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Abstract—One of the most heavily used kernels of many ray
tracing algorithms is the intersection test for a ray with an
Axis-Aligned Bounding Box (AABB). Floating point imprecision
leads to incorrect ray/AABB intersection test results, which can
lead not only to a substantial error in the photorealism of the
image during rendering, by producing visually objectionable
holes (false misses), but also to significant penalties to the
ray tracer’s performance and the power consumed, since the
traversal is unnecessary (false hits). This work suggests a novel
architecture that uses carefully-designed directed rounding and
intervals for eliminating false misses and for investigating the
trade-offs between false hit error rate, area and throughput
when downscaling from high precision to low precision. The
flexibility of FPGAs in terms of computational structure, pipelin-
ing and parallelism in conjunction with the massively parallel
floating point operations in ray/AABB tests, makes them a very
efficient choice for custom precision hardware computation. A
fully-pipelined high-throughput architecture designed in RTL is
demonstrated, featuring the provable elimination of false misses
while quantifying false hits.

Index Terms—Ray tracing, ray/AABB intersection, computer
graphics, massively parallel computation, custom precision, re-
configurable hardware.

I. INTRODUCTION

This work introduces a novel method, based on one of the
most popular ray/AABB intersection algorithms (the Slabs
Method), which achieves the provable elimination of false
misses for any precision used in internal floating point compu-
tation. Carefully-selected directed IEEE-754 rounding modes
have been used to help us achieve runtime interval arithmetic
computation and apply tight bounds in the floating point
calculations, which lead to false miss elimination even for
the lowest representation of 1 bit mantissa. Furthermore, after
demonstrating the new algorithm, the paper describes the
manual adjustment of the FloPoCo VHDL operators for per-
forming directed rounding to +oo that was explicitly required
for avoiding false misses. Finally, we highlight the flexibility
of FPGAs in terms of parallelism and present the hardware
architecture for the proposed method. The multiple arbitrary
precision floating point designs explore the trade-offs that
occur between false hit error rate against area and throughput
as the precision is downscaled. The corresponding results are
presented in Section VL.

II. BACKGROUND
A. Ray Tracing

Ray tracing is a powerful technique for rendering high
quality images [1]. Tracing the paths of light rays through 3D

space results in photorealistic image generation. The process
of ray tracing involves an imaginary eye or a virtual camera
inside the scene, from which various light segments (rays) are
generated to create the image. A plane, perpendicular to the
viewing direction, representing what the camera sees, is called
the image plane. The image plane is broken up into a grid of
pixels that will make up the image. The ray tracer computes the
closest intersection point between the scene objects and each
ray, and then determines the colour of the intersected object
and paints the corresponding pixel with that colour. The whole
process is done for all the pixels in the image.

A ray is nothing but a stream of photons pointed in a direc-
tion. Since the objects that get hit by the rays have material
properties, any of the following optical effects could happen
with this light segment: reflection, refraction, absorption and
fluorescence. Ray tracing is very powerful because it can
simulate all those optical effects. More specifically, if a ray
intersects with any kind of 3D object, then shadow, transmitted
and reflected rays will be traced. If any of this new set of rays
intersects with another object in the scene, then additional new
rays will be traced. Therefore, this leads to a recursive process
which ends with the rendering of a high quality image.

The ray tracing algorithm in its uncomplicated configuration
will inefficiently check for intersection against each object in
the scene. This involves millions of intersection tests, espe-
cially when the scene includes a significant number of objects.
Thus, a more effective way to reduce this overhead has to be
applied. Rubin and Whitted proposed the idea of enclosing
scene subsets within bounding volumes to decrease the number
of ray-object intersection tests [2]. More specifically, if a scene
subset is enclosed by a bounding volume, the generated rays
will be tested against the bounding volume. Only in the case of
intersection will each of the enclosed objects be tested by the
ray tracer. The intersection test can be recursively applied in a
tree structure until a leaf node, containing a number of objects
to be rendered, is encountered. The tree forms a Bounding
Volume Hierarchy (BVH). This technique heavily reduces the
ray-object tests since a very small percentage of the generated
rays hits the bounding volume (approximately 4-5%).

