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ABSTRACT
In an edge deployment model, Internet-of-Things (IoT) appli-

cations, e.g. for building automation or video surveillance, must
process data locally on IoT devices without relying on permanent
connectivity to a cloud backend. The ability to harness the combined
resources of multiple IoT devices for computation is influenced by
the quality of wireless network connectivity. An open challenge is
how practical edge-based IoT applications can be realised that are
robust to changes in network bandwidth between IoT devices, due
to interference and intermittent connectivity.

We present Frontier, a distributed and resilient edge processing
platform for IoT devices. The key idea is to express data-intensive
IoT applications as continuous data-parallel streaming queries and
to improve query throughput in an unreliable wireless network by
exploiting network path diversity: a query includes operator replicas
at different IoT nodes, which increases possible network paths for
data. Frontier dynamically routes stream data to operator replicas
based on network path conditions. Nodes probe path throughput and
use backpressure stream routing to decide on transmission rates,
while exploiting multiple operator replicas for data-parallelism. If a
node loses network connectivity, a transient disconnection recovery
mechanism reprocesses the lost data. Our experimental evaluation
of Frontier shows that network path diversity improves throughput
by 1.3×–2.8× for different IoT applications, while being resilient
to intermittent network connectivity.

1 Introduction
The sensing and compute capabilities of Internet-of-Things (IoT)

devices, including embedded computers, set-top boxes, and mobile
devices, have increased to the point at which they can perform com-
plex analysis of sensed data without further infrastructure support.
Example applications include in-situ video analysis for security
surveillance [22, 47], image object tracking [50], and machine learn-
ing for home or industrial building automation [17, 15].

In such an edge deployment model, IoT devices do not require
connectivity to a cloud backend to perform useful work [9, 23]. For
many IoT applications offloading all processing to remote servers is
infeasible or undesirable because the backhaul network connectivity
is bandwidth-constrained, has high latency, or is simply unavailable.

In addition, IoT devices that rely on cloud backend services risk
becoming obsolete when those services are withdrawn for commer-
cial reasons [25, 52]. Edge-based IoT applications can also assuage
privacy concerns by analysing sensitive data locally.

As IoT data generation increases exponentially [29], data process-
ing often becomes too resource-intensive to execute on a single IoT
device. In this paper, we advocate that data processing should com-
bine the resources of multiple devices available at the edge using a
wireless network. This can be achieved by interconnecting them us-
ing a wireless network based on WiFi, Zigbee [67], or BlueTooth [12,
63]. In contrast to wired networks, wireless networks experience dy-
namically fluctuating bandwidth and connectivity between nodes
due to factors such as environmental conditions, signal attenuation,
interference and wireless channel contention. Both the IoT device
limitations and wireless network properties make processing of IoT
data at the edge challenging.

The goal of our work is to design an edge-based IoT data process-
ing approach that (a) leverages the compute abilities of multiple IoT
devices in order to process data with data-parallelism; and (b) ac-
counts for the unreliable network conditions in wireless networks.
We observe that data-intensive IoT applications can be expressed as
continuous streaming queries over data streams [6]. Our core idea is
to increase network path diversity for such queries during distributed
execution by adding operator replicas. With a larger number of pos-
sible network paths for data, the system becomes more resilient to
changes in wireless network conditions and can therefore achieve
higher throughput using data-parallel processing

We describe Frontier, a distributed and resilient data-parallel
edge processing platform for IoT devices. Frontier combines several
new features to cooperatively execute stream queries on multiple
IoT devices interconnected through a wireless mesh network:
(1) Replicated dataflow graphs. A stream query in Frontier is
defined as a replicated dataflow graph (RDG)—a dataflow graph
in which n-ary processing operators are replicated across multiple
nodes. Replicated operators can be stateless or stateful. When rout-
ing data along the RDG, Frontier makes dynamic decisions about
which downstream replica to send batches to. As a result, the RDG
can increase the probability of using a viable network path. If mul-
tiple paths exist, the RDG utilises all of them, increasing the share
of the available network bandwidth. The RDG also performs data-
parallel processing of batches using multiple operator replicas.
(2) Backpressure stream routing. Frontier routes batches through
the RDG using a novel network-aware stream backpressure rout-
ing (BSR) algorithm. BSR is inspired by the backpressure algo-
rithm in wireless networks, which has been proven to be throughput-
optimal in theory [58] and in practice [35]. In BSR, each operator
replica routes batches to downstream replicas using weights that
reflect the congestion and quality of downstream network paths as
well as processing rate at downstream replicas. Congestion is mea-
sured by the difference in queue backlogs between an upstream and



downstream replica of RDG edge. For multi-input operators, such
as stream joints, BSR maintains consistency using a distributed syn-
chronisation mechanism, which coordinates all upstream replicas to
send their batches to the same downstream stateful replica.
(3) Selective network-aware replay. Nodes in Frontier can tem-
porarily become disconnected due to wireless interference or when
moving out–range. To reduce the impact of network changes, Fron-
tier uses decentralised selective network-aware replay (SNAP): each
node stores processed batches for retransmission in its send buffer,
and selectively acknowledges received batches to its upstream nodes.
The received acknowledgements enable nodes to infer the set of
batches that are still being processed by downstream operators.

When contact with a downstream operator replica is lost, the up-
stream node resends the unprocessed batches to other operator repli-
cas. In contrast to prior approaches [26], SNAP minimises unnec-
essary re-transmissions during recovery, and supports out-of-order
processing of batches that are transmitted via changing network
paths. Frontier asynchronously creates new operator replicas when
a disconnected replica is lost permanently.

We evaluate Frontier through a prototype implementation using a
Raspberry Pi testbed and in emulated wireless mesh networks. Our
results, with a range of IoT applications realised as stream queries,
show that Frontier can increase throughput by 1.3×–2.8× and per-
formance per watt by 1.2×–3.4× with respect to a number of base-
line approaches, while remaining robust against network dynamics
due to transient failures and mobility.

2 Edge IoT Applications
2.1 IoT application scenarios

IoT applications in many domains, including in-situ video anal-
ysis for security surveillance [22, 47], image object tracking [50],
and machine learning for home or industrial automation [17, 15],
must process large amounts of data continuously. While tradition-
ally such applications relied on cloud infrastructure for processing,
the increased CPU and memory capabilities of modern IoT devices
make entirely autonomous edge-based IoT applications feasible.

As an example, consider a security IoT application for automated
face recognition, as shown in Fig. 1. The goal is to continuously pro-
cesses video frames from a set of camera sources and provide near
instantaneous notifications when persons of interests are observed.
This application is similar to existing home surveillance products
such as Nest Cam [22] and Netatmo [43].

Logically the application consists of several data processing com-
ponents: (i) one or more data sources continuously capture video
frames from cameras and (ii) send them to a face detector com-
ponent. This component analyses each frame and outputs detected
faces with frame data to (iii) a face recogniser component. The face
recogniser compares input faces to a database of persons of interest,
and (iv) provides notifications with faces and matched names to a
data sink, which displays the results to the user.

Due to its resource requirements, this application is unlikely to
execute on a single IoT device with high processing throughput—
current products therefore rely on a cloud back-end for face recog-
nition [22, 43]. To retain the robustness, low latency and privacy
benefits of an edge deployment model, we combine the resources of
multiple devices at the edge into a distributed system.

Typically, edge IoT devices are interconnected using a wireless
network based on the IEEE 802.11 [30], Zigbee [67], or the emerg-
ing BlueTooth mesh networking [12] standards. In contrast to wired
network connectivity, this introduces several challenging properties
such as asymmetric and changing connectivity between devices and
dynamically fluctuating network bandwidth due to environmental
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Figure 1: IoT application for face recognition

factors such as interference, contention, and attenuation. Interfer-
ence due to hidden and exposed terminal problems also makes flow
and congestion control difficult during data processing [33].

2.2 Requirements
Based on the above scenario, we describe the requirements for an

edge-based IoT processing platform. In §2.3, we then explain why
existing solutions fail to meet all requirements.
R1: Stream data model. IoT applications, as described in §2.1, are
typically sensor-driven and thus continuously analyse incoming data
in real-time. A natural model for such IoT applications is a stream
data model in which where applications are expressed as continu-
ous queries over data streams [6]. An edge-based IoT processing
platform therefore should support a stream data model.
R2: Data-parallel processing. IoT applications, such as the face
recognition application above, are data-intensive. Processing such
volumes of data in near real-time with high throughput is often not
possible on a single IoT device. Instead it requires the combined
resources of multiple devices, exploiting their parallelism. An edge-
based IoT processing platform should therefore support distributed
data-parallel processing whereby multiple IoT devices each process
a subset of the input data in parallel. In the above scenario, multiple
devices can process different video frames each.
R3: Adaptability to network conditions. To support distributed
data-parallel processing, an edge IoT platform must exchange data
over a wireless network. As mentioned in §2.1, wireless network
bandwidth is dynamic due to interference and mobility. To use the
combined processing resources of different IoT devices efficiently,
an edge-based IoT processing platform must be network-aware, i.e.
react and adapt to changing network conditions.
R4: Recovery from transient network failures. An IoT platform
that offers strong fault tolerance guarantees, e.g. by masking tran-
sient failures, simplifies application development. For the above face
recognition application, fault tolerance ensures that faces are still
recognised even when individual IoT devices fail or become un-
reachable. Transient network failures are more common in wireless
networks than in wired networks due to interference and mobility.
An edge-based IoT platform must therefore recover from such tran-
sient network failures gracefully and efficiently.

