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Abstract— The policy of an optimal control problem for
nonlinear stochastic systems can be characterized by a second-
order partial differential equation for which solutions are not
readily available. In this paper we provide a systematic method
for obtaining approximate solutions for the infinite-horizon
optimal control problem in the stochastic framework. The
method is demonstrated on an illustrative numerical example
in which the control effort is not weighted, showing that the
technique is able to deal with one of the most striking features
of stochastic optimal control.

I. INTRODUCTION

Given a dynamical system it is often of interest to design
control laws to achieve a certain objective in an optimal
manner: optimal control concerns precisely these scenarios.
The objectives are described by a cost functional which is
to be minimized via the control inputs subject to the system
dynamics. The problem has been studied extensively and
relies upon two families of techniques, namely minimum
principle methods and dynamic programming methods, see
e.g. [1]1, [2], [3], [4], [5], [6], [7]. Optimal control problems
can be formulated for different classes of systems, such as
deterministic systems and stochastic systems. In particular,
optimal control in the stochastic framework has received a
large amount of attention because of the several economical
and financial applications for which it can be used. Successful
applications include the production planning problem [8],
the investment versus consumption problem [9], [10], the
technology diffusion problem [11], [12] and the optimal
stopping problem [13]. Yet, several open problems remain,
see e.g. [14]. It is well-known that, using the dynamic
programming approach, the solution of a general nonlinear
optimal control problem relies upon the solution of the
Hamilton-Jacobi-Bellman (HJB) partial differential equation
which is not easy to obtain, see e.g. [14]. In particular, in
the stochastic framework the HIB is a second-order partial
differential equation which is even more complicated to solve.

In this paper, building upon the concepts introduced in
[15], [16] and extended to differential games [17], [18],
[19], collision avoidance [20], [21], [22] and constrained
optimal control [23], we propose a systematic method for
constructing approximate solutions for the infinite-horizon
optimal control problem for nonlinear stochastic systems. The
method requires the solution of an algebraic equation in place
of the HIB partial differential equation. Moreover, the level
of approximation can be interpreted as an additional cost
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which is exactly quantifiable. Differently from [15] in which
deterministic systems are studied, a stochastic framework
is considered herein. Note that there are several important
differences between the deterministic and the stochastic
settings. One of the most interesting features of the stochastic
framework is that it is possible to consider problems in which
the control is not weighted or even carries a negative weight
(i.e. increasing the control decreases the cost) an occurrence
which does not make sense in the deterministic case, see [24],
[14]. The proposed method is clearly able to deal with this
type of problems, a capability which we demonstrate with a
numerical example in which the control is not weighted.
The remainder of the paper is organized as follows. In
Section [l we define the optimal control problem for stochastic
nonlinear systems, we present its exact solution and we
formulate the approximate problem which we want to solve.
In Section [IIIl we introduce a series of tools which facilitate
the exposition of the main result. In Section [[V] we solve
the approximate problem and we provide a policy which
approximates the optimal control law of the original problem.
In Section [V| we demonstrate the results of the paper with
an example. Finally, Section [V] contains some concluding
remarks.
Notation. We use standard notation. R>o (R () denotes the
set of non-negative (positive) real numbers. Similarly, RZ§"
denotes the set of positive definite matrices of dimension 7.
The superscript T denotes the transposition operator. The
symbol E denotes the expected value operator. (V, A, P)
indicates a probability space with a given set V, a g-algebra
A on V and a probability measure P on the measurable
space (V,.A).

II. PROBLEM FORMULATION

In this section we formulate the full and approximate
optimal control problem for stochastic nonlinear systems.
Let W, be a standard Wiener process defined on a probability
space (V, A, P). A stochastic process z; is a function of two
variables such that for each t € R, x(¢, -) is a random variable
and for each w € V, z(-,w) is called path of x. For ease
of notation, we indicate the paths as just functions of ¢, e.g.
the path of x; as « : ¢t — xz(¢) and the path of W, as
W it — W(t) (this is common in the literature, see e.g.
[25]). Consider a stochastic nonlinear input-affine system
described by the equations

dr = [f(x) + g(z)u]dt + [h(x) + l(z)u]ld W,
z(0) = xo,

with x(t) € R", zp € R™ and u(t) € R™. Assume that
f:R" 2 R" g:R" - R, h:R" - R"” and
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[:R"™ — R™™ are smooth mappings and that the initial
condition z is independent of W(t) for all ¢ > 0. Under
these assumptions the initial value problem associated with
has a unique solution, see e.g. [25]. Moreover, assume
that the origin is an equilibrium point of (I, i.e. f(0) =0
and h(0) = 0. Since the functions are smooth this implies
that there exist continuous, possibly non-unique, functions F :
R" — R"™ "™ and H : R" — R"*" such that f(z) = F(z)x
and h(x) = H(x)x for all x € R". The full infinite-horizon
optimal control problem can be formulated as follows.

