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Abstract

In this work, an explicit scheme of wiretap coding based on polar lattices is proposed to achieve the secrecy

capacity of the additive white Gaussian noise (AWGN) wiretap channel. Firstly, polar lattices are used to construct

secrecy-good lattices for the mod-Λs Gaussian wiretap channel. Then we propose an explicit shaping scheme to

remove this mod-Λs front end and extend polar lattices to the genuine Gaussian wiretap channel. The shaping

technique is based on the lattice Gaussian distribution, which leads to a binary asymmetric channel at each level

for the multilevel lattice codes. By employing the asymmetric polar coding technique, we construct an AWGN-good

lattice and a secrecy-good lattice with optimal shaping simultaneously. As a result, the encoding complexity for

the sender and the decoding complexity for the legitimate receiver are both O(N logN log(logN)). The proposed

scheme is proven to be semantically secure.

I. INTRODUCTION

Wyner [1] introduced the wiretap channel model and showed that both reliability and confidentiality could be

attained by coding without any key bits if the channel between the sender and the eavesdropper (wiretapper’s channel

W ) is degraded with respect to the channel between the sender and the legitimate receiver (main channel V ). The

goal of wiretap coding is to design a coding scheme that makes it possible to communicate both reliably and securely

between the sender and the legitimate receiver. Reliability is measured by the decoding error probability for the

legitimate user, namely lim
N→∞

Pr{M̂ 6= M} = 0, where N is the length of transmitted codeword, M is the confidential

message and M̂ is its estimate. Secrecy is measured by the mutual information between M and the signal received

by the eavesdropper Z[N ]. In this work, we will follow the strong secrecy condition proposed by Csiszár [2], i.e.,

lim
N→∞

I(M;Z[N ]) = 0, which is more widely accepted than the weak secrecy criterion lim
N→∞

1
N I(M;Z[N ]) = 0. In

simple terms, the secrecy capacity is defined as the maximum achievable rate under both the reliability and strong

secrecy conditions. When W and V are both symmetric, and W is degraded with respect to V , the secrecy capacity

is given by C(V )− C(W ) [3], where C(·) denotes the channel capacity.
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In the study of strong secrecy, plaintext messages are often assumed to be random and uniformly distributed.

From a cryptographic point of view, it is crucial that the security does not rely on the distribution of the message.

This issue can be resolved by using the standard notion of semantic security [4] which means that, asymptotically,

it is impossible to estimate any function of the message better than to guess it without accessing Z[N ] at all. The

relation between strong secrecy and semantic security was recently revealed in [5], [6], namely, semantic security

is equivalent to achieving strong secrecy for all distributions pM of the plaintext messages:

lim
N→∞

max
pM

I(M;Z[N ]) = 0. (1)

Alice Encoder AWGN 

AWGN 

Decoder 

Eve 

Bob 

Fig. 1. The Gaussian wiretap channel.

In this work, we construct lattice codes for the Gaussian wiretap channel (GWC) which is shown in Fig. 1. The

confidential message M drawn from the message set M is encoded by the sender (Alice) into an N -dimensional

codeword X[N ]. The outputs Y[N ] and Z[N ] received by the legitimate receiver (Bob) and the eavesdropper (Eve)

are respectively given by




Y
[N ] = X

[N ] +W
[N ]
b

Z
[N ] = X

[N ] +W
[N ]
e ,

where W
[N ]
b and W

[N ]
e are N -dimensional Gaussian noise vectors with zero mean and variance σ2

b , σ2
e respectively.

The channel input X[N ] satisfies the power constraint Ps, i.e.,

1

N
E[‖X[N ]‖2] ≤ Ps.

Polar codes [7] have shown their great potential in solving the wiretap coding problem. The polar coding scheme

proposed in [8], combined with the block Markov coding technique [9], was proved to achieve the strong secrecy

capacity when W and V are both binary-input symmetric channels, and W is degraded with respect to V . More

recently, polar wiretap coding has been extended to general wiretap channels (not necessarily degraded or symmetric)

in [10] and [11]. For continuous channels such as the GWC, there also has been notable progress in wiretap lattice

coding. On the theoretical aspect, the existence of lattice codes achieving the secrecy capacity to within 1
2 nat under

the strong secrecy as well as semantic security criterion was demonstrated in [6]. On the practical aspect, wiretap

lattice codes were proposed in [12] and [13] to maximize the eavesdropper’s decoding error probability.
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A. Our contribution

Polar lattices, the counterpart of polar codes in the Euclidean space, have already been proved to be additive

white Gaussian noise (AWGN)-good [14] and further to achieve the AWGN channel capacity with lattice Gaussian

shaping [15]1. Motivated by [8], we will propose polar lattices to achieve both strong secrecy and reliability over

the mod-Λs GWC. Conceptually, this polar lattice structure can be regarded as a secrecy-good lattice Λe nested

within an AWGN-good lattice Λb (Λe ⊂ Λb). Further, we will propose a Gaussian shaping scheme over Λb and Λe,

using the multilevel asymmetric polar coding technique. As a result, we will accomplish the design of an explicit

lattice coding scheme which achieves the secrecy capacity of the GWC with semantic security.

• The first technical contribution of this paper is the explicit construction of secrecy-good polar lattices for the

mod-Λs GWC and the proof of their secrecy capacity-achieving. This is an extension of the binary symmetric

wiretap coding [8] to the multilevel coding scenario, and can also be considered as the construction of secrecy-

good polar lattices for the GWC without the power constraint. The construction for the mod-Λs GWC provides

considerable insight into wiretap coding for the genuine GWC, without deviating to the technicality of Gaussian

shaping. This work is also of independent interest to other problems of information theoretic security, e.g.,

secret key generation from Gaussian sources [19].

• Our second contribution is the Gaussian shaping applied to the secrecy-good polar lattice, which follows the

technique of [6], [15]. The resultant coding scheme is proved to achieve the secrecy capacity of the GWC.

It is worth mentioning that our proposed coding scheme is not only a practical implementation of the secure

random lattice coding in [6], but also an improvement in the sense that we successfully remove the constant

1
2 -nat gap to the secrecy capacity2.

B. Comparison with the extractor-based approach

Invertible randomness extractors were introduced into wiretap coding in [5], [20], [21]. The key idea is that

an extractor is used to convert a capacity-achieving code with rate close to C(V ) for the main channel into a

wiretap code with the rate close to C(V )− C(W ). Later, this coding scheme was extended to the GWC in [22].

Besides, channel resolvability [23] was proposed as a tool for wiretap codes. An interesting connection between

the resolvability and the extractor was revealed in [24].

The proposed approach and the one based on invertible extractors have their respective advantages. The extractor-

based approach is modular, i.e., the error-correction code and extractor are realized separately; it is possible to harness

the results of invertible extractors in literature. The advantage of our lattice-based scheme is that the wiretap code

designed for Eve is nested within the capacity-achieving code designed for Bob, which represents an integrated

approach. More importantly, lattice codes are attractive for emerging applications in network information theory

1Please refer to [16]–[18] for other methods of achieving the AWGN channel capacity.

2The 1
2

-nat gap in [6] was due to a requirement on the volume-to-noise ratio of the secrecy-good lattice. In this paper, we employ mutual

information, rather than via the flatness factor, to directly bound information leakage, thereby removing that requirement of the secrecy-good

lattice.
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thanks to their useful structures [16], [25]; thus the proposed scheme may fit better with this landscape when

security is a concern [26].

C. Outline of the paper

The paper is organized as follows: Section II presents some preliminaries of lattice codes. The binary polar codes

and multilevel lattice structure [27] are briefly reviewed in Section III, where the original polar wiretap coding

scheme in [8] is slightly modified to be compatible to the following shaping operation. In Section IV, we construct

secrecy-good polar lattices for the mod-Λs GWC. In Section V, we show how to implement the discrete Gaussian

shaping over the polar lattice to remove the mod-Λs front end, using the polar coding technique for asymmetric

channels. Then we prove that our wiretap lattice coding achieves the secrecy capacity with shaping. Finally, we

discuss the relationship between the lattice constructions with and without shaping in Section VI.

D. Notation

All random variables (RVs) will be denoted by capital letters. Let PX denote the probability distribution of a RV

X taking values x in a set X and let H(X) denote its entropy. For multilevel coding, we denote by Xℓ a RV X

at level ℓ. The i-th realization of Xℓ is denoted by xi
ℓ. We also use the notation xi:j

ℓ as a shorthand for a vector

(xi
ℓ, ..., x

j
ℓ), which is a realization of RVs X

i:j
ℓ = (Xi

ℓ, ...,X
j
ℓ). Similarly, xi

ℓ:j will denote the realization of the

i-th RVs from level ℓ to level j, i.e., of Xi
ℓ:j = (Xi

ℓ, ...,X
i
j). For a set I, Ic denotes its compliment set, and |I|

represents its cardinality. For an integer N , [N ] will be used to denote the set of all integers from 1 to N . A binary

memoryless asymmetric (BMA) channel and a binary memoryless symmetric (BMS) channel will be denoted by

W and W̃ , respectively. Following the notation of [7], we denote N independent uses of channel W by WN . By

channel combining and splitting, we get the combined channel WN and the i-th subchannel W
(i)
N . Specifically, for

a channel Wℓ at level ℓ, WN
ℓ , Wℓ,N and W

(i,N)
ℓ are used to denote its N independent expansion, the combined

channel and the i-th subchannel after polarization. An indicator function is represented by 1(·). Throughout this

paper, we use the binary logarithm, denoted by log, and information is measured in bits.

II. PRELIMINARIES OF LATTICE CODES

A. Definitions

A lattice is a discrete subgroup of Rn which can be described by

Λ = {λ = Bx : x ∈ Zn},

where B is an n-by-n lattice generator matrix and we always assume that it has full rank in this paper.

For a vector x ∈ Rn, the nearest-neighbor quantizer associated with Λ is QΛ(x) = argmin
λ∈Λ
‖λ−x‖. We define the

modulo lattice operation by x mod Λ , x−QΛ(x). The Voronoi region of Λ, defined by V(Λ) = {x : QΛ(x) = 0},
specifies the nearest-neighbor decoding region. The Voronoi cell is one example of fundamental region of the

lattice. A measurable set R(Λ) ⊂ Rn is a fundamental region of the lattice Λ if ∪λ∈Λ(R(Λ) + λ) = Rn and if

June 13, 2018 DRAFT
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(R(Λ) + λ) ∩ (R(Λ) + λ′) has measure 0 for any λ 6= λ′ in Λ. The volume of a fundamental region is equal to

that of the Voronoi region V(Λ), which is given by Vol(Λ) = |det(B)|.
The theta series of Λ (see, e.g., [28, p.70]) is defined as

ΘΛ(τ) =
∑

λ∈Λ

e−πτ‖λ‖2

, τ > 0.

In this paper, the reliability condition for Bob is measured by the block error probability Pe(Λ, σ
2) of lattice

decoding. It is the probability Pr{x /∈ V(Λ)} that an n-dimensional independent and identically distributed (i.i.d.)

Gaussian noise vector x with zero mean and variance σ2 per dimension falls outside the Voronoi region V(Λ). For

an n-dimensional lattice Λ, define the volume-to-noise ratio (VNR) of Λ by

γΛ(σ) ,
Vol(Λ)

2
n

σ2
.

Then we introduce the notion of lattices which are good for the AWGN channel without power constraint.

Definition 1 (AWGN-good lattices): A sequence of lattices Λb of increasing dimension n is AWGN-good if, for

any fixed Pe(Λb, σ
2) ∈ (0, 1), limn→∞ γΛb

(σ) = 2πe, and if, for any fixed VNR greater than 2πe,

lim
n→∞

Pe(Λb, σ
2) = 0.

It is worth mentioning here that we do not insist on exponentially vanishing error probabilities, unlike Poltyrev’s

original treatment of good lattices for coding over the AWGN channel [29]. This is because a sub-exponential or

polynomial decay of the error probability is often good enough.

Next, we introduce the notion of secrecy-good lattices. For this purpose, we need the capacity C(Λe, σ
2) of the

mod-Λe channel, which will be defined in (9).

Definition 2 (Secrecy-good lattices): A sequence of lattices Λe of increasing dimension n is secrecy-good if, for

any fixed VNR of Λe smaller than 2πe, the channel capacity C(Λe, σ
2) vanishes:

lim
n→∞

C(Λe, σ
2) = 0.

Note that this definition is different from that in [6], which is based on the flatness factor associated with the

lattice Gaussian distribution. We will show that this definition is also sufficient to guarantee vanishing information

leakage (see Remark 3).

B. Flatness factor and lattice Gaussian distribution

For σ > 0 and c ∈ Rn, the Gaussian distribution of mean c and variance σ2 is defined as

fσ,c(x) =
1

(
√
2πσ)n

e−
‖x−c‖2

2σ2 ,

for all x ∈ Rn. For convenience, let fσ(x) = fσ,0(x).

Given lattice Λ, we define the Λ-periodic function

fσ,Λ(x) =
∑

λ∈Λ

fσ,λ(x) =
1

(
√
2πσ)n

∑

λ∈Λ

e−
‖x−λ‖2

2σ2 ,

for x ∈ Rn.
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The flatness factor is defined for a lattice Λ as [6]

ǫΛ(σ) , max
x∈R(Λ)

|Vol(Λ)fσ,Λ(x)− 1| .

It can be interpreted as the maximum variation of fσ,Λ(x) from the uniform distribution over R(Λ). The flatness

factor can be calculated using the theta series [6]:

ǫΛ(σ) =

(
γΛ(σ)

2π

)n
2

ΘΛ

(
1

2πσ2

)
− 1.

We define the discrete Gaussian distribution over Λ centered at c ∈ Rn as the following discrete distribution

taking values in λ ∈ Λ:

DΛ,σ,c(λ) =
fσ,c(λ)

fσ,c(Λ)
, ∀λ ∈ Λ,

where fσ,c(Λ) ,
∑

λ∈Λ fσ,c(λ) = fσ,Λ(c). Again for convenience, we write DΛ,σ = DΛ,σ,0.

It is also useful to define the discrete Gaussian distribution over a coset of Λ, i.e., the shifted lattice Λ− c:

DΛ−c,σ(λ − c) =
fσ(λ− c)

fσ,c(Λ)
, ∀λ ∈ Λ.

Note the relation DΛ−c,σ(λ− c) = DΛ,σ,c(λ), namely, they are a shifted version of each other.