2.3 Existing IoT processing solutions
Next we survey existing solutions relevant to edge-based IoT data

processing, proposed across a number of domains. Table 1 sum-
marises how they meet the requirements outlined in §2.2.
Cloud-based IoT data processing. Today many computationally-
intensive IoT application leverage remote cloud resources for data
processing [22, 43] because a remote cloud can offer effectively
unlimited resources. Such solutions, however, require a permanent
network link to a remote cloud backend: as a result, they suffer from
the constrained bandwidth available to a remote cloud, introduce ad-
ditional network latency (violating R1 above), and cannot offer any
service when the remote connectivity is interrupted (violating R4).
Offloading private or security-sensitive data to third-party cloud
providers may also introduce privacy issues [19].
Centralised edge-based processing. A trend for cloud-based IoT
service providers is to add support for edge-based IoT services that
can operate without connectivity to a cloud backend [9, 23, 56]. A
hub device at the edge can support control-plane operations, such



Table 1: Existing approaches to edge IoT processing

Approach Stream Data- Network Network failure
model (R1) parallel (R2) adaptivity (R3) recovery (R4)

Cloud 7 7 7 7
Centralised edge 7 7 7 7
WSN 7|X 7|X 7|X 7
Cluster stream processing X X 7 7

Frontier X X X X

as configuration of IoT devices. The hub device can also collect
data from other IoT devices and perform data processing. These
solutions, however, are limited by the computational capabilities of
the hub device: in particular, they cannot support distributed data-
parallel processing across multiple devices (violating R2). All de-
vices are assumed to have connectivity to the hub device, which
is often not the case in wireless environments (violating R3) and
introduces a single point-of-failure (violating R4).
Wireless sensor networks (WSNs) consist of multiple nodes inter-
connect by a wireless network and thus must be resilient to intermit-
tent and changing network connectivity (R3). Prior work [37, 64]
proposed approaches for distributed data processing in WSNs. Tar-
geting resource-constrained wireless sensors, these solutions allow
users to define simple filtering and aggregation queries over sensor
data, reducing unnecessary communication and prolonging the bat-
tery lifetimes of sensors. Given the focus on energy efficient, there is
no support for computationally-intensive applications such as video
analysis, which would require parallel processing (violating R2). In
addition, data processing in WSNs typically fails to provide strong
fault-tolerance guarantees (violating R4).
Cluster stream processing systems [57, 66, 3, 2] offer a data stream
model (R1) and exploit data-parallelism on a compute cluster (R2).
These systems, however, are designed to work over a wired network
with stable high-bandwidth connectivity, making them unsuitable
for wireless networks (violating R3).

Proposals exist for systems to react to changing network con-
ditions in wired networks: by sending redundant data to multiple
workers, it is possible to reduce processing latency [27]; by migrat-
ing computation between workers, a system can increase through-
put when available network bandwidth changes [46, 13]. These ap-
proaches, however, only have limited applicability in wireless broad-
cast networks because sending redundant data or migrating state
uses additional network bandwidth and increases interference.

While distributed stream processing systems can provide strong
fault-tolerance guarantees regarding crash-stop node failures [57, 66,
3, 2], they do not cope well with transient network failures (violating
R4). They depend on network connectivity to a centralised master
node for failure recovery. In our edge-based scenario, the master
itself may become unavailable due to a network partition.

We introduce the design for Frontier, a new edge-based IoT pro-
cessing platform that meets all of our requirements.

3 Edge Processing with Network Path Diver-
sity

In this section, we first define a stream query model that we use
in the remainder of the paper. We then introduce replicated dataflow
graphs (RDGs), a new model for distributed data processing in wire-
less networks. RDGs increase network path diversity, which permits
a data processing system to adapt to network conditions and thus
achieve higher resilience and throughout.

3.1 Stream query model
Stream model. A stream s ∈ S is an infinite sequence of tuples
t ∈ T. S and T denote the sets of all streams and tuples, respectively.
A tuple t = (τ, p) has a timestamp τ ∈ N+ and a payload p. Each
timestamp τ is assigned according to a logical clock on entry to the
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Figure 2: Stream routing over RDGs

system or an external physical clock if correspondence with wall
clock time is required (e.g. when recording event detection times).
Operator model. Tuples are processed by operators. An operator O
is a user-defined function (UDF) that takes n input streams, denoted
by IO = {s1, . . . ,sn}, processes their tuples and produces one or
more output streams OO. For example, the face recognition compo-
nent in Fig. 1 may use an operator with a UDF that implements a
face recognition algorithm.

In practice, applications require operators that process more than
one tuple at a time. In the face recognition application, assuming
that each video frame is an input tuple, a user should only be notified
when a face is recognised with the highest confidence within a time
window. In line with previous work [6], we therefore assume that
all operators are windowed operators: they process a finite sequence
of tuples, or a window, from each input stream at a time. Windows
are generated according to a window function ωs : S→W∗ where
W⊂ S is the set of all windows. Each ωs takes a stream s as input
and outputs an infinite sequence of (potentially overlapping) win-
dows ws(1),ws(2), . . . ,ws(t), · · · ∈W∗ where t ∈ N is the window
sequence number for ws(t).

Window functions are typically time- or count-based, and they are
defined using size and slide parameters [6]: size controls the number
of tuples in each window, and slide controls the overlap between
successive windows.
Query model. A query is a directed acyclic dataflow graph, Q =
(O,S) where O is the set of operators. A stream s ∈ S is a directed
edge between two operators, s = (O,O′) where {O,O′} ⊆ O. An
operator U is upstream to O, U ∈ up(O), when ∃(U,O) ∈ S; an
operator D is downstream to O, D ∈ down(O), when ∃(O,D) ∈ S.

A query has two special sets of operators, UQ = {UQ
1 , . . . ,U

Q
n }

and DQ = {DQ
1 , . . . ,D

Q
m}, which act as the sources and sinks of the

n input streams IQ and m output streams OQ of Q, respectively.
To ensure correctness for queries with time-based window func-
tions, we require the n-tuple of window functions ωQ = 〈ω1, . . . ,ωn〉
over the n input streams IQ of Q to order their corresponding input
streams by tuple timestamp before generating a new window.

3.2 Replicated Dataflow Graphs
To address the dynamic nature of wireless networks (R3), our

idea is to add redundancy to the query dataflow graph in the form
of replicated instances of operators. Each operator is thus presented
with the option of sending tuples to multiple operator replicas for
processing. We refer to this as a replicated dataflow graph (RDG).

More formally, the RDG Q̄ for a query Q is a directed acyclic
graph that contains for each operator O∈Q a set of r ∈N+ operator
replicas ō = {o1, · · · ,or},oi ∈ Ō. We refer to r as the replication
factor of O. For simplicity, we assume r is the same for all internal
operators in Q. We refer to replica oi of a specific operator Oj as Oj,i

Network path diversity. An RDG with operator replicas placed at
different nodes in a wireless network increases network path diver-
sity. Intuitively, when the network path to a particular replica only



achieves low throughput, an operator may achieve higher through-
put by sending to a different replica over another network path.
The example in Fig. 2a shows an RDG with two internal opera-
tors, {O1,O2}, each with two replicas. When the path from opera-
tor Osrc to replica O1,1 deteriorates, Osrc can instead route tuples
to O1,2. Network path diversity has been formalised for multipath
routing [53] between a single source and destination. We extend this
definition to an RDG.

D E F I N I T I O N 1. RDG placement. Given a wireless network
G = (V,E) where V is the set of nodes and E the set of edges, we
define a placement M for an RDG Q̄ as a mapping of each replica
Oi,j in Q̄ to a node v ∈V .

D E F I N I T I O N 2. Operator replica combination. For RDG Q̄
of query Q, we define an operator replica combination C ∈ C as a
subgraph of Q̄ formed by choosing a single replica Oi,j for each
operator Oi of Q. C denotes the set of all possible subgraphs of Q̄.

D E F I N I T I O N 3. Pairwise network path diversity. Given a com-
bination C for an RDG Q̄, and a placement M of Q̄ onto a wireless
network G = (V,E), we define a path PC(t)⊂ E as the set of edges
in G that the routing algorithm for G uses at time t to send data
between all pairs of connected replicas (Oi, j,Ok,l) in C. Given two
paths Pa and Pb, we define the pairwise path diversity Dab as:

Dab = 1− |Pb∩Pa|
|Pa|

(1)

D E F I N I T I O N 4. RDG network path diversity. The RDG net-
work path diversity DRDG is defined as:

DRDG = ∑
C∈C

Dmin(PC) (2)

where Dmin(PC) is the minimum pairwise path diversity for combi-
nation C when evaluated against all combinations in C.

