A Formal Approach to Analyzing
Cyber-Forensics Evidence

Erisa Karafili', Matteo Cristani?, and Luca Vigano®

! Department of Computing, Imperial College London, UK

e.karafili@imperial.ac.uk
2 Dipartimento di Informatica, Universita di Verona, Italy
matteo.cristani@univr.it
3 Department of Informatics, King’s College London, UK
luca.vigano@kcl.ac.uk

Abstract. The frequency and harmfulness of cyber-attacks are increas-
ing every day, and with them also the amount of data that the cyber-
forensics analysts need to collect and analyze. In this paper, we pro-
pose a formal analysis process that allows an analyst to filter the enor-
mous amount of evidence collected and either identify crucial informa-
tion about the attack (e.g., when it occurred, its culprit, its target) or,
at the very least, perform a pre-analysis to reduce the complexity of the
problem in order to then draw conclusions more swiftly and efficiently.
We introduce the Evidence Logic ££ for representing simple and derived
pieces of evidence from different sources. We propose a procedure, based
on monotonic reasoning, that rewrites the pieces of evidence with the
use of tableau rules, based on relations of trust between sources and
the reasoning behind the derived evidence, and yields a consistent set of
pieces of evidence. As proof of concept, we apply our analysis process to
a concrete cyber-forensics case study.

1 Introduction

The frequency and harmfulness of cyber-attacks are increasing every day, and
with them also the amount of data that cyber-forensics analysts need to collect
and analyze. In fact, forensics investigations often produce an enormous amount
of evidence. The pieces of evidence are produced/collected by various sources,
which can be humans (e.g., another analyst) or forensic tools such as intrusion
detection system (IDS), traceback systems, malware analysis tools, and so on.

When a forensics analyst evaluates a cyber-attack, she first collects all the
relevant evidence containing information about the attack and then checks the
sources of the evidence in order to evaluate their reliability and to resolve possible
inconsistencies arising from them. Based on the collected information, which
might be different depending on the information sources and the trust relation
between the analyst and the sources, the analyst might reconstruct different,
possibly faulty, courses of events. State of the art approaches don’t really manage
to cope well with such situations.

To reason about the collected evidence, we need to formalize the fact that the
analyst trusts more some sources than others for particular pieces of evidence,
e.g., a source Sy is more trusted than another source Sy for attack similarity as
tool S7 specializes in malware analysis whereas tool S5 specializes in deleted data.
We also need to distinguish between the evidence and its interpretation that an
analyst may consider in order to perform a correct analysis and attribution of
the cyber-attack.

Our main contribution in this paper is the introduction of the Fvidence Logic
EL, which allows an analysts to represent the different pieces of evidence, to-
gether with their sources and relations of trust, and reason about them by elim-
inating the conflicting pieces of evidence during the analysis process.

As a concrete motivating example, consider the data breach of the Demo-
cratic National Committee (DNC) network, during the last US presidential cam-
paign, when Wikileaks and other websites published several private emails in Oc-
tober and November 2016. DNC used the services of a cyber-security company,
CrowdStrike, to mitigate the attacks and to conduct a forensics investigation.
CrowdStrike stated that the main attack occurred between March and April
2016, and identified it as a spear phishing campaign that used Bitly accounts to
shorten malicious URLs. The phishing campaign was successful as different IDs
and passwords were collected.

However, TheForensicator, an anonymous analyst, stated that the attack
actually occurred on the 5th of July 2016, not in March/April, as the metadata
released by an alleged attacker were created on the 5th of July 2016, and the data-
leak occurred physically as the data were transferred at the speed of around 23
MB/s, and this speed is possible only during a physical access. Another cyber-
security company, FireEye, stated that it is possible to have a non-physical
data-transfer speed of 23 MB/s. What should an analyst conclude from these
discording statements and pieces of evidence? How can a decision be made?

EL is able to deal with this type of discordances, and based on relations
of trust on the sources and reasonings, to arrive at a certain conclusion. ££
is composed of three separate layers: the first layer ELg deals with pieces of
evidence, the second layer £L; focuses on the evidence interpretations, and the
third layer £Lp focuses on the reasoning involved in the evidence. Reasoning
with ££ amounts to applying a rewriting system that spans formulas in all
three levels to reach a conclusion, ruling out discordances and inconsistencies.
Applying the reasoning process of £L to the different pieces of evidence from
the various sources, the analyst can decide the type of the attack and when it
occurred. For instance, regarding the speed of transferability, if the analyst trusts
FireEye more than TheForensicator, then she does not take into consideration
the evidence that the data transfer was physical. Hence, she concludes that the
attack occurred during March/April 2016 and not in July 2016.

We proceed as follows. In Section 2 and Section 3, we give the syntax and
semantics of the Evidence Logic £L, respectively. In Section 4, we introduce
the rules of the rewriting system of ££ and we give a concrete procedure that
uses the rewriting rules to prove the satisfiability of a given £L-theory (which

is a finite and non-empty set of formulas of the three layers of £L£). We prove
the rewriting system to be sound and the procedure to be correct (the proofs
of the theorems are given in the Appendix). Section 6 concludes the paper by
discussing related work and future work.

2 The Syntax of the Evidence Logic ££

The FEwvidence Logic £L that we propose enables a cyber-forensics analyst to
represent the various plausible pieces of evidence that she collected from different
sources and reason about them. To that end, the analyst should distinguish
between the evidence and its interpretation. In a nutshell:

— evidence represents information related to the attack, where a given (piece
of) evidence usually represents an event, its occurrence and the source of the
information of the occurrence of the event (which can be another analyst, a
cyber-forensics tool, etc.);

— evidence interpretation represents what the analyst thinks* about the occur-
rence of an event e and about the occurrences of the events causing e.

EL contains two types of well-formed formulas: labeled formulas, to formalize
the pieces of evidence and interpretation, and relational formulas, to formalize
relations of trust between sources of evidence and their reasonings. ££ also
contains a rewriting system (composed of a set of tableau rules) to build the
analyst’s interpretations from forensics evidence. For the sake of readability, we
omit to model explicitly the analyst who is reconstructing and attributing the
cyber-attack, but we simply silently assume her existence.

EL is composed of three separate layers: the first layer £E£g shows how the
well-formed formulas for pieces of evidence are built, the second layer £L; focuses
on the evidence interpretations, and the third layer ££p focuses on the reasoning
involved in the evidence. In the following, we discuss each of the layers in detail.

2.1 ELEg: Evidence

Definition 1. Given t,t1,...t, € T, a,a1,...a, € Ag, r1,72 € R, p € Varsg
and ¢, 1, ...,0n € Lit, the set p of formulas of ELE s

p:::a:(t:¢)|a:(t:¢)) [alz(tl:¢1)|...|an:(tn:¢>n)]r’a1<1p(z2|r1—<r2

We introduce all these notions, and the four kinds of formulas, step by step.
A piece of evidence asserts what a source thinks about the temporal occurrence
of an event, i.e., whether an event occurred or not in a particular instance of
time. To formalize this, we use two finite® and disjoint sets of labels,

4 We deliberately use the verb “thinking” to avoid suggesting any epistemic or doxastic
flavor, as in ££ we do not consider the modalities of knowledge or belief.