Problem 1. The infinite-horizon optimal control problem
consists in finding a control « which minimizes the cost
functional

s =B { [ L laa(0) + rtal.u)la

where ¢ = 2" Q(x)z, with Q = Q" such that Q : R" —
R25™, and r = u' R(x)u, with R = R" such that R : R" —
R™*™ subject to the constraint . Moreover, u needs to
be such that the zero equilibrium of the closed-loop system
is asymptotically stable almost surely.

The solution to this problem is well known, see e.g. [14].
The optimal control is given by

w=— (R4 1 Vaed) " (gTVT +1TVigh) . (3)
where V', which is called value function, satisfies the equation

— (Vag+ 1 Vi) (R+1TViod) " (g7 V, +17Vigh) .
“4)
If we are able to find a function V satisfying the second-
order partial differential equation , then the control
solves Problem [T} A necessary condition for the solution of
the infinite-horizon optimal control problem is that R(z) +
I(x) " Ve (z)l(z) is invertible at least for every point of
the optimal trajectory of @) generated under u*. While
this is guaranteed if R is positive definite (similarly to
the deterministic case), as already pointed out the positive
definiteness of R is not required in general [14].
The main drawback of this approach is that solving the partial
differential equation (@) is a difficult problem and very often
closed-form solutions are not readily available. Hence, in
this paper we provide a systematic technique to approximate
the solution of the infinite-horizon optimal control problem.
In the following we precisely quantify the entity of this
approximation.

Definition 1. Consider system (I)). The function w in (I is
a dynamic control law if for some v > 0 it is described by

the equations
d§ = a(z,§)dt + B(x, §)d W, )
u=(z,§),

where £ € R” is the state of the dynamic extension, « :
R"xR” - RY, B: R"xR” - R” and v : R" xR” —

R™ are smooth mappings, with «(0,0) = 0, (0,0) = 0 and
~(0,0) = 0.

Problem 2. The approximate regional dynamic infinite-
horizon optimal control problem consists in determining a
stochastic dynamic control law (5) and a region 2 C R™ x R”
containing the origin of R"™ x R” such that the cost functional

J(2(0),£(0),u) =

(©)
with ¢ : R" x R — R, is minimized in the sense of

J(2(0),£(0),7) < J(x(0),£(0),w),

for all @ and for all (x(0),£(0)) € Q such that the closed-
loop trajectories remain in ) and converge to zero almost
surely, i.e. the zero equilibrium is asymptotically stable almost
surely.

Note that a solution of Problem 2 is a local solution of
Problem [I] with respect to a modified cost functional. In
particular, the original cost is modified by the additional
running cost c. Clearly Problem [J] recovers Problem [] if
Q=R"xR"” and ¢ = 0.

III. USEFUL TOOLS: LINEAR SOLUTION, ALGEBRAIC
SOLUTION AND EXTENDED VALUE FUNCTION

To provide a systematic method for solving Problem [2] we
first recall the solution of the linearized problem. System
is linearized as

dz = [Az + Bu]dt + [Cz + Du]d W, (7
with
of oh
2 B0 c=F| . Dot

and Q = Q(0) and R = R(0). The optimal control associated
to the linearized problem is given by (see e.g. [14, Theorem
6.1])

w'=—(R+D"PD)" (BTPT + D PC)z, (8

where P is the solution of the stochastic algebraic Riccati
equation

0=A"P+PA+C"PC+Q

—(PB+C"PD)(R+D"PD)"Y(B"P+ D' PC),
R+D"PD > 0.
)

The stochastic algebraic Riccati equation can be solved
numerically as shown in, e.g., [26].