Ray-BVH traversal is heavily encountered in the ray trac-
ing’s process because the ray-bounding volume tests constitute
the most reused part of ray tracing algorithms. As a result,
the need for an efficient selection of a bounding volume has
arisen. Since bounding volumes have to be simple in order to
be efficiently tested for intersection, a very effective choice
for a bounding volume is the Axis Aligned Bounding Box or



AABB. Axis Aligned Bounding Boxes are selected from the
majority of the ray tracers since they are not only easy to be
described in 3D planes by using only six coordinate values,
but also very quick to traverse [3].

In particular, AABBs are chosen because they can be de-
fined and tested for intersection just by storing their maximum
and minimum extents. Therefore, only two sets of coordinates
must be stored, resulting in the following six coordinate
values: minimum point: (x/, yI, z/), maximum point: (x2, y2,
z2). Figure 1 illustrates the AABB structure and specifies its
minimum and maximum set of coordinates.
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Fig. 1: The Axis-Aligned Bounding Box (AABB) [4], with red: the
minimum and the maximum point of the box.

It is also necessary to define a data structure for the ray. A
ray is simply defined by its origin coordinates, (x0, y0, z0),
and a direction vector (xD, yD, zD).

B. Ray/AABB Intersection

The most popular ray/AABB intersection test algorithm is
called the Slabs Method and was developed by Kay and Kajiya
in 1986 [5]. The bounding box is defined by the intersection of
a set of ‘slabs’, meaning the space between two parallel planes.
One set of slabs exists for each dimension. The algorithm
calculates three sets of intersection distances (i.e. an interval)
along the ray. If there is an intersection for each pair of slabs
by the ray and if all the intervals overlap, then the ray hits the
box, otherwise it does not. The pseudo-code for the algorithm
is given below. An example of a corresponding intersection
hit and an intersection miss is illustrated in Figure 2.

Slabs Method pseudo-code. Only x-dimension described
for simplicity.

if z;, = 0 then the ray is parallel to the
plane:
if (z0<2l) || (20> 22) then the
origin is not between the slabs:
return false;

else: (ray not parallel to the plane)
tacmin = ($1 - .’170) — Ty
tzmaw = ($2 - Z‘O) - Ly
it (Cpmin = temaes) SwWap them
if (t:cmin > tmin) tmin = lemin
lf (trmam < tmam) tmaz = tCEmH.I’
if (Chas = tmin) && thee >0 do the same

for the remaining y, z dimensions
if the ray survived all tests, then it
hits the AABB, return true;
otherwise, return false;
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Fig. 2: Left: the ray hits the box, [t smins tamaz] and [ty i tymaq)
overlap. Right: the ray misses the box, [t,.,,.;.,, temaz] a0 [ty tymaz

do not overlap.

Instead of performing the division, which significantly de-
creases the performance we can multiply with the reciprocals
of the ray direction vector elements. However, we have to
be careful since it is possible for the division to generate
+oo if the ray’s reciprocal direction component is one of
the floating point values +0. Since the IEEE-754 Floating
Point Standard can assist in proper handling of infinities, then
id,,id,,id, could take infinity values and the Slabs Method
correct operation will be maintained [6]. Additional care must
be taken for ensuring that the algorithm efficiently handles
positive and negative floating point zeros [7]. Finally, another
important issue that can result in the algorithm’s failure has
to be confronted. More specifically, if the subtraction between
the box’s minimum or maximum point and the ray’s origin
results in a zero and concurrently the reciprocal direction
component is +00 then the multiplication generates a NaN
(Not a Number [8]). In other words, in that case the ray lies
exactly on the edges of the Axis-Aligned Bounding Box. Also,
a NaN could happen if instead of multiplying by the reciprocal



ray components, we divide by the direction component, then
a 0 = 0 occurs. The solution is to make a case split when
the ray is parallel to the corresponding plane or one or more
of the direction components (x4, v, ;) is/are equal to 0. In
the pseudo-code given, the first thing mentioned is this case
split. A C-code implementation of the algorithm is given in
Figure 3, it is worth mentioning that the case split for checking
if the ray’s direction components are parallel to the axes is
not included. However in our implementation we took it into
consideration. Each different operation is highlighted with a
different color to signify the algorithm’s separate phases.