5 In principle, there is nothing in our logic that prevents us from considering countable,
possibly infinite, sets of labels, but here we consider finite sets for simplicity.

— source labels Ag = {a1,az,...,a,} for forensic sources, which we call agents,
regardless of whether they are human or not, and

— temporal labels T = {t1,ta,...,t,} for instants of time,
along with
— a set of propositional variables Vars = {p1,p2,...,pn} that represent the

occurrences of forensics events (so that p represents the occurrence of an
event and —p represents that p does not occur),

— a set of reasoning rules (or simply reasonings) R = {ri,rq,...,r;} that
represent the reasoning used by the agents to conclude further evidence.

The set of literals Lit = {p1,—p1,...,Pn, Pn} consists of each propositional
variable and its negation. We write ¢, possibly subscripted, to denote a literal.
Instants of time are labels associated to elements of a single given stream.
Thus, the labels that represent the instants of time cannot be processed for
consistency, and no assertions regarding relations between them is allowed.

Ezample 1. Consider again the motivating example that we discussed in the
Introduction. The set of agents is composed of the analyst (whose existence we
silently assume) and the sources CrowdStrike (CS'), TheForensicator (TF) and
FireEye (FE); thus, Ag = {CS, TF, FE}. The sources make statements about
events occurring in two instants of time: “March/April 2016” and “5th of July
2016” represented respectively by t; and ts. O

We formalize two different types of evidence: simple and derived one. The
simple evidence is a labeled formula of the form

a:(t: @),

expressing that the agent represented by the source label a thinks that the literal
¢ is true at the instant of time represented by the temporal label ¢. For short,
we will say that a thinks that ¢ is true at ¢.

Ezample 2. The simple evidence FE : (to : SpeedTr(23MB/s)) expresses that
FE states that the non-physical transferability speed, SpeedTr, can be 25MB/s
at to. O

The derived evidence is a labeled formula of the form

a:(t:¢)far:(ty:¢1)az:(ta:da)|...|an: (tn: Pn)lr,

expressing that agent a thinks that ¢ is true at instant of time ¢ because of
reasoning 7, where a; thinks that ¢ is true at t¢1, ... and a,, thinks that ¢, is
true at t,. In other words, based on r, a thinks that ¢ is caused® by ¢1,--- , ¢n

5 We use the term “cause” to describe the events that an agent thinks were the precon-
ditions for a certain derived evidence. In this work, we will not focus on the causality
relationships between events.

(with their respective time instants and agents). The reasoning r of the derived
evidence a : (¢ : ¢) is composed of simple and/or derived pieces of evidence. We
include a constraint in our syntax that does not permit cycles between derived
pieces of evidence, so that if a; : (t; : ¢;) [--- | a;j : (¢; : ¢5) | ...]», then we do
not accept in our language the formula a; : (t; : ¢;) [+ | ai: (L2 ¢i) | ...

A reasoning r can be used by different agents to arrive at the same conclusion
(derived evidence), using the same pieces of evidence. An agent can use different
reasonings r;, - - - ,1; to conclude the same derived evidence, where the pieces of
evidence used by the reasonings are different from one reasoning to the other.

Ezxample 3. CS says that the Attack occurred at time t1, based on reasoning
r1 and CS’s evidence about a spear phishing campaign SpPhish and its success
SucPhish at t1. The latter is based on 7o and CS’s pieces of evidence that in ¢y:
the malicious link was clicked LinkCl, the malicious form was filled FFill, and
the data were stolen DStolen. We thus have:

CS : (t1 : Attack) [CS : (t1 : SpPhish) | CS : (t1 : SucPhish)]r,
CS : (t1 : SucPhish) [CS : (t1 : LinkCl) | CS : (t1 : FFill) | CS : (t1 : DStolen)]r,

Instead, TF says that based on r3 the Attack occurred at to because the meta-
data MetaC were created at to and the access was physical PhysA. The latter is
true because TF states that it is not true that SpeedTr is 23MB/s:

TF : (t2 : Attack) [TF : (t2 : MetaC) | TF : (t2 : PhysA)].,
TF : (t2 : PhysA) [TF : (t2 : = SpeedTr(23MB/s))]r,

O

To allow an analyst to distinguish the events that can be expressed by a
simple or derived evidence, the set of propositional variables Vars is composed
by two disjoint subsets Varsgs and Varsp that respectively represent the events
that can be part of simple and derived evidence, i.e., Vars = Varss U Varsp
with Varsg N Varsp = (). By extension, we write ¢ € Litg if ¢ is p or —p with
p € Varsg, and ¢ € Litp if ¢ is p or —p with p € Varsp.

Hence, if ¢ € Litg, then a : (¢t : ¢) is a simple evidence, whereas if ¢ € Litp
and ¢; € Lit for ¢ € {1,...,n}, thena : (¢t : @) [a1 : (t1 : ¢1) | ... | an :
(tn : &n)]r is a derived evidence. For simplicity, we will assume that a variable
that represents an event given by a simple evidence is part of Varsg and that a
variable that represents an event given by a derived evidence is part of Varsp.

Ezxample 4. The variables of the events of our example are divided in the two
following disjoint subsets: Varss = {SpPhish, LinkCl, FFill, DStolen, MetaC,
SpeedTr(23MB/s)} and Varsp = {Attack, SucPhish, PhysA}. O

The temporal labels can have temporal constraints such as t; < t or t, <
t. As we consider time to be linear and every instant of time is mapped to
only one element of the natural numbers, our syntax doesn’t need to include
a precedence relation, as it represents the classical precedence relation between
natural numbers.

In addition to ordering events with respect to time, the analyst can consider
the trust(worthiness) relations that she has with the sources with respect to their
assertions in the simple evidence, i.e., she might think that one source is more
reliable than another one with respect to a particular event (and its negation).
For instance, a; might be more trustworthy than a; with respect to an event p
(and thus also —p), where p € Varsg. In general, if there exists a trust relation
between two agents a;,a; € Ag for an event p € Varsg, then we have that either
a; is more trustworthy than a; with respect to p, or a; is more trustworthy
than a; with respect to p. We formalize this by introducing the trust relation
a: Ag x Ag x Varsg. Then, the relational formula a; <, a; expresses that a; is
more trustworthy than a; with respect to p.

Ezample 5. We write TF<gpccarr(23mB/s) FE to formalize that the analyst trusts
FE more than TF w.r.t. the simple evidence SpeedTr(23MB/s). |

The analyst can also consider the trust(worthiness) relations about the rea-
sonings she used. In particular, given two conflicting derived pieces of evidence
that use two different reasonings, the analyst can consider one reasoning to be
more trustworthy than the other one. We formalize this by introducing the trust
relation <: R x R. Then, the relational formula r; < r; expresses that reasoning
r; is more trustworthy than reasoning r;.

2.2 ELj: Evidence Interpretation

An evidence interpretation (or simply interpretation) is what the cyber-forensics
analyst thinks that is plausibly true. To formalize this, the second level EL; of EL£
employs a simplified variant of Linear Temporal Logic (LTL). £L; inherits from
ELE the temporal labels T, the reasonings R and the propositional variables
Vars (and thus also the literals Lit).

