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Abstract
Flows of multiple fluid phases are common in many subsurface reservoirs. Numerical simulation of these flows can be
challenging and computationally expensive. Dynamic adaptive mesh optimisation and related approaches, such as adaptive
grid refinement can increase solution accuracy at reduced computational cost. However, in models or parts of the model
domain, where the local Courant number is large, the solution may propagate beyond the region in which the mesh is
refined, resulting in reduced solution accuracy, which can never be recovered. A methodology is presented here to modify
the mesh within the non-linear solver. The method allows efficient application of dynamic mesh adaptivity techniques even
with high Courant numbers. These high Courant numbers may not be desired but a consequence of the heterogeneity of the
domain. Therefore, the method presented can be considered as a more robust and accurate version of the standard dynamic
mesh adaptivity techniques.

Keywords Mesh adaptivity · Multi-phase flows · Porous media flows

1 Introduction

Multiphase porous media flow is important in many sub-
surface reservoirs, including hydrocarbon reservoirs ([11]),
unconfined aquifers ([25]), targets for geological CO2 stor-
age ([45]) and magma reservoirs ([44]). Such reservoirs are
typically heterogeneous, with material properties, such as
permeability varying over orders of magnitude. Moreover,
the spatial arrangement of heterogeneity is often complex,
governed by geological features, such as faults, fractures
and contrasting rock types or lithologies (e.g. [7]). Numeri-
cal simulation of multiphase flow in these reservoirs is often
challenging and computationally expensive, because of the
complex spatial arrangement and wide variability in mate-
rial properties. Moreover, solutions to the governing flow
equations often include large changes in solution variables,
such as saturation, composition or flow velocity over short
length-scales (for example, at displacement fronts when one
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fluid displaces another) and local effects related to hetero-
geneity or boundary conditions (for example, coning around
boreholes). Resolving these features requires high mesh res-
olution, but this significantly increases computational cost
in a large model domain.

A number of studies have proposed the use of
mesh adaptivity methods to maintain or increase solution
accuracy at lower computational cost. Such methods include
adaptive mesh refinement (AMR; [10, 15, 16, 23, 27,
42]) and dynamic mesh optimisation (DMO; [22, 24, 32,
48]). In these methods, the mesh is modified during the
simulation to increase solution quality based on some form
of metric extracted from the solution field(s) of interest.
Mesh adaptivity is commonly applied in other areas of
computational fluid dynamics ([4]), although its application
in porous media flow is less widespread.

The complex geometries found in many subsurface reser-
voirs lead to a wide range of mesh element sizes in dis-
cretised reservoir models ([13, 21]). Moreover, the flow
velocities in these models can vary significantly, reflecting
the large variations in material properties. Consequently, the
local Courant number can take a broad range of time var-
ying values and may be large in some parts of the model
domain. The non-linear solvers used in multiphase porous
media flow simulations can handle such large Courant num-
bers ([5, 26, 28, 39]). Moreover, numerical simulations
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with local Courant numbers greater than unity can yield
satisfactory solutions ([33, 39]). However, the successful
application of mesh adaptivity with large local Courant
numbers is not guaranteed. The most limiting factor of
mesh adaptivity for porous media flow has been the inter-
polation of the petrophysical properties across meshes.
In conventional reservoir-simulation models, initially geo-
logic heterogenenity was neglected ([9, 43]). Later on the
material properties were re-scaled onto the fine grid ([23,
47]). Nonetheless, the computational effort required for
this is very high and outweighs the advantages of mesh
refinements. Another different approach to modelling mul-
tiphase flow is the use of surfaces to represent geological
heterogeneities ([12, 24, 29, 38]). Here, the petrophysi-
cal properties are constant within a surface, and therefore
there is no need to interpolate them between meshes as
long as the surfaces are kept. Recently, [36] has anal-
ysed the number of surfaces required to model realistic
reservoirs, showing that a very reduced number of sur-
faces (around 50) is required to obtain very accurate
results.