Each component of a lattice point sampled from DΛ−c,σ has an average power always less than σ2 by the

following lemma.

Lemma 1 (Average power of lattice Gaussian [30, Lemma 1]): Let x = (x1, x2, ..., xn)
T ∼ DΛ−c,σ. Then, for

each 1 ≤ i ≤ n,

E[x2
i ] ≤ σ2. (2)

If the flatness factor is negligible, the discrete Gaussian distribution over a lattice preserves the capacity of the

AWGN channel.

Theorem 1 (Mutual information of discrete Gaussian distribution [30, Th. 2]): Consider an AWGN channel

Y = X + E where the input constellation X has a discrete Gaussian distribution DΛ−c,σs
for arbitrary c ∈ Rn,

and where the variance of the noise E is σ2. Let the average signal power be Ps so that SNR = Ps/σ
2, and let

σ̃ , σsσ√
σ2
s+σ2

. Then, if ε = ǫΛ (σ̃) < 1
2 and πεt

1−ǫt
≤ ε where

εt ,





ǫΛ

(
σs/

√
π

π−t

)
, t ≥ 1/e

(t−4 + 1)ǫΛ

(
σs/

√
π

π−t

)
, 0 < t < 1/e

the discrete Gaussian constellation results in mutual information

ID ≥
1

2
log (1 + SNR)− 5ε

n
(3)

per channel use. Moreover, the difference between Ps and σ2
s is bounded by

∣∣Ps − σ2
s

∣∣ ≤ 2πǫt
n(1− ǫ)

σ2
s .

A lattice Λ or its coset Λ− c with a discrete Gaussian distribution is referred to as a good constellation for the

AWGN channel if ǫΛ(σ̃) is negligible [30]. It is further proved in [30] that the channel capacity is achieved with

June 13, 2018 DRAFT
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Gaussian shaping over an AWGN-good lattice and minimum mean square error (MMSE) lattice decoding. Following

Theorem 1, it has been shown in [15] that an AWGN-good polar lattice shaped according to the discrete Gaussian

distribution achieves the AWGN channel capacity with sub-exponentially vanishing error probability, which means

that an explicit polar lattice satisfying the power constraint and the reliability condition for Bob is already in hand.

Therefore, the next section will focus on the construction of the secrecy-good polar lattice.

III. POLAR CODES AND POLAR LATTICES

A. Polar codes: brief review

We firstly recall some basics of polar codes. Let W̃ be a BMS channel with uniformly distributed input X ∈
X = {0, 1} and output Y ∈ Y . The input distribution and transition probability of W̃ are denoted by PX and PY|X

respectively. Let X[N ] and Y[N ] be the input and output vector of N independent uses of W̃ . Let N = 2m be the

block length of polar codes for some integer m ≥ 1. The channel polarization is based on the N -by-N transform

U[N ] = X[N ]GN , where GN = [ 1 0
1 1 ]

⊗m
is the generator matrix and ⊗ denotes the Kronecker product. Then we get

an N -dimensional combined channel W̃N from U[N ] to Y[N ]. For each i ∈ [N ], given the previous bits U1:i−1, the

channel W̃
(i)
N seen by each bit Ui is called the i-th subchannel channel after the channel splitting process [7], and

the transition probability of W̃
(i)
N is given by

W̃
(i)
N (y[N ], u1:i−1|ui) =

∑

ui+1:N∈XN−i

1

2N−1
W̃N (y[N ]|u[N ]),

where u[N ] and y[N ] are the realizations of U[N ] and Y[N ], respectively. Arıkan proved that W̃
(i)
N is also a BMS

channel and it becomes either an almost error-free channel or a completely useless channel as N grows. According

to [7], the goodness of a BMS channel can be estimated by its associate Bhattacharyya parameter, which is defined

as follows.

Definition 3 (Bhattacharyya parameter of BMS channels): Let W̃ be a BMS channel with transition probability

PY|X, the symmetric Bhattacharyya parameter Z̃ ∈ [0, 1] is defined as

Z̃(W̃ ) ,
∑
y

√
PY|X(y|0)PY|X(y|1).

Remark 1. Although polar codes were originally proposed for binary-input discrete memoryless channels [7],

their extension to continuous channels, such as the binary-input AWGN channel, was given in [31]. To construct

polar codes efficiently, the authors proposed smart channel degrading and upgrading merging algorithms to quantize

continuous channels into their discrete versions. Fortunately, the quantization accuracy can be made arbitrarily small

by increasing the quantization level. For this reason, we still use the summation form of Bhattacharyya parameters

for continuous channels in this work, which also makes the notations consistent with the literature on polar codes.

It was further shown in [32], [33] that for any 0 < β < 1
2 ,

lim
m→∞

1

N

∣∣∣{i : Z̃(W̃
(i)
N ) < 2−Nβ}

∣∣∣ = I(W̃ )

lim
m→∞

1

N

∣∣∣{i : Z̃(W̃
(i)
N ) > 1− 2−Nβ}

∣∣∣ = 1− I(W̃ ),

June 13, 2018 DRAFT
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which means the proportion of such roughly error-free subchannels (with negligible Bhattacharyya parameters)

approaches the channel capacity I(W̃ ). The set of the indices of all those almost error-free subchannels is usually

called the information set I and its complementary is called the frozen set F . Consequently, the construction of

capacity-achieving polar codes is simply to identify the indices in the information set I. However, for a general

BMS channel other than binary erasure channel, the complexity of the exact computation for Z̃(W̃
(i)
N ) appears to

be exponential in the block length N . An efficient estimation method for Z̃(W̃
(i)
N ) was proposed in [31], using the

idea of channel upgrading and degrading. It was shown that with a sufficient number of quantization levels, the

approximation error is negligible even if W̃ has continuous output, and the involved computational complexity is

acceptable.

In [7], a bit-wise decoding method called successive cancellation (SC) decoding was proposed to show that polar

codes are able to achieve channel capacity with vanishing error probability. This decoding method has complexity

O(N logN), and the error probability is given by PSC
e ≤∑

i∈I Z̃(W̃
(i)
N ).

B. Polar codes for the binary symmetric wiretap channel

Now we revisit the construction of polar codes for the binary symmetric wiretap channel. We use Ṽ and W̃ to

denote the symmetric main channel between Alice and Bob and the symmetric wiretap channel between Alice and

Eve, respectively. Both Ṽ and W̃ have binary input X and W̃ is degraded with respect to Ṽ . Let Y and Z denote

the output of Ṽ and W̃ . After the channel combination and splitting of N independent uses of the Ṽ and W̃ by the

polarization transform U[N ] = X[N ]GN , we define the sets of reliability-good indices for Bob and information-poor

indices for Eve as

G(Ṽ ) = {i : Z̃(Ṽ
(i)
N ) ≤ 2−Nβ},

N (W̃ ) = {i : Z̃(W̃
(i)
N ) ≥ 1− 2−Nβ},

(4)

where 0 < β < 0.5 and Ṽ
(i)
N (W̃

(i)
N ) is the i-th subchannel of the main channel (wiretapper’s channel) after

polarization transform.

Note that in the seminal paper [8] of polar wiretap coding, the information-poor set N (W̃ ) was defined as

{i : I(W̃ (i,N)) ≤ 2−Nβ}. In contrast, our criterion here is based on the Bhattacharyya parameter3. This slight

modification will bring us much convenience when lattice shaping is involved in Sect. V. The following lemma

shows that the modified criterion is similar to the original one in the sense that the mutual information of the

subchannels with indices in N (W̃ ) can still be bounded in the same form.

Lemma 2: Let W̃
(i)
N be the i-th subchannel after the polarization transform on independent N uses of a BMS

channel W̃ . For any 0 < β < 1
2 and δ > 0, if Z̃(W̃

(i)
N ) ≥ 1− 2−Nβ

, the mutual information of the i-th subchannel

can be upper-bounded as

I(W̃
(i)
N ) ≤ 2−Nβ′

,

where β(1− δ) ≤ β′ ≤ β when N is sufficiently large.

3This idea has already been used in [8] to prove that polar wiretap coding scheme is secrecy capacity-achieving.
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Proof. When W̃ is symmetric, W̃
(i)
N is symmetric as well. By [7, Proposition 1], we have

I(W̃
(i)
N ) ≤

√
1− Z̃(W̃

(i)
N )2

≤
√
2 · 2−Nβ

= 2−Nβ′

,

where β′ < β. Moreover, for sufficiently large N , β′ can be made arbitrarily close to and β , i.e., β(1 − δ) ≤ β′

for any δ > 0.

Since the mutual information of subchannels in N (W̃ ) can be upper-bounded in the same form, it is not difficult

to understand that strong secrecy can be achieved using the index partition proposed in [8]. Similarly, we divide

the index set [N ] into the following four sets:

A = G(Ṽ ) ∩N (W̃ ), B = G(Ṽ ) ∩ N (W̃ )c

C = G(Ṽ )c ∩N (W̃ ), D = G(Ṽ )c ∩ N (W̃ )c.
(5)

Clearly, A∪ B ∪ C ∪ D = [N ]. Then we assign set A with message bits M, set B with uniformly random bits Rb,

set C with frozen bits F which are known to both Bob and Eve prior to transmission, and set D with uniformly

random bits Rd. The next lemma shows that this assignment achieves strong secrecy. We note that this proof is

similar to that in [8], [9] and it is given in [34, Appendix A].

Lemma 3: According to the partitions of the index set shown in (5), if we assign the four sets as follows

A ← M, B ← Rb,

C ← F, D ← Rd,
(6)

the information leakage I(M;Z[N ]) can be upper-bounded as

I(M;Z[N ]) ≤ N · 2−Nβ′

, 0 < β′ < 0.5. (7)

We can also observe that the proportion of the problematic set D is arbitrarily small when N is sufficiently large.

This is because set D is a subset of the unpolarized set {i : 2−Nβ

< Z̃(Ṽ
(i)
N ) < 1− 2−Nβ}. As has been shown in

[8], the reliability condition cannot be fulfilled with SC decoding due to the existence of D. Fortunately, we can

use the Markov block coding technique proposed in [9] to achieve reliability and strong secrecy simultaneously.

More details of this Markov block coding technique will be discussed in Section IV-B and Section V-D.

With regard to the secrecy rate, we show that the modified polar coding scheme can also achieve the secrecy

capacity.

Lemma 4: Let C(Ṽ ) and C(W̃ ) denote the channel capacity of the main channel Ṽ and wiretap channel W̃

respectively. Since W̃ is degraded with respect to Ṽ , the secrecy capacity, which is given by C(Ṽ ) − C(W̃ ), is

achievable using the modified wiretap coding scheme, i.e.,

lim
N→∞

|G(Ṽ ) ∩ N (W̃ )|/N = C(Ṽ )− C(W̃ ).

Proof. See [34, Appendix B].
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C. From polar codes to polar lattices

A sublattice Λ′ ⊂ Λ induces a partition (denoted by Λ/Λ′) of Λ into equivalence classes modulo Λ′. The order

of the partition is denoted by |Λ/Λ′|, which is equal to the number of cosets. If |Λ/Λ′| = 2, we call this a binary

partition. Let Λ/Λ1/ · · · /Λr−1/Λ
′ for r ≥ 1 be an n-dimensional self-similar lattice partition chain4. For each

partition Λℓ−1/Λℓ (1 ≤ ℓ ≤ r with convention Λ0 = Λ and Λr = Λ′) a code Cℓ over Λℓ−1/Λℓ selects a sequence

of representatives aℓ for the cosets of Λℓ. Consequently, if each partition is binary, the code Cℓ is a binary code.

Polar lattices are constructed by “Construction D” [28, p.232] [27] using a set of nested polar codes C1 ⊆ C2 ··· ⊆
Cr. Suppose Cℓ has block length N and kℓ information bits for 1 ≤ ℓ ≤ r. Choose a basis g1,g2, · · · ,gN from

the polar generator matrix GN such that g1, · · ·gkℓ
span Cℓ. When the dimension n = 1, we choose the partition

chain Z/2Z.../2rZ, then the lattice L admits the form [27]

L =

{
r∑

ℓ=1

2ℓ−1
kℓ∑

i=1

ui
ℓgi + 2rZN | ui

ℓ ∈ {0, 1}
}
, (8)

where the addition is carried out in RN . The fundamental volume of a lattice obtained from this construction is

given by

Vol(L) = 2−NRC · Vol(Λr)
N ,

where RC =
∑r

ℓ=1Rℓ =
1
N

∑r
ℓ=1 kℓ denotes the sum rate of component codes. In this paper, we limit ourselves

to the one-dimensional binary lattice partition chain and binary polar codes for simplicity.

IV. SECRECY-GOOD POLAR LATTICES FOR THE MOD-Λs GWC

Before considering the Gaussian wiretap channel, we will tackle a simpler problem of constructing secrecy-good

polar lattices over the mod-Λs GWC shown in Fig. 2. The difference between the mod-Λs GWC and the genuine

GWC is the mod-Λs operation on the received signal of Bob and Eve. We will assume uniform input messages

until we discuss semantic security in the end of this section.

A. Strong secrecy

With some abuse of notation, the outputs Y[N ] and Z[N ] at Bob and Eve’s ends respectively become




Y
[N ] =

[
X
[N ] +W

[N ]
b

]
mod Λs,

Z
[N ] =

[
X
[N ] +W

[N ]
e

]
mod Λs.

The idea of wiretap lattice coding over the mod-Λs GWC [6] can be explained as follows. Let Λb and Λe be

the AWGN-good lattice and secrecy-good lattice designed for Bob and Eve accordingly. Let Λs ⊂ Λe ⊂ Λb be a

nested chain of N -dimensional lattices in RN , where Λs is the shaping lattice. Note that the shaping lattice Λs here

is employed primarily for the convenience of designing the secrecy-good lattice and secondarily for satisfying the

power constraint. Consider a one-to-one mapping:M→ Λb/Λe which associates each message m ∈ M to a coset

4By saying self-similar, we mean that Λℓ = T ℓΛ for all ℓ, with T = αV for some scale factor α > 1 and orthogonal matrix V . For

example, Z/2Z/.../2rZ is a one-dimensional self-similar partition chain.
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Alice AWGN 

AWGN Eve 

Bob Mod Λ
s
 

Mod Λ
s
 

Decoder Encoder 

Fig. 2. The mod-Λs Gaussian wiretap channel.

