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Abstract—We provide an algorithmic procedure
allowing to compare stability certificates for discrete-
time switching systems and in specific Path-Complete
Lyapunov functions (PCLFs). These mathematical
objects consist of a set of positive definite functions
and a set of Lyapunov inequalities, encoded in a
directed, labeled graph. Given two such graphs, we
formulate necessary and sufficient conditions to decide
if the existence of a PCLF for the first graph implies
existence of a PCLF for the second graph, where the
corresponding set of functions is constructed by conic
combinations of the set of functions related to the first
PCLF. The conditions depend only on the topologies
of the two graphs and can be verified by solving a
linear program. It is the first systematic approach to
compare the conservativeness of PCLFs.

I. Introduction and Preliminaries
Discrete-time switching systems [1]–[4] present major

theoretical challenges [5], provide an accurate modeling
framework for many processes [6]–[9] and are good ap-
proximations of complex hybrid dynamical systems [10].
We consider switching systems of the form

x(t+ 1) = fσ(t)(x(t)), (1)

where the state x(t) evolves in Rn. The switching signal
σ(·) : N→ {1, ...,M} assigns at each time instant one of
M ≥ 1 modes, each associated with a continuous map
fi : Rn → Rn, 1 ≤ i ≤ M , such that fi(x) = 0 ⇔ x =
0. We assume for simplicity that the switching signal is
arbitrary, however, all results extend to a wider class of
switching signals, such as the ones considered in [11].

We consider the stability analysis problem, focusing
on global uniform stability, see e.g. [12, Definition 1]
for a standard definition. Although verifying stability is
undecidable even for linear dynamics [5], the problem
has been studied extensively due to its importance in
control [4]. A standard approach to address the prob-
lem is to search for a Lyapunov function [13]. A well
known stability certificate concerns the existence of a
common quadratic Lyapunov function [4, Section II-A].
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Fig. 1: Geometric representation of the path-complete
stability criterion using the graph G2 in Example 1.
A trajectory for the system of Example 1, with the
red point as initial condition and with the switching
sequence 212121 · · · , is presented. One can show that the
intersection (in yellow) of the level sets of the functions
Va2 and Vb2 (resp. in blue and red) is the level set of a
common Lyapunov function for that system [12].

More complex however less conservative criteria exist
involving, e.g., sum-of-squares polynomials [14], max-
of-quadratics [15] or polytopic Lyapunov functions [16].
Multiple Lyapunov functions [2], [17]–[19], that are com-
posed of several pieces that together form a stability
certificate are also an attractive alternative. Additionally,
there are converse results, see e.g., [20], that induce semi–
algorithms, using hierarchies of less and less conservative
classes of Lyapunov functions [21], or families of multiple
Lyapunov functions [11], [19], [22]–[24], that are guaran-
teed to eventually provide a stability certificate when a
system is stable.

The main reason for the existence of so many dif-
ferent tools is that they provide stability certificates
that are only sufficient, and the converse results induce
algorithmic procedures that are non-conservative only
asymptotically. In view of this, it is crucial to understand
which performances can a priori be expected from a
given criterion.

In an effort to unify and generalize many of the exist-
ing techniques for discrete-time switching systems, the
framework of Path-Complete Lyapunov functions was
recently introduced in [25]. A Path-Complete Lyapunov
function (PCLF) is a type of multiple Lyapunov function
that boils down to two objects: one is a finite set of



functions, called the pieces of the PCLF, and the other
one is a directed graph that encodes Lyapunov inequal-
ities between these pieces. We define such a graph as
G = (S,E), where S is the set of nodes of the graph and
E ⊆ S×S×{1, . . . ,M} is a set of directed edges, each one
being labeled by one of the modes of the system (1). In
order to form a valid stability certificate under arbitrary
switching, it has been shown [25], [26] that the graph G
needs to be path-complete:
Definition 1 (Path-completeness): A graph G =

(S,E) is path-complete if for any k ≥ 1 and any sequence
σ = σ1 . . . , σk, σi ∈ {1, . . . ,M}, there is a path in
the graph, (si, si+1, σ