ectl n(box b, ray r)
b.min[0] - r. orlgln[D )J*r.dir inv[0]H
[{b.max[0] - r.origin[0 P*r.dir inv[O]H
double tmin = |uER:NENEERI] -
double tmax = IERAEHS 2)RB

for (int 1 = 1; i < 3; ++i) {
[{b.min[i] - r.origin[i]

double
double

*r_dir inv[i]H

LRI . max [i] - r.origin[i]ff*r.dir inv[i]f
jahB e lNax (tmin, min(min(tl, t2), tmax))f
S EVEEmin (tmax, max (max(tl, t2), tmin))H

jaaitallt max > max (tmin, 0.0)Q

Fig. 3: Simple C code implementation of the Slabs Method.

C. FPGA-based Arbitrary Precision Floating Point Numerical
Computation

Reduced precision computation using reconfigurable de-
vices has been studied for some time [9]. What we add is a
novel dimension to the problem: how to reduce precision but
maintain provably correct results for Boolean computations
through avoiding either false negatives or false positives (but
not both.)

Ray tracing and therefore ray/AABB tests that reside in
the graphics pipeline involve numerical computation based
on linear algebra. A large portion relies on massively-parallel
floating point computation, now possible in FPGAs [10]. Ray
tracing is an important application for low power devices,
and yet is a computationally heavy task, therefore processors
used for this task typically have specialized hardware. The
flexibility of FPGAs in terms of computational structure,
pipelining and parallelism exploitation makes them a very
efficient choice for numerical hardware computation as well
as for prototyping hardened accelerators.

In most cases, algorithms that use floating point arithmetic
are complex in nature and are designed in single or even
double precision. However, they are often worth investigation
to identify whether they can maintain correct functionality
while utilizing less precision. Reduced precision can not only
lead to a cheaper implementation (less silicon area used),
but also to a reduction of the processing time. The key
point lies in the fact that in designing using FPGAs, the
hardware designer can adjust the data representation to the

needs of the algorithm or the application. Consequently, the
trade-off between precision that leads to (in)accuracy and
performance must be taken into account when designing an
FPGA application-specific circuit [11]. As a result, the need of
custom/arbitrary precision floating point libraries that provide
fast operators has emerged.

FloPoCo [12] is a command line framework written in
C++ that has been designed with this aim and proved to be
a very efficient library that generates VHDL floating point
cores compatible with the IEEE-754 Floating Point Standard
principles. In FPGA-based designs, FloPoCo contributes to
implementing circuits with just the right precision by scaling
the mantissa bits and by highlighting the flexibility of the
platform.

III. PROBLEM FORMULATION AND ALGORITHM
MODIFICATION

The round-off error that is unavoidably introduced by float-
ing point computation could lead to inaccuracy that impacts
on the correct operation of many algorithms. One of these
algorithms is ray tracing and the two types of error that
arise are: false misses and false hits. An efficient way to
ensure the correct functionality of the ray/AABB intersection
test while concurrently downscaling precision is to compute
runtime bounds on the numerical computation. These bounds
represent each value as a range of possibilities, so using
this idea to perform floating point operations yields a set of
values summarised by an interval, and guarantees handling of
rounding errors directly during computation.

Figure 4 illustrates the problem of the quantization error
in 2D, the original ray (black color) hits the box near the
edge, but the one computed with floating point operations
(blue color) misses the box and produces a false miss. As
can be observed for the original ray/AABB test, the computed
intervals [t,,,,;n: tamaz] a0 [Cy,, tymas] are valid since
they are non-empty and overlap the ray. On the other hand, the
computed intervals for the blue ray are valid [t],,;, trmazls
[t} min> tymaz] Ut they do not overlap the ray since t/,,,,;, >
tymas leading to a false miss. In reality the differences in
xI, xI’, yl, yl’, x2, x2°, 72, z2’ and to the ¢ distances values
are very small in high precision, but as the precision is scaled
down these differences become larger. The differences in these
values occur due to: a) less precision used to represent the ray’s
origin and reciprocal direction coordinates/vector and the slabs
coordinates that form the box, b) less accurate floating point
subtractions and multiplications that the algorithm computes.