λ̃m ∈ Λb/Λe. Alice selects a lattice point λ ∈ Λe ∩ V(Λs) uniformly at random and transmits X[N ] = λ + λm,

where λm is the coset representative of λ̃m in V(Λe). This scheme has been proved to achieve both reliability and

semantic security in [6] by random lattice codes. We will make it explicit by constructing polar lattice codes in

this section.

Let Λb and Λe be constructed from a binary partition chain Λ/Λ1/ · · · /Λr−1/Λr, and assume Λs ⊂ ΛN
r such

that Λs ⊂ ΛN
r ⊂ Λe ⊂ Λb

5. Also, denote by X
[N ]
1:r the bits encoding ΛN/ΛN

r , which include all information bits for

message M as a subset. We have that
[
X[N ] +W

[N ]
e

]
mod ΛN

r is a sufficient statistic for X
[N ]
1:r . This can be seen

from [27, Lemma 8], rewritten as follows:

Lemma 5 (Sufficiency of mod-Λ output [27]): For a partition chain Λ/Λ′ (Λ′ ⊂ Λ), let the input of an AWGN

channel be X = A+B, where A ∈ R(Λ) is a random variable, and B is uniformly distributed in Λ∩R(Λ′). Reduce

the output Y first to Y′ = Y mod Λ′ and then to Y′′ = Y′ mod Λ. Then the mod-Λ map is information-lossless,

namely I(A;Y′) = I(A;Y′′), which means that the output Y′′ = Y′ mod Λ of mod-Λ map is a sufficient statistic

for A.

In our context, we identify Λ with ΛN
r and Λ′ with Λs, respectively. Since the bits encoding ΛN

r /Λs are uniformly

distributed6, the mod-ΛN
r operation is information-lossless in the sense that

I
(
X
[N ]
1:r ;Z

[N ]
)
= I

(
X
[N ]
1:r ; [X

[N ] +W
[N ]
e ] mod ΛN

r

)
.

As far as mutual information I
(
X
[N ]
1:r ;Z

[N ]
)

is concerned, we can use the mod-ΛN
r operator instead of the mod-Λs

operator here. Under this condition, we use the multilevel lattice structure introduced in [27] to decompose the

mod-Λs channel into a series of BMS channels according to the partition chain Λ/Λ1/ · · · /Λr−1/Λr. Therefore,

the afore-mentioned polar coding technique for BMS channels can be employed. Moreover, the channel resulted

from the lattice partition chain can be proved to be equivalent to that based on the chain rule of mutual information

5This is always possible with sufficient power, since the power constraint is not our primary concern in this section. We can scale Λs as

large as possible to make Λs ⊂ ΛN
r .

6In fact, all bits encoding Λe/Λs are uniformly distributed in wiretap coding.

June 13, 2018 DRAFT



12

(See (11)). Following this channel equivalence, we can construct an AWGN-good lattice Λb and a secrecy-good

lattice Λe, using the wiretap coding technique (4) at each partition level.

A mod-Λ channel is a Gaussian channel with a modulo-Λ operator in the front end [27], [35]. The capacity of

the mod-Λ channel is [27]

C(Λ, σ2) = log(Vol(Λ))− h(Λ, σ2), (9)

where h(Λ, σ2) is the differential entropy of the Λ-aliased noise over R(Λ):

h(Λ, σ2) = −
∫

R(Λ)

fσ,Λ(t) log fσ,Λ(t)dt.

The differential entropy reaches its maximum log(Vol(Λ)) by the uniform distribution over R(Λ). The Λℓ−1/Λℓ

channel is defined as a mod-Λℓ channel whose input is drawn from Λℓ−1 ∩ R(Λℓ). It is known that the Λℓ−1/Λℓ

channel is symmetric7, and the optimum input distribution is uniform [27]. Furthermore, the Λℓ−1/Λℓ channel is

binary if |Λℓ−1/Λℓ| = 2. The capacity of the Λℓ−1/Λℓ channel for Gaussian noise of variance σ2 is given by [27]

C(Λℓ−1/Λℓ, σ
2) = C(Λℓ, σ

2)− C(Λℓ−1, σ
2)

= h(Λℓ−1, σ
2)− h(Λℓ, σ

2) + log(Vol(Λℓ)/Vol(Λℓ−1)).

The decomposition into a set of Λℓ−1/Λℓ channels is used in [27] to construct AWGN-good lattices. Take the

partition chain Z/2Z/ · · · /2rZ as an example. Given uniform input X1:r, let Kℓ denote the coset indexed by x1:ℓ,

i.e., Kℓ = x1 + · · · + 2ℓ−1xℓ + 2ℓZ. Given that X1:ℓ−1 = x1:ℓ−1, the conditional probability distribution function

(PDF) of this channel with binary input Xℓ and output Z̄ = Z mod Λℓ is

fZ̄|Xℓ
(z̄|xℓ) =

1√
2πσe

∑

a∈Kℓ(x1:ℓ)

exp

(
− 1

2σ2
e

‖z̄ − a‖2
)
. (10)

Since the previous input bits x1:ℓ−1 cause a shift on Kℓ and will be removed by the multistage decoder at level ℓ, the

code can be designed according to the channel transition probability (10) with x1:ℓ−1 = 0. Following the notation of

[27], we use V (Λℓ−1/Λℓ, σ
2
b ) and W (Λℓ−1/Λℓ, σ

2
e) to denote the Λℓ−1/Λℓ channel for Bob and Eve respectively.

The Λℓ−1/Λℓ channel can also be used to construct secrecy-good lattices. In order to bound the information leakage

of the wiretapper’s channel, we firstly express I(X1:r;Z) according to the chain rule of mutual information as

I(X1:r;Z) = I(X1;Z) + I(X2;Z|X1) + · · ·+ I(Xr;Z|X1:r−1). (11)

This equation still holds if Z denotes the noisy signal after the mod-Λr operation, namely, Z = [X+We] mod Λr. We

will adopt this notation in the rest of this subsection. We refer to the ℓ-th channel associated with mutual information

I(Xℓ;Z|X1:ℓ−1) as the equivalent channel denoted by W ′(Xℓ;Z|X1:ℓ−1), which is defined as the channel from Xℓ

to Z given the previous X1:ℓ−1. Then the transition probability distribution of W ′(Xℓ;Z|X1:ℓ−1) is [27, Lemma 6]

fZ|Xℓ
(z|xℓ) =

1

Pr(Kℓ(x1:ℓ))

∑

a∈Kℓ(x1:ℓ)

Pr(a)fZ(z|a)

=
1

|Λℓ/Λr|
1√
2πσe

∑

a∈Kℓ(x1:ℓ)

exp

(
− 1

2σ2
e

‖z − a‖2
)
, z ∈ V(Λr).

(12)

7This is “regular” in the sense of Delsarte and Piret and symmetric in the sense of Gallager [27].
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From (10) and (12), we can observe that the channel output likelihood ratio (LR) of the W (Λℓ−1/Λℓ, σ
2
e) channel

is equal to that of the ℓ-th equivalent channel W ′(Xℓ;Z|X1:ℓ−1). Then we have the following channel equivalence

lemma.

Lemma 6: Consider a lattice L constructed by a binary lattice partition chain Λ/Λ1/ · · · /Λr−1/Λr. Constructing

a polar code for the ℓ-th equivalent binary-input channel W ′(Xℓ;Z|X1:ℓ−1) defined by the chain rule (11) is

equivalent to constructing a polar code for the Λℓ−1/Λℓ channel W (Λℓ−1/Λℓ, σ
2
e), i.e., the mutual information

and Bhattacharyya parameters of the subchannels resulted from W ′(Xℓ;Z|X1:ℓ−1) are equivalent to that of the

subchannels resulted from W (Λℓ−1/Λℓ, σ
2
e), respectively.

Proof. See Appendix C.

Note that another proof based on direct calculation of the mutual information and Bhattacharyya parameters of

the subchannels can be found in [36].

Remark 2. Observe that if we define V ′(Xℓ;Y|X1:ℓ−1) as the equivalent channel according to the chain rule expan-

sion of I(X;Y) for the main channel, the same result can be obtained between V (Λℓ−1/Λℓ, σ
2
b ) and V ′(Xℓ;Y|X1:ℓ−1).

Moreover, this lemma also holds without the mod-Λs front-end, i.e., without power constraint. The construction of

AWGN-good polar lattices was given in [15], where nested polar codes were constructed based on a set of Λℓ−1/Λℓ

channels. We note that the Λℓ−1/Λℓ channel is degraded with respect to the Λℓ/Λℓ+1 channel [15, Lemma 3].
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Fig. 3. The multilevel lattice coding system over the mod-Λs Gaussian wiretap channel.

Now we are ready to introduce the polar lattice construction for the mod-Λs GWC shown in Fig. 3. A polar

lattice L is constructed by a series of nested polar codes C1(N, k1) ⊆ C2(N, k2) ⊆ · · · ⊆ Cr(N, kr) and a binary

lattice partition chain Λ/Λ1/ · · · /Λr. The block length of polar codes is N . Alice splits the message M into

M1, · · ·,Mr. We follow the same rule (6) to assign bits in the component polar codes to achieve strong secrecy.

Note that W (Λℓ−1/Λℓ, σ
2
e) is degraded with respect to V (Λℓ−1/Λℓ, σ

2
b ) for 1 ≤ ℓ ≤ r because σ2

b ≤ σ2
e . Treating
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V (Λℓ−1/Λℓ, σ
2
b ) and W (Λℓ−1/Λℓ, σ

2
e) as the main channel and wiretapper’s channel at each level and using the

partition rule (5), we can get four sets Aℓ, Bℓ, Cℓ and Dℓ. Similarly, we assign the bits as follows

Aℓ ← Mℓ, Bℓ ← R
b
ℓ,

Cℓ ← Fℓ, Dℓ ← R
d
ℓ

(13)

for each level ℓ, where Mℓ, Fℓ and Rb
ℓ (Rd

ℓ ) represent message bits, frozen bits (could be set as all zeros) and

uniformly random bits for set Bℓ (Dℓ) at level ℓ. Since the Λℓ−1/Λℓ channel is degraded with respect to the

Λℓ/Λℓ+1 channel. According to [33, Lemma 4.7], when a BMS channel W̃ is degraded with respect to a BMS

channel Ṽ , the Bhattacharyya parameters of the subchannels satisfy Z̃(W̃
(i)
N ) ≥ Z̃(Ṽ

(i)
N ). Thus, it is easy to obtain

that Cℓ ⊇ Cℓ+1, which means Aℓ∪Bℓ∪Dℓ ⊆ Aℓ+1∪Bℓ+1∪Dℓ+1. This construction is clearly a lattice construction

as polar codes constructed for each level are nested. We skip the proof of nested polar codes here. A similar proof

can be found in [14] and [15].

As a result, the above multilevel construction yields an AWGN-good lattice Λb and a secrecy-good lattice Λe

simultaneously. More precisely, Λb is constructed from a set of nested polar codes C1(N, |A1| + |B1| + |D1|) ⊆
· · · ⊆ Cr(N, |Ar|+ |Br|+ |Dr|), while Λe is constructed from a set of nested polar codes C1(N, |B1|+ |D1|) ⊆
· · · ⊆ Cr(N, |Br| + |Dr|) and with the same lattice partition chain. Note that the random bits in set Dℓ should

be shared to Bob to guarantee the AWGN-goodness of Λb. More details will be given in the next subsection. It

is clear that Λe ⊂ Λb. Thus, our proposed coding scheme instantiates the coset coding scheme introduced in [6],

where the confidential message is mapped to the coset λ̃m ∈ Λb/Λe. However, unlike the work of [6], our scheme

does not require an asymptotically vanishing flatness factor, since the upper-bound of the information leakage can

be calculated directly. The flatness factor will show up with the lattice Gaussian shaping in the next section.

By using the above assignments and Lemma 3, we have

I
(
MℓFℓ;Z

[N ]
ℓ

)
≤ N2−Nβ′

, (14)

where Z
[N ]
ℓ = Z

[N ] mod Λℓ is the output of the Λℓ−1/Λℓ channel for Eve. In other words, the employed polar

code for the channel W (Λℓ−1/Λℓ, σ
2
e) can guarantee that the mutual information between the input message and

the output is upper bounded by N2−Nβ′

.

We assume uniform Mℓ and Fℓ such that Xℓ is uniformly distributed at each level. We will remove this

restriction to the uniform distribution in Proposition 1. According to Lemma 6, the constructed polar code can

also guarantee the same upper-bound on the mutual information between the input message and the output of the

channel W ′(Xℓ;Z|X1:ℓ−1), as shown in the following inequality (Xℓ is independent of the previous X1:ℓ−1):

I
(
MℓFℓ;Z

[N ],X
[N ]
1:ℓ−1

)
≤ N2−Nβ′

.

Recall that Z[N ] is the signal received by Eve after the mod-Λr operation. Let F denote the combination of

F1,F2, ...,Fr. From the chain rule of mutual information, we obtain

I
(
MF;Z[N ]

)

=
r∑

ℓ=1

I
(
Z
[N ];MℓFℓ|M1:ℓ−1F1:ℓ−1

)
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=
r∑

ℓ=1

H(MℓFℓ|M1:ℓ−1F1:ℓ−1)−H
(
MℓFℓ|Z[N ],M1:ℓ−1F1:ℓ−1

)

≤
r∑

ℓ=1

H(MℓFℓ)−H
(
MℓFℓ|Z[N ],M1:ℓ−1F1:ℓ−1

)
(15)

=

r∑

ℓ=1

I
(
MℓFℓ;Z

[N ],M1:ℓ−1F1:ℓ−1

)

≤
r∑

ℓ=1

I
(
MℓFℓ;Z

[N ],X
[N ]
1:ℓ−1

)
≤ rN2−Nβ′

,

where the second inequality holds because I
(
MℓFℓ;Z

[N ],X
[N ]
1:ℓ−1

)
= I

(
MℓFℓ;Z

[N ],U
[N ]
1:ℓ−1

)
and adding more

variables will not decrease the mutual information. Since limN→∞ I
(
MF;Z[N ]

)
= 0, strong secrecy is achieved.

B. Achieving secrecy capacity

In the original polar coding scheme for the binary wiretap channel [8], how to assign set D is a problem.