′
i)i=1,2,...,, with (si, si+1, σ

′
i) ∈ E,

such that the sequence σ is contained in the sequence
σ′ = (σ′i)i=1,2,....
Unless stated otherwise, the graphs in this paper are
considered path-complete. For a PCLF on a graph G =
(S,E), the pieces are members of a set of functions
{Vs}s∈S . Each element Vs of the set is associated to
a node of the graph G and is a Lyapunov Function
Candidate, see e.g., [17], a class of functions defined
below.
Definition 2 (LFC): A Lyapunov Function Candidate

(LFC) V : Rn → R≥0 is a continuous function for which
there exist two functions α, β, of class K∞1 satisfying

∀x ∈ Rn : α(‖x‖) ≤ V (x) ≤ β(‖x‖), (2)

where ‖x‖ denotes the Euclidean norm of x ∈ Rn.
The graph of a PCLF encodes Lyapunov inequalities
between its pieces:
Definition 3 (PCLF): Consider the system (1) with

dynamics {fσ}σ∈{1,...,M}. The path-complete graph G =
(S,E), and the set of LFCs {Vs}s∈S induce a Path-
Complete Lyapunov Function if

∀(s, d, σ) ∈ E, ∀x ∈ Rn : Vd(fσ(x)) ≤ Vs(x). (3)

In that case, we write that the property
pclf(G, {Vs}s∈S , {fσ}σ∈{1,...,M}) holds.
Theorem 1.1 ( [25], [26]): Consider the system (1), a

graph G = (S,E) with M labels, and a set of LFCs
{Vs}s∈S . Then, the satisfaction of the inequalities (3) is
a sufficient condition for the stability of the system if and
only if G is path-complete.
Example 1: Consider the graphs G1, G′1 and G2 in

Figures 2a, 2b and 2c respectively. These graphs have
two labels, namely 1 and 2, on their edges, corresponding
to switching systems on two modes. The graph G′1
is not path-complete, but the others are. The graph
G1 encodes six Lyapunov inequalities (one per edge)
between three Lyapunov Function candidates (one per
node), which we denote by {Va1 , Vb1 , Vc1}, as shown
in Figure 2a. For example, since (a1, b1, 1) ∈ E, then
∀x ∈ Rn, Vb1(f1(x)) ≤ Va1(x). We consider the following

1A function α(z) : R≥0 → R≥0 is of class K∞ if it is continuous,
radially unbounded, strictly increasing, with α(0) = 0.
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(a) G1: it is path-complete.
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(b) G′1: it is not path-complete, since the sequence
222 cannot be formed with a path in the graph.
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(c) G2: it is path-complete.

Fig. 2: Graphs for Example 1.

linear switching system consisting of M = 2 modes:
xt+1 = fσ(t)(xt) = Aσ(t)xt, σ(t) ∈ {1, 2}, with

A1 = α

(
1 0
1 0

)
and A2 = α

(
0 1
0 −1

)
, α = 0.9. (4)

This choice is inspired from [25, Example 5.2]. For our
choice of α, no common quadratic Lyapunov functions
exists [25, Example 5.2]. Furthermore, we verify nu-
merically that we cannot find a set of quadratic pieces
satisfying the inequalities of G1

2. However we can verify
that all the 4 inequalities of the graph G2 are satisfied
for the pieces

Va2

((
x1
x2

))
= 5x2

1 + x2
2,

Vb2

((
x1
x2

))
= x2

1 + 5x2
2

 . (5)

They are illustrated in Figure 1 along with a trajectory
of the system with initial condition x(0) = (−0.7,−0.3)>
and with a periodic switching sequence 2121 · · · . Since
G2 is path complete, this provides us with a proof of
stability for our linear switching system from Theorem
1.1.
As shown in Example 1, and reported in previous works,
e.g. [25, Section 4], [12, Section 4], the conservativeness
of a Path-Complete Lyapunov function depends on the
choice of the graph. Our goal is to provide a better
understanding of when, for two given graphs G1 =
(S1, E1), G2 = (S2, E2), and for arbitrary dynamics
f := {fσ}σ∈[M ], the existence of pieces {Vs}s∈S1 satisfy-
ing pclf(G1, {Vs}s∈S1 , f) implies that of pieces {Ur}r∈S2

such that pclf(G2, {Ur}r∈S2 , f) holds true as well. In

2The codes for reproducing Examples 1, 2, 3 and 4 are available
at sites.uclouvain.be/scsse/cdc2017-codesExamples.zip