Definition 2. Given t,t1,...t, € T, ¢,p1,...,¢0, € Lit, r € R and ¢' € Litp,
the set ¢ of formulas of EL;, called interpretations, is

pu=tipltiidr Ata o A Aty iy —pt:

t : ¢ means that the analyst thinks that ¢ is true at t, whereas t; : ¢1 A
oo Nty P = t 1 @ means that the analyst thinks that ¢’ is true at the
instant of time ¢, based on reasoning r, if ¢; is true at ¢; for alls € {1,...,n}. An
interpretation expresses a positive event (the occurrence of an event, e.g., ¢ : p) or
a negative event (the non occurrence of an event, e.g., t : —\p). The interpretations
of the temporalized logic £L£; that express positive events represent the plausible
pieces of evidence and help the analyst to perform a correct analysis.

2.3 ELpg: Evidence Reasoning

The third layer ELg of EL is the reasoning layer and deals with the reasoning
behind the derived evidence. Also £Lgr uses LTL and inherits from £Lg the
temporal labels 7', the reasonings R and the propositional variables Vars.

Definition 3. Givent € T, ¢ € Litp and r,rg,...,7 € R, the set ¢ of formu-
las of ELR is

P o= (t : ¢)T | (t : ¢)T,Tk7---aTl'

The reasoning involves only derived pieces of evidence, which we can divide
in two types. The first type of derived evidence, (t : ¢),, is composed of only
simple pieces of evidence; in this case, the only reasoning is the one made by the
agent that states the derived evidence a : (t: ¢) [ar : (t1: ¢1) | ... | a;j : (¢ :
®;j)]r, where ¢; € Litg for i € {1,...,j}. The second type of derived evidence,
(t : @)rrp, .y, 18 composed of simple and derived pieces of evidence; in this
case, the reasoning involves the one of the agent stating the derived evidence,
a:(t:¢)far: (t1: 1) | ... | aj: (tj : ¢;)]r, as well as all the reasonings
involved in the derived pieces of evidence ¢; € Lit for ¢ € {1,...,;j} that are
part of reasoning r. The first type is clearly a special case of the second one, but
we keep both for the sake of understandability.

3 The Semantics of the Evidence Logic ££

Definition 4. The plausible pieces of evidence are a finite stream of temporal
instants in which at every instant of time we may associate a finite number of
occurrences or not occurrences of an event.

The agents are associated to a given finite set of values, and the trust rela-
tionship between agents is interpreted as a partial order on the agents. The same
applies to the reasonings: they are associated to a finite set of values and the trust
relationship between them is interpreted as a partial order on the reasonings.

Definition 5. A model of the evidence language EL is a tuple
Mm = {Ag”, F?, PO’ TR?, Vars® , R, 3}
where:

— 7 is the interpretation function, where we interpret time as natural numbers,
i.e., t7 € N for everyt € T;

— Ag” ={a)?,...a,"Y = {a1,...an} = Ag is a set of agents;

— F7 is a function that maps pairs of instants of time and formulas to True or
False (this mapping is used in the second layer of EL, where we have t : ¢);

- PO’ = {<p,”} is a set of trust relationships between agents, where for every
p € Varss, if <,° € PO?, then <,7 = {(a;”,a;7) | a; <, a;}*, where % is the
transitive closure of <;

- TR’ = {<7} is a set of trust relationship between reasonings, where for
every r € R, if <7 € TR, then <% = {(r;?,r;7) | ri < r;}*, where * is the
transitive closure of <;

— Vars® = Vars = {p1, - ,pn} is a set of events;

— RY=R={ri,ra, - ,rn} is a set of reasoning rules.

Slightly abusing notation, we use Ag” to denote also a set of functions, each
function a;” : N x Lit — {True, False} associating to an instant of time ¢ a
set of formulas that are true at t, where a;”(t,p) = True when a; : (t : p)
is asserted, a;”(t,p) = False when a; : (t : —p) is asserted, a;”(t,—p) = True
when a; : (t : —p) is asserted, a;” (¢, —~p) = False when a; : (t : p) is asserted.
The same applies to R”, each function 7;7 : N x Lit — { True, False} such that
(t,p),s = True when (t : p),, is asserted, (¢,p),,s = False when (t : —p),, is
asserted, (t,—p),,s = True when (¢ : =p),, is asserted, (t,—p),,5 = False when
(t: p),, is asserted. Thus, a;7 and F? both associate to every t a set of formulas
that are true at t; the difference is that we use the a;” in the evidence layer E£g
and F7 in the interpretation layer £L£;.

In order to avoid having clear contradictions in the models, we constrain the
functions Ag” and R7 as follows:

(COND,): If a” (t,p) = True, then a” (t,p) = False for all t' # t.
(CONDy): If (t,p),s> = True, then (¢ ,p)rz = False for all t' # 1.
(COND3): Every <,” is an 1rreﬂeX1ve and antisymmetric relation.
(COND,): Every <j is an irreflexive and antisymmetric relation.

A EL-theory is built by using £L to express a finite and non-empty set of
formulas of the three layers, including the trust relationships.

4 The Rewriting System of the Evidence Logic £L£

In this section, we introduce the rewriting system of £L, which, as proved in
Theorem 1, is sound. Given pieces of evidence, the rewriting system yields a
consistent set of pieces of evidence by translating pieces of evidence into inter-
pretations and reasonings, and resolving their discordances. In particular, the
rewriting system uses the tableau rules in Table 1 and applies them via the
procedure in Algorithm 1: given a £L-theory £, which is a non-empty set of
formulas, the rewriting system generates a new set of formulas £ that replaces
&, where the single rewritings correspond to interpretations and reasonings of
the theory. More specifically, the rewriting system takes a £€L-theory of the first
level and rewrites it into a £L-theory of the second and third level, until all
the formulas are interpreted, by adding formulas to the theory or eliminating
formulas from the theory, with the use of insertion or elimination rules.

The rules in Table 1 have as premises (above the line) a set of formulas
and a £L-theory £, although we don’t show & for readability, and as conclusion
(below the line) EU{¢} or £\{¢}, depending on whether the rule is an insertion
or elimination rule that respectively inserts or eliminates ¢. The insertion rule
introduce formulas for resolving temporal discordances and interpreting pieces
of evidence. The elimination rules resolve discordances of event occurrences by
deleting formulas based on the trust relations among agents and reasonings. The
closure rules are part of the elimination rules, and discover discordances in £
that cannot be solved, eliminate all the formulas of the set £ and give as result
the empty set L.