Assigning frozen bits to D guarantees reliability but only achieves weak secrecy, whereas assigning random bits

to D guarantees strong secrecy but may violate the reliability requirement because D may be nonempty. In order

to ensure strong secrecy, D is assigned with random bits (D ← R), which makes this scheme failed to accomplish

the theoretical reliability. In simple words, to satisfy the strong secrecy and reliability conditions simultaneously,

the bits corresponding to D must be kept frozen to Bob but uniformly random to Eve. For any ℓ-th level channel

V (Λℓ−1/Λℓ, σ
2
b ) at Bob’s end, if set Dℓ is fed with random bits, the probability of error is upper-bounded by the

sum of the Bhattacharyya parameters Z̃(V
(j)
N (Λℓ−1/Λℓ, σ

2
b )) of subchannels that are not frozen to zero [7]. For

each bit-channel index j and β < 0.5, we have

j ∈ G(V (Λℓ−1/Λℓ, σ
2
b )) ∪ Dℓ.

By the definition (4), the sum of Z̃(V
(j)
N (Λℓ−1/Λℓ, σ

2
b )) over the set G(V (Λℓ−1/Λℓ, σ

2
b )) is bounded by 2−Nβ

,

therefore the error probability of the ℓ-th level channel under the SC decoding, denoted by PSC
e (Λℓ−1/Λℓ, σ

2
b ), can

be upper-bounded by [7]

PSC
e (Λℓ−1/Λℓ, σ

2
b ) ≤ N2−Nβ

+
∑

j∈Dℓ

Z̃(V
(j)
N (Λℓ−1/Λℓ, σ

2
b )).

Since multistage decoding is utilized, by the union bound, the final decoding error probability for Bob is bounded

as

Pr{M̂ 6= M} ≤
r∑

i=1

PSC
e (Λℓ−1/Λℓ, σ

2
b ).

Unfortunately, a bound on the sum
∑

j∈Dℓ
Z̃(V

(j)
N (Λℓ−1/Λℓ, σ

2
b )) is unavailable, making the proof of reliability

out of reach. There is numerical evidence of low probabilities of error nonetheless. The proportion of Dℓ vanishes

as N → ∞ [8, Prop. 22]. In fact, numerical examples in [8, Sect. VI-F] showed that Dℓ = ∅ in most cases of

interest. In any case, Bob can run some exhaustive search or form a small list of paths for those unreliable indexes.

The reliability problem was recently solved in [9], where a new scheme dividing the information message into

several blocks was proposed. For a specific block, Dℓ is still assigned with random bits and transmitted in advance
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in the set Aℓ of the previous block. This scheme involves negligible rate loss and finally realizes reliability and

strong security simultaneously. In this case, if the reliability of each partition channel can be achieved, i.e., for any

ℓ-th level partition Λℓ−1/Λℓ, P
SC
e (Λℓ−1/Λℓ, σ

2
b ) vanishes as N →∞, then the total decoding error probability for

Bob can be made arbitrarily small. Consequently, based on this new scheme of assigning the problematic set, the

error probability on level ℓ can be upper-bounded by

PSC
e (Λℓ−1/Λℓ, σ

2
b ) ≤ ǫℓN ′ + kℓ ·O(2−N ′β

), (16)

where kℓ is the number of information blocks on the ℓ-th level, N ′ is the length of each block which satisfies

N ′ × kℓ = N and ǫℓN ′ is caused by the first separate block consisting of the initial bits in Dℓ at the ℓ-th level.

Since |Dℓ| is extremely small comparing to the block length N , the decoding failure probability for the first block

can be made arbitrarily small when N is sufficiently large. Meanwhile, by the analysis in [15], when h(Λ, σ2
b )→

log(V (Λ)), h(Λr, σ
2
b ) → 1

2 log(2πeσ
2
b ), and RC → C(Λ/Λr, σ

2
b ), we have γΛb

(σb) → 2πe. Therefore, Λb is an

AWGN-good lattice8.

Note that the rate loss incurred by repeatedly transmitted bits in Dℓ is negligible because of its small size.

Specifically, the actual secrecy rate in the ℓ-th level is given by kℓ

kℓ+1 [C(Λℓ−1/Λℓ, σ
2
b )−C(Λℓ−1/Λℓ, σ

2
e)]. Clearly,

this rate can be made close to the secrecy capacity by choosing sufficiently large kℓ as well.

Theorem 2 (Achieving secrecy capacity of the mod-Λs GWC): Consider a sequence of multi-level polar lattices

L(N) of increasing dimensions N . Let L(N) be constructed according to (13) with the binary lattice partition

chain Λ/Λ1/ · · · /Λr and r binary nested polar codes where r = O(logN). Scale the lattice partition chain to

satisfy the following conditions:

(i) ǫΛ(σb)→ 0,

(ii) ǫe =
1
2 log(2πeσ

2
e)− h(Λr, σ

2
e)→ 0.

Given σ2
e > σ2

b , the secrecy capacity 1
2 log

σ2
e

σ2
b

of the mod-Λs Gaussian wiretap channel is achievable by using the

polar lattices L(N), i.e., for any rate R < 1
2 log

σ2
e

σ2
b

, there exists a sufficiently large N such that the realized rate

R(N) of L(N) satisfies R(N) > R.

8More precisely, to make Λb AWGN-good, we need Pe(Λb, σ
2
b
) → 0 by definition. By [15, Theorem 2], Pe(Λb, σ

2
b
) ≤ rN2−Nβ

+

N · Pe(Λr , σ2
b
). According to the analysis in Remark 6, r = O(logN) is sufficient to guarantee Pe(Λr , σ2

b
) = e−Ω(N), meaning that a

sub-exponentially vanishing Pe(Λb, σ
2
b
) can be achieved.
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Proof. By Lemma 4 and (13),

lim
N→∞

R(N) =

r∑

ℓ=1

lim
N→∞

|Aℓ|
N

=

r∑

ℓ=1

C(Vℓ)− C(Wℓ)

=

r∑

ℓ=1

C(V (Λℓ−1/Λℓ, σ
2
b ))− C(W (Λℓ−1/Λℓ, σ

2
e))

= C(V (Λ/Λr, σ
2
b ))− C(W (Λ/Λr, σ

2
e))

= C(Λr, σ
2
b )− C(Λ, σ2

b )− C(Λr, σ
2
e) + C(Λ, σ2

e)

= h(Λr, σ
2
e)− h(Λr, σ

2
b ) + h(Λ, σ2

b )− h(Λ, σ2
e)

=
1

2
log

σ2
e

σ2
b

− (ǫe − ǫb)− ǫ1,

(17)

where 



ǫ1 = C(Λ, σ2
b )− C(Λ, σ2

e) = h(Λ, σ2
e)− h(Λ, σ2

b ) ≥ 0,

ǫb = h(σ2
b )− h(Λr, σ

2
b ) =

1
2 log(2πeσ

2
b )− h(Λr, σ

2
b ) ≥ 0,

ǫe = h(σ2
e)− h(Λr, σ

2
e) =

1
2 log(2πeσ

2
e)− h(Λr, σ

2
e) ≥ 0

and ǫe − ǫb ≥ 0.

By scaling Λ, we can have h(Λ, σ2
b ) → log(Vol(Λ)). Since σ2

e > σ2
b , we also have h(Λ, σ2

e) → log(Vol(Λ)).

More precisely, by [15, Lemma 1], ǫ1 can be upper-bounded by the flatness factor as

ǫ1 ≤ C(Λ, σ2
b ) ≤ log(e) · ǫΛ(σb).

Then, according to [6, Corollary 1], we can make ǫΛ(σb)→ 0 by scaling Λ.

The number of levels is set such that h(Λr, σ
2
e) → 1

2 log(2πeσ
2
e). By [15, Theorem 2], r = O(logN) is

sufficient to guarantee Pe(Λr, σ
2
b ) = e−Ω(N), meaning that the volume Vol(Λr) is sufficiently large such that

h(Λr, σ
2
e) → 1

2 log(2πeσ
2
e) as N → ∞. Again, since σ2

e > σ2
b , we immediately have h(Λr, σ

2
b ) → 1

2 log(2πeσ
2
e),

and ǫe − ǫb → 0. Therefore by scaling Λ and adjusting r, the secrecy rate can get arbitrarily close to 1
2 log

σ2
e

σ2
b

.

Remark 3. The constructed lattice Λe is secrecy-good in the sense of Definition 2. Recall that Λe is constructed

from the partition chain Λ/ · · · /Λr, which gives us the N -dimensional partition chain ΛN/Λe/Λ
N
r . Then,

C(Λe, σ
2
e) = C(ΛN , σ2

e) + C(ΛN/Λe, σ
2
e)

= C(ΛN , σ2
e) + I(MF;Z[N ])

≤ log(e) · ǫΛN (σe) + I(MF;Z[N ])

≤ log(e) · ([1 + ǫΛ(σe)]
N − 1) + I(MF;Z[N ]),

where we use [6, Corollary 1] and [30, Lemma 3] in the last two inequalities, respectively.
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Since r = O(logN), the top lattice Λ can be scaled down so that ǫΛ(σe) vanishes as fast as O(2−
√
N ) by [37,

Proposition 2]. When N →∞, we have

C(Λe, σ
2
e) ≤ N log(e) · ǫΛ(σe) + I(MF;Z[N ]) +O(2−

√
N ).

Recalling (15), we immediately have C(Λe, σ
2
e)→ 0.

Meanwhile, following the analysis of [15], we can show that the VNR γΛe
(σ2

e) → 2πe from below. More

precisely, the logarithmic VNR of Λe satisfies

log

(
γL(σ)

2πe

)
= 2(ǫe1 − ǫe2 − ǫe3)

where 



ǫe1 = C(Λ, σ2
e)

ǫe2 = 1
2 log 2πeσ

2
e − h(Λr, σ

2
e)

ǫe3 =
∑r

ℓ=1 Rℓ − C(Λℓ−1/Λℓ, σ
2
e).

(18)

We note that, ǫe1 ≤ C(Λ, σ2
b )→ 0, ǫe2 → 0 (condition (ii) in Theorem 2), and ǫ3 is the total extra rate of component

codes to guarantee security. Since Rℓ = |Rℓ|/N = (|Br|+ |Dr|)/N → C(Λℓ−1/Λℓ, σ
2
e), we also have ǫ3 → 0.

Let UR(Λe) denote the uniform distribution over a fundamental regionR(Λe). Note that condition C(Λe, σ
2
e)→ 0

implies the following statements, which all state that the distribution fσe,Λe
of the mod-Λe Gaussian noise converges

to the uniform distribution:

1) Differential entropy h(Λe, σ
2
e)→ log(Vol(Λe));

2) Kullback-Leibler divergence D(fσe,Λe
‖UR(Λe))→ 0;

3) Variational distance V(fσe,Λe
, UR(Λe))→ 0

where 1) is by definition, 2) from the relation between mutual information and Kullback-Leibler divergence9, and

3) by Pinsker’s inequality.

Remark 4. The secrecy capacity of the mod-Λs Gaussian wiretap channel per use is given by

Cs =
1

N
C(Λs, σ

2
b )−

1

N
C(Λs, σ

2
e) =

1

N
h(Λs, σ

2
e)−

1

N
h(Λs, σ

2
b )

since the wiretapper’s channel is degraded with respect to the main channel. Because h(Λr, σ
2
e) → 1

2 log(2πeσ
2
e)

and Λs ⊂ ΛN
r , we have 1

N h(Λs, σ
2
e) → 1

2 log(2πeσ
2
e) and 1

N h(Λs, σ
2
b ) → 1

2 log(2πeσ
2
b ). Hence Cs → 1

2 log
σ2
e

σ2
b

.

It also equals the secrecy capacity of the Gaussian wiretap channel when the signal power goes to infinity. It is

noteworthy that we successfully remove the 1
2 -nat gap in the achievable secrecy rate derived in [6] which is caused

by the limitation of the L∞ distance associated with the flatness factor.

Remark 5. The mild conditions (i) and (ii) stated in the theorem are easy to meet, by scaling top lattice Λ and

choosing the number of levels r appropriately. Consider an example for σ2
e = 4 and σ2

b = 1. We choose r = 3

9In fact, it is easy to show that D(fσe,Λe
‖UR(Λe)) = log(Vol(Λe)) − h(Λe, σ2

e) = C(Λe, σ2
e), thanks to the symmetry of the mod-Λe

channel.
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levels and a partition chain Z/2Z/4Z with scaling factor 2.5. The difference between the achievable rate computed

from (17) and the upper bound 1
2 log

σ2
e

σ2
b

on secrecy capacity is about 0.05.

Remark 6. From conditions (i) and (ii), we can see that the construction for secrecy-good lattices requires more

levels than the construction of AWGN-good lattices. ǫ1 can be made arbitrarily small by scaling down Λ such

that both h(Λ, σ2
e) and h(Λ, σ2

b ) are sufficiently close to log(Vol(Λ)). For polar lattices for AWGN-goodness [14],

we only need h(Λr′ , σ
2
b ) ≈ 1

2 log(2πeσ
2
b ) for some r′ < r. Since ǫb < ǫe, Λr′ may be not enough for the

wiretapper’s channel. Therefore, more levels are needed in the wiretap coding context. To satisfy the condition

h(Λr, σ
2
e) → 1

2 log(2πeσ
2
e), it is sufficient to guarantee that Pe(Λr, σ

2
e) → 0 by [27, Theorem 13]. When one-

dimensional binary partition Z/2Z/4Z/... is used, we have Pe(Λr, σ
2
e) ≤ Q( 2r

2σe
) ≤ e

− 22r

8σ2
e , where Q(·) is the

Q-function. Letting r = O(logN), the error probability vanishes as Pe(Λr, σ
2
e) = e−Ω(N), which implies that

h(Λr, σ
2
e)→ 1

2 log(2πeσ
2
e) as N →∞. We also note that when lattice Gaussian shaping is considered in Sect. V,

the probability of selecting a lattice point from Λr decays exponentially as r increases. The requirement is relaxed

to r = O(log log(N)) to achieve the secrecy capacity.

C. Semantic security

So far we have assumed that the message is uniformly distributed. In fact, this assumption is not needed because

of the symmetry of the Λb/Λe channel [27]. It is well known that the error probability of polar codes in a symmetric

channel is independent of the transmitted message [7]; thus the input distribution does not matter for reliability.

Moreover, the foregoing security analysis also implies semantic security, i.e., (15) holds for arbitrarily distributed

M and F. This Λb/Λe channel can be seen as the counterpart in lattice coding of the randomness-induced channel

defined in [8].

Proposition 1: Semantic security holds for the polar lattice construction for the mod-Λs GWC shown in Fig. 3,

i.e.,

I
(
MF;Z[N ]

)
≤ rN2−Nβ′

for arbitrarily distributed M and F.