The use of mesh adaptivity in time-dependent problems
implies that the mesh is always one step behind the solution
if it is adapting to the solution at the current time level
(e.g. [3]). If the Courant number is below or equal to
unity this is not problematic, as the mesh can be (re-)
adapted before the solution has moved into coarser regions
of the mesh. However, if the local Courant number is
very large, the solution accuracy may be compromised
because the solution moves into coarser regions of the mesh,
and therefore, represented at lower resolution. Once lost,
the high resolution aspects of the solution can never be
recovered by mesh adaptivity, as the metric used to refine
the mesh is based upon the last obtained solution (e.g. Fig. 1).
This is problematic for multiphase porous media flow as
the Courant number used in this field are usually larger
than in other CFD areas. Many methods have been proposed

to address this problem. The most simple one is to use
mesh gradation, which ensures that the mesh resolution does
not vary significantly between neighbouring elements, and
therefore, this expands the high resolution area to create a
“safety net”. This can be used to reduce the frequency of
adapts or to deal with higher Courant numbers. Another,
method develop is named metric advection, here the mesh
is transported with the flow using the current flow velocities
[22]. Improved results have been obtained for Courant
numbers of up to 5. These techniques are very useful for
Courant numbers of up to tenths, enabling to use mesh
adaptivity for Courant numbers above unity and/or adapt
less frequently. However, these techniques are not useful for
very high Courant numbers like the ones studied here. Mesh
gradation for very high Courant numbers requires massive
areas of high resolution to ensure that the next time-level
is properly captured. On the other hand, metric advection
for multiphase porous media flow is limited as the velocity
fields are not divergent-free within each phase, so the phase
velocity is not necessarily a good indicator of where, for
example, displacement fronts (and thus where fine mesh
resolution is required) will end up at the end of a large
time-step or series of time-steps.

Alauzet et al. [3] presented a modification of the usual
procedure of mesh adaptivity for Navier-Stokes flow, in
which the mesh is adapted as part of the non-linear solver
to allow use of the most recently updated solution field. The
method proposed here builds on this concept but it is tailored
for multiphase porous media flows.

The paper is organised as follows. A summary of the
governing equations used in the numerical experiments
is presented in Section 2. In Section 3, a summary of
standard DMO is presented, followed by a description
of the proposed method. Section 4 reports some numer-
ical results showing the performance of the proposed
method. Finally, some concluding remarks are presented in
Section 5.

Fig. 1 Mesh adaptivity failure with large Courant number. a Solution
field before the mesh is adapted to the field. The solution has reached
a low resolution region of the mesh, which introduces numerical dif-
fusion, unphysically altering the result. b Solution field after the mesh

is adapted to the field. The mesh adaptivity algorithm is unable to cor-
rect the unphysical diffusion introduced and the mesh is adapted to the
poor quality solution field
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2 Governing equations

Here, we present a summary of the discretisation technique
used in the numerical experiments reported here. However,
the new mesh optimisation method is independent of the
discretisation technique used. The spatial discretisation
is based on the control volume finite element method
(see [18–20, 24, 30, 31]), with a variation introduced
in [40] to increase the robustness of the method against
large-angle elements. Here, triangular meshes (2D) or
tetrahedra (3D) are used to mesh the domain. Control
volumes are created around the vertexes of the elements
by connecting the barycentres of the elements with the
midpoint of the edges (see Fig. 2). In this paper, the element
pair P0DGP1(CV) is used for the numerical simulations.
The velocity is discretised using finite elements, using
discontinuous Galerkin elements and with one degree less
(P0DG) than the pressure, which is discretised using CVs
(P1(CV)). The petrophysical properties are defined element
wise, while the saturation is defined CV-wise (Fig. 2). For
the time discretisation, a �-method is used. � smoothly
varies between 0.5 (Crank-Nicholson) and 1 (implicit Euler)
based on a total variation diminishing (TVD) criterion.
The non-linear solver used here is a modification of the
Anderson fixed-point solver detailed in [39]. The presented
numerical methods reported here are implemented in
the open-source code IC-FERST (Imperial College Finite
Element Reservoir SimulaTor).