Table 1. Rules of the rewriting system of £L£

a:(t:¢) t:)i,
fuft o) & cuft:ap O
a:(t:¢)far:(tr:dn)| [an:(tn:dn)lr

EU{ai: (ti: 9i)}viet, - n} dseLits U{t1: Q1 A Atp i dn = t: P}

Lo

tiipi AN ANt i =pti tiidr - tn i gn
E0{(t)} =)
it A Atn i =t (t:d1)ro - (tn:dn)r o (1)
EUL{(t: D)rri/0, rn/0}
a; <paz az<pas T 1 <72 T2 <T3 T .
TEU{m qa] TRANSC TEU{n <ra] RANS <
a1 (t1:9) az:(t2:9) (t1: @)y (t2:)ry ,
EU{ar: (t2:~¢),az: (t1:—¢)} Dl EU{(t2: 29)ry, (t1 2 —P)ry } il
(t1: P)rasri iy (B2 5 B rn .
EUL(B s (6 D) rammrn} D00
az<par ar:(t:g) agz(t:ﬁd))DH ro<re (t:d)r (@), -
2[0 5

E\{az: (t: o)} EN{(t: @)y}

ro<ry (t:¢)n iy Ty (R E—

Dy
ENA(~D)rarm o &) e
(ti: o c(ta: o (t1: P)rrs (t2 2 D)oy ,
citig) aieid) gy & — cul
t: t: ¢
ajfaCT TITC% </>L ["

where [x] = [t1 # ta], [o] = [¢ € Lits, ¢ is p or =p], and [] = [A = Upr.yy ce ot mpe o el

4.1 Rewriting Rules

We now explain the rules in more detail, starting from the transformation rules
that transform the formulas into the various layer formulas.

Rule £; transforms a simple evidence into a temporal formula of the inter-
pretation layer, whereas £ transforms formulas of the reasoning layer into a
temporal formula of the interpretation layer.

Ezxample 6. An application of £; in our use example is:

FE : (t2 : SpeedTr(23MB/s))
EU{ta : SpeedTr(23MB/s)} O

Rule £, transforms a derived evidence into an interpretation formula and, if
possible, also introduces new pieces of evidence. Thus, given a derived evidence
a:(t:¢)[ar:(t1:¢1)]| an: (tn: dn)lr, Lo inserts the temporal formula
t1 i 1A Aty =t dand all a; ¢ (¢ 2 ¢;) for ¢; € Litg and i € {1,...,n}.
Note that rule £, inserts in the theory only the simple pieces of evidence that

were part of the reasoning, and not the derived ones, as we expect the pieces of
evidence that are part of their reasonings to be part of the theory too.

Ezxample 7. In our example, Lo is applied to all derived pieces of evidence given
by the sources. When it applies to CS’s first evidence, it transforms only the sim-
ple evidence about the spear phishing campaign, but not the successful phishing
evidence as it is a derived one. The same occurs to TF’s first evidence where
just MetaC' is introduced:

CS : (t1 : Attack) [CS : (t1 : SPhish) | CS : (t1 : SucPhish)]r,
EU{CS : (t1 : SPhish)} U {t1 : SPhish Aty : SucPhis —,, t1 : Attack} £
TF : (t2 : Attack) [TF : (t2 : MetaC) | TF : (t2 : PhysA)]r,
EU{TF : (t2 : MetaC)} U {t2 : MetaC Aty : PhysA —,, to : Attack} L2
TF : (tz : PhysA) [TF : (t2 : ~SpeedTr(23MB/s))]r,
EU{TF : (tz : = SpeedTr(23MB/s))} U {ta : ~SpeedTr(23MB/s) —,, ta2 : PhysA} £a

Applying L5 to the second evidence of CS yields €U {CS : (t; : LinkCl), CS :
(t1 : FFill), CS : (t1 : DStolen)} and t1 : LinkCl Aty : FFill ANty : DStolen —,
t1 : SucPhish. O

Rules (—) and (—') transform the interpretation formulas introduced by Lo
into reasoning formulas (derived evidence of the two types).

Ezample 8. Applying (—) to CS’s derived pieces of evidence yields:

t1: LinkCl Aty : FFill ANty : DStolen —,., t1 : SucPhish t1 : LinkCl t1 : FFill t1:DStolen

£U : j (=)
{(t1 : SucPhish),,}
Applying (—') to the second type of derived evidence for CS yields
t1 : SPhish Aty : SucPhish —,, t1 : Attack t1 : SPhish (t1 : SucPhish), ,
EU{(t1 : Attack)r, vy} =) g

The < and < relations are transitive ones. TRANS< and TRANS < extend the
trust relations between agents and reasonings, e.g., if a1 is less trusted than as
with respect to p, and as is less trusted than ag with respect to p, then TRANS<
inserts into the theory the conclusions that a; is less trusted than ag with respect
to p (the same applies to < with TRANS <).

The discordance resolution rules resolve temporal and factual discordances,
where events are instantaneous and not recurring. A temporal discordance about
an event occurs when two agents state that it occurred in two different instants
of time, e.g., Alice states that = occurred at t; and Bob states that it occurred
at to. A factual discordance about an event occurs when there are inconsistent
statements about the occurrence of an event at an instant of time, e.g., Alice
states that at ¢ occurred p and Bob states that at ¢ did not occur p.

Rules D;, D) and DY transform temporal discordances into factual ones,
where D; works with simple pieces of evidence, D} with derived pieces of evidence
of the first type, and DY with derived pieces of evidence of the second type (note

that D] is a special case of DY). Thus, if the £L-theory £ contains the evidence
belonging to two different agents about the same event p, occurring at two
different instants, then the evidence of the occurrence or not of p with respect
to both agents and both instants of time are inserted in the theory.

Rule Dy, D) and Dj solve the factual discordances based on the relations
of trust, where Dy eliminates from the theory the evidence of the less trusted
agent, whereas D) and D} eliminate the evidence of the less trusted reasoning.
DY eliminates also every evidence that has inside its reasoning the removed
evidence, as captured by the side condition where A is the set of all derived pieces
of evidence that have ry in their reasonings: A = .y ce 5.t raco(t’ © Vel
where o = {rg, -+, 1}

Ezample 9. D5 solves the discordance of the speed transfer:

TF <speearr(2smB)s)y FE FE : (t2 : SpeedTr(28MB/s)) TF : (tz : ~SpeedTr(23MB/s))
EN{TF : (t2 : ~SpeedTr(23MB/s))} o

The rewriting system has five closure rules that correspond to five discor-
dances that cannot be solved resulting in the empty theory L. Cc applies when
an agent contradicts herself, C;. when a reasoning contradicts itself. Cr and Cf,
apply when an agent /reasoning is more trusted than herself/itself (we avoid these
types of conflicts in the semantics thanks to COND; and COND,, where < and
< are irreflexive). Finally, Cp captures contradictions of the second layer, where
two temporal formulas state the occurrence and non occurrence of an event at
the same instant of time. This discordance occurs when we were not able to solve
it using the trust relations.

Theorem 1. The rewriting system of EL is sound.

The proof of the theorem is in the Appendix.

4.2 Rewriting Procedure

We give a procedure that uses the rewriting rules to prove the satisfiability of a
given £L-theory. This procedure defines an order of application of the rules that
rewrites the £L-theory as defined in Algorithm 1. Theorem 2 tells us that the
procedure is correct (the theorem is proved in the Appendix).