Proof. Since MF is drawn from R(Λe) and the random bits are drawn from Λe∩R(Λs), by Lemma 5, the mod-Λe

map is information lossless and its output is a sufficient statistic for MF. Therefore, the channel between MF and

the eavesdropper can be viewed as a Λb/Λe channel. Because the Λb/Λe channel is symmetric, the maximum

mutual information is achieved by the uniform input. Consequently, the mutual information corresponding to other

input distributions can also be upper-bounded by rN2−Nβ′

as in (15), and we can also freeze the bits F.

V. ACHIEVING SECRECY CAPACITY WITH DISCRETE GAUSSIAN SHAPING

In this section, we apply Gaussian shaping on the AWGN-good and secrecy-good polar lattices. The idea of

lattice Gaussian shaping was proposed in [30] and then implemented in [15] to construct capacity-achieving polar

lattices. For wiretap coding, the discrete Gaussian distribution can also be utilized to satisfy the power constraint. In
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simple terms, after obtaining the AWGN-good lattice Λb and the secrecy-good lattice Λe, Alice maps each message

m to a coset λ̃m ∈ Λb/Λe as mentioned in Sect. IV. However, instead of the mod-Λs operation, Alice samples the

encoded signal XN from DΛe+λm,σs
, where λm is the coset representative of λ̃m and σ2

s is arbitrarily close to the

signal power Ps (see [6] for more details). Again, we assume uniform messages until we prove semantic security

in the end of this section.

The construction of polar lattices with Gaussian shaping is reviewed in Sect. V-A. With Gaussian shaping, we

propose a new partition of the index set for the genuine GWC in Sect. V-B. Strong secrecy is proved in Sect. V-C,

and reliability is then discussed in Sect. V-D. Extension to semantical security is given in Sect. V-E. Moreover, we

will show that this shaping operation does not hurt the secrecy rate and that the secrecy capacity can be achieved.

A. Gaussian shaping over polar lattices

In this subsection, we introduce the lattice shaping technique for polar lattices. The idea is to select the lattice

points according to a carefully chosen lattice Gaussian distribution, which makes a non-uniform input distribution

for each partition channel. As shown in [15], the shaping scheme is based on the technique of polar codes for

asymmetric channels. For the paper to be self-contained, a brief review will be presented in this subsection. A more

detailed account of Gaussian shaping can be found in [15].

Similarly to the polar coding on symmetric channels, the Bhattacharyya parameter for a binary memoryless

asymmetric (BMA) channel is defined as follows.

Definition 4 (Bhattacharyya parameter for BMA channel): Let W be a BMA channel with input X ∈ X = {0, 1}
and output Y ∈ Y . The input distribution and channel transition probability is denoted by PX and PY|X respectively.

The Bhattacharyya parameter Z for W is the defined as

Z(X|Y) = 2
∑

y

PY(y)
√

PX|Y(0|y)PX|Y(1|y)

= 2
∑

y

√
PX,Y(0, y)PX,Y(1, y).

The following lemma, which will be useful for the forthcoming new partition scheme, shows that by adding

observable at the output of W , Z will not increase.

Lemma 7 (Conditioning reduces Bhattacharyya parameter Z [15]): Let (X,Y,Y′) ∼ PX,Y,Y′ , X ∈ X = {0, 1},Y ∈
Y,Y′ ∈ Y ′, we have

Z(X|Y,Y′) ≤ Z(X|Y).

When X is uniformly distributed, the Bhattacharyya parameter of BMA channels coincides with that of BMS

channels defined in Definition 3. Moreover, the calculation of Z can be converted to the calculation of the

Bhattacharyya parameter Z̃ for a related BMS channel. The following lemma is implicitly considered in [38]

and then explicitly expressed in [15]. We show it here for completeness.

Lemma 8 (From Asymmetric to Symmetric channel [15]): Let W be a binary input asymmetric channel with input

X ∈ X = {0, 1} and Y ∈ Y . We define a new channel W̃ corresponding to W which has input X̃ ∈ X = {0, 1}
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and output Ỹ ∈ Y × X . The relationship between W̃ and W is shown in Fig. 4. The input of W̃ is uniformly

distributed, i.e., P
X̃
(x̃ = 0) = P

X̃
(x̃ = 1) = 1

2 , and the output of W̃ is given by (Y,X ⊕ X̃), where ⊕ denotes the

bitwise XOR operation. Then, W̃ is a binary symmetric channel in the sense that P
Ỹ|X̃(y, x⊕ x̃|x̃) = PY,X(y, x).

 !

 "

 #  !

$

$!

#

Fig. 4. The relationship between W̃ and W .

The following lemma describes how to construct a polar code for a BMA channel W from that for the associated

BMS channel W̃ .

Lemma 9 (The equivalence between symmetric and asymmetric Bhattacharyya parameters [38]): For a BMA

channel W with input X ∼ PX, let W̃ be its symmetrized channel constructed according to Lemma 8. Suppose

X[N ] and Y[N ] be the input and output vectors of WN , and let X̃[N ] and Ỹ[N ] =
(
X[N ] ⊕ X̃[N ],Y[N ]

)
be the

input and output vectors of W̃N , where X̃ is uniform. Consider polarized random variables U[N ]=X[N ]GN and

Ũ[N ]=X̃[N ]GN , and denote by WN and W̃N the combining channel of N uses of W and W̃ , respectively. The

Bhattacharyya parameter for each subchannel of WN is equal to that of each subchannel of W̃N , i.e.,

Z
(
U
i|U1:i−1,Y[N ]

)
= Z̃

(
Ũ
i|Ũ1:i−1,X[N ] ⊕ X̃

[N ],Y[N ]
)
.

To obtain the desired input distribution of PX for W , the indices with very small Z(Ui|U1:i−1) should be

removed from the information set of the symmetric channel. Following [15], the resultant subset is referred to as

the information set I for the asymmetric channel W . For the remaining part Ic, we further find out that there

are some bits which can be made independent of the information bits and uniformly distributed. The purpose of

extracting such bits is for the interest of our lattice construction. We name the set that includes those independent

frozen bits as the independent frozen set F , and the remaining frozen bits are determined by the bits in F ∪I. We

name the set of all those deterministic bits as the shaping set S. The three sets are formally defined as follows:




the independent frozen set: F =
{
i ∈ [N ] : Z(Ui|U1:i−1,Y[N ]) ≥ 1− 2−Nβ

}

the information set: I =
{
i ∈ [N ] : Z(Ui|U1:i−1,Y[N ]) ≤ 2−Nβ

and Z(Ui|U1:i−1) ≥ 1− 2−Nβ
}

the shaping set: S = (F ∪ I)c .

(19)

To identify these three sets, one can use Lemma 9 to calculate Z(Ui|U1:i−1,Y[N ],X[N ]) using the known

constructing techniques for symmetric polar codes [31] [39]. We note that Z(Ui|U1:i−1) can be computed in a

similar way, by constructing a symmetric channel between X̃ and X ⊕ X̃. Besides the construction, the decoding

process for the asymmetric polar codes can also be converted to the decoding for the symmetric polar codes.
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The polar coding scheme according to (19), which can be viewed as an extension of the scheme proposed in [38],

has been proved to be capacity-achieving in [15]. Moreover, it can be extended to the construction of multilevel

asymmetric polar codes.

Let us describe the encoding strategy for the channel of the ℓ-th (ℓ ≤ r) level Wℓ with the channel transition

probability PY|Xℓ,X1:ℓ−1
(y|xℓ, x1:ℓ−1) as follows.

• Encoding: Before sending the codeword x
[N ]
ℓ = u

[N ]
ℓ GN , the index set [N ] are divided into three parts: the

independent frozen set Fℓ, information set Iℓ, and shaping set Sℓ, which are defined as follows:




Fℓ =
{
i ∈ [N ] : Z

(
U
i
ℓ|U1:i−1

ℓ ,X
[N ]
1:ℓ−1,Y

[N ]
)
≥ 1− 2−Nβ

}

Iℓ =
{
i ∈ [N ] : Z

(
U
i
ℓ|U1:i−1

ℓ ,X
[N ]
1:ℓ−1,Y

[N ]
)
≤ 2−Nβ

and Z
(
U
i
ℓ|U1:i−1

ℓ ,X
[N ]
1:ℓ−1

)
≥ 1− 2−Nβ

}

Sℓ = (Fℓ ∪ Iℓ)c .

The encoder first places uniformly distributed information bits in Iℓ. Then the frozen set Fℓ is filled with a

uniform random sequence which is shared between the encoder and the decoder. The bits in Sℓ are generated

by a random mapping ΦSℓ
, which yields the following distribution:

ui
ℓ =




0 with probability P

Ui
ℓ
|U1:i−1

ℓ
,X

[N ]
1:ℓ−1

(0|u1:i−1
ℓ , x

[N ]
1:ℓ−1),

1 with probability P
Ui

ℓ
|U1:i−1

ℓ
,X

[N ]
1:ℓ−1

(1|u1:i−1
ℓ , x

[N ]
1:ℓ−1).

(20)

Theorem 3 (Construction of multilevel polar codes [15]): Consider a polar code with the above encoding strategy.

Then, any message rate arbitrarily close to I(Xℓ;Y|X1:ℓ−1) is achievable using SC decoding10 and the expectation

of the decoding error probability over the randomized mappings satisfies EΦSℓ
[Pe(φSℓ

)] = O(2−Nβ′

) for any

β′ < β < 0.5.

Now let us pick a suitable input distribution PX1:r to implement the shaping. As shown in Theorem 1, the

mutual information between the discrete Gaussian lattice distribution DΛ,σs
and the output of the AWGN channel

approaches 1
2 log(1 + SNR) as the flatness factor ǫΛ(σ̃) → 0. Therefore, we use the lattice Gaussian distribution

PX ∼ DΛ,σs
as the constellation, which gives us limr→∞ PX1:r = PX ∼ DΛ,σs

. By [15, Lemma 5], when N →∞,

the mutual information I(Xr ;Y|X1:r−1) at the bottom level goes to 0 if r = O(log logN), and using the first r

levels would involve a capacity loss
∑

ℓ>r I(Xℓ;Y|X1:ℓ−1) ≤ O( 1
N ).

From the chain rule of mutual information,

I(X1:r;Y) =

r∑

ℓ=1

I(Xℓ;Y|X1:ℓ−1),

we have r binary-input channels and the ℓ-th channel according to I(Xℓ;Y|X1:ℓ−1) is generally asymmetric with

the input distribution PXℓ|X1:ℓ−1
(1 ≤ ℓ ≤ r). Then we can construct the polar code for the asymmetric channel

at each level according to Lemma 8. As a result, the ℓ-th symmetrized channel is equivalent to the MMSE-scaled

Λℓ−1/Λℓ channel in the sense of channel polarization. (See [15] for more details.)

10It is possible to derandomize the mapping ΦSℓ
for the purpose of achieving capacity alone. However, it is tricky to handle the random

mapping in order to achieve the secrecy capacity: it requires either to share a secret random mapping or to use the Markov block coding

technique (see Sect. V-D).
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Therefore, when power constraint is taken into consideration, the multilevel polar codes before shaping are

constructed according to the symmetric channel V (Λℓ−1/Λℓ, σ̃
2
b ) and W (Λℓ−1/Λℓ, σ̃

2
e), where σ̃2

b =
(

σsσb√
σ2
s+σ2

b

)2

and σ̃2
e =

(
σsσe√
σ2
s+σ2

e

)2

are the MMSE-scaled noise variance of the main channel and of the wiretapper’s channel,

respectively. This is similar to the mod-Λs GWC scenario mentioned in the previous section. The difference is that

σ2
b and σ2

e are replaced by σ̃2
b and σ̃2

e accorrdingly. As a result, we can still obtain an AWGN-good lattice Λb and

a secrecy-good lattice Λe by treating V (Λℓ−1/Λℓ, σ̃
2
b ) and W (Λℓ−1/Λℓ, σ̃

2
e) as the main channel and wiretapper’s

channel at each level.

B. Three-dimensional partition

When lattice Gaussian shaping is performed over the AWGN-good lattice Λb and the secrecy-good lattice Λe

simultaneously, we have a new shaping induced partition. The polar coding scheme for the mod-Λs wiretap

channel given in Sect. IV needs to be modified. Now we consider the partition of the index set [N ] with shaping

involved. According to the analysis of asymmetric polar codes, we have to eliminate those indices with small

Z(Ui
ℓ|U1:i−1

ℓ ,X
[N ]
1:l−1) from the information set of the symmetric channels. Therefore, Alice cannot send message on

those subchannels with Z(Ui
ℓ|U1:i−1

ℓ ,X
[N ]
1:ℓ−1) < 1− 2−Nβ

. Note that this part is the same for Ṽℓ and W̃ℓ, because

it only depends on the shaping distribution. At each level, the index set which is used for shaping is given as

Sℓ ,
{
i ∈ [N ] : Z(Ui

ℓ|U1:i−1
ℓ ,X

[N ]
1:ℓ−1) < 1− 2−Nβ

}
,

and the index set which is not for shaping is denoted by Scℓ . Recall that for the index set [N ], we already have

two partition criteria, i.e, reliability-good and information-bad (see (4)). We rewrite the reliability-good index set

Gℓ and information-poor index set Nℓ at level ℓ as

Gℓ ,
{
i ∈ [N ] : Z(Ui

ℓ|U1:i−1
ℓ ,X

[N ]
1:ℓ−1,Y

[N ]) ≤ 2−Nβ
}
,

Nℓ ,

{
i ∈ [N ] : Z(Ui

ℓ|U1:i−1
ℓ ,X

[N ]
1:ℓ−1,Z

[N ]) ≥ 1− 2−Nβ
}
.

(21)

Note that Gℓ and Nℓ are defined by the asymmetric Bhattacharyya parameters. Nevertheless, by Lemma 9 and the

channel equivalence, we have Gℓ = G(Ṽℓ) and Nℓ = N (W̃ℓ) as defined in (4), where Ṽℓ and W̃ℓ are the respective

symmetric channels or the MMSE-scaled Λℓ−1/Λℓ channels for Bob and Eve at level ℓ. The four sets Aℓ, Bℓ, Cℓ,
and Dℓ are defined in the same fashion as (5), with Gℓ and Nℓ replacing G(Ṽℓ) and N (W̃ℓ), respectively. Now the

whole index set [N ] is divided like a cube in three directions, which is shown in Fig. 5.