Darcy’s law can be written as follows:

μαSα

(
KrαK

)−1
uα = −∇p + suα, (1)

in which p is the pressure, uα is the phase saturation-
weighted Darcy velocity of phase α, which relates to
the Darcy velocity as qα = uα

Sα
. This velocity is used

to try to reduce the non-linearity introduced through the
relative permeability term ([20]). suα is a source term,
K is the permeability tensor, Krα , μα and Sα are the
relative permeability, viscosity and saturation of phase α

respectively. For simplicity, two phase immiscible flow is

considered here with no gravity forces nor capillary forces
and rock and fluids are considered incompressible.

The saturation equation, can be written as follows:

φ
∂Sα

∂t
+ ∇ · (uαSα) = scty,α, (2)

where φ is the porosity and scty,α is a source term.
To close the system of equations, the saturation is

constrained by:

n∑

α=1

Sα = 1, ∀ n, (3)

where n is the number of phases.

3Mesh adaptivity for porousmedia flow

3.1 Dynamic mesh optimisation summary

The approach utilises the anisotropic mesh optimisation
library of [37], in which mesh elements may be split or
amalgamated, elements edges may be swapped, or element
vertices may be moved. A brief summary is detailed here.
The DMO routine used here starts by estimating the L2

norm of the local interpolation error introduced by the FE
representation, using the weighted norm of the Hessian
matrix of the specified fields H. If the variables are defined
into the CV space, they are projected into the FE. The
Hessian of a smooth field can be approximated by a
Galerkin projection of the linear interpolation on the mesh
([4]). This yields the estimation of the interpolation error
of the field based on information already available on the
mesh. A functional defining the quality of the mesh is then
created:

I =
∑

i∈edges

(
etiEei − 1

)2 (4)

Fig. 2 Example of a P0DGP1(CV) element pair, a shows the elements
with different colours and the CVs with dotted lines. The petrophysical
properties are defined in this mesh; the velocity is constant within an

element. b Shows the CVs with different colours and the elements with
dotted lines. The saturation is discretised in this mesh; the pressure is
defined at the centre of each CV
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in which ei define the edges connecting the vertices of the
mesh and

E = det(H)
1

2γ δ
| H |

ε
(5)

defines the estimation of the error metric along each
edge. Here, ε specifies the required tolerance for the
field introduced by the user, γ is the degree of the
polynomial of the norm used and δ is the number of
dimensions of the problem. The generation of the mesh now
consists in creating a mesh with an approximately uniform
interpolation error and fulfilling other criteria introduced by
the user, such as geological surfaces, number of elements,
mesh anisotropy, mesh gradation level, etc. Therefore, the
old mesh is modified in order to obtain a new mesh using
the following techniques:

– Refining by splitting: adding extra node in an element.
– Coarsening by edge collapse: replacing two vertices by

a single one.
– Face-edge and edge-face swap: reordering the connec-

tivity of existing elements.
– Node movement: repositioning of a vertex.

Modifications to the current mesh/element are accepted
only in the change improves the metric criterion defined.
Otherwise, the mesh/element is not modified. Once the new
mesh has been generated the fields from the old mesh are
interpolated to the new mesh, many techniques are available
for this ([2]).

3.2 Dynamic mesh optimisation for porous media
flow

In the numerical experiments reported here, DMO is used
to capture variations in saturation, pressure and other key
solution fields of interest, increasing the mesh resolution
where required and coarsening elsewhere. A surface-based
representation of geologic heterogeneity is used ([24]).
Surfaces are honour by the adaptivity routine by generating
some “master” nodes that cannot be removed or modified by
the mesh adaptivity routine. Nonetheless, more nodes can be
added if required to improve the solution metric of interest
(Eq. 5).

In this paper, the pressure and velocity interpolation
uses a conservative Galerkin technique ([17]), while the
saturation interpolation used a CV-Galerkin interpolation,
which is fully conservative and bounded and has second
order re-mapping ([2]). There is no need to recalculate
values of material properties, such as porosity and
permeability, because these are constant within each
geologic domain and are simply assigned to mesh elements
within the domain. Thus up-, cross- or downscaling of

Fig. 3 Standard DMO in which the mesh is adapted after solving the
equations over a number of time-steps

material properties during DMO is not required. Saturation-
dependent material properties, such as relative permeability
are recalculated using the local saturation in each CV, in
similar manner to a conventional fixed-grid approach.