sites.uclouvain.be/scsse/cdc2017-codesExamples.zip


short, we aim at understanding when we can certify that
G2 provides a less conservative criterion than G1.
Most of the works on path complete Lyapunov func-

tions, namely [11], [19], [22], [25, Section 4], [12, Sec-
tion 4], focus on linear dynamics and quadratic pieces.
Therein, all comparisons between PCLFs rely on showing
that we can construct the pieces of one PCLF as conic
combinations of the pieces that form another PCLF, and
in some cases their compositions with the system dynam-
ics [25, Proposition 4.2]. Motivated by this observation,
we explore the comparison between graphs in the setting
described above. In specific, our main contribution is a
necessary and sufficient condition, verifiable by linear
programming, that considers two graphs G1 and G2,
and allows us to decide when one can form a PCLF
for a graph G2 with pieces that are constructed as
conic combinations of the pieces that form a PCLF for
G1 (whenever these pieces exist). Our condition does
not require any assumption on the dynamics or the
parametrization of the pieces of the PCLF.
Structure: In Section II, we introduce and illustrate the
property we wish to capture. In Section III, we present
the developments towards our main result, Theorem 3.1,
while Section IV concludes our work.
Notations: Given a matrix A ∈ Rm×n, we let (A)k,`
be the element on the kth row and `th column of A.
The transpose of A is written A>. For two matrices
A,B ∈ Rm×n, A ≤ B holds componentwise. We denote
the matrices with all elements equal to zero and one
with 0 and 1 respectively. For any integer K, we let
[K] = {1, . . . ,K}. For a finite set Z, we let |Z| denote
the cardinality of the set. Finally, we implicitly associate
to each finite discrete set Z an ordering of its element
through a bijection kZ : Z → {1, . . . , |Z|}. Using
these orderings, given two sets Z1 and Z2 and a matrix
A ∈ R|Z1|×|Z2|, for any z1 ∈ Z1 and z2 ∈ Z2, we use
the shortcut notation (A)z1,z2 to refer to the element
(A)kZ1 (z1), kZ2 (z2). Given a system (1), we refer to the
dynamics as a set of maps f = {fσ}σ∈[M ].

II. Comparing Graphs via Conic Combinations

Let us start with an example.
Example 2: In Example 1, for the choice of linear

switching system (4) (with α = 0.9) we conclude that
there is no PCLF with quadratic pieces for the graph
G1, but there is one for the graph G2. It turns out that
it cannot be the opposite. In fact, in [25] it is shown that
if {Va1 , Vb1 , Vc1} together with G1 induce a PCLF, then
the functions

Va2 = Va1 + Vb1 and Vb2 = Va1 + Vc1 (6)

satisfy the inequalities of the graph G2. If the functions
in the first set are quadratics, since those of the second
set are expressed as conic combinations of those of the
first, they are quadratic as well. To illustrate this graphi-
cally, we consider the parametrized system of Example 1
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Fig. 3: Example 3, the level sets of the functions defined
in both (5) (in red) and (7) (in blue). These functions
are valid pieces for the PCLF for the graph G2 and
G1 respectively allowing to prove stability of the linear
system defined through (4) with α = 0.3.

setting α = 0.3. We can verify that there is a PCLF with
quadratic pieces for G1, with

Va1

((
x1
x2

))
= 1

2(x2
1 + x2

2),

Vb1

((
x1
x2

))
= 1

2(9x2
1 + x2

2),

Vc1

((
x1
x2

))
= 1

2(x2
1 + 9x2

2)


, (7)

and that the pieces (5) continue to form a valid PCLF for
the graph G2. Remark that if we combine the functions
in (7) according to (6), we obtain the set of functions (5).
This is represented graphically in Figure 3.