Clearly, we have eight blocks:

AS
ℓ = Aℓ ∩ Sℓ, ASc

ℓ = Aℓ ∩ Scℓ

BS
ℓ = Bℓ ∩ Sℓ, BSc

ℓ = Bℓ ∩ Scℓ

CSℓ = Cℓ ∩ Sℓ, CS
c

ℓ = Cℓ ∩ Scℓ

DS
ℓ = Dℓ ∩ Sℓ, DSc

ℓ = Dℓ ∩ Scℓ

(22)

By Lemma 7, we observe that AS
ℓ = CSℓ = ∅, ASc

ℓ = Aℓ, and CSc

ℓ = Cℓ. The shaping set Sℓ is divided into two

sets BS
ℓ and DS

ℓ . The bits in Sℓ are determined by the bits in Scℓ according to the mapping. Similarly, Scℓ is divided
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not poor for Eve information poor  for Eve

Good for Bob

Bad for Bob

Fig. 5. Partitions of the index set [N ] with shaping.

into the four sets ASc

ℓ = Aℓ, BSc

ℓ , CSc

ℓ = Cℓ, and DSc

ℓ . Note that for wiretap coding, the frozen set becomes CSc

ℓ ,

which is slightly different from the frozen set for channel coding. To satisfy the reliability condition, the frozen set

CSc

ℓ and the problematic set DSc

ℓ cannot be set uniformly random any more. Recall that only the independent frozen

set Fℓ at each level, which is defined as {i ∈ [N ] : Z(Ui
ℓ|U1:i−1

ℓ ,Y[N ],X
[N ]
1:ℓ−1) ≥ 1− 2−Nβ}, can be set uniformly

random (which are already shared between Alice and Bob), and the bits in the unpolarized frozen set F̄ℓ, defined

as {i ∈ [N ] : 2−Nβ

< Z(Ui
ℓ|U1:i−1

ℓ ,Y[N ],X
[N ]
1:ℓ−1) < 1− 2−Nβ}, should be determined according to the mapping.

Moreover, we can observe that Fℓ ⊂ CS
c

ℓ and DSc

ℓ ⊂ Dℓ ⊂ F̄ℓ. Here we make the bits in Fℓ uniformly random

and the bits in CSc

ℓ \ Fℓ and DSc

ℓ determined by the mapping. Therefore, from now on, we adjust the definition of

the shaping bits as:

Sℓ ,
{
i ∈ [N ] : Z(Ui

ℓ|U1:i−1
ℓ ,X

[N ]
1:ℓ−1) < 1− 2−Nβ

or 2−Nβ

< Z(Ui
ℓ|U1:i−1

ℓ ,Y[N ],X
[N ]
1:ℓ−1) < 1− 2−Nβ

}
, (23)

which is essentially equivalent to the definition of the shaping set given in Theorem 3.

To sum up, at level ℓ, we assign the sets ASc

ℓ , BSc

ℓ , and Fℓ with message bits Mℓ, uniformly random bits

Rℓ, and uniform frozen bits Fℓ, respectively. The rest bits Sℓ (in Sℓ) will be fed with random bits according to

P
Ui

ℓ
|U1:i−1

ℓ
,X

[N ]
1:l−1

. Clearly, this shaping operation will make the input distribution arbitrarily close to PXℓ|X1:ℓ−1
, for

β fixed and N tending to infinity. In this case, we can obtain the equality between the Bhattacharyya parameter

of asymmetric setting and symmetric setting (see Lemma 9). This provides us a convenient way to prove the

strong secrecy of the wiretap coding scheme with shaping because we have already proved the strong secrecy of

a symmetric wiretap coding scheme using the Bhattacharyya parameter of the symmetric setting. A detailed proof

will be presented in the following subsection. Before this, we show that the shaping will not change the message

rate.

Lemma 10: For the symmetrized main channel Ṽℓ and wiretapper’s channel W̃ℓ, consider the reliability-good

indices set Gℓ and information-bad indices set Nℓ defined as in (21). By eliminating the shaping set Sℓ from the
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original message set defined in (5), we get the new message set ASc

ℓ = Gℓ ∩ Nℓ ∩ Scℓ . The proportion of |ASc

ℓ |
equals to that of |Aℓ|, and the message rate after shaping can still be arbitrarily close to 1

2 log
σ̃2
e

σ̃2
b

.

Proof. By Theorem 2, when shaping is not involved, the message rate can be made arbitrarily close to 1
2 log

σ̃2
e

σ̃2
b

.

By the new definition (23) of Sℓ, we still have AS
ℓ = ∅, which means the shaping operation will not affect the

message rate.

C. Strong secrecy

In this subsection, we prove that strong secrecy can still be achieved when shaping is involved. To this end, we

introduce a new induced channel from Eve’s perspective and prove that the information leakage over this channel

vanishes at each level. Then, strong secrecy is proved by using the chain rule of mutual information as in (15).
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Fig. 6. Block diagram of the shaping-induced channel QN (W,S).

In [8], an induced channel is defined in order to prove strong secrecy. Here we call it the randomness-induced

channel because it is induced by feeding the subchannels in the sets Bℓ and Dℓ with uniformly random bits.

However, when shaping is involved, the set Bℓ and Dℓ are no longer fed with uniformly random bits. In fact, some

subchannels (covered by the shaping mapping) should be fed with bits according to a random mapping. We define

the channel induced by the shaping bits as the shaping-induced channel.

Definition 5 (Shaping-induced channel): The shaping-induced channel QN (W,S) is defined in terms of N uses

of an asymmetric channel W , and a shaping subset S of [N ] of size |S|. The input alphabet of QN (W,S) is

{0, 1}N−|S| and the bits in S are determined by the input bits according to a random shaping ΦS . A block diagram

of the shaping induced channel is shown in Fig. 6.

Based on the shaping-induced channel, we define a new induced channel, which is caused by feeding a part of

the input bits of the shaping-induced channel with uniformly random bits.

Definition 6 (New induced channel): Based on a shaping induced channel QN (W,S), the new induced channel

QN (W,S,R) is specified in terms of a randomness subset R of size |R|. The randomness is introduced into the

input set of the shaping-induced channel. The input alphabet of QN (W,S,R) is {0, 1}N−|S|−|R| and the bits in

R are uniformly and independently random. A block diagram of the new induced channel is shown in Fig. 7.
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Fig. 7. Block diagram of the new induced channel QN (W,S,R).

The new induced channel is a combination of the shaping-induced channel and randomness-induced channel.

This is different from the definition given in [8] because the bits in S are neither independent to the message bits

nor uniformly distributed. As long as the input bits of the new induced channel are uniform and the shaping bits are

chosen according to the random mapping, the new induced channel can still generate 2N possible realizations

x
[N ]
ℓ of X

[N ]
ℓ as N goes to infinity, and those x

[N ]
ℓ can be viewed as the output of N i.i.d binary sources

with input distribution PXℓ|X1:ℓ−1
. These are exactly the conditions required by Lemma 9. Specifically, we have

Z
(
Ui
ℓ|U1:i−1

ℓ ,X
[N ]
1:ℓ−1,Z

[N ]
)
= Z̃

(
Ũi
ℓ|Ũ1:i−1

ℓ ,X
[N ]
1:ℓ−1,X

[N ]
ℓ ⊕ X̃

[N ]
ℓ ,Z[N ]

)
. In simple words, this equation holds when

x
[N ]
ℓ and x

[N ]
ℓ ⊕x̃

[N ]
ℓ are all selected from {0, 1}N according to their respective distributions. Then we can exploit the

relation between the asymmetric channel and the corresponding symmetric channel to bound the mutual information

of the asymmetric channel. Therefore, we have to stick to the input distribution (uniform) of our new induced

channel and also the distribution of the random mapping. This is similar to the setting of the randomness induced

channel in [8], where the input distribution and the randomness distribution are both set to be uniform. In [8], the

randomness-induced channel is further proved to be symmetric; then any other input distribution can also achieve

strong secrecy and the symmetry finally results in semantic security. In this work, however, we do not have a proof

of the symmetry of the new induced channel. For this reason, we assume for now that the message bits are uniform

distributed. To prove semantic security, we will show that the information leakage of the symmetrized version of

the new induced channel is vanishing in Sect. V-E.

Lemma 11: Let Mℓ be the uniformly distributed message bits and Fℓ be the independent frozen bits at the input

of the channel at the ℓ-th level. When shaping bits Sℓ are selected according to the random mapping ΦSℓ

11 and

N is sufficiently large, the mutual information can be upper-bounded as

I
(
MℓFℓ;Z

[N ],X
[N ]
1:ℓ−1

)
≤ O(N22−Nβ′

).

11We will further show that the number of shaping bits Sℓ covered by random mapping can be significantly reduced in Sect. V-E. Then, to

achieve reliability, Sℓ can be shared between Alice and Bob, or we can use the Markov block coding technique to hide Sℓ with negligible rate

loss.
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Proof. We firstly assume that Ui
ℓ is selected according to the distribution P

Ui
ℓ
|U1:i−1

ℓ
,X

[N ]
1:ℓ−1

for all i ∈ [N ], i.e.,

ui
ℓ =




0 with probability P

Ui
ℓ
|U1:i−1

ℓ
,X

[N ]
1:ℓ−1

(0|u1:i−1
ℓ , x

[N ]
1:ℓ−1),

1 with probability P
Ui

ℓ
|U1:i−1

ℓ
,X

[N ]
1:ℓ−1

(1|u1:i−1
ℓ , x

[N ]
1:ℓ−1).

(24)

for all i ∈ [N ]. In this case, the input distribution PXℓ|X1:ℓ−1
at each level is exactly the optimal input distribution

obtained from the lattice Gaussian distribution. The mutual information between MℓFℓ and
(
Z[N ],X

[N ]
1:ℓ−1

)
in this

case is denoted by IP

(
MℓFℓ;Z

[N ],X
[N ]
1:ℓ−1

)
.

For the shaping induced channel QN (Wℓ,Sℓ,Rℓ) (Rℓ is BSc

ℓ according to the above analysis), we write the

indices of the input bits (Sℓ ∪Rℓ)
c = [N ] \ (Sℓ ∪Rℓ) as {i1, i2, ..., iN−sℓ−rℓ}, where |R| = rℓ and |Sℓ| = sℓ, and

assume that i1 < i2 < · · · < iN−sℓ−rℓ . We have

IP

(
MℓFℓ;Z

[N ],X
[N ]
1:ℓ−1

)
= IP

(
U
(Sℓ∪Rℓ)

c

ℓ ;Z[N ],X
[N ]
1:ℓ−1

)

= IP

(
U
i1
ℓ ,Ui2

ℓ , ...,U
iN−rℓ−sℓ

ℓ ;Z[N ],X
[N ]
1:ℓ−1

)

=

N−rℓ−sℓ∑

j=1

IP

(
U
ij
ℓ ;Z

[N ],X
[N ]
1:ℓ−1|Ui1

ℓ ,Ui2
ℓ , ...,U

ij−1

ℓ

)

=

N−rℓ−sℓ∑

j=1

IP

(
U
ij
ℓ ;Z

[N ],X
[N ]
1:ℓ−1,U

i1
ℓ ,Ui2

ℓ , ...,U
ij−1

ℓ

)

(a)

≤
N−rℓ−sℓ∑

j=1

IP

(
U
ij
ℓ ;Z

[N ],X
[N ]
1:ℓ−1,U

1
ℓ ,U

2
ℓ , ...,U

ij−1
ℓ

)
,

where (a) holds because adding more variables will not decrease the mutual information.

Then the above mutual information can be bounded by the mutual information of the symmetric channel plus

an infinitesimal term as follows:

N−rℓ−sℓ∑

j=1

IP

(
U
ij
ℓ ;Z

[N ],X
[N ]
1:ℓ−1,U

1:ij−1
ℓ

)

(a)

≤
N−rℓ−sℓ∑

j=1

I
(
Ũ
ij
ℓ ;Z

[N ],X
[N ]
1:ℓ−1, X̃

[N ]
ℓ ⊕ X

[N ]
ℓ , Ũ

1:ij−1
ℓ

)
+H

(
Ũ
ij
ℓ |Z[N ],X

[N ]
1:ℓ−1, X̃

[N ]
ℓ ⊕ X

[N ]
ℓ , Ũ

1:ij−1
ℓ

)

−
N−rℓ−sℓ∑

j=1

H
(
U
ij
ℓ |Z[N ],X

[N ]
1:ℓ−1,U

1:ij−1
ℓ

)

(b)

≤
N−rℓ−sℓ∑

j=1

I
(
Ũ
ij
ℓ ;Z

[N ],X
[N ]
1:ℓ−1, X̃

[N ]
ℓ ⊕X

[N ]
ℓ , Ũ

1:ij−1
ℓ

)

+

N−rℓ−sℓ∑

j=1

Z
(
U
ij
ℓ |Z[N ],X

[N ]
1:ℓ−1,U

1:ij−1
ℓ

)
−
(
Z(U

ij
ℓ |Z[N ],X

[N ]
1:ℓ−1,U

1:ij−1
ℓ )

)2

(c)

≤
N−rℓ−sℓ∑

j=1

I
(
Ũ
ij
ℓ ;Z

[N ],X
[N ]
1:ℓ−1, X̃

[N ]
ℓ ⊕ X

[N ]
ℓ , Ũ

1:ij−1
ℓ

)
+N2−Nβ

(d)

≤ N2−Nβ′

+N2−Nβ

≤ 2N2−Nβ′

June 13, 2018 DRAFT



28

for 0 < β′ < β < 0.5. Inequalities (a)-(d) follow from

(a) uniformly distributed Ũ
ij
ℓ ,

(b) [40, Proposition 2] which gives H(X|Y)−H(X|Y,Z) ≤ Z(X|Y)− (Z(X|Y,Z)2) and Lemma 9,

(c) our coding scheme guaranteeing that Z
(
U
ij
ℓ |Z[N ],X

[N ]
1:ℓ−1,U

1:ij−1
ℓ

)
is greater than 1−2−Nβ

for the frozen

bits and information bits,

(d) Lemma 2.

