where we
have used a range of possible types of information available to the attacker. In
particular, we have used the following different scenarios: (i) public information,
e.g. assuming a username becomes public; (ii) information leaks, when some pri-
vate pieces of information can be found on leaked database, e.g. of passwords;
(iii) website vulnerabilities, e.g. the attacker has access to the account by ex-
ploiting a vulnerability of the website. By introducing these vulnerabilities, we
then have modelled and evaluated how the amount of information available to
an attacker corresponds to changes in the number of exploits and in the number
of compromised accounts. As expected, we have seen that rendering some basic



pieces of information as public, such as the username or the type of account,
is not as critical as disclosing the password of the account in terms of increase
in the number of exploitation of accounts. In addition, “information leaks” is
the what-if vulnerability scenario with the worse impact for user accounts, as it
is the one that brings higher chances for an attacker of successful exploitation.
Similarly, when it comes to introducing website vulnerabilities, the impact is
very large when introduced in highly interconnected accounts and popular web-
sites. Finally, the evaluation showed that the selection of the countermeasures is
targeted on highly interconnected account and on those with a weak password.

6 Conclusion

Securing a large set of interconnected online accounts requires a huge effort
from both the users and the service providers. The problem becomes harder
when the security policy of one provider can influence or contrast the security
policy of another provider. In this paper, we introduced a framework that can
be used by users to assess the security and vulnerabilities of their interconnected
online accounts. The proposed tool gives a representation of the dependencies
between the accounts and proposes countermeasures to ensure their security.
As a direction of future research we plan to fully automate the system, e.g. by
implementing a browser plugin that securely provides the account information
to the reasoner, as well as to increase the number of families of vulnerabilities
that can be checked by the reasoner.

Acknowledgments

Erisa Karafili was supported by the European Union’s H2020 research and inno-
vation programme under the Marie Sklodowska-Curie grant agreement No 746667.
This work builds upon research funded by the Engineering and Physical Sciences
Research Council (EPSRC) through grants EP/1.022729/1 and EP/N023242/1.

References

1. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, Graph-Based Network Vulner-
ability Analysis. In: Procs. Conf. on Computer and Communications Security. pp.
217-224 (2002)

2. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)

3. Ben-Meir, E.: Sentry MBA: A Tale of the Most Popular Credential Stuffing Attack
Tool. https://blog.cyberint.com/sentry-mba-a-tale-of-the-most-popular-
credential-stuffing-attack-tool (2017)

4. Bras, T.L.: Online overload its worse than you thought. https://blog.dashlane.
com/infographic-online-overload-its-worse-than-you-thought/| (July 2015)

5. Data, S.: 100 worst passwords of 2017. https://s13639.pcdn.co/wp-content/
uploads/2017/12/Top-100-Worst-Passwords-of-2017a.pdf (2017)


https://blog.cyberint.com/sentry-mba-a-tale-of-the-most-popular-credential-stuffing-attack-tool
https://blog.cyberint.com/sentry-mba-a-tale-of-the-most-popular-credential-stuffing-attack-tool
https://blog.dashlane.com/infographic-online-overload-its-worse-than-you-thought/
https://blog.dashlane.com/infographic-online-overload-its-worse-than-you-thought/
https://s13639.pcdn.co/wp-content/uploads/2017/12/Top-100-Worst-Passwords-of-2017a.pdf
https://s13639.pcdn.co/wp-content/uploads/2017/12/Top-100-Worst-Passwords-of-2017a.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Gosling, S.D., Gaddis, S., Vazire, S.: Personality impressions based on facebook
profiles. In: ICWSM (2007)

Idika, N., Bhargava, B.: Extending attack graph-based security metrics and aggre-
gating their application. IEEE Transactions on Dependable and Secure Computing
9(1), 75-85 (2012)

Jajodia, S., Noel, S., O’Berry, B.: Topological analysis of network attack vulnera-
bility, pp. 247-266. Springer US, Boston, MA (2005)

Jha, S., Sheyner, O., Wing, J.: Two Formal Analyses of Attack Graphs. In: Procs.
of the Workshop on Computer Security Foundations. pp. 49-63 (2002)

Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable
from digital records of human behavior. Proceedings of the National Academy
of Sciences (2013). https://doi.org/10.1073/pnas.1218772110, http://www.pnas.
org/content/early/2013/03/06/1218772110

Li, W., Vaughn, R.B.: Cluster security research involving the modeling of network
exploitations using exploitation graphs. In: Cluster Computing and the Grid, 2006.
CCGRID 06. Sixth IEEE International Symposium on. vol. 2, pp. 26-26 (May
2006)

Lippmann, R., Ingols, K., Scott, C., Piwowarski, K., Kratkiewicz, K., Artz, M.,
Cunningham, R.: Validating and restoring defense in depth using attack graphs.
In: Proceedings of the 2006 IEEE Conference on Military Communications. pp.
981-990. MILCOM’06, IEEE Press, Piscataway, NJ, USA (2006)
Munoz-Gonzéilez, L., Sgandurra, D., Barrere, M., Lupu, E.C.: Exact infer-
ence techniques for the analysis of bayesian attack graphs. IEEE Trans-
actions on Dependable and Secure Computing PP(99), 1-1 (2017).
https://doi.org/10.1109/TDSC.2016.2627033

Murtioz-Gonzélez, L., Sgandurra, D., Paudice, A., Lupu, E.C.: Efficient attack
graph analysis through approximate inference. ACM Trans. Priv. Secur. 20(3),
10:1-10:30 (Jul 2017). https://doi.org/10.1145/3105760, http://doi.acm.org/10.
1145/3105760

Ortalo, R., Deswarte, Y., Kaaniche, M.: Experimenting with quantitative evalu-
ation tools for monitoring operational security. IEEE Transactions on Software
Engineering 25(5), 633—650 (1999)

Ou, X., Boyer, W., McQueen, M.: A scalable approach to attack graph generation.
In: Procs. Conf. on Computer and Communications Security. pp. 336-345 (2006)
Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: A logic-based network security
analyzer. In: Proceedings of the 14th Conference on USENIX Security Symposium
- Volume 14. pp. 8-8. SSYM’05, USENIX Association, Berkeley, CA, USA (2005)
Pepitone, J.: Hack attack exposes major gap in amazon and apple security. http:
//money.cnn.com/2012/08/07/technology/mat-honan-hacked/| (August 2012)
Poolsappasit, N., Dewri, R., Ray, I.: Dynamic Security Risk Management using
Bayesian Attack Graphs. IEEE Trans. on Dependable and Secure Computing 9(1),
61-74 (2012)

Rabkin, A.: Personal knowledge questions for fallback authentication: Security
questions in the era of facebook. In: Proceedings of the 4th Symposium on Us-
able Privacy and Security. pp. 13-23. SOUPS 08, ACM, New York, NY, USA
(2008)

Ritchey, R.W., Ammann, P.: Using model checking to analyze network vulnera-
bilities. In: Proceeding 2000 IEEE Symposium on Security and Privacy. S P 2000.
pp. 156-165 (2000)


https://doi.org/10.1073/pnas.1218772110
http://www.pnas.org/content/early/2013/03/06/1218772110
http://www.pnas.org/content/early/2013/03/06/1218772110
https://doi.org/10.1109/TDSC.2016.2627033
https://doi.org/10.1145/3105760
http://doi.acm.org/10.1145/3105760
http://doi.acm.org/10.1145/3105760
http://money.cnn.com/2012/08/07/technology/mat-honan-hacked/
http://money.cnn.com/2012/08/07/technology/mat-honan-hacked/

22.

23.

24.

Sgandurra, D., Karafili, E., Lupu, E.: Formalizing threat models for virtualized
systems. In: Ranise, S., Swarup, V. (eds.) Data and Applications Security and
Privacy XXX. pp. 251-267. Springer International Publishing, Cham (2016)
Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.: Automated Generation
and Analysis of Attack Graphs. In: Procs. of the IEEE Symp. on Security and
Privacy. pp. 273-284 (2002)

Sheyner, O., Wing, J.: Tools for Generating and Analyzing Attack Graphs. In:
Formal Methods for Components and Objects. pp. 344-371 (2004)



	A Logic-Based Reasoner for Discovering Authentication Vulnerabilities between Interconnected Accounts