We introduce notations allowing to represent the set of
Lyapunov function candidates of a graph in a vector. In
this way, the subsequent algebraic manipulations become
easier by allowing to express (3) with vector inequalities.
Definition 4 (VLFC): A Vector Lyapunov Function

Candidate (VLFC) is a vector function V : Rn → RN≥0,
where each element (V)i : Rn → R≥0, i ∈ [N ], is a
Lyapunov Function candidate.
Given a graph G = (S,E) with a set of labels [M ],
and σ ∈ [M ], we define the two matrices Sσ(G) ∈
{0, 1}|Eσ|×|S| and Dσ(G) ∈ {0, 1}|Eσ|×|S| as follows:

(Sσ)e,s = 1⇔ ∃d ∈ S : e = (s, d, σ) ∈ E,
(Dσ)e,d = 1⇔ ∃s ∈ S : e = (s, d, σ) ∈ E,

(8)

where Eσ ⊂ E corresponds to the edges with label σ3.
Example 3: We construct the matrices S1, S2, D1,D2

for the graphs G1 and G2 of Figures 2a and 2c. We
start from G1 and let a1, b1 and c1 be the first, second
and third node of the graph respectively. The edges

3For a graph G and label σ, the matrix Dσ(G)−Sσ(G) recovers
the incidence matrix [27] of the subgraph of G where we keep only
the edges with label σ.



are ordered counter-clockwise starting from the edge
(a1, b1, 1). With these conventions, we have

S1(G1) =

1 0 0
0 1 0
1 0 0

 , D1(G1) =

0 1 0
1 0 0
0 0 1

 . (9)

The edges for mode 2 are also ordered counter-clockwise
starting from the edge (a1, b1, 2), leading to

S2(G1) =

1 0 0
1 0 0
0 0 1

 , D2(G1) =

0 1 0
0 0 1
1 0 0

 . (10)

Using similar ordering conventions for G2, we have take
a2 as the first node and b2 as the second. For mode 1,
the first edge (corresponding to the first row) is (a2, b2, 1)
and the second (a2, a2, 1) leading to

S1(G2) =
(

1 0
1 0

)
, D1(G2) =

(
1 0
0 1

)
. (11)

For mode 2, the first edge is (b2, a2, 2) and the second
edge is (b2, b2, 2), leading to

S2(G2) =
(

0 1
0 1

)
, D2(G2) =

(
1 0
0 1

)
. (12)

Proposition 2.1 restates the Lyapunov decrease condi-
tions (3) in a vector form which will be convenient in the
sequel and it is presented without a proof.
Proposition 2.1: Given a graph G = (S,E), dy-

namics f = {fσ}σ∈[M ] and a set of pieces {Vs}s∈S ,
pclf(G, {Vs}s∈S , f) holds if and only if

∀x ∈ Rn, ∀σ ∈ [M ], Dσ(G)V(fσ(x)) ≤ Sσ(G)V(x),

where V : Rn → R|S|≥0 is the VLFC with (V)s = Vs.
Definition 5 (Conic comparison): Consider two

graphs G1 = (S1, E1) and G2 = (S2, E2), with a set of
labels [M ] and a conic combination matrix

C ∈ R|S
2|×|S1|
≥0 , ∀s2 ∈ S2 :

∑
s1

(C)s2,s1 ≥ 1. (13)

We write G1 ≤C G2 if for any dimension n ∈ N, for any
choice of dynamics {fσ}σ∈[M ], fσ : Rn Rn, for any choice
of VLFCs V : Rn → R|S1|, any point x ∈ Rn, and any
σ ∈ [M ], the following implication holds

Sσ(G1)V(x)−Dσ(G1)V(fσ(x)) ≥ 0
⇒ Sσ(G2)CV(x)−Dσ(G2)CV(fσ(x)) ≥ 0.

(14)

The following result shows that conic comparisons indeed
allow to compare conservativeness of Path-Complete
Lyapunov functions.
Theorem 2.2: Consider two graphs G1 = (S1, E1),

G2 = (S2, E2) and a matrix C ∈ R|S
2|×|S1|
≥0 satisfy-

ing (13). The following statements are equivalent.
(i): G1 ≤C G2.
(ii): For any integer n, any set of dynamics f =
{fσ}σ∈[M ], fσ : Rn → Rn in any dimension n, and any
choice of LFCs {Vs}s∈S1 ,

pclf(G1, {Vr}r∈S1 , f)⇒ pclf(G2, {Us}s∈S2 , f) (15)

where for any s ∈ S2, Us :=
∑
r∈S1(C)s,rVr.