To solve the problem of false misses, we have introduced
the following methodology:

1) Describe the AABB’s minimum and maximum point,
the ray’s origin point and the ray’s reciprocal direction
vector with lower and upper values using intervals.

2) Split the computation of the intervals for ¢, and ¢, ..
depending on the ray’s origin in correspondence with the
AABB’s minimum and maximum point and for each
floating point operation; perform appropriate rounding
by using the correct directed rounding modes.



Fig. 4: In black: The original ray hits the box (infinite precision),

[t ymin: tomaz] and [tymm, tymagz] Overlap the ray. In blue: the ray misses
tmae] and [t t) ] do not

/
the box due to round-off error, [t/ . . ymin bymazx
overlap the ray.
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3) Bound ¢ ymin> Lamin and therefore the resulting

final ¢, with its lower value.

4) Bound t,,,00, tymaz> tamae @nd therefore the resulting

final ¢,,,.. with its upper value.

By calculating the lower and upper values for ¢,,,;,. tymin,
Uomins Comazs Cymazs Tzmags W€ guarantee that their order
in terms of value, using infinite precision remains the same
when downscaling the precision. Thus, the order of ¢,
and t,,,, remains the same even with representing floating
point numbers with the smallest precision, resulting always
in a correct result when the original/real ray hits the AABB,
therefore succeeding in the elimination of any false miss
error case. Consequently, by using directed rounding modes
to achieve interval arithmetic, we can propose an arbitrary
precision implementation for the Slabs Method that not only
guarantees false miss elimination, but it also explores the false
hit error rate while downscaling the precision from double
down to the minimum of one bit.

In detail, there are three different possible combinations
regarding the ray’s origin position and the Axis-Aligned
Bounding Box minimum/maximum points for each one of the
three planes. For brevity the derivations will focus on the z-
axis formulas. Assuming that the maximum point (x2, y2, z2)
given is always component-wise greater than the minimum
point (x1, yI, zI):

1) The ray’s origin lies between the slabs: x1 < x0 < x2,

or

2) The ray’s origin is left to the minimum point of the

AABB: x1 > x0 < x2, or
3) The ray’s origin is right to the maximum point of the
AABB x1 < x0 > x2

The same principles exist for the other two remaining di-
mensions y and z. By checking the signs of the reciprocal
direction vector id,, , . which signify the direction of the ray
in the corresponding planes and the AABB’s minimum and
maximum extent (x1,x2) we can avoid wasteful computation
for the intersection test when:

1) The ray’s direction on x axis 'E: is negative and the
ray’s origin lies left to the minimum point of the AABB,
xl > x0 < x2 N

2) The ray’s direction on x axis ¢d, is positive and the ray’s
origin lies right to the maximum point of the AABB, x1
< x0 > x2

This fact makes the implementation more robust since it
guarantees that in the above cases there is zero possibility of
an intersection hit between the ray and the AABB because
the ray’s origin lies either behind the box with negative
direction or in front of the box with positive direction, thus
efficiently reducing the amount of area that floating point
operations would cost in hardware because there is no need
to design the corresponding logic. A case split for the ray’s
direction must be done before performing the floating point
subtraction and multiplication (multiply by the reciprocal di-
rection vector instead of dividing) that the algorithm specifies.
Remember that each value is represented with an interval such
as: 20 = [20, oy, 20, p], 21 = [zl oy, 21lyp], 22 =
(2270w 22y p)s id, = [idzww,ida: P]. If the direction is
positive (ideOW > 0), we must check where the ray’s origin
lies.