For wiretap coding, the message Mℓ, frozen bits Fℓ and random bits Rℓ are all uniformly random, and the

shaping bits Sℓ are determined by Scℓ according to ΦSℓ
. Let Q

U
[N ]
ℓ

,X
[N ]
1:ℓ−1,Z

[N ] denote the joint distribution of

(U
[N ]
ℓ ,X

[N ]
1:ℓ−1,Z

[N ]) resulted from uniformly distributed MℓFℓRℓ and Sℓ according to ΦSℓ
. By the proofs of [15,

Th. 5] and [15, Th. 6], the total variation distance can be bounded as

∥∥∥Q
U

[N ]
ℓ

,X
[N ]
1:ℓ−1

,Z[N ] − P
U

[N ]
ℓ

,X
[N ]
1:ℓ−1

,Z[N ]

∥∥∥ ≤ N2−Nβ′

(25)

for sufficiently large N .

By [41, Proposition 5], the mutual information I(MℓFℓ;Z
[N ],X

[N ]
1:ℓ−1) due to Q

U
[N ]
ℓ

,X
[N ]
1:ℓ−1,Z

[N ] satisfies

∣∣∣I(MℓFℓ;Z
[N ],X

[N ]
1:ℓ−1)− IP (MℓFℓ;Z

[N ],X
[N ]
1:ℓ−1)

∣∣∣ ≤ 7N2−Nβ′

log 2N + h2

(
N2−Nβ′)

+ h2

(
4N2−Nβ′)

= O
(
N22−Nβ′)

,

where h2(·) denotes the binary entropy function.

Finally, strong secrecy (for uniform message bits) can be proved in the same fashion as shown in (15) as:

I
(
MF;Z[N ]

)
≤

r∑

ℓ=1

I
(
MℓFℓ;Z

[N ],X
[N ]
1:ℓ−1

)
= O

(
rN22−Nβ′)

. (26)

Therefore we conclude that the whole shaping scheme is secure in the sense that the mutual information leakage

between M and Z
[N ] vanishes with the block length N .

D. Reliability

The reliability analysis in Sect. IV-B holds for the wiretap coding without shaping. When shaping is involved,

the problematic set Dℓ at each level is included in the shaping set Sℓ and hence determined by the random mapping

ΦSℓ
. In this subsection, we propose two decoders to achieve reliability for the shaping case. The first one requires

a private link between Alice and Bob to share a vanishing fraction of the random mapping ΦSℓ
and the second one

uses the Markov block coding technique [9] without sharing the random mapping.

Decoder 1: If ΦSℓ
is secretly shared between Alice and Bob (we will show in a moment that only a vanishing

fraction of ΦSℓ
needs to be shared), the bits in Dℓ can be recovered by Bob simply by the shared mapping but

not requiring the Markov block coding technique. By Theorem 3, the reliability at each level can be guaranteed

by uniformly distributed independent frozen bits and a random mapping ΦSℓ
according to P

Ui
ℓ
|U1:i−1

ℓ
,X

[N ]
1:ℓ−1

at each

level. The decoding rule is given as follows.
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• Decoding: The decoder receives y[N ] and estimates û
[N ]
ℓ based on the previously recovered x

[N ]
1:ℓ−1 according

to the rule

ûi
ℓ =





ui
ℓ, if i ∈ Fℓ

φi(û
1:i−1
ℓ , x

[N ]
1:ℓ−1), if i ∈ Sℓ

argmax
u

P
Ui

ℓ
|U1:i−1

ℓ
,X

[N ]
1:ℓ−1,Y

[N ](u|û1:i−1
ℓ , x

[N ]
1:ℓ−1, y

[N ]), if i ∈ Iℓ

.

Note that probability P
Ui

ℓ
|U1:i−1

ℓ
,X

[N ]
1:ℓ−1,Y

[N ](u|û1:i−1
ℓ , x

[N ]
1:ℓ−1, y

[N ]) can be calculated by the SC decoding algorithm

efficiently, treating Y and X1:ℓ−1 (already decoded by the SC decoder at previous levels) as the outputs of the

asymmetric channel. As a result, the expectation of the decoding error probability over the randomized mappings

satisfies EΦSℓ
[Pe(φSℓ

)] = O(2−Nβ′

) for any β′ < β < 0.5.

Consequently, by the multilevel decoding and union bound, the expectation of the block error probability of our

wiretap coding scheme is vanishing as N →∞. However, this result is based on the assumption that the mapping

ΦSℓ
is only shared between Alice and Bob. To share this mapping, we can let Alice and Bob have access to the

same source of randomness, which may be achieved by a private link between Alice and Bob. Fortunately, the rate

of this private link can be made vanishing since the proportion of the shaping bits covered by the mapping ΦSℓ

can be significantly reduced.

Recall that the shaping set Sℓ is defined by

Sℓ ,
{
i ∈ [N ] : Z(Ui

ℓ|U1:i−1
ℓ ,X

[N ]
1:ℓ−1) < 1− 2−Nβ

or 2−Nβ

< Z(Ui
ℓ|U1:i−1

ℓ ,Y[N ],X
[N ]
1:ℓ−1) < 1− 2−Nβ

}
. (27)

It has been shown in [37, Th. 2] and [42, Th. 15] that the shaping bits in the subset {i ∈ [N ] : Z(Ui
ℓ|U1:i−1

ℓ ,X
[N ]
1:ℓ−1) ≤

2−Nβ} can be recovered according to the rule

ui
ℓ = argmax

u
P
Ui

ℓ
|U1:i−1

ℓ
,X1:N

1:ℓ−1
(u|u1:i−1

ℓ , x1:N
1:ℓ−1) if Z(Ui

ℓ|U1:i−1
ℓ ,X

[N ]
1:ℓ−1) ≤ 2−Nβ

,

instead of mapping. This modification has negligible impact on strong secrecy. Let us explain it briefly. For

the shaping bits in Sℓ with Z(Ui
ℓ|U1:i−1

ℓ ,X
[N ]
1:ℓ−1) ≤ 2−Nβ

, we also have H(Ui
ℓ|U1:i−1

ℓ ,X
[N ]
1:ℓ−1) ≤ 2−Nβ

. This

means that Ui
ℓ in Sℓ is almost determined by U

1:i−1
ℓ and X

[N ]
1:ℓ−1 when N is sufficiently large. The probability

P
Ui

ℓ
|U1:i−1

ℓ
,X1:N

1:ℓ−1
(u|u1:i−1

ℓ , x1:N
1:ℓ−1) for those bits can be arbitrarily close to either 0 or 1. Therefore, replacing the

random rounding rule with the MAP decision rule for those bits will yield another vanishing term N2−Nβ′

on

the right hand side of the upper bound of the total variation distance as shown in (25), which results in negligible

difference on the information leakage when N grows large. Moreover, since Z(Ui
ℓ|U1:i−1

ℓ ,X
[N ]
1:ℓ−1) ≤ 2−Nβ

for

theses shaping bits, using the MAP decision rule will also yield an additional vanishing term N2−Nβ′

on the upper

bound of the decoding error probability for Bob. As a result, the deterministic mapping has only to cover the

unpolarized set

dSℓ =
{
i ∈ [N ] : 2−Nβ

< Z(Ui
ℓ|U1:i−1

ℓ ,X1:N
1:ℓ−1) < 1− 2−Nβ

or

2−Nβ

< Z(Ui
ℓ|U1:i−1

ℓ ,Y1:N ,X1:N
1:ℓ−1) < 1− 2−Nβ

}
,

whose proportion
|dSℓ|
N → 0 as N →∞.
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Remark 7. By the channel equivalence, when ΦSℓ
is shared to Bob, the decoding of Λb is equivalent to the MMSE

lattice decoding proposed in [6] for random lattice codes. When instantiated with a polar lattice, we use multistage

lattice decoding. More explicitly, by [15, Lemma 7], the SC decoding of the asymmetric channel can be converted

to the SC decoding of its symmetrized channel, which is equivalent to the MMSE-scaled partition channel in the

lattice Gaussian shaping case [15, Lemma 9].

Decoder 2: Alternatively, one can also use the block Markov coding technique [9] to achieve reliability without

sharing ΦSℓ
. As shown in Fig. 8, the message at ℓ-th level is divided into kℓ blocks. Denote by ∆Sℓ the bits in

unpolarized set dSℓ. The shaping bits Sℓ for each block is further divided into unpolarized bits ∆Sℓ and polarized

shaping bits Sℓ \ ∆Sℓ. As mentioned above, only ∆Sℓ needs to be covered by mapping and its proportion is

vanishing. We can sacrifice some message bits to convey ∆Sℓ for the next block without involving significant rate

loss. These wasted message bits are denoted by Eℓ. For encoding, we start with the last block (Block kℓ). Given Fℓ,

Mℓ (no Eℓ for the last block) and Rℓ, we can obtain ∆Sℓ according to ΦSℓ
. Then we copy ∆Sℓ of the last block

to the bits Eℓ of its previous block and do encoding to get the ∆Sℓ of block kℓ− 1. This process ends until we get

the ∆Sℓ of the first block. This scheme is similar to the one we discussed in Sect. IV-B. To achieve reliability, we

need a secure code with vanishing rate to convey the bits ∆Sℓ of the first block to Bob. See [43] for an example of

such codes. To guarantee an insignificant rate loss, kℓ is required to be sufficiently large. We may set kℓ = O(Nα)

for some α > 0.

…

Block 1 Block 2 Block 
…

frozen bits

message bits

random bits

random bits

shaping bits

(polarized)

unpolarized bits

Fig. 8. Markov block coding scheme without sharing the secret mapping.

Now we present the main theorem of the paper.

Theorem 4 (Achieving secrecy capacity of the GWC): Consider a multilevel lattice code constructed from polar

codes based on asymmetric channels and lattice Gaussian shaping DΛ,σs
. Given σ2

e > σ2
b , let ǫΛ(σ̃e) be negligible

and set the number of levels r = O(log logN) for N → ∞. Then all strong secrecy rates R satisfying R <

1
2 log

(
1+SNRb

1+SNRe

)
are achievable for the Gaussian wiretap channel, where SNRb and SNRe denote the SNR of the

main channel and wiretapper’s channel, respectively.

Proof. The reliability condition and the strong secrecy condition are satisfied by Theorem 3 and Lemma 11,
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respectively. It remains to illustrate that the secrecy rate approaches the secrecy capacity. For some ǫ′ → 0, we have

lim
N→∞

R =

r∑

ℓ=1

lim
N→∞

|ASc

ℓ |
N

=
r∑

ℓ=1

I(Xℓ;Y|X1, · · ·,Xℓ−1)− I(Xℓ;Z|X1, · · ·,Xℓ−1)

(a)
=

1

2
log

(
σ̃2
e

σ̃2
b

)
− ǫ′

(b)

≥ 1

2
log

(
1 + SNRb

1 + SNRe

)
− ǫ′,

(28)

where (a) is due to Lemma 10, and (b) is because the signal power Ps ≤ σ2
s [30, Lemma 1]12, respectively.

E. Semantic security

In this subsection, we extend strong secrecy of the constructed polar lattices to semantic security, namely the

resulted strong secrecy does not rely on the distribution of the message. We take the level-1 wiretapper’s channel

W1 as an example. Our goal is to show that the maximum mutual information between M1F1 and Z
[N ] is vanishing

for any input distribution as N → ∞. Unlike the symmetric randomness induced channel introduced in [8], the

new induced channel is generally asymmetric with transition probability

Q(z|v) = 1

2r1

∑

ΦS1

P (ΦS1)
∑

e∈{0,1}r1

WN
1 (z|(v, e,ΦS1(v, e))GN ),

where ΦS1(v, e) represents the shaping bits determined by v (the frozen bits and message bits together) and e (the

random bits) according to the random mapping ΦS1 . It is difficult to find the optimal input distribution to maximize

the mutual information for the new induced channel.

To prove the semantic security, we investigate the relationship between the i-th subchannel of W1,N and the i-th

subchannel of its symmetrized version W̃1,N , which are denoted by W
(i,N)
1 and W̃

(i,N)
1 , respectively. According to

Lemma 8, the asymmetric wiretap channel W1 : X1 → Z is symmetrized to channel W̃1 : X̃1 → (Z, X̃1⊕X1). After

the N -by-N polarization transform, we obtain W
(i,N)
1 : Ui

1 → (U1:i−1
1 ,Z[N ]) and W̃

(i,N)
1 : Ũi

1 → (Ũ1:i−1
1 , X̃

[N ]
1 ⊕

X
[N ]
1 ,Z[N ]). The next lemma shows that if we symmetrize W

(i,N)
1 directly, i.e., construct a symmetric channel

˜
W

(i,N)
1 : Ũi

1 → (U1:i−1
1 ,Z[N ], Ũi

1 ⊕ Ui
1) in the sense of Lemma 8,

˜
W

(i,N)
1 is degraded with respect to W̃

(i,N)
1 .

Lemma 12: The symmetrized channel
˜
W

(i,N)
1 derived directly from W

(i,N)
1 is degraded with respect to the i-th

subchannel W̃
(i,N)
1 of W̃1.

Proof. According to the proof of [38, Theorem 2], we have the relationship

W̃
(i,N)
1 (ũ1:i−1

1 , x̃
[N ]
1 ⊕ x

[N ]
1 , z[N ]|ũi

1) = 2−N+1PU1:i
1 ,Z[N ](u1:i

1 , z[N ]).

Letting x̃
[N ]
1 ⊕ x

[N ]
1 = 0[N ], the equation becomes W̃

(i,N)
1 (u1:i−1

1 , 0[N ], z[N ]|ui
1) = 2−N+1PU1:i

1 ,Z[N ](u1:i
1 , z[N ]),

which has already been addressed in [38]. However, for a fixed x
[N ]
1 and ũi

1 = ui
1, since GN is full rank, there are

2N−1 choices of x̃
[N ]
1 remaining, which means that there exists 2N−1 outputs symbols of W̃

(i,N)
1 having the same

12Of course, R cannot exceed the secrecy capacity, so this inequality implies that Ps → σ2
s .
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transition probability 2−N+1PU1:i
1 ,Z[N ](u1:i

1 , z[N ]). Suppose a middle channel which maps all these output symbols

to one single symbol, which is with transition probability PU1:i
1 ,Z[N ](u1:i

1 , z[N ]). The same operation can be done

for ũi
1 = ui

1⊕ 1, making another symbol with transition probability PU1:i
1 ,Z[N ](u1:i

1 , z[N ]) corresponding to the input

ui
1 ⊕ 1. This is a channel degradation process, and the degraded channel is symmetric.

Then we show that the symmetrized channel
˜
W

(i,N)
1 is equivalent to the degraded channel mentioned above. By

Lemma 8, the channel transition probability of
˜
W

(i,N)
1 is

˜
W

(i,N)
1 (u1:i−1

1 , ũi
1 ⊕ ui

1, z
[N ]|ũi

1) = PU1:i
1 ,Z[N ](u1:i

1 , z[N ]),

which is equal to the transition probability of the degraded channel discussed in the previous paragraph. Therefore,

˜
W

(i,N)
1 is degraded with respect to W̃

(i,N)
1 .