Remark 1: We point out that the difference between
the two statements of Theorem 2.2 is significant, yet
subtle. When we write G1 ≤C G2, the implication (14)
holds pointwise, i.e., if a point x ∈ Rn satisfies the
left hand side of the implication, it also satisfies the
right hand side. On the other hand, (ii) is truly the
property that we need to capture in order to compare
PCLFs, namely that for all n ∈ N, for all choices of
dynamics f = {fσ}σ∈[M ], fσ : Rn → Rn, for all VLFCs
V : Rn → R|S

1|
≥0 ,

∀x ∈ Rn,Sσ(G1)V(x)−Dσ(G1)V(fσ(x)) ≥ 0
⇒ ∀x ∈ Rn,Sσ(G2)CV(x)−Dσ(G2)CV(fσ(x)) ≥ 0.

Summarizing, Theorem 2.2 shows that the concept of
conic comparison, which is much easier to handle alge-
braically, is equivalent to the notion of comparison by
conic combination that we wish to capture.

III. An LP-formulation for Conic Comparisons
In this section we prove our main result, which shows

that given two graphs G1 and G2 we can decide ef-
ficiently whether a conic comparison in the sense of
Definition 5 is possible. In specific, we establish that if
a conic combination matrix C exists, it can be obtained
as a solution to a linear program.
Theorem 3.1: Consider two graphs G1 = (S1, E1) and

G2 = (S2, E2) with the same set of labels [M ]. There is
a matrix C ∈ R|S2|×|S1| satisfying (13) such that G1 ≤C
G2 if and only if there areM nonnegative matrices Kσ ∈
R|E

2|×|E1|
≥0 , σ ∈ [M ], such that

∀σ ∈ [M ],Sσ(G2)C ≥ KσSσ(G1),
Dσ(G2)C ≤ KσDσ(G1),

(16)

with Sσ and Dσ defined in (8).
The proof of the theorem is presented after two interme-
diate results, Lemmas 3.2 and 3.3.
Example 4: Consider again the graphs G1 and G2

from Example 1. In Example 2, we showed that if V =(
Va1 Vb1 Vc1

)> satisfied to the inequalities of G1, then

U =
(
Ua2

Ub2

)
= CV, C :=

(
1 1 0
1 0 1

)
, (17)

satisfy the inequalities of G1. Hence, G1 ≤C G2, for the
matrix C defined in (17). Considering the matrices S and
D defined in Example 3 for these graphs, for that matrix
C, the inequalities (16) are satisfied (with equality) with

K1 =
(

1 1 0
0 1 1

)
, K2 =

(
1 0 1
0 1 1

)
.

In order to further ease the algebraic manipulations
of our inequalities, we express the Lyapunov decrease
conditions in matrix form(

S1(G) −D1(G) 0
S2(G) 0 −D2(G)

) V(x)
V(f1(x))
V(f2(x))

 ≥ 0,



where Si,Di are provided in (8). The above inequalities
are non-linear in x, V and the dynamics f = {fσ}σ∈[M ].
Nevertheless, they are linear with respect to the vector(
V(x)> V(f1(x))> V(f2(x))>

)>. This motivates us
to study the set of all such vectors.

To this purpose, consider an integer n ≥ 1, a VLFC
V : Rn → RN≥0, a set of M maps f = {fσ}σ∈[M ], fσ :
Rn → Rn, and a vector x ∈ Rn. We define the vector
y(x, f,V) ∈ R(M+1)N ,

y(x, f,V) :=


y0

y1

...
yM

 =


V(x)

V(f1(x))
...

V(fM (x))

 . (18)

Additionally, we let

Yn,M,N =
{
y(x, {fσ}σ∈[M ],V) : x ∈ Rn,
fσ : Rn → Rn,V is a VLFC.

}
, (19)

be the set of all such vectors for a fixed dimension n, and
finally, we let

YM,N =
∞⋃
n=1

Yn,M,N . (20)

Notice that in the definition of YM,N , we no longer
explicitly take into account the dynamics of the system
(1), its dimensions, and the nature of VCLF. The only
remaining elements M and N actually correspond to the
number of modes, or labels, to a number of nodes in a
graph.
Lemma 3.2: For any M ≥ 1, N ≥ 1, it holds that

R(M+1)N
≥0 ⊃ YM,N ⊃ R(M+1)N

>0 .