Given a £L-theory, the procedure starts by generating all the trust relations,
applying (TRANS<) and (TRANS <). Any contradiction that exists between trust
relations is immediately captured by Cr and C}.. Lo is applied to transform any
derived evidence into its interpretations. If needed, D; and Dy are applied. At
this point all possible simple pieces of evidence are generated. Any contradic-
tion between first layer formulas is captured by Co. Afterwards, £; transforms
any simple evidence into second layer formulas that are used by (—) to obtain
reasoning layer formulas. D} and D} are applied to solve discordances between
reasoning layer formulas based on the reasonings’ trust relations. The result of
the previous rules is used by (—') to generate reasoning layer formulas from de-
rived pieces of evidence of the second type. If any discordance arises, it is solved

Algorithm 1 Algorithm for the Rewriting Procedure

while We can apply TRANS<, TRANS < rules do

Apply TRANS< and TRANS < rules
end while
Apply Cr and Cf; if we have L, then We do not have a model. Exit! endif
while We can apply L2 rule do Apply £ rule end while
while We can apply D1, D2 rules do Apply Di, Ds rules end while
Apply Cc; if we have |, then We do not have a model. Exit! endif
while We can apply £; rule do Apply £; rule end while
9: while We can apply (—) rule do Apply (—) rule end while
10: while We can apply D7, D5 rules do Apply Di, D5 rules end while
11: while We can apply (—') rule do Apply (—') rule end while
12: while We can apply DY, D4 rules do Apply DY, D4 rules end while
13: Apply C¢; if we have 1, then We do not have a model. Exit! endif
14: while We can apply £; rule do Apply £} rule end while
15: Apply Cp; if we have L, then We do not have a model. Exit! endif

by D{ and DY, where rule D} not only takes out the not preferred evidence,
but also any derived evidence that uses it as a precondition. If no contradiction
between reasoning rules is captured by C{, then L] transforms all reasoning
layer formulas into interpretation layer ones. If Cp applies, then there is a con-
tradiction and we have 1, else no further transformation can be done, and the
resulting set of formulas is the model of £L-theory.

Ezample 10. By applying the procedure we find that (—) can be applied only
to CS’s pieces of evidence as the derived ones of TF are missing their premises,
removed by Ds. Applying £ yields ¢; : Attack and the analyst concludes that
the attack occurred during March/April 2016. O

Theorem 2. The order of the rules in Algorithm 1 used by the rewriting proce-
dure is correct.

5 A Detailed Case Study: Attribution of a Cyber-Attack

The Evidence Logic £L£ can be used in diverse application areas where there is a
need to analyze and reason about conflicting data/knowledge. In this section, as
a concrete proof of concept to show how to apply ££ during the investigations on
a cyber-attack, we discuss a cyber-forensics case study in which the analyst needs
to collect various pieces of evidence and analyze them to decide who performed
the attack; this process is called attribution of the attack to a particular entity.

As we remarked above, forensics investigations typically produce an enor-
mous amount of evidence that need to be analyzed. The pieces of evidence are
produced/collected by various sources, which can be humans (e.g., another an-
alyst) or forensic tools such as intrusion detection system (IDS), traceback sys-
tems, malware analysis tools, and so on. The analyst trusts more some sources
than others for particular pieces of evidence, e.g., source S; is more trusted than

Ajq it Culprit(C, Attack)[Sy : t : sIP(Attack, IP) | Sy : t: Geoloc(IP,C) | Sy : t: Cap(C, Attack)]ry

E£U{Sy :t:sIP(Attack, IP), Sy : t : Geoloc(IP, C)}U
{ t:sIP(Attack, IP) At: Geoloc(IP,C) At: Cap(C, Attack) =y t: Culprit(C, Attack)}

Ag i t: Culprit(C, Attack)[Sg : t : Motive(C, Attack) | Sg : t : Cap(C, Attack)]ry

£U{ t: Motive(C, Attack) At : Cap(C, Attack) —rpy t : Culprit(C, Attack)} £2
Ag : t: ~Culprit(C, Attack)[S3 : t : ~Cap(C, Attack) | Sy : t : =Fin(C, Attack)],«3 .
EU{Sy:t: ~Fin(C, Attack)}U
{t: =Cap(C, Attack) At : =Fin(C, Attack) —pg t : ~Culprit(C, Attack)}
Sg i t: Cap(C, Attack)[Sg : t1 : Admit(C, Attack’) | Sy : t : Sim(Attack, Attack’)]ry .
2

E U {Sg : t1 : Admit(C, Attack’), S : t : Sim(Attack, Attack’)}u
{t1: Admit(C, Attack’) At : Sim(Attack, Attack’) —rg t: Cap(C, Attack)}

Sg :t:-Cap(C, Attack)[Sg : t1 : Admit(C, Attack’) | S5 : t : =Sim(Attack, Attack’)]rg

Lo
E U {Sg :ty : Admit(C, Attack’), S5 : t : ~Sim(Attack, Attack’)}uU
{ t1 : Admit(C, Attack’) A t: =Sim(Attack, Attack’) —rg t: =Cap(C, Attack)}

Ay it ~Culprit(C, Attack)[Sq : t : sTP(Attack, IP) | S1 : t : Geoloc(IP,C) | S7 : t : Spoofed(IP)]ry

£U{Sy :t:sIP(Attack, IP), Sy : t : Geoloc(IP, C), Sy : t : Spoofed(IP)}U
{ t: sIP(Attack, IP) At : Geoloc(IP,C) At : Spoofed(IP) —py t : ~Culprit(C, Attack)}

Sg :t: Motive(C, Attack)[Sg : t : EConf(C, Victim)]p,

EU{Sg:t: EConf(C,Victim)} U{ t: EConf(C, Victim) —rrg Motive(C, Attack)} £z
S5 Agim S1 S1 :t: Sim(Attack, Attack’) Sy :t:-Sim(Attack, Attack’) o
EN\ {S5 : t: ~Sim(Attack, Attack’)} 2
t1 : Admit(C, Attack’) t: Sim(Attack, Attack’)
t1 : Admit(C, Attack’) At : Sim(Attack, Attack’) —pg5 Cap(C, Attack)
E U {(t: Cap(C, Attack))rg } =
t: sIP(Attack, IP) t : Geoloc(IP, C) t: Spoofed(IP)
t: sIP(Attack, IP) At : Geoloc(IP,C) At : Spoofed(IP) —ry —Culprit(C, Attack)
€U {(t: ~Culprit(C, Attack))r, } =
t: EConf(C, Victim) oyt Motive(C, Attack) t: EConf(C, Victim)
EUA{(t: Motive(C, Attack)).,7} =
t: sIP(Attack, IP) t : Geoloc(IP, C) (t: Cap(C, Attack))rg
t:sIP(Attack, IP) At : Geoloe(IP,C) At : Cap(C, Attack) —py t : Culprit(C, Attack) .
E U {(t: Culprit(C, Attack))ry rg}
(t : Motive(C, Attack))ry (t: Cap(C, Attack))ry
t: Motive(C, Attack) At : Cap(C, Attack) —ry t: Culprit(C, Attack) ,
£ U {(t: Culprit(C, Attack))rg,rm rg} =9
ry < rg (t: Culprit(C, Attack))rl’.,a5 (t : =~Culprit(C, Attack)),n4 oIt
£\ {(t : Culprit(C, Attack))ry rg} 2
rqg < ro (t: Culprit(C, Attack))rz,r%r5 (t : =~ Culprit(C, Attack))r,«4 .
2

EN\ {(t : ~Culprit(C, Attack))ry}

Fig. 1. Application of the Rewriting Procedure

Lo

(1)

(2)

(3)

(4)

(5)

Lo

(6)

(7)

(8)

(9)

(10)

1)

(12)

(13)

(14)

(15)

source Sy for attack similarity as tool S; specializes in malware analysis whereas
tool S5 specializes in deleted data. The collected evidence can be conflicting
or bring to conflicting results. The £L£ Logic represents the evidence, together
with its sources and relations of trust, and reasons about it, by eliminating the

conflicting evidence and helping the analyst during the analysis process.