Information about the wireless network topology, if available, can
be used to maximise the network path diversity of the initial place-
ment of an RDG. Given the dynamic nature of a wireless network,
our goal is not to find an optimal initial placement because this may
quickly become outdated. Instead, we aim to introduce sufficient net-
work path diversity through operator replication to adapt to changes
at runtime. We therefore focus on random initial placements in our
experiments (§6).

3.3 RDG stream routing
Given an RDG with network path diversity, we want to perform

data-parallel processing by dividing the input streams of each oper-
ator O between its replicas ō at runtime in a network-aware manner.
We refer to this as stream routing because tuples are routed over the
RDG. The challenge is to achieve good performance while ensuring
correctness, i.e. the output streams of the unreplicated query Q must
be equivalent to the output streams of the RDG Q̄.
Window-based routing. For correctness, window-based operators
require a complete window on each input to produce a result. There-
fore, stream routing must route at the granularity of windows. For
example, in Fig. 2a, if Osrc routes an outgoing tuple t from stream
(Osrc,O1) to O1,1, it must route all tuples in the same window
w(Osrc,O1)(1) to O1,1. Only when the first tuple from the next win-
dow w(Osrc,O1)(2) is available can Osrc route tuples to O1,2 for par-
allel processing.
Out-of-order processing is necessary to achieve high throughput
with parallel operator instances because delays receiving a window
from one replica must not block the processing of other windows:

a downstream D of an operator O with replicas ō may receive tu-
ples out-of-order, e.g. due to varying network delays between each
replica oi ∈ ō and D.

We observe though that window functions are typically only de-
fined over the source input streams I, and all subsequent operators
process tuples derived from a single window in an initial source
stream. For example, in our face recognition application, the face
detector processes a short window of images and outputs a corre-
sponding window of faces to the face recogniser. In other words,
when a non-source operator O processes a window w(Uk ,O)(t) from
an input stream (Uk,O)∈ I, it outputs to each downstream D exactly
one window w(O,D)(t). Operator O can then perform window-based
routing in the same manner as a query source, with each output win-
dow inheriting its sequence number t from its corresponding input
window. This model of window-based routing allows operators to
process windows out-of-order while still ensuring correctness: re-
ordering, if required, can be implemented at the sink using a reorder
buffer and window sequence numbers.
Multi-input operators. Another challenge to correctness arises
when an operator O ∈ Q is a multi-input operator such as a join.
For example, in Fig. 2b, O1 has two inputs, Osrc1 and Osrc2. If a spe-
cific window of tuples w(Osrc1,O1)(1) in stream (Osrc1,O1) should be
joined with a specific window w(Osrc2,O1)(1) in stream (Osrc2,O1),
Osrc1 and Osrc2 must coordinate to ensure that they route both win-
dows to the same replica of O1, i.e. either O1,1 or O1,2.
Window batching. For queries with sliding windows, i.e. where
there is overlap in the tuples of adjacent windows, routing windows
to different replicas results in redundant communication and pro-
cessing. To mitigate this overhead, stream routing can group ad-
jacent overlapping windows into batches. A batch is defined as
b = ((ws(t), . . . ,ws(t+n)), id). A batch has an identifier id and a
payload of n complete windows over a stream s ∈ S where n ∈ N
is a query parameter. Stream routing decisions are then made at the
coarser granularity of batches instead of individual windows, and
queries can also process batches out-of-order and reorder them at
the sink. Batching exposes a trade-off for sliding windows between
redundant communication (and computation) and the granularity at
which stream routing can adapt to changing network conditions.

3.4 Frontier design
The Frontier architecture that is deployed on each IoT device is

shown in Fig. 3. It is divided into three main components:
Processing. Each Frontier IoT device hosts one or more operator
replicas, where each replica implements a portion of the IoT appli-
cation’s processing logic, defined by an RDG. An operator reads
batches of tuples from its input buffers. Each input buffer stores
batches sent by up to r upstream operator replicas for that input. An
operator processes input batches and adds new output batches to the
dispatcher output buffer, from where the dispatcher forwards them
downstream. If there are multiple logical downstreams, each has its
own dispatcher and corresponding output buffer.
Routing. A dispatcher makes forwarding decisions in collaboration
with an RDG router component. Based on its current routing state,
the router tells its dispatcher the best downstream operator replica
for each outgoing batch. The router is designed to be pluggable,
i.e. it allows a variety of routing strategies to be used. Frontier uses
backpressure stream routing (BSR) (§4), designed to enable high-
throughput data-parallel stream query processing (R2), and adapts
to changing wireless network conditions (R3).
Network disconnection recovery. All batches sent to a particular
downstream are buffered in an output log. The recovery manager re-
ceives periodic control updates from each of its downstreams, which
it uses to trim the output logs, dispatcher buffer, and input buffers.
The recovery manager then computes a control update for each of the
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Figure 3: Frontier node architecture

operator’s upstreams. In the event of a network disconnection, the
recovery manager performs selective network-aware replay (SNAP)
(§5) and replays the minimum amount of data needed to ensure
correct results (R4).

4 Backpressure Stream Routing
To exploit network path diversity in a replicated dataflow graph,

we propose backpressure stream routing (BSR). BSR is inspired
by techniques from backpressure routing in data networks [58, 35],
which has been shown to maximise throughput in general networks
under the assumption of perfect estimates of routing queue lengths
and link capacities, per-tuple scheduling and no wireless interfer-
ence1.

4.1 Backpressure model
Next we describe the intuition behind BSR in the context of a

query Q with only unary streaming operators (e.g. map, filter). We
then discuss how the BSR algorithm can be generalised to handle
multi-input operators (e.g. join).

Given a single replicated query Q, each operator replica oi main-
tains a variable qQ

i , which is the number of tuples in its outgoing
queue for query Q. (We omit the superscripts when they are clear
from the context.) We define d̄ to be the set of downstream operator
replicas of operator replica oi, i.e. the vertices of the outgoing edges
of oi in Q̄, the RDG of query Q.

Suppose that, if downstream replica dj ∈ d̄ is selected, the tuples
of oi are transmitted on the network link with transmission rate
ri j tuples/sec, processed by replica dj with a processing rate p j
tuples/sec and placed in the outgoing queue q j.

The backpressure algorithm is executed periodically for each
replica oi based on estimates of qi, q j , ri j , and p j . The update gran-
ularity for these estimates determines the time scale with which the
algorithm can change its scheduling decisions.

At each execution step, for each replica oi, the algorithm com-
putes a weight for each downstream replica:

wi j = max(0,(qi−q j)× ri j× p j) (3)

where ri j is the network transmission rate between oi and dj. p j
is the processing rate of dj, and allows for nodes with heterogeneous
processing resources. The term qi− q j is the differential backlog
over edge (i, j) and represents a gradient of congestion on that edge.
The backpressure algorithm at oi selects the optimal downstream
replica dj

∗, which has the highest positive weight:

dj
∗ = argmaxdj∈d̄(wi j) | wi j > 0 (4)

Once the downstream operator replica is selected, batches of tu-
ples are sent to that replica until the next scheduling decision.
Multi-input operators. The above version of the backpressure al-
gorithm can be executed separately for each replica oi, but assumes
that replicas can make independent routing decisions. Multi-input

1As we discuss in §7, backpressure routing differs from the flow
control mechanism referred to as backpressure in previous stream
processing systems [57, 34, 21].

operators (e.g. join), however, require coordination between up-
stream replicas to ensure correct routing decisions. For example,
in Fig. 2b, replicas of input Osrc1 and input Osrc2 must coordinate
to send batches to the same replica of O1.

BSR generalises backpressure routing to multi-input operators: it
(i) aggregates backpressure weights and (ii) adds routing constraints.
If downstream dj is a replica of a multi-input operator, instead of
upstream replica oi choosing dj

∗ based on wi j , each dj computes an
aggregate weight wagg over the individual backpressure weights wi j
to each of its upstreams oi. Each dj feeds back wagg to its upstreams,
which route batches to the downstream replica dj with highest aggre-
gate weight w̄agg[d j]. In the absence of network delays, aggregate
weights implicitly coordinate routing decisions because upstreams
have the same view of the current aggregate weights w̄agg.

In practice, network delays may lead to upstreams with incon-
sistent views of the current downstream aggregate weights when
updates arrive at different times. This could cause batches with the
same identifier to be sent to different replicas of a multi-input op-
erator. BSR minimises such inconsistent routing decisions using
routing constraints. Multi-input operators maintain for each input a
constraint set of the batch identifiers not yet received on that input
but already received on other inputs. The constraint set is sent pe-
riodically to all upstream replicas contributing to that input. When
making a routing decision, an upstream oi first checks whether rout-
ing constraints exist for any downstream replica dj, and if so sends
the batch to dj; otherwise, the batch is sent to downstream replica dj
with the highest aggregate weight w̄agg[d j] as before.