1) If the upper bound of ray’s origin 20 p lies to the left
of the AABB’s minimum point (x1; 5y, > 20y p, see
Figure 5 left) then the interval calculations for ¢, and
tomas Will be split to the following, where | denotes
rounding to —oo0 and 1 denotes rounding to +o0:

zlyp — 200w, Tlyp —20pp} = 2liow —L 20y p

(D
2)

t = min{subl x id, ,subl xid, }=
LOW upr

Tmin
= subl x| id,
V% 0w
sub2 = maX{Z‘QLOW — J:OLOW, xQLOW — ':COUP’

22pp — 200w, 22yp — 20y p} = 22yp =1 xOLog)

4)

t

rmax

= max{sub2 x id,  ,sub2 xid, }=
“LOW “uP
= sub2 x4 id,
UpP

2) If the lower bound for the ray’s origin z0; ,y lies to
the right of the AABB’s maximum point (20, oy >
22¢;p), there is no operation required since the ray will
be always in front of the box.

3) Finally, if the ray’s origin lies between the slabs (21 5y
< 200w && x2;,p = 20y p) then the only change
required for the interval calculations in comparison with



case 1), pertains to the computation of ¢

rmin *

t

Tmin

= min{subl x id, ,subl xid, }=
LOW UP (5)

= subl x| id,
upP

Fig. 5: Cases for Ray/AABB hit. Left: Ray’s origin left to AABB’s minimum
point and positive direction. Right: Ray’s origin right to AABB’s maximum
point and negative direction.

As can be identified subl, sub2 and 1, .. always compute
the same operation of the interval, thus for the case split where
the ray’s direction is positive they are assigned to execute
the above FP operations with no dependence on the ray’s
origin. Therefore, some parts of the code can be optimized
by computing only a single value of the interval, leading to
fewer floating point calculations than required for a complete
interval arithmetic implementation. Consequently, for the case
where the ray’s direction is positive, the algorithm will only
execute the following floating point operations and perform
the following comparisons:

sub2 = 'r2UP -1 IOLOW (7)
teman = SUD2 X4 id, 8)

If the upper bound of the ray’s origin z0;;p lies to the left
of the AABB’s minimum point then the interval analysis ends

up only with the following case for ¢, calculation:

Lomin = subl X1 ideOW )
For any other different case:

twmin = subl x| ZdwUP (10)

The additional cases for the x-axis where the lower bound of
the ray’s origin 0 ;- lies to the right of AABB’s maximum
point (negative direction needed for the ray to be tested for
intersection) and when the ray is parallel to the plane are
highlighted in the pseudocode below. The use of bold symbols
attempts to distinct the slight differences in the conditions
to be checked and in the floating point operators used for
the multiplications when the ray’s direction is changed from
positive to negative or vice-versa. The algorithm follows the
same pattern for y and z dimensions and by comparing the

tmae and ¢ . values decides if a miss or hit occurs. GNU-

MPFR [13] supports IEEE-754 directed rounding modes and
was used to evaluate false misses elimination.

Proposed algorithm, C-code example for x-dimension using GNU-MPFR.

if (x) { //ray is parallel to the x-plane

if (mpfr_less_p (zOUP,z1LOW) || (mpfr_greater_p (zOLOW,x2UP))
return (0); //ray misses the box

else if (mpfr_greater_p
//positive direction

(idzUP, zero)) {

mpfr_sub (subl,z1LOW,20UP, MPFR_RNDD);
mpfr_sub (sub2,z2UP,zOLOW, MPFR_RNDU);
mpfr_mul (tzmaz,sub2,ideUP, MPFR_RNDU);

if (mpfr_greater_p(z1LOW, z0U P))
mpfr_mul(tzmin, subl, idc LOW, MPFR_RNDD);
else mpfr_mul (tzmin, subl,ideUP, MPFR_RNDD);

else { //negative direction

mpfr_sub (subl,z1LOW,z0UP, MPFR_RNDD);
mpfr_sub (sub2,z2UP,z0OLOW, MPFR_RNDU);
mpfr_mul (tzmaz,subl,ideLOW , MPFR_RNDU);

if (mpfr_greater_p(@OLOW, 22U P))
mpfr_mul (tzmin,subl,ideUP, MPFR_RNDD);

else mpfr_mul (tzmin,sub2,ideLOW ,MPFR_RNDD);