Suppose the analyst has collected (from analysts A4y, ..., A4 and sources Si,
S, S3) and is analyzing, using £L, the following pieces of evidence, representing

events related to the attack that occurred (for the sake of space, we give a
simplified but realistic version of the evidence that can be easily extended).

A1 it Culprit(C, Attack)[Sy : ¢ - sIP(Attack, IP) | S1 :t: Geoloc(IP,C) | Sz : ¢ :
Cap(C, Attack)]r,

Az it Culprit(C, Attack)[S2 : t : Motive(C, Attack) | Sz : t : Cap(C, Attack))r,

As 1t : ~Culprit(C, Attack)[S3 : t : =~ Cap(C, Attack) | S : t : ~Fin(C, Attack)]r,

Ay it = Culprit(C, Attack)[S:1 : ¢ : sIP(Attack, IP) | S1 : ¢ : Geoloc(IP,C) | S7: ¢ :
Spoofed(IP)]r,

Sh:t: sIP(Attack, IP)

Sy :t: Geoloc(IP, C)

Sy i t: Cap(C, Attack)[Se : t1 : Admit(C, Attack’) | S1 : t : Sim(Attack, Attack’)]r,
Sz :t: —~Cap(C, Attack)[Se : t1 : Admit(C, Attack’) | Ss : t : =Sim(Attack, Attack’)],q
Sa :t: Motive(C, Attack)[Ss : ¢t : EConf(C, Victim)]r,

S5 <sim S1 1 < T4 T4 < T2 ro <13

sIP(Attack, IP) means that the Attack came from IP; Geoloc(IP,C) that IP
has country C' as geographical location; Cap(C, Attack) that country C has the
capability of conducting the Attack. Analyst A, states that (based on reasoning
r1), given country C is capable of performing the Attack (stated by Ss) and it
came from IP located in C' (stated by S7), then C performed (is the culprit of)
the attack, i.e., Culprit(C, Attack). As states that C is the culprit (based on
r9), as it has the capability of and the motive Motive(C, Attack) for performing
it (both stated by S3). Aj states that C is not the culprit (based on r3), as it
is not capable of and (as stated by S4) does not have the financial resources
Fin(C, Attack) for commissioning the attack. A4 states that C' is not the culprit
(based on r4), as the IP’s are Spoofed (stated by S7), so their geolocation cannot
be used. Source S states that the IP from which the attack originated is located
in C. S, states that C is capable (based on r5), as C' admitted to be the culprit
of a previous attack, i.e., Admit(C, Attack’), at t; (stated by Sg), and the latter
is similar (Sim) to Attack (stated by Sp). S3 states that C is not capable of
performing Attack (based on rg), as Attack’ that C' admitted to have performed,
is not similar to Attack (stated by Ss). Sz states that C has motive for the attack
(based on 17), as C has an economical conflict EConf with the attack Victim
(stated by Ss). Our analyst trusts more source S; than S5 for the similarity
between attacks, and reasoning r3 more than ry, 7o more than r4 and r4 more
than rq.
The simple pieces of evidence of this use case are:

Varss = {sIP(Attack, IP), Geoloc(IP, C), Fin(C, Attack), Admit(C, Attack’),
Sim(Attack, Attack’), Spoofed (IP), EConf (C, Victim)}.

Let us now apply £L’s rewriting procedure. We start with rules TRANS< and
TRANS <: the first cannot be applied, the second yields r1 < ro, r1 < r3 and
ry < r3. Neither Cr nor C/. can be applied. We show the application of Ly to
the pieces of evidence in (1)—(7) in Fig. 1. In (8) rule Dy eliminates Sy : ¢ :
—Sim(Attack, Attack’). No contradiction is captured by Co, and £ transforms

all first layer formulas into second layer ones:

EU {t : sIP(Attack, IP),t : Geoloc(IP, C),t : =Fin(C, Attack),t : Spoofed(IP)
t1: Admit(C, Attack’),t : Sim(Attack, Attack’),t : EConf(C, Victim)}.

(9)—(11) show applications of (—) to any evidence that has its premises in the
theory. D} and D) cannot be applied as there is no temporal /factual discordance
between derived pieces of evidence of the first type. Applying (—') produces de-
rived pieces of evidence of the second type for A; and A; as shown in (12)—(13).
Ajg’s evidence is not derived as C is capable to perform the attack. Rule DY
cannot be applied. Rule D} is applied, as shown in (14)-(15), to the conflict-
ing pieces of evidence where the reasonings’ trust relations apply. Finally, £}
transforms all third layer formulas into second layer ones:

EU {t : sIP(Attack,IP),t : Geoloc(IP,C),t : =Fin(C, Attack),t : Spoofed(IP)
t1 : Admit(C, Attack’),t : Sim(Attack, Attack’),t : Cap(C, Attack),
t : EconfConflict(C, Victim),t : Motive(C, Attack),t : Culprit(C, Attack)}.

The analyst, given the result of the procedure, concludes that the culprit of the
Attack is C.

The question of “who performed the attack” is, in general, not an easy one
to answer, but we believe that ££ can be successfully used to analyze and filter
the large amount of cyber-forensics evidence that an analyst needs to deal with.
At the very least, £L allows an analyst to perform a first, formal filtering of the
evidence and obtain different plausible conclusions, which the analyst can then
further investigate.

6 Related Work and Concluding Remarks

When we introduced £L and discussed how it allows analysts to reason about
simple and derived evidence given by different sources, we deliberately did not
use the notion of “belief”. We chose to do so as the main scope of our work is
not to consider modalities of knowledge or belief, but to introduce a procedure
that analyzes and filters the potentially enormous amount of forensics evidence,
eliminate discordances and reach conclusions. The notion of evidence (both sim-
ple and derived evidence) can be represented quite naturally as agents’ beliefs
and, in fact, the reasoning process in ££ could be considered a belief revision
process. However, our procedure, differently from the belief revision process, uses
a monotonic reasoning, does not distinguish between beliefs and knowledge, is
based on the notion of trust, and does not apply the principle of minimal change.

Belief revision is the process of integrating new information with existing
beliefs or knowledge [9,17,7,4,10]. It is performed based on the knowledge and
beliefs of the user and the beliefs of other agents announced, privately [1,6] or
publicly [14,5], and it uses non-monotonic reasoning. In our approach, we use
monotonic reasoning as we expect only the final set, that represents our theory,
to be consistent. Our procedure deals with conflicting pieces of evidence, which
are analyzed by expanding or contracting the evidence set. In case of unsolved

inconsistencies, our theory is empty. The procedure does not incorporate every
incoming information in the evidence set, but rather the new evidence is included
or not depending on the trust relations. This is different from the classical AGM
belief revision [2], where the principle of minimal belief change applies.