In what follows the structure of the linearized problem
is modified to yield a solution of Problem [2| This is done
through the definition of algebraic solution (see [15] for the

deterministic notion). This forms the basis of the design of a
dynamic control law which solves Problem [2}



Definition 2. Consider system (T)) and the cost functional (2).
Let £ : R" — R23", with $(z) = %(z)" and £ = £(0).
Assume that the syste

0=F'"P+PF+H PH+Q+X

—(Pg+H"P)(R+1"P) Y (g"P+1"PH), (10)
R+1"Pl>0,
has a global solution P : R" — R"™*", with P(z) = P(x)T,

such that P(0) = P, where P is the solution of the stochastic
algebraic Riccati equation @]) with @) replaced by @) + X.
The solution P is said to be an algebraic P solution.

In the following let v = n and assume the existence of an
algebraic P solution. Exploiting the algebraic P solution we
can define the function

V(x,{) =5

with £(t) €ER™ and W = W' € RZZ™.

In the next section we show constructively under which
conditions it is possible to design the dynamics of ¢ such
that function @, which we call the extended value function,
is the value function corresponding to Problem

1
TPzt glle el an

IV. DESIGN OF THE DYNAMIC EXTENSION

To streamline the presentation of the result of this sec-
tion, we introduce some preliminary definitions. Let & :

R™ x R™ — R™ " be a continuous mapping such that

@' P(a) -z P(&) = (z =€) ®(x,6)"
and ¥ : R" x R" — R"™*" be the Jacobian matrix defined
as

W(a,6) = 22 (P(E)a).
209¢€

Define

Az, &) = (W — ®(x,£))W 1 0(x,8) "

Let IT : R" x R" — R™*"™ be a continuous mapping such
that

(z,§) = P(z) — P(§) =W,
and let R : R™ x R™ — R™*" be defined as

R(z,&) = R+1" Vo .

Finally, define
HIB=q+h" Vach+ B Vee B+2V, f+2Vea

~ Veg W Ve )R AT Ve 1) (g7 VI T Vs ),
(12)

and
Fu=F—gR g " P(z)+1" V. H).

!For brevity, the arguments of the mappings, including F(z), H(z), g(z),
l(z), P(z), Q(x) and R(X), are omitted when the arguments are clear
from the context.

We are now ready to solve Problem [2] Recall that the
arguments of mappings are omitted when they are clear from
the context, for instance P denotes P(x).

Proposition 1. Consider the cost functional (6) and the
interconnection of system (T)) with the control law (3). Assume
that P is an algebraic P solution of (10) with ¥ selected
such that

ATF + FuA+Yo —H'TIH <X+ Y, + ATgR ¢ A,

(13)
where
Yi(z)=(Pg+H" Veu DR Y g"P+1" Vyr H) > 0,
Ya(z)=(Pg+H Pl)(R+1"Pl)" (¢g' P+ PH) >0,

(14
for all (x,&) € Q. Then there exists k& > 0 such that for all
k > k the function V defined in satisfies HJB < 0 for
all (z,€) € Q with
15)
= R (gT VI V., h) .

Moreover, Problem [2] is solved with the additional running

costc=—HIB > 0.

V. EXAMPLE

In this section we illustrate the results of the paper with a
numerical example. Consider the nonlinear system
da:l = .’Egdt,

(16)
dxo = (mxi1z9 + w)dt + noud W,

with z(t) = [ 21 a3 | u(t) € R, n; € R\{0},
72 € (0,1) and the cost
T:c(t)cht} .

J(z(0),u) = E {/OOO %x(t)

Note that by varying the parameter 77; we can change the
entity of the nonlinearity and by varying the parameter 72
we can change the entity of the noise. Note that the control
u is not weighted in the cost functional but, as long as
12 # 0, the control is bounded [14]. Let

P(z) = {pu(x) pra(z) }

p21($) p22(5€)

€ R?,

a7

be an algebraic P solution of (10). Note that multiple choices
for F(x) are available. The selection

0 1 = 011 0
F = s 2 = E = R
(@) [ maz 0 ] () [ 0 o }
yields]
4 4 o, S11522
—1p (M 2822 + s11) £ 12 [ (M152272 — 511)% + o
2
Pi12= )

477177§x2 -1

’In this example the algebraic solution P(z) was found analytically using
Maple.



3.5 4 4.5 5

Fig. 1.
(dotted/black line) and of Z (dashed/red line). First component in the top
graph and second component in the bottom graph.