IV. CORRECT ROUNDING ADJUSTMENT FOR FLOPOCO

To design a Slabs Method algorithm that eliminates false
misses in RTL, we need to perform directed rounding for the
floating point subtractions and multiplications. Because there
is not any closed or open-source library that rounds to 4o
it was needed to manually adjust FloPoCo VHDL operators
to generate them. FloPoCo takes the default approach and
rounds to nearest even for each operation. Table I gathers the
information given in [14] and illustrates the conditions that
must be satisfied for performing rounding in floating point
addition/subtraction and multiplication. Notations to (G), (R)
and (S) accordingly refer to guard, round and sticky bits.

TABLE I: Conditions to be satisfied for performing rounding
addition in a) Floating Point Addition/Subtraction and b)
Floating Point Multiplication.

Floating Point

Rounding Mode Condition for Rounding Addition

Operation
Round to Nearest/Even G-(LSB+R+S)
FP Add/Sub Round to Plus Infinity sign’ - (G+ R+ S)
Round to Minus Infinity sign- (G+ R+ S)
Round to Nearest/Even G- (LSB+S)
FP Mult Round to Plus Infinity sign’ - (G+S)
Round to Minus Infinity sign - (G + S)

A. Rounding Adjustment for FP Multiplication

To adjust a FloPoCo’s floating point multiplication operator
to perform negative/positive infinity rounding is quite simple.
We need only the guard (G) and sticky (S) bits. FloPoCo
identifies these bits, therefore we only change the condition for



rounding and instead of using the round to nearest/even take
the appropriate for rounding to plus/minus infinity. Referring
to Table I it is important to use the sign bit that is computed
early in the correct clock cycle, so if the multiplication lasts
two cycles, the rounding addition decision is taken when
entering the second cycle, thus a delayed version of sign has
to be used. The round bit is given as carry to the rounding
adder and an addition between the normalized result and zero
is performed. If the condition is true, then a unit in the last
place (ulp) is added to the normalized result, else the result
remains the same and no rounding is needed:

round <= '1l' when (sign_d2='0"

(sticky_dl="'1l" or guard='1l")) '0';
The only alteration to produce the negative infinity rounded
value is to invert the sign bit:

round <= '1l' when
(sticky_di1="1"

B. Rounding Adjustment for FP Addition/Subtraction

The adjustment of FloPoCo’s addition/subtraction is slightly
trickier. If the operation requires an effective subtraction [14]
the result might have leading zeros and might require a left
shift of the significand by / positions corresponding to the
number of leading zeros. This is the worst case in which it
has been shown that three extra bits are enough for correct
rounding (G,R,S) [14]. FloPoCo holds the three additional
bits after the LSB with the following order: G—R—S. The
shifted fraction is concatenated with the G bit (after the LSB’s
place), the condition of round to nearest/even is examined (see
Table I) and if it is true, a ulp is added to the guard bit.
Consequently only when G = 1, LSB = 1 and the condition
is true will the LSB be incremented. In the final shifted
fraction value the guard bit (G) gets discarded. To adjust
this and correctly perform directed rounding to +0o, the idea
is to concatenate the shifted fraction with the corresponding
rounding condition bit value, then insert it as carry into the
rounding adder and add the shifted fraction with zero. For
instance, if we want to round a positive number to plus infinity,
and if LSB=0,G=0,R =0, S =1, the condition to add a
ulp is true and the addToRoundBit will be concatenated to the
expanded fraction after the LSB such as it ends with ....01. By
adding zero to the expanded fraction and setting the carry-in
bit as the addToRoundBit we achieve to correctly round to plus
infinity without adding any latency or extra area to the floating
point adder/subtracter. Figure 6 illustrates these modifications
by showing the default FloPoCo’s rounding method compared
with the adjusted rounding to +oco for a 32-bit subtractor.
Again, if rounding to —o0 is wanted then the only modification
required is to invert the result’s sign (signR_d5).