Our analysis can be seen as a revision procedure, where we do not distinguish
between beliefs and knowledge. Thus, all the pieces of evidence can be treated
as beliefs, and there is no space for personal or common belief/knowledge. Some
works have considered belief revision that uses relation of trust between agents
[13,12, 8, 3]. However, not much effort has been devoted to working with a re-
lation of trust relative to the reasoning used to arrive to certain conclusions.
Our trust relations do not have a grading system, like the one in [13], which is
difficult to define for cyber-forensics data, but use comparable trust between the
sources based on the evidence, similar to [12], where a notion of trust restricted
to a domain of expertise is used. As future work, we plan to use Bayesian belief
networks [8], and the Dempster-Shafer theory to quantify the level of trust for
the evidence, and to enrich our framework with trust reinforcement mechanisms.

To the best of our knowledge, the only attempt at using belief revision dur-
ing cyber-attacks’ investigations is [15, 16], where a probabilistic structure argu-
mentation framework is used to analyze contradictory and uncertain data. Our
procedure does not deal with probabilities, but with preferences between sources
and reasoning rules. We believe this to be a more accommodating approach, es-
pecially for the main use case, investigations of cyber-attacks, where calculating
and revising probabilities is resource consuming. The framework of [15,16] al-
lows attackers to use, during the deceptive attempts, the well-known specificity
criteria, i.e., the rule that uses more pieces of evidence is preferable. We avoid
this type of deceptive attempts as the trust relations are given by the analyst.

EL is based on LTL. Another approach is to use Temporal Defeasible Logic [4],
where knowledge is represented as norms with temporal scope [11]. For the sake
of simplicity, our stream of time is discrete and provided initially. As future work,
we plan to consider the flow of time as not provided and as non-discrete in order
to have temporal relations between labels that represent the instants of time.

Another distinctive feature of our approach with respect to the rest of the
literature that focuses on agents’ trust relations and their reputation systems
is the fact that we engage not only with the trust between agents, but also
with the reasoning behind the evidence. Hence, even when a particular agent
is not trusted, if the reasoning behind the evidence is sound, we might take
it into account. The notion of trust, also seen as preference, is subjective to
the analyst, and we assume that agents are sincere, and thus share all their
information. As future work, we plan to incorporate both a reputation revision
process, where the trustworthiness and reliability of the sources is analyzed and
revised based on past experience, and private/public announcements. Finally,
on the theoretical side, we plan to investigate the completeness of the rewriting
system and algorithm, whereas on the practical side, we plan to fully automate
our analysis process and to perform an evaluation analysis on real evidence of
cyber-attacks.

Acknowledgments

Erisa Karafili was supported by the European Union’s H2020 research and inno-
vation programme under the Marie Sklodowska-Curie grant agreement No. 746667.

References

1. Agotnes, T., Balbiani, P., van Ditmarsch, H., Seban, P.: Group announcement
logic. J. Applied Logic 8(1), 62-81 (2010)

2. Alchourron, C.E., Gardenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic 50,
510-530 (1985)

3. Alechina, N., Jago, M., Logan, B.: Preference-based belief revision for rule-based
agents. Synthese 165(2), 159-177 (Nov 2008)

4. Augusto, J.C., Simari, G.R.: Temporal defeasible reasoning. Knowl. Inf. Syst. 3(3),
287-318 (2001)

5. Balbiani, P., van Ditmarsch, H., Herzig, A., de Lima, T.: A Tableau Method for
Public Announcement Logics. In: Tableaux. pp. 43-59. Springer (2007)

6. Balbiani, P., Guiraud, N., Herzig, A., Lorini, E.: Agents that speak: modelling
communicative plans and information sources in a logic of announcements. In:
AAMAS 2011, Volume 1-3. pp. 1207-1208 (2011)

7. Baltag, A., Smets, S.: Conditional doxastic models: A qualitative approach to dy-
namic belief revision. Electr. Notes Theor. Comput. Sci. 165, 5-21 (2006)

8. Barber, K.S., Kim, J.: Belief revision process based on trust: Agents evaluating
reputation of information sources. In: AGENTS 2000. pp. 73-82 (2000)

9. van Benthem, J.: Dynamic logic for belief revision. Journal of Applied Non-
Classical Logics 17(2), 129-155 (2007)

10. Dix, J., Hansson, S.O., Kern-Isberner, G., Simari, G.R.: Belief change and argu-
mentation in multi-agent scenarios. Annals of Mathematics and Artificial Intelli-
gence 78(3), 177-179 (2016)

11. Governatori, G., Terenziani, P.: Temporal extensions to defeasible logic. In: Aus-
tralian Conference on Artificial Intelligence. pp. 476-485 (2007)

12. Hunter, A., Booth, R.: Trust-sensitive belief revision. In: IJCAI 2015. pp. 3062—
3068 (2015)

13. Lorini, E., Jiang, G., Perrussel, L.: Trust-based belief change. In: ECAI 2014 -
Including PAIS 2014. pp. 549-554 (2014)

14. Plaza, J.: Logics of public communications. Synthese 158(2), 165-179 (2007)

15. Shakarian, P., Simari, G.I., Moores, G., Parsons, S.: Cyber attribution: An
argumentation-based approach. In: Cyber Warfare - Building the Scientific Foun-
dation. pp. 151-171 (2015)

16. Shakarian, P., Simari, G.I., Moores, G., Paulo, D., Parsons, S., Falappa, M.A.,
Aleali, A.: Belief revision in structured probabilistic argumentation - model and
application to cyber security. Ann. Math. Artif. Intell. 78(3-4), 259-301 (2016)

17. Van Ditmarsch, H., van Der Hoek, W., Kooi, B.: Dynamic epistemic logic, vol. 337.
Springer Science & Business Media (2007)

A Appendix: Soundness of the Rewriting System and
Correctness of the Algorithm

In this appendix, we prove the soundness of the rewriting system of ££ and the
correctness of Algorithm 1. Given a theory £ and £L’s rewriting system, the
application of at least one of its closure rules generates an empty set. In fact,
every theory that contains | is equivalent to the empty theory. When the input
theory is not empty and has no contradiction, then the theory rewritten by £L£
should give as result a non empty theory.

As usual in tableau rewriting systems, we define three fundamental notions:
open, closed, and exhausted theories. A theory is closed when it contains a
contradiction and it is open when it does not. A theory is erhausted when it is
a fixpoint with respect to the rewriting process, i.e., by applying the rewriting
system to an exhausted theory £, we always obtain £. Under the grounded
semantics introduced in Section 3, we prove the soundness of the rewriting system
by showing that open theories have models under the semantics, and closed ones
have not. Thus, when we find an open and exhausted theory, we can prove the
existence of a model. R

We show now that the rules that rewrite a theory £ into £ without introducing
L constitute by themselves a sound system. The proofs of Lemma 1 and Lemma 2
are straightforward and are omitted for the sake of space.