Time histories for one specific path of x (solid/blue line), of &
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P21 = p12,

where s1; = o011 + 1 and s92 = o029 + 1. We select the
solution with the negative square root in p;o because it is
locally (around the origin) positive definite (the other solution
is locally negative definite). We can now easily determine the
dynamic control law (T3). With some abuse of notation, we
indicate the cost (I7) computed using the dynamic control
law as J(ugq). We also determine the optimal control of the
linearized system, namely

a=[9 4] =[] e=]0 8] m=] 2]

which is u; = — (R + DTPD)_1 (BTP) Z, where P solves
equation @) Equivalently, P can be computed substituting
o = 0, 011 = 0 and o925 = 0 in py1, p12 and poy. With
some abuse of notation, we indicate the cost (]EI) computed
using the control law wu; as J(w;) and the state generated by
this policy as Z.

All numerical simulations are performed in MATLAB using
Euler integration with step size 0.005. To render the simula-
tions reproducible, we have used the command rng(’default’)
which sets the random generator of MATLAB to the Mersenne
Twister with seed zero. We select the initial conditions of
system (17) as x1(0) = 10 and x2(0) = —6, and the matrix
W as W = 0.5I. The initial conditions of the dynamic
extension have been selected by minimizing V(x, &) with
respect to (&1, &2) (note that P(€) is independent of £;(0), so
£1(0) = z1(0) always). Finally, we have selected k£ = 100.
In the first simulation we select 737 = 5 and 72 = 0.1
(similar results have been obtained with other choices of
the parameters, as shown below.). Fig. [I] shows, for one
specific path (the first generated by MATLAB), the time
histories of = (top graph: z;, bottom graph: x5) depicted
with a solid/blue line, the time histories of & (top graph:
&1, bottom graph: &) depicted with a dotted/black line and
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Fig. 2. Phase portrait, for the same path in Fig. m of x (solid/blue line),
of ¢ (dotted/black line) and of Z (dashed/red line).
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Fig. 3. Top graph: cost J(ug) (solid/blue line) and cost J(u;) (dashed/red
J

line) for n; € [1, 8]. Bottom graph: ratio (ud) for m € [1,8].
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Fig. 4. Top graph: cost J(ug) (solid/blue line) and cost J(u;) (dashed/red

(Z‘j) for z1(0) € [2, 16].

J
line) for z1(0) € [2, 16]. Bottom graph: ratio 7



the time histories of  (top graph: Z;, bottom graph: Zs)
depicted with a dashed/red line. Fig. 2] shows, for the same
path, the phase portrait of = (solid/blue line), phase portrait of
& (dotted/black line) and the phase portrait of & (dashed/red
line). We note that both control laws are able to stabilize
the system and that the generated trajectories are different,
but similar. The simulation is repeated 20 times and the
average costs are computed for the two control laws, yielding
J(ug) = 56.297 and J(u;) = 63.236 resulting in the ratio
Ta) _ o g,

J(w)

Note that a larger value of 7; increases the effect of the
nonlinearity. Thus, we expect that increasing the value of
11 the relative performance of the dynamic control law with
respect to the performance of the linearized control law will
improve. To this end, we simulate system (17) with ; € [1, 8].
The average cost is computed over 20 simulations for each
scenario. Fig. [3|(top graph) shows the cost J(ug) in solid/blue
line and the cost J(u;) in dashed/red line for 7; € [1, 8]. The
J(ua)

J (ul
of n;. We see that, as expected, for larger values of 7; the
performance of the dynamic control law is increasingly better
than the performance of the linearized control law. Note that
a similar effect is caused, for a fixed value of 7;, also by
taking initial conditions further away from the origin. This
is shown in Fig. ] for 21 (0) € [2,16].

bottom graph shows the ratio for the same values

VI. CONCLUSION

In this paper we have addressed the problem of optimal
control for stochastic nonlinear systems. We have proposed
a method to determine approximate solutions for the infinite-
horizon optimal control problem. In particular, we have
formulated and solved a relaxed problem which is a local
version of the original problem and in which the cost
functional has an additional running cost. The proposed
technique has two main advantages. First, the difference
between the two problems is precisely quantified and it can, in
principle, be minimized. Second, the method does not require
the solution of any partial differential equation, which is
usually the main drawback of the family of methods based on
dynamic programming. The proposed technique is illustrated
with a numerical example in which the control policy is not
weighted in the cost, showing that the method can deal with
this class of problems which are peculiar of the stochastic
framework.
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