Figure 3 shows the standard methodology to adapt the
mesh for porous media simulations. First, the equations are
solved as usual (Fig. 3 box (2)). Next, the accumulated time-
steps or accumulated time is checked (Fig. 3 box (3)). Based
on this check, the algorithm may enter loop (B) Fig. 3, in
which the mesh is adapted (Fig. 3 box (4)). Either way, if the
final time has not been reached, the time is increased (Fig. 3
box (4)) and the process is repeated until the final time-level
is reached or exceeded.

3.3 Mesh optimisation for high Courant numbers

The new method is based on two steps that are applied
sequentially. Each step is described in the following sections
and the overall algorithm is presented in Fig. 4. Compared

Fig. 4 Non-linear mesh adaptivity. The mesh is adapted as part of the
non-linear procedure. Adding loop (B) to the usual method described
in Fig. 3
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with the standard approach represented in Fig. 3, the new
method differs in loop (B) Fig. 4. The new approach is
implemented in the context of DMO, however as long as
the mesh refinement is based on the same principles this
approach can be used for AMR as well as DMO. Moreover,
in the new approach, AMR/DMO is triggered based on an
accumulated Courant number, i.e. when the solution has
moved certain number of CVs.

We demonstrate the method using the specific example of
a non-wetting phase being displaced by a wetting phase in a
two-dimensional (2D) domain where the mesh adapts to the
saturation field Fig. 5. However, the method is applicable to
any single or multiphase porous media flow problem and to
cases where the mesh adapts to different solution fields.

3.3.1 Standard approach for solving the system

Figure 5a shows a case with a high Courant number
that forces the solution to move into a region that has
a relatively coarse resolution. In this problem, numerical
diffusion is therefore increased, removing the advantages of
using AMR/DMO. In the new approach, the accumulated
Courant number is tested and adaptivity is triggered when
the solution has moved a number of CVs, being this number
decided by the user, Fig. 4 box (3), and the algorithm enters
loop (B) in Fig. 4.

In this first step of the new method, it is not necessary to
achieve convergence with the same quality as required at the
end of the time-level. The mesh will change, so the solution
will also change. Consequently, the convergence criteria of
the non-linear solver can be reduced in order to rapidly
obtain a reasonable solution, in this case for the saturation
field. For large time-step sizes, this feature of the method
can be used to incrementally increase the mesh resolution
during the iterative process so that much of the non-linear
work is performed on coarser meshes. The convergence

Fig. 5 The two steps to adapt the mesh within the non-linear solver.
(Top) A solution is calculated as usual. (Bottom) The mesh is adapted
considering the old and new saturation fields. The dashed lines denote
regions of high resolution; the arrows represent the direction of the
flow; the filled rectangles represents the positions of the displacement
fronts in this problem at different time-levels

criterion of the non-linear solver used in this paper is
defined in terms of the saturation field as follows:

f (S) =
N∑

i

(
S′

α − Sαo

Sα1 − Sαo

)2

i

1

N2
, (6)

where S′
α , Sαo and Sα1 are, respectively, the saturation of

the latest non-linear solver iteration, the saturation at the
previous non-linear iteration and the saturation after the
first non-linear iteration at this current time-level. N is
the total number of control-volumes. Hence, the reduction
of the difference of saturation is tested. This criterion has
been used previously for non-linear solvers for multiphase
porous media flow, and it requires fewer computations
than calculating the residual ([46]). In this case, only the
saturation is checked as the main source of non-linearity is
controlled by saturation via saturation-dependent properties,
such as relative permeability ([26]). In other problems, it
may be necessary to test convergence using other solution
fields. In this paper, a value of f (S) = 1 × 10−1 is used
to obtain the first approximation solution to which the mesh
is adapted, and a value of f (S) = 5 × 10−2 to achieve
convergence before moving to the next time-level.