Lemma 1. If a satisfiable EL-theory & is rewritten into an ezhausted theory g,
without using the closure rules, then &£ entails consequence C' only when C' is a
consequence of £.

Lemma 2. If an unsatisfiable EL-theory & is rewritten into an exhausted theory

g, then & is empty.
Lemma 3. Given a satisfiable theory &£, the rewriting system EL rewrites the
theory in an open and erhausted one.

Proof. This lemma is proved by contradiction. Assume that & is non empty and
satisfiable, and is rewritten by £L into an exhausted closed theory £. Starting
from a satisfiable theory £ there are five cases of rewriting it in a contradic-
tory theory that gives as result L. In the definition of model in Section 3, we
introduced four conditions that constrain the behavior of interpretations. Below
we provide the complete analysis only for the first case (that is provided as a
consequence of COND;). The other cases are a natural extension of this one and
are omitted for the sake of space. The first case occurs when applying the C¢o
rule. We have that: a” (t1,p) = True, and a” (t5,p) = True. COND; implies that
a propositional variable referred to an agent a can be true in only one instant of
time, thus, £ is not satisfiable. |

Lemma 3 introduces a result for £L£-soundness as it guarantees that irregard-
less of the order in which we apply the rules, we catch a contradiction at a given
point. Thus, as a direct consequence of the grounded semantics, of Lemma 2 and
of Lemma 3 we obtain Theorem 1.

When a sound rewriting system exists in a logical reasoning system we always
have a method to deliver satisfiability check of a theory. In this case, we apply
the rules to a theory until we reach a fixpoint. If we aim at developing an
effective method, however, we need to provide a proof of termination for such a
method. For the rewriting system of ££ we can prove that a simple approach,
based on the execution of the rules in a given order, is sufficient to provide an
effective method for satisfiability checking. This is the result of correctness of
Algorithm 1. Firstly, in Lemma 4, we prove that the existence of L in a theory,
if not introduced by default, is the consequence of the application of the rules in
a specific order.

Lemma 4. If a satisfiable EL-theory £ is rewritten into a contradictory g, then
we have:

1. rewritten the theory by using L1 before Dy and Ds, or
rewritten the theory by using L} before Dy, DY, Dy and DY, or
rewritten the theory by using (—) before D1 and Da, or
rewritten the theory by using (—') before Dy and D, or
applied (TRANS<) after Dy and D2, and

applied (TRANS <) after D}, DY, D} and Dj.

S Suds Lo o

Proof. There are two cases when £ is empty: either (1) the theory £ is empty
or (2) a closure rule was used. The first case is not possible by definition of the
theory, as we assume that £ is not empty. The second case occurs if at least
one of the five closure rules applied. Suppose by contradiction that rule Cr or
7. is used to compute the contradictory £. The application of this rule leads to
a contradiction as & is satisfiable, whilst Cr or C/. are applied when there is a
contradiction in the theory. The same applies for rules Cc and Cg.

Suppose, ad absurdum, that Cp leads to a contradictory . The premises of
Cp are obtained using rules £y, £}, L2, (—) and (—'). The first case for having
a contradiction captured by Cp is when £, is applied before D; and Dsy. This
happens because a contradiction is found that in fact was solved by D; and
Do, as & is satisfiable. The second case for having a contradiction captured by
Cp is when L] is applied before D}, DY, D) and D}. This happens because a
contradiction is found that in fact was solved by Di, DY, D, and D4, as £ is
satisfiable. The third case for having a contradiction captured by Cp is when
(—) is applied before D; and Ds. This happens because the formulas that were
introduced produce the contradictions that in fact were solved by D; and Ds,
as £ is satisfiable. The fourth case is similar to the third and occurs when (—')
is applied before D] and Dj. The fifth case for having a contradiction captured
by Cp is when TRANS< is applied after D; and Dy. This happens because the
contradictions found could be solved by D; and Dy if the TRANS< rule was
applied before, as £ is satisfiable. The sixth case for having a contradiction
captured by Cp is when TRANS < is applied after Dj, DY, Dj and Dj. This
happens because the contradictions found could be solved by D7, DY, D) and
DY if the TRANS < rule was applied before, as £ is satisfiable. [|

We are now able to prove that the rewriting procedure introduced in Sec-
tion 4.2 establishes satisfiability as defined in Definition 5. We prove that the pro-
vided specific order of application of the rewriting rules determines the existence
of a model. Given Theorem 1, we prove that the rewriting given by Algorithm 1
is exhausted. Theorem 2 follows by applying Lemma 3 and Lemma 4.

Proof (Theorem 2). Based on the semantics introduced in Section 3 and given
that Algorithm 1 applies the rules in the order specified in Lemma 4, we show
that every theory that is unsatisfiable is rewritten by Algorithm 1 in a closed
one, and consequently, every open theory resulting by the rewriting procedure,
is also exhausted. We prove this by induction on the theory construction.

The base cases occur for a relational formula, a simple evidence, or a derived
one. For lack of space, we omit the proofs as they follow quite straightforwardly
by the definitions of relational formula, simple evidence, derived evidence, and
the < and < relations.

For the inductive step, we assume that £ is formed by either n relational
formulas, or a blend of n formulas, and that we know that the claim is true for
n — 1 formulas, and we show that the claim then holds also for n formulas.

Assume that & is formed by n different relational formulas. The only rules
that can be applied are TRANS< and TRANS <, and the algorithm applies them.
If € is unsatisfiable, then £ is empty as rule Cr or rule C}. capture any existing
contradictions between relational formulas. If £ is satisfiable, then Eis open and
exhausted as the algorithm has applied all possible rules.

Assume that £ is formed by n different simple pieces of evidence. The al-
gorithm first tries to apply D;. If £ is unsatisfiable and there are discordances,
then £ is empty, because the algorithm applies Cc. If there are no discordances
in £, then the algorithm translates all the rules into second layer formulas, by
applying rule £;. Since & is unsatisfiable, the algorithm applies the closing rule
Cp to capture the discordances between second layer formulas, and & is empty.
If £ is satisfiable, then the algorithm applies £1, and £ is open and exhausted
as the algorithm has applied all possible rules.

Assume that £ is formed of n different derived pieces of evidence. The al-
gorithm tries to apply the rules in the following order: Lo, Dy, L1, (—), Dj,
(=), DY and L£}. If £ is unsatisfiable, then the algorithm applies one of the
closing rules C¢, Ci, and Cp to capture the discordances between formulas of the
different layers, and Eis empty. If £ is satisfiable, then the algorithm yields a g
that is open and exhausted as it has applied all possible rules.

Assume that & is formed of n different formulas (pieces of evidence and rela-
tional formulas). The algorithm tries to apply all of its rules. If £ is unsatisfiable,
then the algorithm applies one of the closing rules to capture the discordances
between formulas of the different layers, and £ is empty. We know that our
algorithm is able to capture all the contradictions, because the algorithm first
applies all the rules that can surface all the possible contradictions and then it
applies the appropriate closing rule. If £ is satisfiable, then the algorithm yields
a & that is open and exhausted as it has applied all possible rules. |