We are now in position to characterize the relation be-
tween graphs of Definition 5 without explicitly involving
dynamics or Lyapunov functions.
Lemma 3.3: Consider two graphs G1 = (S1, E1) and

G2 = (S2, E2) with labels σ ∈ [M ]. There is a ma-
trix C ∈ R|S

2|×|S1|
≥0 satisfying (13) such that G1 ≤C

G2 if and only if for all nonnegative vector y =(
(y0)> (y1)> . . . (yM )>

)> ∈ R(M+1)|S1|
≥0 where yi ∈

R|S
1|
≥0 , 0 ≤ i ≤M , and for all σ ∈ [M ], it holds that

Sσ(G1)y0 −Dσ(G1)yσ ≥ 0
⇒ Sσ(G2)Cy0 −Dσ(G2)Cyσ ≥ 0.

(21)

Lemma 3.3 shows that the conic comparison formu-
lated in Definition 5 is equivalent to verifying a set
inclusion between two polyhedral sets. The remainder
of the proof of Theorem 3.1 is based on an extended
version of Farkas’ Lemma, see e.g. [28, Lemma II.2],
that transforms this geometric characterization into an
algebraic relation.

Lemma 3.4 ( [28]): Consider two matrices A ∈ Rp×n
and B ∈ Rq×n. The following are equivalent:

({y ∈ Rn : Ay ≥ 0, y ≥ 0} ⊆ {y ∈ Rn : By ≥ 0})
⇔ ∃K ∈ Rm×p : KA ≤ B, K ≥ 0.

We are now in position to prove Theorem 3.1.
Proof: [Theorem 3.1] Sufficiency: Given a system (1)

in dimension n, assume that, for a vector x ∈ Rn and a
VLFC V, it holds that for all σ ∈ [M ]

Dσ(G1)V(fσ(x)) ≤ Sσ(G1)V(x).

Since Kσ is nonnegative, it holds

∀σ ∈ [M ],KσDσ(G1)V(fσ(x)) ≤ KσSσ(G1)V(x).

Applying (16) we have for all σ ∈ [M ],

Dσ(G2)CV(fσ(x)) ≤ KσDσ(G1)V(fσ(x))
≤ KσSσ(G1)V(x) ≤ Sσ(G2)CV(x),

where C satisfies (13). Therefore, (14) holds for the
graphs G1 and G2, hence G1 ≤C G2 by Definition 5.
Necessity: The result follows from Lemma 3.3, Lemma
3.4, and algebraic manipulations of the sets of linear
constraints on the vectors y in (21). Let us assume that
there is a matrix C satisfying (13) such that G1 ≤C G2.
From Lemma 3.3, this implies that for all σ ∈ [M ], the
set

{y ∈ R(M+1)|S1|
≥0 : Dσ(G1)yσ ≤ Sσ(G1)y0} (22)

is a subset of

{y ∈ R(M+1)|S1|
≥0 : Dσ(G2)Cyσ ≤ Sσ(G2)Cy0}, (23)

for σ ∈ [M ], where

y =
(
(y0)> (y1)> . . . (yM )>

)>
,

with yi ∈ R|S1|, 0 ≤ i ≤M.
The result then follows directly from Lemma 3.4.

IV. Conclusion
Path-complete Lyapunov functions have proved useful

for designing stability criteria for complex systems. It has
been noticed in the literature that some of these criteria
are less conservative than others, and entire hierarchies
have been proposed, with better performance of the
criterion when going upper in the hierarchy at the cost of
a higher computational effort. However, the relationship
between complexity and efficiency of the criteria, and
the understanding of what makes a criterion better than
another, have remained elusive until now.

This work is the first systematic attempt towards com-
paring two given such criteria, in a setting independent of
the dynamics, the choice of the vector Lyapunov function
candidates and the dimension of the system. We propose
a general necessary and sufficient condition that allows
to conclude that one criterion is better than another,
which is solely based on the topologies of the automata



describing the criteria. The condition is algebraic and can
be verified by the solution of a Linear Program.

In the future, we wish to extend the established conic
combination setting to include compositions of the pieces
of the PCLF with the dynamics. Moreover, we wish
to generalize the established theory towards a universal
characterization of ordering PCLFs.
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