Routing constraints do not completely prevent upstreams from
making inconsistent routing decisions because a routing constraint
may arrive after a batch has been routed to a different downstream
replica. In this case, BSR retransmits the corresponding batch to
the downstream from which it received the routing constraint. Our
evaluation in §6 shows that this occurs infrequently in practice.

4.2 BSR algorithm
Alg. 1 shows the BSR algorithm executed at each replica oi. For

ease-of-explanation, we assume that each operator has a single down-
stream D, although D may have several replicas dj ∈ d̄.

At a high level, the algorithm consists of two data plane functions,
processor (line 1) and dispatcher (line 8) that receive, process and
forward batches; control handlers periodically exchange routing
information (i.e. queue lengths, weight updates, and constraint sets)
between upstream and downstream operators (lines 16, 21, 19, 31).

On the data plane, each replica oi has a processor, which reads
batches from oi’s input buffers, processes them, and adds output
batches to oi’s output buffer (lines 2–7). The processor waits until
a batch with the same identifier exists in each input buffer buf U
(line 3) and then extracts the corresponding batches (lines 4–6). It
executes the process function for oi, passing it b̂ with the batches,
and adds the output batches to buf out, the output buffer of oi.

A dispatcher selects the downstream replica to route each output
batch to (lines 9–15). The dispatcher first finds the oldest output
batch b in bu fout (line 10). Next, it computes d̄active, the set of active
downstream replicas. A downstream replica d j is active if it has a
positive aggregate backpressure weight w̄agg[d j] (line 11). If there
is at least one active replica, the dispatcher checks whether there are
additional routing constraints for b (line 13): if d̄ are the replicas
of a multi-input operator, a batch with the same identifier as b from
an operator other than O may already have been received at one or
more of the downstream replicas d j ∈ d̄. If constraints exist for b,
the dispatcher restricts the set of active replicas to include only those
(line 14). Finally, it sends b to the active downstream replica with
the highest aggregate weight (line 15).

On the control plane, each oi exchanges routing control messages
with its neighbouring operators to update the backpressure weights



Algorithm 1: BSR algorithm
/* Executed on replica oi of operator O */

1 function processor()
2 while true do
3 if ∃ id ∈ N+ : ∀U ∈ up(O), ∃ b ∈ bu fU : b.id = id then
4 for U ∈ up(O) do
5 b̂[U ]← b ∈ bu fU : b.id = id
6 bu fU ← bu fU \ {b}
7 bu fout ← bu fout ∪ {process(b̂)}

8 function dispatcher()
9 while true do

10 b← bmin ∈ bu fout : bmin.id =min(ids(bu fout))

11 d̄active ← {d j ∈ d̄ : w̄agg[d j]> 0}
12 if d̄active 6= /0 then
13 if ∃ d j ∈ d̄active : b.id ∈ constraints[d j] then
14 d̄active ← {d j ∈ d̄active : b.id ∈ constraints[d j]}
15 send(b, argmax(d̄active, w̄agg))

16 upon S E N D(R C T R L, d̄) do /* To downstreams */
17 for d j ∈ d̄ do
18 send(|bu fout |, d j)

19 upon R E C V(R C T R L, q, uk) do /* From upstream replica */
20 q̄[uk]← q

21 upon S E N D(R C T R L, up(O)) do /* To upstreams */
22 for U ∈ up(O) do /* Compute upstream weights */
23 for uk ∈ ū do w̄[uk]← weight(uk) ;

24 for U ∈up(O) do
25 constraints← (

⋃
V∈up(O),V 6=U ids(bu fV )) \ ids(bu fU)

26 for uk ∈ ū do
27 if |up(O)|> 1 then
28 send((agg(w̄),constraints), uk)

29 else
30 send((w̄[uk], /0), uk)

31 upon R E C V(R C T R L, (w, constraints), d j) do /* From downstream
*/

32 w̄agg[d j]← w
33 constraints[d j]← constraints

34 function weight(uk)
35 return (q̄[uk]−|bu fU |− |bu fout |)×r̄[uk]×poi

and routing constraints. Periodically, oi sends a routing control mes-
sage with its current output queue length to each replica d j of its
downstream operator (lines 17–18). On receiving an output queue
length q from a replica of one of its own upstreams, oi stores q
indexed by the upstream replica (line 20).

Upon receiving a queue length update from an upstream replica,
oi sends a new routing control message to each upstream replica
(lines 22–30). It first computes a backpressure weight for each up-
stream replica uk (lines 22–23), according to the backpressure for-
mula from Eq. (3), modified to include tuples queued at buf U , the
input buffer for upstream U at oi (line 35). Next, oi computes the
current routing constraints for U as the set of all batch identifiers
that are in its input buffer buf v for any other upstream V (line 25).

After that, oi sends a routing control message to each upstream
replica uk (lines 26–30). If O is a multi-input operator, the mes-
sage contains a weight computed as the aggregate of the backpres-
sure weights of all upstreams, in addition to any routing constraints
(line 28). As an optimisation, if O is a unary operator, the unaggre-
gated backpressure weights for the corresponding upstream replica
are used because no coordination is necessary (line 30). We omit
details of further optimisations for unary operators (e.g. with no co-
ordination of upstreams through weight aggregation, backpressure

weights can be calculated at upstreams).
Finally, when oi receives a routing control message from a down-

stream replica d j (lines 32–33), oi saves the associated weight and
routing constraints indexed by d j, from where the dispatcher ac-
cesses for routing decision.

4.3 Discussion
Switching granularity. In addition to the rate at which weights are
updated, the switching granularity of BSR is limited by the batch
size. Intuitively, performance gains are likely highest for smaller
windows because they allow for finer granularity switching. For
tumbling windows, the batch size could therefore be set to one win-
dow of tuples. For sliding windows, batching exposes a trade-off
between the overhead of redundant tuples and switching granularity.
Given a window with length w and slide s, the overlap between two
successive windows is w− s. If w ' s, there is little overlap and b
can be small; if w� s, b should be larger. If the expected speed-
up for an RDG with w = s is p, for the same RDG with a smaller
slide s′� w, b should be set to at least w/(p× s′)—otherwise the
throughput gain does not improve goodput.

Depending on the operator, finer granularity switching may be
achieved with sub-batching, similar to previous approaches for intra-
window parallelisation using panes [36]. Sub-batching rewrites an
operator into two sub-operators, a mapper and a reducer, which
are replicated as usual: inputs to the mapper split their batches
into several non-overlapping sub-batches, each with its own sub-
batch identifier, which are routed to mapper replicas independently.
Mappers route sub-batches of the same parent batch to the same
reducer replica, coordinating routing decisions using BSR’s sup-
port for multi-input operators. Sub-batching therefore supports finer
granularity switching at the cost of extra communication.

For some operations (e.g. group-by), subdivision of a single out-
put batch into smaller independent output batches based on the val-
ues of key attributes may allow for increased parallelism. Frontier
supports key-based partitioning by statically dividing the key space
into a number of disjoint sub-spaces and creating a separate logical
downstream for each sub-space.
Internal window functions. BSR processes batches out-of-order
under the assumption that window functions are defined only over
query inputs (§3.3). If a window function ω ′ is defined over an in-
ternal stream, e.g. stream (O1,O2) in Fig. 2a, each upstream replica
may output only partial windows of tuples. Before applying ω ′,
the partial windows of all upstream replicas may need to be com-
bined and ordered. Although a distributed ordering implementation
is straightforward for some window functions, Frontier instead cur-
rently introduces an additional reorder operator R between O1 and
O2. This splits the query Q into two separate queries Q1 and Q2 such
that R is a sink for Q1 and a source for Q2. This has the down-side
that, as R is unreplicated, it reduces network path diversity.
Practical aspects. Backpressure routing is constrained by practical
aspects such as accurate estimation of the network transmission rate,
processing rate, and wireless interference:
Transmission rate rQ

i j is the maximum achievable transmission ca-
pacity of the network path. Our current implementation uses link-
state information provided by the network to compute an estimate
of the path capacity under the assumption that capacity is inversely
proportional to the expected transmission count (ETX [16]).
Processing rate pQ

j can be directly measured at the downstream
replicas. Alternatively, it can be estimated based on models using
a-priori profiles for each operator that relate incoming traffic to pro-
cessing time, as in our current implementation.
Wireless interference. In the wireless version of the backpressure
algorithm, interference is taken into account by solving a complex
centralised scheduling problem. As we require distributed operation,
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Figure 4: Transient disconnection recovery

we indirectly capture interference by considering congestion (on top
of network and processing costs) captured by the weights wi j.

5 Failure Recovery
A stream processing platform designed for the data centre typi-

cally provides strong reliability guarantees such as at-least-once or
exactly-once delivery [57, 65, 20]. In a wireless network, however,
transient node disconnections make it challenging to provide strong
reliability guarantees with good performance.

Fig. 4a gives an example of a query experiencing a transient net-
work partition, e.g. caused by a node moving out of range temporar-
ily. Having just received batch b2 from the source, replica O1,0
becomes disconnected from its neighbour nodes. Waiting until the
source reconnects with O1,0 again before processing b2 would sub-
ject b2 to an excessively long delay.