Remark 8. In fact, a stronger relationship that
˜
W

(i,N)
1 is equivalent to W̃

(i,N)
1 can be proved. This is because

that the output symbols combined in the channel degradation process have the same LR. An evidence of this result

can be found in [38, Equation (36)], where Z̃(W̃
(i,N)
1 ) = Z(Ui

1|U1:i−1
1 ,Z[N ]) = Z̃(

˜
W

(i,N)
1 ). Nevertheless, the

degradation relationship is sufficient for this work. Notice that Lemma 12 can be generalized to high level ℓ, with

outputs Z[N ] replaced by (Z[N ],X
[N ]
1:ℓ−1).

Illuminated by Lemma 12, we can also symmetrize the new induced channel at level ℓ and show that it is

degraded with respect to the randomness-induced channel constructed from W̃ℓ. For simplicity, letting ℓ = 1, the

new induced channel at level 1 is QN (W1,S1,R1) : U
(S1∪R1)

c

1 → Z[N ], which is symmetrized to Q̃N (W1,S1,R1) :

Ũ
(S1∪R1)

c

1 → (Z[N ], Ũ
(S1∪R1)

c

1 ⊕U(S1∪R1)
c

1 ) in the same fashion as in Lemma 8. Recall that the randomness-induced

channel of W̃1 defined in [8] can be denoted as QN (W̃1,R1 ∪ S1) : Ũ(S1∪R1)
c

1 → (Z[N ], X̃
[N ]
1 ⊕ X

[N ]
1 ). Note that

for the randomness-induced channel QN(W̃1,R1 ∪ S1), set R1 ∪ S1 is fed with uniformly random bits, which is

different from the shaping-induced channel.

Lemma 13: For an asymmetric channel W1 : X1 → Z and its symmetrized channel W̃1 : X̃1 → (Z, X̃1 ⊕ X1),

the symmetrized version of the new induced channel Q̃N (W1,S1,R1) is degraded with respect to the randomness-

induced channel QN (W̃1,R1 ∪ S1).

Proof. The proof is similar to that of Lemma 12. For a fixed realization x
[N ]
1 and input ũ

(S1∪R1)
c

1 , there are

2|S1∪R1| choice of x̃
[N ]
1 remaining. Since z[N ] is only dependent on x

[N ]
1 , we can build a middle channel which

merges the 2|S1∪R1| output symbols of QN (W̃1,R1∪S1) to one output symbol of Q̃N (W1,S1,R1), which means

that Q̃N (W1,S1,R1) is degraded with respect to QN(W̃1,R1∪S1). Again, this result can be generalized to higher

levels.

Finally, we are ready to prove the semantic security of our wiretap coding scheme. For brevity, let MℓFℓ and

M̃ℓF̃ℓ denote U
(Sℓ∪Rℓ)

c

ℓ and Ũ
(Sℓ∪Rℓ)

c

ℓ , respectively. Recall that M is divided into M1, ...,Mr at each level. We

express MF and M̃F̃ as the collection of message and frozen bits on all levels of the new induced channel and the

symmetric randomness-induced channel, respectively. We also define M̃F̃⊕MF as the operation M̃ℓF̃ℓ⊕MℓFℓ from

level 1 to level r.
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Theorem 5 (Semantic security): For arbitrarily distributed message M, the information leakage I(M;Z[N ]) of the

proposed wiretap lattice code is upper-bounded as

I
(
M;Z[N ]

)
≤ I

(
M̃F̃;Z[N ], M̃F̃⊕MF

)
≤ rN2−Nβ′

,

where I
(
M̃F̃;Z[N ], M̃F̃ ⊕ MF

)
is the capacity of the symmetrized channel derived from the non-binary channel

MF→ Z[N ] 13.

Proof. By [8, Proposition 16], the channel capacity of the randomness-induced channel QN(W̃1,S1,R1) is

upper-bounded by N2−Nβ′

when partition rule (4) is used. By channel degradation, the channel capacity of

the symmetrized new induced channel Q̃N (W1,S1,R1) can also be upper-bounded by N2−Nβ′

. Since this

result can be generalized to higher level ℓ (ℓ ≥ 1), we obtain C(Q̃N (Wℓ,Sℓ,Rℓ)) ≤ N2−Nβ′

, which means

I
(
M̃ℓF̃ℓ;Z

[N ],X
[N ]
1:ℓ−1, M̃ℓF̃ℓ ⊕MℓFℓ

)
≤ N2−Nβ′

. Similarly to (15), we have

I
(
M̃F̃;Z[N ], M̃F̃⊕MF

)

=

r∑

ℓ=1

I
(
M̃ℓF̃ℓ;Z

[N ], M̃F̃⊕MF|M̃1:ℓ−1F̃1:ℓ−1

)

=

r∑

ℓ=1

H
(
M̃ℓF̃ℓ|M̃1:ℓ−1F̃1:ℓ−1

)
−H

(
M̃ℓF̃ℓ|Z[N ], M̃F̃⊕MF, M̃1:ℓ−1F̃1:ℓ−1

)

≤
r∑

ℓ=1

H
(
M̃ℓF̃ℓ

)
−H

(
M̃ℓF̃ℓ|Z[N ], M̃F̃⊕MF, M̃1:ℓ−1F̃1:ℓ−1

)

=
r∑

ℓ=1

I
(
M̃ℓF̃ℓ;Z

[N ], M̃F̃⊕MF, M̃1:ℓ−1F̃1:ℓ−1

)

(a)
=

r∑

ℓ=1

I
(
M̃ℓF̃ℓ;Z

[N ],M1:ℓ−1F1:ℓ−1, M̃ℓF̃ℓ ⊕MℓFℓ

)

(b)

≤
r∑

ℓ=1

I
(
M̃ℓF̃ℓ;Z

[N ],X
[N ]
1:ℓ−1, M̃ℓF̃ℓ ⊕MℓFℓ

)

≤ rN2−Nβ′

,

where equality (a) holds because Z
[N ] is determined by MFR and M̃ℓF̃ℓ is independent of M̃ℓ+1:rF̃ℓ+1:r ⊕

Mℓ+1:rFℓ+1:r, and inequality (b) holds because adding more variables will not decrease the mutual information.

Therefore, we have

I
(
M;Z[N ]

)
≤ I

(
MF;Z[N ]

)

(a)

≤ H
(
M̃F̃⊕MF

)
−H(MF) + I

(
MF;Z[N ]

)

(b)
= I

(
M̃F̃;Z[N ], M̃F̃⊕MF

)

≤ rN2−Nβ′

,

where the equality in (a) holds iff MF is also uniform, and (b) is due to the chain rule.

13The symmetrization of a non-binary channel is similar to that of a binary channel as shown in Lemma 8. When X and X̃ are both non-binary,

X⊕ X̃ denotes the result of the exclusive or (xor) operation of the binary expressions of X and X̃.
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VI. DISCUSSION

We would like to elucidate our coding scheme for the Gaussian wiretap channel in terms of the lattice structure. In

Sect. IV, we constructed the AWGN-good lattice Λb and the secrecy-good lattice Λe without considering the power

constraint. When the power constraint is taken into consideration, the lattice Gaussian shaping was implemented in

Sect. V. Λb and Λe were then constructed according to the MMSE-scaled main channel and wiretapper’s channel,

respectively. We note that these two lattices themselves are generated only if the independent frozen bits on all

levels are 0s. Since the independent frozen set of the polar codes at each level is filled with random bits, we actually

obtain a coset Λb + χ of Λb and a coset Λe + χ of Λe simultaneously, where χ is a uniformly distributed shift.

This is because we are unable to fix the independent frozen bits Fℓ in our scheme (due to the lack of the proof that

the shaping-induced channel is symmetric). By using the lattice Gaussian DΛ,σs
as our constellation in each lattice

dimension, we would obtain DΛN ,σs
without coding. Since Λe + χ ⊂ Λb + χ ⊂ ΛN , we actually implemented the

lattice Gaussian shaping over both Λb + χ and Λe + χ. To summarize, Alice firstly assigns each message m ∈M
to a coset λ̃m ∈ Λb/Λe, then randomly sends a point in the coset Λe + χ + λm (λm is the coset leader of λ̃m)

according to the distribution DΛe+χ+λm,σs
. This scheme is consistent with the theoretical model proposed in [6].

On the mod-Λs wiretap channel, semantic security was obtained for free due to the channel symmetry. On

the power-constrained wiretap channel, a symmetrized new induced channel from M̃F̃ to (Z[N ], M̃F̃ ⊕ MF) was

constructed to upper-bound the information leakage. This channel is directly derived from the new induced channel

from MF to Z[N ]. According to Lemma 12, this symmetrized new induced channel is degraded with respect to

the symmetric randomness-induced channel from M̃F̃ to (Z[N ], X̃
[N ]
1:r ⊕ X

[N ]
1:r ). Moreover, when F̃ is frozen, the

randomness-induced channel from M̃ to (Z[N ], X̃
[N ]
1:r ⊕ X

[N ]
1:r ) corresponds to the Λb/Λe channel given in Sect. IV

(with MMSE scaling).

APPENDIX A

PROOF OF LEMMA 3

Proof. It is sufficient to show I(MF;Z[N ]) ≤ N ·2−Nβ′

since I(M;Z[N ]) ≤ I(MF;Z[N ]). As has been shown in [8],

the induced channel MF→ Z[N ] is symmetric when B and D are fed with random bits R. For a symmetric channel,

the maximum mutual information is achieved by uniform input distribution. Let ŨA and ŨC denote independent

and uniform versions of M and F and Z̃[N ] be the corresponding channel output. Assuming i1 < i2 < ... < i|A∪C|

are the indices in A ∪ C,

I(MF;Z[N ]) ≤ I(ŨA
Ũ
C ; Z̃[N ])

=

|A∪C|∑

j=1

I(Ũij ; Z̃[N ]|Ũi1 , ..., Ũij−1 )

=

|A∪C|∑

j=1

I(Ũij ; Z̃[N ], Ũi1 , ..., Ũij−1 )

≤
|A∪C|∑

j=1

I(Ũij ; Z̃[N ], Ũ1:ij−1)
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=

|A∪C|∑

j=1

I(W̃
(ij)
N ) ≤ N · 2−Nβ′

.

APPENDIX B

PROOF OF LEMMA 4

Proof. According to the definitions of G(Ṽ ) and N (W̃ ) presented in (4),

lim
N→∞

|G(Ṽ )|
N

= lim
N→∞

1

N
|{i : Z̃(Ṽ

(i)
N ) ≤ 2−Nβ}| = C(Ṽ ),

lim
N→∞

|N (W̃ )|
N

= lim
N→∞

1

N
|{i : Z̃(W̃

(i)
N ) ≥ 1− 2−Nβ}| = 1− C(W̃ ).

Here we define another two sets Ḡ(Ṽ ) and N̄ (W̃ ) as

Ḡ(Ṽ ) = {i : Z̃(Ṽ (i)
N ) ≥ 1− 2−Nβ},

N̄ (W̃ ) = {i : Z̃(W̃
(i)
N ) ≤ 2−Nβ}.

Similarly, we have limN→∞
|Ḡ(Ṽ )|

N = 1−C(Ṽ ) and limN→∞
|N̄ (W̃ )|

N = C(W̃ ). Since W̃ is stochastically degraded

with respect to Ṽ , Ḡ(Ṽ ) and N̄ (W̃ ) are disjoint with each other [33], then we have

lim
N→∞

|Ḡ(Ṽ ) ∪ N̄ (W̃ )|
N

= 1− C(Ṽ ) + C(W̃ ).

By the property of polarization, the proportion of the unpolarized part is vanishing as N goes to infinity, i.e.,

lim
N→∞

|G(Ṽ ) ∪ Ḡ(Ṽ )|
N

= 1,

lim
N→∞

|N (W̃ ) ∪ N̄ (W̃ )|
N

= 1,

Finally, we have

lim
N→∞

|G(Ṽ ) ∩N (W̃ )|
N

= 1− lim
N→∞

|Ḡ(Ṽ ) ∪ N̄ (W̃ )|
N

= C(Ṽ )− C(W̃ ).

APPENDIX C

PROOF OF LEMMA 6

Proof. It is sufficient to demonstrate that channel W (Λℓ−1/Λℓ, σ
2
e) is degraded with respect to W ′(Xℓ;Z|X1:ℓ−1)

and W ′(Xℓ;Z|X1:ℓ−1) is degraded with respect to W (Λℓ−1/Λℓ, σ
2
e) as well. To see this, we firstly construct a

middle channel Ŵ from Z ∈ V(Λr) to Z̄ ∈ V(Λℓ). For a specific realization z̄ of Z̄, this Ŵ maps z̄ + [Λℓ/Λr] to

z̄ with probability 1, where [Λℓ/Λr] represents the set of the coset leaders of the partition Λℓ/Λr. Then we obtain

channel W (Λℓ−1/Λℓ, σ
2
e) by concatenating W ′(Xℓ;Z|X1:ℓ−1) and Ŵ , which means W (Λℓ−1/Λℓ, σ

2
e) is degraded

to W ′(Xℓ;Z|X1:ℓ−1). Similarly, we can also construct a middle channel W̌ from Z̄ to Z. For a specific realization

z̄ of Z̄, this Ŵ maps z̄ to z̄ + [Λℓ/Λr] with probability 1
|Λℓ/Λr | , where |Λℓ/Λr| is the order of this partition. This

means that W ′(Xℓ;Z|X1:ℓ−1) is also degraded to W (Λℓ−1/Λℓ, σ
2
e).
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By channel degradation and [31, Lemma 1], letting channel W and W ′ denote W (Λℓ−1/Λℓ, σ
2
e) and W ′(Xℓ;Z|X1:ℓ−1)

for short, we have

Z̃(W
(i)
N ) ≤ Z̃(W ′(i)

N ) and Z̃(W
(i)
N ) ≥ Z̃(W ′(i)

N ),

I(W
(i)
N ) ≤ I(W ′(i)

N ) and I(W
(i)
N ) ≥ I(W ′(i)

N ),

meaning that Z̃(W
(i)
N ) = Z̃(W ′(i)

N ) and I(W
(i)
N ) = I(W ′(i)

N ).
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