3.3.2 Adapting to preserve old and new solution fields

As shown in Eq. 2, to calculate the new solution, the solution
from the previous time-level is required. Therefore, in order
to adapt the mesh within the non-linear solver and obtain a
solution on the new mesh by the end of the current time-
level, it is necessary to have high resolution solutions at both
the previous and current time-levels. If the resolution of the
solution at the previous time-level is not preserved, the loss
of solution quality is then propagated to the next time-level.

A new solution field is created that is used to guide mesh
adaptivity (Eq. 5), Fig. 4 box (7). This field is calculated
here using:

Scomb = abs(St
w − St−1

w )0.8, (7)

where St
w and St−1

w are the saturation of the wetting phase
in the current and previous time levels, respectively. This
approach is able to correctly represent the solution at both
time-levels. However, other methods could be used so long
as the new solution field is able to properly guide the DMO
algorithm.

After the field is created, the mesh is adapted to the
new field, Fig. 4 box (7) and Fig. 5b, interpolating to
the new mesh all the necessary fields to continue the
non-linear solver at that time-level with the new mesh. A
reasonable estimation of the final solution is now available
(the saturation obtained in the previous guess), so only a few
iterations are required to achieve convergence.
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An optional extra step is to adapt the mesh again after
obtaining the solution at the current time-level in order to
reduce the number of elements. However, we have not seen
this to be an improvement, as the reduction in the number of
elements tends to be small and may not compensate for the
extra cost of creating a new mesh and interpolating all the
fields.

4 Numerical experiments

The methodology described in Fig. 5 is tested using three
different cases of two-phase immiscible flow, in which an
injected wetting phase displaces a non-wetting phase in
a porous medium. The challenging part of the solution
to capture in these examples is the sharp displacement
(shock) front between the displacing and displaced phases.
In all cases, the relative permeability is calculated using the
Brooks-Corey correlation, [8]:

krw (Sw) =
(

Sw − Swirr

1 − Swirr − Snwr

)nw

, (8)

krw (Sw) =
(

Snw − Snwr

1 − Swirr − Snwr

)nnw

, (9)

in which Sw and Snw are the non-wetting and wetting
phase saturations, respectively, and Swirr and Snwr are
the irreducible wetting and non-wetting phase saturations,
respectively. nw and nnw are the exponents for the wetting
and non-wetting phases and both are set to 2. The viscosity
ratio between the phases and the porosity, φ, are 1.0 and
0.2, respectively. Table 1 reports the rest of the parameters
for the different test cases in S.I. units except permeability,
which is reported in millidarcy (1mD = 9.869233 ×
10−16 m2).

The domain is initially saturated with the non-wetting
phase at (1 − Swirr). The wetting phase is injected through
the left boundary, the right boundary is open and the other
boundaries are closed. The pressure is set to 0 at the right
boundary.

The mesh is adapted to minimise the error of the
saturation field only, providing a precision of 1% for this
field.

Table 1 Model set-up for the test cases 4.1 – 4.3; uin is the inlet
velocity

K1 K2 K3 Swirr Snwr uin Length

4.1 1.0 10 N/A 0.2 0.2 1.0 1.0

4.2 1.0 1000. N/A 0.0 0.0 1 × 10−5 0.6

4.3 100. 200. 1000. 0.2 0.2 1 × 10−5 0.6

The Courant number of the experiments is the infinitum
norm of the local Courant number of each CV:

Cn = max

{
qαij δt

hi j
, ∀i ∈ 1, ...,CVs, ∀j ∈ 1, ...,CVs

}

(10)

where qαi is the Darcy velocity across CVs i and j , and hi j
is the distance between centres of the CVs i and j . In this
way, the accumulated Courant number criterion of Fig. 5 is
defined as follows:

ACn =
∑

Ct
n, (11)

where t is the time level. When ACn is above the threshold
then the value is reset and the accumulation process starts
again.

The runtimes of the simulations have been obtained
running in serial and using an Intel i6600U.

4.1 2D high permeability inclusion in a low
permeability region

In this section, a 2D domain containing a high permeability
inclusion is considered (see Fig. 6). A time-step size of
5 × 10−3 is chosen so the Courant number is always
above 10 to ensure that the shock-front moves out of the
high resolution region of the mesh. Two experiments are
compared: in one case, the mesh is adapted every time step
using the algorithm described in Fig. 3. In the other case,
the new algorithm described in Fig. 4 is used, and the mesh
is adapted every time-step inside the non-linear solver.