Frontier must therefore ensure fast recovery from transient node
disconnections. Unlike stream processing systems in a data cen-
tre, in which typically a centralised master detects node failures
and coordinates recovery [57, 65, 20], Frontier’s recovery mecha-
nism must be distributed because a centralised coordinator could
itself become partitioned. Since in practice partitions could cause
multiple nodes to disconnect simultaneously, Frontier’s recovery
mechanisms must also handle concurrent disconnection of nodes.
To ensure efficient recovery in a wireless network, Frontier’s recov-
ery mechanisms must be network-aware. Finally, to allow normal
operation to resume quickly and to alleviate congestion due to wire-
less interference, recovery should be selective and retransmit the
minimum required amount of data to ensure correct results.

5.1 Selective network-aware replay
To handle transient network failures, we describe a new approach

called Selective Network-Aware rePlay (SNAP), which exploits (i) ex-
isting replicas and (ii) their ability to process batches out-of-order.
Network-awareness. In SNAP, tuples are saved in the buffers of
upstream nodes. When an upstream detects a disconnected node, it
retransmits batches sent to the disconnected node to an alternative
replica. For example, in Fig. 4a, the source reroutes batch b2 through
O1,1 after O1,0 disconnects.

For network-awareness, SNAP uses BSR during normal opera-
tion. Batches are rerouted to another replica with the current highest
weight. Network-aware replay relies on the ability of replicas to pro-
cess batches out-of-order. In Fig. 4a, this allows O1,1 to process b2
during recovery, even though it has already received b3. Recovery
solutions such as upstream backup [26] do not account for out-of-
order processing but require a new node through which all tuples are
replayed. Instead, SNAP exploits pre-existing replicas. Permanent
failures are handled as in upstream backup by creating new replicas,
albeit asynchronously off the critical path, after a longer timeout.
Garbage collection. SNAP uses acknowledgements to reclaim buffer
space after tuples have been processed to completion by a query.
Nodes acknowledge tuples at batch granularity using identifiers.

To guard against concurrent node disconnections, acknowledge-
ments originate at a sink in response to the arrival of a batch. Sink-
initiated acknowledgements ensure that, even if multiple interme-
diate nodes become partitioned, progress can still be made for all

batches so long as there is a path in the RDG to the sink through al-
ternative replicas. When an operator replica oi receives an acknowl-
edgement for a batch from at least one replica of each downstream
D ∈ down(O), oi trims the batch from its state. oi then forwards the
acknowledgement to upstreams, which repeat the process.
Selective replay. SNAP must minimise unnecessary work when re-
covering from transient disconnections. A node should ideally only
replay batches currently being processed on disconnected nodes,
and not batches previously processed by a disconnected node and
forwarded downstream.For example, in Fig. 4a, even if the source
previously sent batches b1 and b2 to O1,0, it should only replay b2
because b1 has already been processed and forwarded to O2,0. Al-
though acknowledgements help avoid some retransmissions during
recovery, they do not apply in this case because b1 has not yet been
received and processed by the sink.

SNAP ensures efficient recovery through the use of batch heart-
beats. In contrast to acknowledgements, heartbeats indicate batches
that have been received downstream but not yet processed to com-
pletion. Although these are not safe to discard, they do not need to
be replayed during recovery. Heartbeat messages are created at each
node recursively and sent to all upstreams. A heartbeat message
includes heartbeats for batches held locally in addition to heartbeats
received from all downstream replicas.

When a node disconnects from a downstream, it discards all heart-
beats received from that downstream. Batches previously sent to the
downstream are then replayed selectively, depending on whether
the node is still receiving heartbeats for a batch from another down-
stream replica. For example, in Fig. 4a, node O2,0 sends a heartbeat
for batch b1 to upstreams O1,0 and O1,1, which in turn include b1 in
the heartbeats sent to the source. On detecting that O1,0 has discon-
nected, the source does not replay b1 because it continues to receive
heartbeats for it from O2,0 through O1,1.

Another benefit of heartbeats is that they allow nodes to replay
with concurrent failures using only heartbeat messages received
from direct downstreams. Fig. 4b shows the same situation as Fig. 4a,
except with both nodes O1,0 and O2,0 disconnected. When O1,1 de-
tects that O2,0 has disconnected, it discards its heartbeat for batch
b1 and propagates an updated heartbeat message to the source. This
triggers the source to replay b1 in addition to b2.

Under concurrent node failures, replay of lost batches is initiated
from the furthest downstream replica holding a copy of a batch with
the same identifier, reducing unnecessary retransmissions.

5.2 SNAP algorithm
Alg. 2 shows the SNAP algorithm. For ease-of-explanation, each

operator O has a single downstream D, i.e. |down(O)|= 1), although
the downstream may have multiple replicas. It also assumes that the
sink has a single upstream but with multiple replicas.

When a replica oi of operator O receives a new batch b from
replica uk of upstream U , it first checks whether b is a duplicate
(lines 1–2). To do this, it computes the set of batch identifiers stored
in the local input buffer for U (bufU ), output buffer of batches wait-
ing for dispatch (buf out), and log of previously transmitted tuples
(log). If not found locally, b is also discarded if one of the down-
streams of oi has already received it, perhaps via a different replica,
as indicated by acks and hbeats, which are the most recent acknowl-
edgements and heartbeats oi has received from all downstream repli-
cas d j ∈ d̄. If not a duplicate, oi adds b to its input buffer for u (line 3).
In addition, if O is a sink, oi adds b.id to the set of identifiers safe
to acknowledge (lines 4–5).

Periodically, when a downstream disconnects, oi sends to each
of its upstream replicas a recovery control message with its latest
acknowledgements and heartbeats (lines 6–9). For each upstream U ,
oi computes the set of batch identifiers stored in its input buffer for
U , output buffer and output log (line 7). For each replica uk of U , oi



Algorithm 2: SNAP algorithm
/* Executed on replica oi of operator O */
upon R E C V(B AT C H, b, uk) do

1 locals← ids(bu fU ,bu fout , log)
2 if b.id /∈ acks ∪ hbeats ∪ locals then
3 bu fU ← bu fU ∪{b}
4 if sink(O) then
5 acks← acks∪{b.id}

upon S E N D(R E C O V E RY- C T R L) do
6 for U in up(O) do
7 locals← ids(bu fU ,bu fout , log)
8 for uk ∈ ū do
9 send((acks,hbeats∪ locals),uk)

upon R E C V(R E C O V E RY- C T R L,(acks j,hbeats j), d j) do
10 acks← acks ∪ acks j
11 hbeats j ← hbeats j \ acks
12 hbeats← (

⋃
dx∈d̄ hbeatsx) \ acks

13 log← {b ∈ log : b.id /∈ acks} ∪
{b ∈ bu fout : b.id ∈ hbeats\acks}

14 bu fout ← {b ∈ bu fout : b.id /∈ acks∪hbeats}
15 for U ∈ up(O) do
16 bu fU ← {b ∈ bu fU : b.id /∈ acks}

upon D I S C O N N E C T(d j) do
17 hbeats j ← /0
18 hbeats← (

⋃
dx∈d̄ hbeatsx)

19 for b ∈ log : b.id /∈ hbeats do
20 log← log \ {b}
21 bu fout ← bu fout ∪ {b}

then sends a recovery control message with the batch identifiers that
are safe to acknowledge (acks), and heartbeats for the current set of
batches stored either locally at oi (locals) or at one of the transitive
downstreams of oi (hbeats) (line 9).

On receiving a recovery control message from a downstream
replica d j (lines 10–14), oi first adds any newly acknowledged batch
identifiers to its record of batches safe to trim (acks). oi then stores
the latest heartbeats for d j (line 11), and recomputes the combined
set of batches stored at its downstreams, as indicated by the current
heartbeats stored for each downstream replica dx (line 12).

Next, oi updates its local buffers and log. It discards any batches
from its log, output buffer or input buffers that are safe to trim
(lines 13–16). In addition, oi moves any batches awaiting dispatch in
its output buffer that have already been received downstream, as in-
dicated by the updated set of heartbeats, to its output log (e.g. if they
were retransmitted via a different replica during a network partition)
(lines 13–14). Conversely, it also moves any batches remaining in
its output log that are no longer known to be live at a downstream
to its output buffer, and retransmits them (lines 13–14).

The final part describes oi’s behaviour under disconnection of
a downstream d j (lines 17–21). oi deletes its heartbeats for d j
(line 17), and recomputes the batch identifiers that are still live at a
downstream, and hence need not be retransmitted, from the heart-
beats stored for each remaining downstream replica (line 18). Fi-
nally, oi moves any batches in its output log that are no longer known
to be live to its output buffer for retransmission (lines 19–21).