and
else

and
else

(sign_dz="1"

or guard='1")) '0';

V. PROPOSED HARDWARE ARCHITECTURE

The main design decision lies in the trade-off that inter-
val arithmetic introduces. In particular, the use of interval
arithmetic increases the number of floating point operations,
leading to more hardware complexity (area) compared to the
original floating point Slabs Method hardware design. As a

expFrac<= updatedExp & shiftedFrac_dl( downto 3)
addToRoundBit<= '0' when (lsb='0' and grd='1l' ar
roundinghdder: IntAdder_37_f400_uid20 --
port map ( clk clk,
rst => rst,
Cin => addToRoundBit,
R => RoundedExpfrac,
X => expFrac,
Y => ")

addToRoundBit<= '1' when (signR_d5='0"' and
expFracl<= updatedExp & shiftedFrac_di(

(grd='1' or rnd='1' or stk='
downto 4) & addToRoundBit:

roundingAdder: IntAdder 34_£400_uid20 -- pipelineDepth=0 maxInDelay=0
port map ( clk => clk,
rst => rst,

Cin => addToRoundBit,

R => RoundedExpFrac,

X => expFracl,

Y => ) ) ) )007) ;

Fig. 6: Top: FloPoCo’s default rounding method. Bottom: Modified VHDL
code to round to positive infinity.

result, this affects the performance of the ray tracer, because
the increased number of floating point operations increases the
latency of the design. The fact that the ray/AABB intersection
tests get executed in a graphics pipeline, where throughput is
essential, drove us to aim for and achieve an initiation interval
of 1. This means that the ray tracer could generate an output
decision for the ray/AABB intersection test in each clock cycle
after the first output. This is possible because each set of the
algorithm’s inputs (ray segments and AABB coordinates) is
completely independent to the other inputs. To always keep
all the floating point operators busy, a multiple-stage fully
pipelined architecture was designed.

The inputs to the hardware module are: the ray’s origin
(x0,y0,z0) and reciprocal direction vector (id,,id,,id,), the
Axis-Aligned Bounding Box minimum (x/,y/,z/) and max-
imum (x2,y2,z2) extent and 3 Booleans (x,y,z) that clarify
whether the ray is parallel to the corresponding plane. Figure 7
illustrates a higher level view of the proposed architecture. The
hardware design of the algorithm is mainly separated in six
different phases:

1) In the first phase, 18 FP Adders generate the required
values for the proposed algorithm by performing an
addition with zero and round accordingly to +oco. 12
of them generate lower and upper values for the ray’s
origin and the reciprocal direction vector while the other
6 generate the box’s upper values for its maximum
point (22, p, Y2y p, 22;;p) and its lower values for its
minimum point (z1; 5y Y1r0ws 2lrow) -

2) The second phase involves six FP Subtractions as de-
scribed in Section III. In parallel, it is checked whether
a miss occurs in case the ray is parallel to one of the
planes.

3) In the third phase all the possible values for

tmmin,ymin,zminvtmmax,ymax,zmax are generated with
the use of 18 FP Multipliers (as explained in Section III).

4) In the fourth phase, the ray’s direction and origin
for each of the three planes is checked. Depending
on them, the correctly rounded values are assigned to
tmmin,ymin,zmin’ ta;maa:,y’rnaa;,znmw‘ It is worth mention-
ing that there are no additional floating point operations
required during this phase, since the signs of previously-
calculated values could be propagated and used during

")) else '0';



this phase. For example, in phase 2 we have subtract
22y p from 20} 5y, thus we know that if the result of
the subtraction is negative then the ray’s origin will lie
to the right of the AABB.

In the fifth phase, the comparisons for the possible ¢
intersection distances take place and the final values are
assigned to t,,,,, and ¢, ...