Figure 7 shows the saturation front at four different
time levels, using the conventional approach (left plots
of each set) and the new approach adapting the mesh
within the non-linear solver (right plots of each set).
Figure 7a shows the initial mesh and the initial condition.
Figure 7b shows the saturation field at time-step 1. The new
approach has already caused the mesh to change, increasing
the resolution at the shock-front, while the conventional

Fig. 6 Initial mesh and permeability map
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Fig. 7 Saturation maps at various time-steps comparing the conven-
tional approach, adapting the mesh every time-step (left figure) to the
new approach, adapting the mesh within the non-linear solver (right

figure). a Initial state and mesh. b First time-step. c Time level at
which the injected phase reaches the high permeability inclusion. d
Time level at which the injected phase reaches the outlet boundary

approach is still using the initial mesh. Figure 7c shows
the time level at which the wetting saturation has reached
the highly permeable inclusion. The difference between
the two adaptivity approaches is now more pronounced,
because the velocity of the shock-front is increased in the
higher permeability inclusion. The shock-front is dispersed
in the conventional approach because it moves into a coarser
region of the mesh. However, the new method accurately
increases the resolution where necessary, keeping the shock-
front well defined. Figure 7d shows the time-level at which
the injected wetting phase reaches the outlet boundary.
Again, the new adaptivity method provides a better defined
solution.

To assess the quality of the new method, a fine, fixed
mesh case was run (27136 elements). The resolution of the
fixed mesh is equivalent to the maximum resolution allowed
in the DMO algorithm and the same time step was used.
The new method of adapting the mesh within the non-linear
solver provides results with almost the same quality as a fine
fixed mesh (Fig. 8). Conversely, adapting the mesh every
time-step produces a lower quality solution. Calculating the
L1,L2 andL∞ norms of the error, considering the fine fixed
mesh as the correct solution, shows that adapting the mesh
within the non-linear solver yields an error 2.8, 3.3 and 5.7
times better than using standard DMO.

Figure 9a shows the number of non-linear iterations
versus the time-step. Adapting the mesh within the non-
linear solver requires extra computational effort. However,
the average extra cost is very low, as it requires around
two extra non-linear iterations when compared to adapting
the mesh every time-step, and one extra non-linear iteration
when compared to a fine fixed mesh. Figure 9b shows

how adapting the mesh within the non-linear solver initially
introduces more elements. However, for this case, the new
method also reduces the number of elements faster and
earlier than adapting the mesh every time-step.

A final test is performed for this model. Now, the
permeabilities are swapped, being low permeable in the
interior square and high permeable the outer part. Moreover,
the viscosity contrast in increased to 50 to further explore
the behaviour of the presented method. Figure 10 shows
the saturation maps when considering the new setup. It
can be seen how the flow clearly goes around the low
permeable inclusion. However, numerical dispersion from
the high permeable region to the low permeable region
appears. This is due to effect of the CVFEM formulation,
where the CVs span different petrophysical materials ([14])
creating an artificial dispersion from the high permeable
regions to the low permeable ones. Some approaches have

Fig. 8 1D saturation profile along the diagonal from top-left to
bottom-right of Fig. 7d using a fine, fixed mesh, DMO every time-step
and DMO within the non-linear solver
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Fig. 9 a Number of non-linear
iterations per time-step for the
first 18 time-steps for the test
case 4.1; the runtime of this
simulation is 220 s. b Number
of elements per time-step for the
first 18 time-steps; the runtime
of this simulation is 230 s

been developed to try to solve this problem ([1, 6, 34,
35, 41]); here, the dispersion is reduced by using DMO.
The effect of the high viscosity appears with a less sharp
leading shock-front. However, the method proposed is able
to properly capture it by placing the mesh resolution where
required, Fig. 10a. The DMO algorithm clearly detects that
high resolution is required not only at the shock-front but
more importantly around the low permeable object to reduce
the artificial dispersion from the high permeable area to the
low permeable region, Fig. 10b, c and d.