5.3 Discussion
Consistency. By default, Frontier provides exactly-once delivery
with strong consistency, but batches may be delivered out-of-order.
To enforce ordered delivery, sinks may introduce a reorder buffer at
the cost of extra delay. Sources must then ensure that the total num-
ber of unacknowledged batches is less than the size of the reorder
buffer. To handle long periods of disconnection between sources
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and sinks, sources may potentially spill batches to disk, although
our prototype implementation does not support this.
Source/sink replication. So far, we have focused on replication of
internal operators only, but a failed or partitioned source/sink also
affects query execution. Frontier supports their replication, but care
must be taken not to affect the correctness of query results.

With replicated sources, the batches produced by different sources
with the same identifier are treated interchangeably, even if their
contents differ. Thus an acknowledgement for a batch produced by
one source replica also acknowledges batches produced with the
same identifier by another source replicas. This can be useful for
sensing applications that only need to receive a batch from one (or
a subset of) several redundant source sensors. Permanent failure of
a source may lose batches the source has produced that have not yet
been acknowledged at the sink.

Sink replication is suitable when any replica must received a
particular batch. For example, in a face recognition application with
replicated sink devices belonging to end-users that must verify the
recognised face, only one sink must receive each recognised face.
Control message optimisations. Recovery control messages con-
sist conceptually of two sets of batch identifiers, acks and hbeats.
In practice, their network overhead remains low because they con-
tain only batch identifiers and not tuple timestamps. Full acknowl-
edgements and heartbeats are only transmitted on initial connection
establishment, with deltas to previous messages otherwise.

Batch identifier sets can also be represented compactly as bit vec-
tors or interval sets with a low watermark identifier. The low water-
mark indicates the greatest identifier for which all lower identifiers
can be acknowledged. The acks and hbeats sets then only contain
out-of-order batches with identifiers greater than the watermark.

6 Evaluation
We evaluate Frontier on both real hardware (using Raspberry Pis)

and in an emulated wireless network. We explore its perfomance
for a variety of queries and network conditions, densities and sizes.
Our evaluation answers the following questions: (i) Does Fron-
tier’s network-aware processing improve throughput and latency?
(ii) Does Frontier improve resilience in the presence of transient
failures and mobility? (iii) Do the throughput gains achieved come
with an acceptable cost in terms of power consumption?

Our results show that the combination of Frontier’s RDGs, back-
pressure routing, and network disconnection recovery results in a
1.3×–2.8× gain in throughput (with similar or lower latency) de-
pending on the query type and network characteristics.

6.1 Implementation and experimental set-up
The prototype implementation of Frontier is based on SEEP [20],

a lightweight Java-based data processing platform, and consists of
approximately 25 KLOC. It supports Raspberry Pi, Android and



generic Linux devices. If root access is available, the Android ver-
sion can use multi-hop routing algorithms, such as OLSR [14]; oth-
erwise it uses neighbouring devices over WiFi Direct [61].
Raspberry-Pi deployment. Our evaluation on real hardware uses
two mesh network deployments: (i) a network with high path diver-
sity deployed over several floors in an indoor environment (Fig. 5);
and (ii) a network with low path diversity in which all nodes are in
the same room and directly connected (not shown).

Both networks have 8 nodes including 6 Raspberry Pi 3 Model Bs
for hosting intermediate operators, and two Linux machines for host-
ing source and sink operators, respectively. All nodes are equipped
with an 802.11g WiFi adapter (Broadcom 43143), configured in
ad-hoc mode. They use OLSR [14] for routing with expected trans-
mission count (ETX) [16] as a cost metric.
Emulation deployment. For our emulator experiments, we use the
CORE/EMANE wireless network emulator (version 0.9.2) [1]. For
the MAC layer, we use 802.11b ad-hoc mode with a unicast and
multicast rate of 11 Mbps, and set the maximum number of MAC
layer retries to 7. Unless otherwise stated, we use the default values
for all other CORE/EMANE parameters. At the network layer, nodes
again use OLSR for routing with ETX.

6.2 Evaluation queries
(1) Distributed face recognition query Qfr. This query implements
the distributed face recognition application from Fig. 1, implemented
using the OpenCV [45] library.
(2) Video correlation query Qvc. This query correlates faces across
multiple video streams in order to reduce false positives (see Fig. 6).
Two sources capture frames from video feeds (V) of the same scene
from two different cameras. Each source forwards a tuple for each
frame to a separate face detection operator (F) that analyses each
frame and sends detected faces to a shared face correlation opera-
tor (C). It implements a custom join operator that recognises faces
on each input stream and outputs a match to the sink (S) only if the
same face is recognised in both.
(3) Heatmap query Qh. This query realises a real-time heatmap
application (see Fig. 6) that aggregates the movements of mobile
users in an area (e.g. members of a sports team [48, 38] or emergency
workers in a disaster response scenario). Each query source produces
a periodic location report (L) of the time spent in each section of
a predefined grid over the area. User reports are aggregated using
a distributed tree of binary join operators (J): leaf join operators
compute the aggregate time spent by users in each section of the
grid; intermediate join operators aggregate the results, until the root
operator computes the aggregate time spent by all users in each
section and outputs it to the sink (S).

6.3 Throughput and latency
Our first experiments evaluate the benefit of BSR’s network-aware

processing in terms of query throughput and latency. To model a
realistic network deployment, we use packet loss measurements and
node locations from the RoofNet trace [11]. For each link in the
mesh network, we use the reported average packet loss to precom-
pute the expected pathloss for that link, which EMANE incorporates
into its statistical model for 802.11 packet delivery.
Throughput. Fig. 7 shows the throughput for our queries for differ-
ent replication factors r (error bars indicate the standard error over
several runs with random operator placements).

For the face recognition query Qfr, replication increases through-
put from 1.6× (r = 2) to 2.2× (r = 4). Due to wireless interference
and switching overhead, increasing r further shows no benefit. For
the video correlation query Qvc, the maximum speed-up of 1.7×
(r = 3) is lower than for Qfr due to the extra coordination overhead
with the multi-input correlation operator. The heatmap query Qh
shows a peak gain of 1.3× (r = 2). In comparison to Qvc, this query

contains two additional join operators—further increasing r yields
no benefit due to the coordination overhead. Empirically therefore,
the experiments show that the throughput is not usually highly sensi-
tive in the choice of r as long as it is chosen high enough, especially
for queries with no or few joins.

For Qfr, we also compare the performance of BSR to several
other routing strategies: (i) broadcast (BC) sends a copy of each
batch to every replica, similar to the proposal by Hwang et al. [27];
(ii) round-robin (RR) sends an equal number of batches to each
replica in round-robin order; (iii) weighted round-robin (WRR) is
network-aware and sends batches in proportion to the inverse of the
current ETX to each replica; and (iv) power-of-two-choices (P2C)
chooses two replicas at random and sends the current batch to the
least loaded (as indicated by their current queue length).

As Fig. 8 shows, BSR achieves the best throughput for all replica-
tion factors r. The closest performing approach is WRR, over which
BSR gives a speedup of 1.1× for r = 3. While WRR is also network-
aware, we hypothesise that it is more susceptible to interference: it
routes at finer granularity and is thus more likely to send to all repli-
cas at once than BSR, which prioritises the current highest weight
replica and switches less frequently. This affect is even worse for
smaller batch sizes, as we show in Fig. 9 where BSR gives a speedup
of 1.64× over WRR for 0.5 KB batches (r = 4). In addition BSR
weights implicitly include information about each downstream’s
transitive connectivity and load; WRR relies on the network-layer
routing algorithm’s ETX to the downstream only. Note that WRR
is also not applicable to queries with multi-input operators. The re-
maining strategies in Fig. 8 are not network-aware, and thus achieve
lower throughput. BC has the worst throughput because it sends
redundant data to all replicas, causing further interference.

To validate the results of our Roofnet experiments, we measure
the throughput gains for the face recognition query on our Raspberry
Pi testbed. Fig. 10a shows how the throughput changes with an
increasing replication factor for networks with high and low path
diversity. Similar to the Roofnet results, replication gives a speed-up
in mean throughput of 1.6× for r = 2, and of 2.8× for r = 3 for the
sparse network with high path diversity. As expected similar gains
are achieved for the dense network with low path diversity, with
the absolute throughput higher due to the higher quality network
links. We are unable to evaluate higher replication factors due to the
limited size of our testbed.

In addition to an unreplicated baseline, we also explore the ben-
efits of BSR compared to the Apache Flink stream processing sys-
tem [21] (which uses backpressure for flow-control only) on our
Raspberry Pi mesh network. Fig. 10b shows the throughput of BSR,
round-robin (RR), and Flink for Qfr with r = 3. BSR gives a 2.8×
speed-up over RR with high path diversity: it can more effectively
prioritise replicas with better network connectivity. This through-
put gain does not come at the cost of worse performance than RR
with low path diversity, where the throughput is similar for both. In
comparison to Flink, BSR gives a 2.3× speed-up with high path
diversity and similar throughput with low path diversity. With high
path diversity, Flink cannot run to completion because it fails due to
transient network failures. The Flink results in Fig. 10b with high
path diversity therefore give the average throughput up to the point
of failure.