Finally, in the sixth phase, ¢,,,,, and ¢, .. are compared
and if ¢,,,, = t,,, and £, .. > 0, the ray hits the
AABB. It is worth mentioning that the Boolean that
signifies a miss that may have occurred if the ray was
parallel to one of the planes is propagated and taken into
consideration to produce the final Boolean result.

5)

0)

scale accordingly. Indeed, when downscaling the precision
from double to 1 bit, the FPGA’s most reduced resource
were LUTs and secondly the Slice Registers. The amount of
area (LUTs and Registers) that must be used to achieve the
corresponding false hit error rate is illustrated in Figure 8 and
Figure 9. As area increases, the false hit error rate reduces
exponentially until the 9th bit of precision, after this point
FloPoCo’s operators use DSPs for the multiplications and it is
shown that even with 9 or 11 bits of precision the amount of
LUTs used is the same. Again, after that point the trend for
the error rate continues the same (drops exponentially).
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AABB's coordinates
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Input
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Fig. 7: Top level flow of the hardware architecture for the proposed new
method.

Extra care has been taken for the case when the compared
values are equal. FloPoCo uses two additional bits in front of
the sign bit for encoding floating point bitwidths. This feature
can be exploited when comparing values using a floating point
subtraction. So, the only need is to check those two bits on the
resulting floating point number and if both are zero it signifies
that the compared numbers were equal. It is not necessary
to use the significand of the resulting floating point number,
reducing circuit complexity. The hardware implementation is
fully parameterised in terms of mantissa width. However,
since FloPoCo’s pipeline depths scale in accordance with the
precision, it may need to adjust clock frequency for correct
operation of the algorithm.

VI. RESULTS

The FPGA that was targeted is Xilinx’s XC7Z020-3CLG484
consisting of 53,200 LUTs, 106,400 Slice Registers/FF, 140
36KB BRAM blocks and 220 DSP48Els [15]. As the preci-
sion decreases in the multiple hardware designs, we expect
the area to be scaled down, since each floating point number
is represented with fewer bits and all FloPoCo’s operators
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Fig. 8: False hit error rate against Slice LUTs. Precision is annotated.
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Fig. 9: False hit error rate against Slice Registers/FF. Precision is annotated.

Since we are in a graphics pipeline, parallelism must be
exploited. Therefore we designed a high frequency/throughput
implementation. As the precision scales up, FloPoCo increases
the number of pipeline stages in order to maintain clock
frequency relatively high by trading latency. As a result, we ex-
pect frequency or clock period to be maintained asymptotically
constant for the different designs. In Figure 10, the minimum
clock period that can be achieved (or the highest frequency)
against false hit error rate is presented. A drop in throughput
as precision increases can be observed, however this is not
always true since FloPoCo operators can target specific FPGAs
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Fig. 10: False hit error rate against clock period. Precision is annotated.

to help designers identify the maximum frequency that can
be achieved. Again the cost in area should be taken into
consideration.

Although we demonstrated the trade-offs between false hit
error rate, area and throughput when precision is downscaled,
measuring false hit error rate for high precision is hard through
simulation, as it is very close to zero.

VII. CONCLUSION

This work, based on one of the most popular ray/AABB
intersection test algorithms, the Slabs Method, proposes a
method using runtime interval calculation efficiently avoids
false misses, using any precision to represent its internal float-
ing point computation. This enhances the quality of the ray
tracer in terms of generating images with high photorealism,
eliminating the possibility of rendering an image with visually-
objectionable holes. The trade-off of using interval arithmetic
to eliminate false misses results in increased hardware com-
plexity (silicon area) comparing our proposed circuit with
the original Slabs Method. Since ray tracers require high
performance, a high-throughput fully pipelined architecture
that keeps all the FP operators busy in each clock cycle
is designed (initiation interval = 1). Exploring alternative
algorithms that check for ray/AABB intersection and system-
atically generating hardware for realizing the related trade-offs
discussed is left for future work.

The paper also contributes to the floating point arithmetic
by providing an implementation of FP multipliers,
adders/subtracters that round to the IEEE-754 +c0 standard.
The open-source code of this work can be found online at
https://github.com/constantinides/RAABB.
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