4.2 3D high permeabilty fractures in a low
permeable region

The model considered in this section is a subset of fractures
taken from [7]. The fractures have high permeability (see
Table 1), and very high aspect ratio (width of 3 mm).
The wetting phase is injected into the model over the left
boundary and only the right boundary is open (see Fig. 11).
The flow moves considerably faster through the fractures.
The time-step size used in this case is set to 103 and the high
permeability contrasts result in maximum Courant numbers
up to 500.

Figure 12a, c shows the saturation field and the mesh at
two different time-levels, adapting the mesh conventionally
every time-step. Figure 12b, d shows the saturation field
at the same time-levels but adapting the mesh within the
non-linear solver using the new approach. Due to the
large change in shock-front velocity when reaching the

high-permeability fractures, adapting the mesh every time-
step is not sufficient to correctly track the shock-front,
generating regions with high artificial diffusion. This effect
is particularly clear in Fig. 12a, in contrast to Fig. 12b,
where it is significantly reduced by the new method.

For this numerical experiment, around one additional
non-linear iteration is required in order to achieve conver-
gence when adapting the mesh within the non-linear solver,
(Fig. 13a). As in the previous test case, Fig. 13b shows
that adapting the mesh within the non-linear solver initially
introduces more elements, but later the number of elements
is reduced earlier and faster than adapting the mesh every
time-step. To further explore the costs associated with the
proposed approach, this simulation is also run with mesh
adaptivity and a gradation parameter, such as the high res-
olution of the mesh would cover the shock-front at the next
time level. The number of elements required in the second
time step (because in the initial time the mesh is the given
one) is above 260000, which is one order of magnitude big-
ger that the required amount of elements using the presented
approach.

In this case, the difference in Courant number between
the two experiments using the conventional and new
adaptivity methods is larger, as the new method is able to
introduce higher resolution. When adapting every time-step,
there is more artificial diffusion (see Fig. 12a, b), so the
DMO algorithm introduces less resolution as the saturation
field is more diffusive, i.e. the shock-front is less sharp.
Consequently, to achieve converge using the new method,

Fig. 10 Saturation maps at various time-steps showing the effect of
a low permeable inclusion and high viscosity ratio. a Initial state and
mesh. b First time-step. c Time level at which the injected phase clearly

reaches the outlet boundary. d Time level at which the injected phase
almost surrounds the low permeable inclusion
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Fig. 11 Initial mesh and permeability map

more effort is required in the non-linear solver, i.e. more
iterations are required. As an example, the Courant number
when adapting the mesh within the non-linear solver can be
up to four times bigger than when adapting every time-step.

4.3 3D fluvial channels

In this numerical experiment, a set of fluvial channel-
fill sandbodies are considered, embedded in a non-
reservoir background. Figure 14 shows the permeability
map, dimensions and initial mesh of the computational
domain. The non-reservoir background has been set to be
transparent. The domain is characterised by an aspect ratio
of 1 : 50. The wetting phase is injected over the right
boundary and the left boundary is the only open boundary.
The time-step size is set to 106, resulting in Courant
numbers above 300.

Figure 15 shows the saturation field and the mesh at
two different time-steps. Figure 15a, c is obtained adapting
the mesh every time-step. Figure 15b, d is obtained using
the new method of adapting the mesh within the non-linear
solver. The results obtained using the new method show
a better defined shock-front than adapting the mesh every
time-step, as the standard DMO cannot correctly place the
high resolution of the mesh where required.

For this numerical experiment, an average of four
more non-linear iterations are required in order to achieve
convergence when adapting the mesh within the non-linear
solver (see Fig. 16a). Also, Fig. 16b shows that, adapting
the mesh within the non-linear solver requires, for this
experiment, more elements.