The fact that Flink fails during execution shows the importance
of transient network failure recovery (R4). The Flink worker relies
on a master node to coordinate recovery. In some cases, our experi-
ment terminates because the master assumes that the worker itself
has failed, and tries to restart it on a new node. Since there are no
additional nodes, the master terminates the experiment instead of
re-establishing the failed connection or continuing with the remain-
ing workers; in other cases, even though the network connection



 0

 200

 400

 600

 800

 1000

Qfr Qvc Qh

T
p
u
t 

(K
b
/s

) r=1
r=2
r=3
r=4
r=5

Figure 7: Throughput with varying replica-
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between two workers fails, the worker connections to the master re-
main up. Eventually the system stalls because the upstream worker
blocks trying to send to the disconnected downstream workers.

We also evaluate the impact on throughput of executing multiple
queries, e.g. when there are multiple independent video sources.
Fig. 11 shows how throughput for the Roofnet network changes
as we increase the number of rate-limited face recognition query
sources. Peak throughput is reached for r = 1 at 5 sources when
the face detector reaches full CPU utilisation. Throughput plateaus
between 7–9 queries when the network becomes saturated, with a
maximum throughput gain for 9 queries of 1.7× (r = 3).
Latency. Fig. 13 shows the latency achieved by each query for the
Roofnet experiments. For Qfr with r = 3, replication reduces the
95th percentile latency by up to 17%. For higher replication factors
(r > 4), latency starts to grow again as the system becomes saturated,
with a 16% increase for r = 5. The median latency remains lower
than for the unreplicated query though.

For Qvc, 95th percentile latency is lowest for r = 2, which gives
a 65% reduction. Similar to Qfr, latency grows again for higher
replication factors. The 95th percentile, however, remains lower than
for the unreplicated query for both r = 3 and r = 4, with a 25% and
20% reduction, respectively.

For Qh, the absolute latency is higher than for the other queries
because finding a replica with good connectivity to multiple sources
is harder on average. Nonetheless, replication (r = 3) results in an
up to 32% reduction in the 95th percentile latency.

We also compare the latency of BSR to other baselines for Qfr
(Fig. 14). BSR and WRR have lower latencies than the remaining
strategies, which are not network-aware: BSR and WRR have simi-
lar median and 95th percentile latencies for r = 3 and r = 4.
Summary. Network-aware stream routing strategies outperform ex-
isting approaches on both real and emulated mesh networks, espe-
cially with high path diversity, with BSR giving the highest through-
put. The benefit for a particular query depends on the number of
joins due to the additional coordination overhead.

6.4 Resilience to network dynamicity
Next we explore the benefits of Frontier with increasing network

dynamicity due to transient failures. To model transient failures, we
divide each experiment run into fixed size slots of 10 seconds and,
for each node, disable the network interface in a slot according to
a failure probability pfail. To reduce noise, we use a fixed opera-
tor placement that exhibits average throughput across all generated
placements from the ones in Fig. 7.

Throughput robustness. Fig. 12 shows the throughput for our queries
on the Roofnet network as we increase the failure probability. As
expected, absolute throughput falls for each replication factor but
falls less for higher factors. For Qfr, the speed-up for r = 4 increases
from 1.2× with a failure rate pfail = 0.05 to 6.8× for pfail = 0.2,
even overtaking r = 3 as the best performing replication factor at
pfail = 0.15. The query Qvc with r = 4 gives the best throughput
for all failure rates, with r = 1 giving a negligible throughput for
pfail > 0.15. For the heatmap query Qh with r = 3, we observe the
best throughput for all failure rates with r = 1, giving no throughput
for pfail > 0.15. Thus with higher dynamicity a higher replication
factor is justified due to the robustness benefits.
Recovery overhead. We analyse the behaviour of Frontier’s discon-
nection recovery mechanisms, in particular the impact of selective
replay. We deploy Qfr with r = 3 on a network with 18 nodes ar-
ranged in a 3×6 grid. We inject a transient failure at a face detector
replica and measure the impact of selective replay on recovery.

Figs. 15 and 16 show the throughput and recovery latency for
three set-ups: network bandwidths are adjusted such that the query
is network bottlenecked (i) at the source; (ii) at the sink; and (iii) at
the sink before recovery and at the remaining replicas of the failed
node during recovery.

For the source bottleneck, selective replay has little impact on ei-
ther recovery time or query throughput because there are few tuples
in-flight downstream of the failed node. In contrast, a sink bottle-
neck before the failure results in many in-flight tuples downstream
of the failed node. This leads to a 2.8× increase in redundant re-
transmissions during recovery in the absence of selective replay, and
thus a 1.6× increase in the recovery latency. The impact of selec-
tive replay on throughput is modest (12%) because tuples queued
downstream of the failed replica are still bottlenecked at the sink.
When the query bottleneck shifts from the sink to the replicas of
the failed node (e.g. because they have poor connectivity), selective
replay increase recovery throughput by 33%.
Summary. The throughput gain of BSR over an unreplicated query
increases with network dynamicity due to BSR’s ability to exploit
network path diversity. The impact of selective replay on failure
recovery depends on the number of in-flight tuples and whether the
query bottleneck masks the effect of redundant retransmissions.

6.5 Resilience to network mobility
To further illustrate the robustness of Frontier in the face of net-

work dynamicity, our next experiments evaluate performance with
node mobility. We emulate networks with node mobility in CORE/E-
MANE and use BonnMotion [7] to generate mobility traces accord-
ing to a steady-state random waypoint mobility model with a pause
time of 2 seconds [40, 41]. At the physical layer, we set the node
transmit power to -10.0 dBm, giving an approximate transmission
range of 500 m with stable TCP throughput.
Node speed. Fig. 17 shows the throughput for our queries for dif-
ferent replication factors r, as we increase node speed.

For Qfr, the benefits of replication for throughput become appar-
ent as node speed increases, even though the absolute throughput
falls (Fig. 17a). With an average speed of 5 m/s, there is a 1.6× and
1.8× improvement in mean throughput for r = 2 and r = 3, respec-
tively. At 10 m/s, the improvement increases to 2.1× (r = 2) and
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Figure 11: Multi-query scalability
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2.6× (r = 3). Even with low mobility (1 m/s), r = 2 gives a mean
speed-up of 1.3×, and r = 3 results in 1.4×. Variance is slightly
higher with low mobility because initial operator and node place-
ments have more influence on throughput. Even though variance is
higher, relative throughput increases with larger replication factors.

For Qvc, replication improves performance with low mobility,
with a 1.9× speed-up for r = 3 at node speeds of 1 m/s. With greater
mobility, throughput converges for r due to the increased coordina-
tion overhead of switching between replicas for the correlation oper-
ator. In contrast, for the network dynamicity experiment of Fig. 12b,
relative throughput increases with network dynamicity for Qvc: with
higher failure probabilities, the network effectively becomes sparser,
increasing network path diversity; with greater mobility, available
path diversity remains the same on average but changes more fre-
quently.

For Qh, replication continues to give a benefit at higher node
speeds compared to Qvc, with a 1.2× speed-up for r = 3 at 2.5 m/s,
before eventually the throughput converges at 3.0 m/s. Although Qh
has more join operators than Qvc, the smaller tuple size for heatmap
location reports in comparison to the images of Qvc allows faster
switching between replicas.
Network density. Next we explore for Qfr how changing the size of
the emulation area and hence the network density affects throughput
for different r. Fig. 18a shows the throughput for different replica-
tion factors in a network with 25 nodes and mobility of 5 m/s as the
dimensions of the emulation area increase from 900 m to 1800 m.
Replication gives approximately a 2× speed-up for a small area, in-
creasing to approximately 4× for an area of 1800 m ×1800 m. The
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reduction in network density therefore has a higher impact on the
unreplicated query. r = 3 gives a small increase in throughput over
r = 2 and has lower variance for larger areas.
Network size. We also investigate how more nodes affect through-
put when mobility and the size of the emulation area are fixed.
Fig. 18b shows the throughput for different r with a mobility of
5 m/s in a 1200 m ×1200 m area as we increase the number of
nodes from 20 to 70. Overall, increasing the number of nodes has a
negligible impact on throughput, independent of replication.
Summary. BSR achieves high throughput with mobility, but as
speed increases the benefit diminishes more quickly for queries with
joins due to the coordination overhead. For fixed mobility, BSR still
gives throughput gains with varied network size.

6.6 Power efficiency
To evaluate Frontier’s power usage, we use a digital multime-

ter [49] to measure the power usage of a Raspberry Pi, similar to
prior work [32]. When plugged into a wall socket, we measure an
idle power usage of 1.3 W. Measuring power usage under increased
CPU load reveals an approximately linear relationship, with a maxi-
mum power draw of 2.2 W at full utilisation of all four cores (Fig. 19a).
For network power usage, we use iperf to send UDP traffic at differ-
ent data rates between two devices connected directly by an 802.11g
network link. As Fig. 19b shows, the results are broadly in line with
previous measurements [32]: the maximum power usage of network
communication is 2.1 W for transmission and 1.6 W for reception,
both lower than CPU power usage at full load.

We repeat the experiment from Fig. 10a while recording average
CPU utilisation and bytes transmitted/received. Using our power
model, we compute the throughput per watt across all nodes (Fig. 20a).
Since with lower replication nodes not hosting operators can be pow-
ered off, we also consider only active nodes (Fig. 20b).

For the deployment with high path diversity, power usage is dom-
inated by the idle usage of each node, and so the higher throughput
of replicated processing leads to gains of up to 2.3× for r = 3 net-
work (Fig. 20a). For the low path diversity network, power usage
is higher due to the higher data rates and CPU utilisation, but this
is offset by the increase in throughput, resulting in a throughput
per watt gain of 3.4× for r = 3. Furthermore, even when energy
usage of non-operator hosting nodes is excluded (Fig. 20b), Frontier
achieves throughput per watt gains for r = 3 of 1.2× and 1.8× for
the high and low path diversity networks, respectively.
Summary. For different Raspberry Pi deployments, BSR achieves
comparable or greater throughput per watt than an unreplicated base-
line, showing that Frontier efficiently uses energy resources.

7 Related Work
Adaptative stream processing. A plethora of work exists on query
planning for stream processing. SODA [62] and SQPR [31] formu-
late query plans and placement as optimisation problems. We can
exploit these approaches to generate an initial operator placement
for an RDG, or reconsider placements over long time scales.

In the context of wide-area networks, SBON [46] uses a decen-
tralised algorithm to adapt operator placement in a stream query
graph to network conditions. In contrast, Frontier creates several
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replicas of each operator ahead of time and uses BSR to load-balance
among them based on network conditions. Jetstream [51] degrades
data quality based on network bandwidth between clusters in differ-
ent data centers. We view data degradation as orthogonal to Frontier.

Techniques to adapt the execution of stream queries to changes
in the input data exist: Eddies [8] change the operator order while
ensuring correct query results; QueryMesh [42] selects one of mul-
tiple pre-computed query plans; JISC [4] reduces the overhead of
plan adaptation by lazily recomputing intermediate operator states
in the new plan. These approaches execute on a single server or
static network environment and thus do not apply to dynamic wire-
less networks. They also focus on relational queries while we con-
sider queries with UDFs. The adaptive load diffusion techniques
of Gu et al. [24] dynamically modify the destination to which data
is sent based on network load. Their solution, however, requires a
centralised diffusion operator and is not fault tolerant.

Elseidy et al. propose an online algorithm for join operators with
large historical state [18]. Their focus though is on data skew, and
the proposed mechanism requires expensive state migration between
nodes. Nasir et al. propose a distributed algorithm using the power-
of-two choices to choose between multiple replicas [39]. It handles
key skew for associative operators and requires a separate aggrega-
tion step to combine results from different replicas. Query scram-
bling modifies the scheduling or structure of a query plan based
on dynamic access costs during plan execution [5]. While we also
adapt a physical query plan, our work addresses a more specific
problem: how to route stream data over a replicated dataflow graph

in a decentralized manner based on network and processing dynam-
ics. SquirrelJoin [54] uses lazy partitioning to cope with transient
network skew, but only supports partitioned joins and needs a cen-
tral coordinator; Frontier exploits out-of-order batch processing for
streaming joins in a distributed fashion.
Stream processing platforms. Existing stream processing systems
incorporate backpressure [57, 34, 21] techniques for the purpose
of flow control. In contrast, Frontier’s BSR algorithm is based on
throughput-optimal backpressure network routing [58, 35]. Beyond
flow control, it dynamically prioritises between replicas in a network-
aware manner using explicit queue differentials computed from
queue lengths, processing capabilities, and network rates.

Millwheel [2] uses tuple watermarks to support out-of-order pro-
cessing within a window. Processing early tuples out-of-order on
a replica is less beneficial when connectivity to that replica wors-
ens before processing of the window completes. Frontier instead
reorders tuples within a batch at query sources and processes out-
of-order at the coarser granularity of batches. MobiStreams [59]
and Mobile Storm [44] target mobile ad-hoc networks (MANETs),
but require cellular connectivity to a backend for control purposes.
Frontier avoids dependencies on backend connectivity, which may
be unavailable or congested in edge IoT deployments.
Failure recovery. Frontier’s disconnection recovery is most related
to upstream backup [26]. In contrast to upstream backup, SNAP
broadcasts heartbeats to all upstream replicas allowing the transitive
upstreams of a failed node to compute in a decentralised manner
which batches should be retransmitted by which replicas, even with
concurrent failures. Other approaches to failure recovery can be
divided into replication [26, 55, 10] and checkpoint based [26, 28,
60], but their focus is on single-node crash-stop failures. Frontier
could be augmented with a checkpointing mechanism to reduce
recovery overhead for stateful operators.

8 Conclusions
We have presented Frontier, an edge-based IoT stream process-

ing system that provides high throughput using the combined re-
sources of multiple IoT devices connected through an unreliable
wireless mesh network. It accounts for the dynamic nature of wire-
less networks by exploiting network path diversity: queries are trans-
formed into replicated dataflow graphs with multiple operator repli-
cas. Frontier sends to replicas according to a backpressure stream
routing algorithm that adapts to changing network conditions, while
still using replicas in a data-parallel fashion. Frontier provides strong
fault tolerance guarantees: it uses selective network-aware replay
to efficiently recover from transient network failures. Evaluation
on a wireless mesh network and in emulation shows that Frontier
achieves speed-ups of between 1.3×–2.8× for a range of queries.
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M. Höger, K. Tzoumas, and D. Warneke. The Stratosphere
platform for big data analytics. PVLDB, 23(6):939–964, 2014.

[4] A. M. Aly, W. G. Aref, M. Ouzzani, and H. M. Mahmoud.
JISC: adaptive stream processing using just-in-time state
completion. In 17th International Conference on Extending
Database Technology (EDBT)., pages 73–84, 2014.

[5] L. Amsaleg, M. J. Franklin, A. Tomasic, and T. Urhan.
Scrambling query plans to cope with unexpected delays. In
4th International Conference on on Parallel and Distributed
Information Systems (DIS), pages 208–219, 1996.

[6] A. Arasu, S. Babu, and J. Widom. The CQL continuous query
language: Semantic foundations and query execution. PVLDB,
15(2):121–142, 2006.

[7] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and
M. Schwamborn. BonnMotion: A mobility scenario
generation and analysis tool. In 3rd International ICST
Conference on Simulation Tools and Techniques (SIMUTools),
pages 51:1–51:10, 2010.

[8] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive
query processing. SIGMOD Rec., 29(2):261–272, May 2000.

[9] Microsoft Azure IoT Edge. https:
//azure.microsoft.com/en-us/services/iot-edge,
2017.

[10] M. Balazinska, H. Balakrishnan, S. Madden, and
M. Stonebraker. Fault-tolerance in the Borealis distributed
stream processing system. In SIGMOD, pages 13–24, 2005.

[11] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. Architecture
and evaluation of an unplanned 802.11b mesh network. In
MOBICOM, pages 31–42, 2005.

[12] Bluetooth.com. Bluetooth technology adding mesh
networking to spur new wave of innovation.
https://www.bluetooth.com/news/pressreleases/2015/
02/24/bluetoothtechnology-adding-mesh-networking-
to-spur-new-wave-of-innovation.

[13] B. J. Bonfils and P. Bonnet. Adaptive and decentralized
operator placement for in-network query processing.
Telecommun. Syst., 26(2-4):389–409, June 2004.

[14] T. Clausen and P. Jacquet. Optimized link state routing
protocol (OLSR). RFC 3626, RFC Editor, October 2003.
http://www.rfc-editor.org/rfc/rfc3626.txt.

[15] Connode Smart Metering.
http://www.connode.com/solutions, 2016.

[16] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing.
Wirel. Netw., 11(4):419–434, July 2005.

[17] Dust Networks Applications: Industrial Automation.
https://www.linear.com/designtools/
wireless sensor apps.php#industrial, 2017.

[18] M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch. Scalable
and adaptive online joins. PVLDB, 7(6):441–452, 2014.

[19] Regulation (EU) 2016/679 of the European Parliament and of
the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on

the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation). Official
Journal of the European Union, L119:1–88, May 2016.

[20] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. Pietzuch. Integrating scale out and fault tolerance in stream
processing using operator state management. In SIGMOD,
pages 725–736, 2013.

[21] Apache flink. https://flink.apache.org.
[22] Google Nest Cam. https://nest.com/cameras, 2017.
[23] Amazon AWS Greengrass.

https://aws.amazon.com/greengrass, 2017.
[24] X. Gu, P. S. Yu, and H. Wang. Adaptive load diffusion for

multiway windowed stream joins. In ICDE, pages 146–155,
2007.

[25] T. Guardian. Revolv devices bricked as Google’s Nest shuts
down smart home company. https:
//www.theguardian.com/technology/2016/apr/05/
revolv-devices-bricked-google-nest-smart-home.

[26] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,
M. Stonebraker, and S. Zdonik. High-availability algorithms
for distributed stream processing. In ICDE, pages 779–790,
2005.
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