In this case, the difference in Courant numbers between
the conventional and new methods is very important. The
Courant number is 30% bigger when adapting the mesh
within the non-linear solver (Courant number of 500 instead
of 350 when using standard DMO). This difference comes
from the fact that when using the standard DMO, more
numerical diffusion is introduced, so a coarser mesh is
sufficient to represent the solution field. It is important
to note that the method presented here is not necessarily
intended to be used at the extreme case when the mesh needs
to be adapted every time-step. In this numerical experiment
for example, adapting the mesh within the non-linear solver
with a lower time-step size would not require so much extra-
cost compared to standard DMO. In that case, unless sudden
changes in the Courant number, the extra-cost compared
with standard DMO would be smaller as the meshes would
be similar (for example with Courant numbers of around
10). However, if a sudden increase in the velocity of the

Fig. 12 2D slice through the 3D
saturation field at different
time-steps comparing adapting
the mesh every time-step vs.
adapting the mesh within the
non-linear solver. a Saturation
field after two time-steps
adapting the mesh every time-
step. b Saturation field after two
time-steps adapting the mesh
within the non-linear solver. c
Saturation field after four time-
steps adapting the mesh every
time-step. d Saturation field
after four time-steps adapting
the mesh within the non-linear
solver. It can be seen how, as the
flow moves much faster through
the high-permeable fractures,
Figs. (a) and (c) suffer from
more artificial diffusion than (b)
and (d)
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Fig. 13 a Number of non-linear
iterations per time-step for the
first 20 time-steps for the test
case 4.2; the runtime of this
simulation is 55 minutes. b
Number of elements per
time-step for the first 20
time-steps4.2; the runtime of
this simulation is 62 minutes

Fig. 14 Initial mesh,
permeability map and a cross-
section showing the intersection
between different channels

Fig. 15 Top view of the
saturation field at different
time-steps comparing the
conventional approach of
adapting the mesh every
time-step vs. the new method of
adapting the mesh within the
non-linear solver. a Saturation
field after one time-step using
the conventional approach. b
Saturation field after one
time-step using the new method.
c Saturation field after five time-
steps using the conventional
approach. d Saturation field
after five time-steps using the
new method. It can be seen from
figures (a) and (c) how the
shock-front in the small
channels is not captured by the
conventional approach as it
reaches the end of the domain
before the mesh is adapted

Fig. 16 a Number of non-linear
iterations per time-step for the
first 20 time-steps for the test
case 4.3 ; the runtime of this
simulation is 32 minutes. b
Number of elements per
time-step for the first 20
time-steps ; the runtime of this
simulation is 67 min



Comput Geosci

Fig. 17 Number of elements with a certain volume (same order of
magnitude) for the case shown in Fig. 15d

shock-front occurs (due to a high permeability jump, for
example), the standard DMO would be cheaper but would
provide a more diffusive solution. However, adapting within
the non-linear solver, despite requiring an extra-cost, would
be able to keep a higher quality of the solution, and continue
the simulation without a significant loss of quality in the
solution.

For this test case, a histogram of element volumes is
presented to show the variability of element sizes when
dealing with unstructured meshes and DMO. Figure 17
shows the number of elements grouped with the same order
of magnitude of volume for the case shown in Fig. 15d.

The element sizes span four orders of magnitude. This
shows the importance of being able to adapt the mesh for
high Courant numbers. As the mesh is modified, it becomes
part of model as it introduces an important variation on the
local Courant numbers throughout the domain.

5 Conclusions

A new methodology to accurately place high resolution
when using AMR/DMO for multiphase porous media flow
with high Courant numbers is presented. This method
estimates where the high resolution mesh is required for the
field of interest and the mesh is adapted accordingly. For
this, extra non-linear iterations may be required compared to
using a fixed mesh. However, the extra cost is not too high
(typically a few extra non-linear iterations under the same
circumstances) and results in solutions with less numerical
diffusion. The presented method enables the use of large
Courant numbers (> 10 and tested up to 500) together with
AMR/DMO and is independent of the discretisation scheme
used, being tested here using CVFEM and DMO.

Such high Courant numbers may not be desired by the
user, but may arise as a consequence of the flow behaviour
induced by anisotropic meshes and/or heterogeneous
material properties when using fixed time-step sizes or

time-step sizes controlled by the performance of the non-
linear solver. The presented method can be considered as an
extra-step to obtain a more robust and accurate alternative
to standard mesh optimisation routines (AMR/DMO) for
multiphase porous media flow.
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