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ABSTRACT

We present the first statistical study of the anisotropy of the magnetic field turbulence in the solar wind between
1 and 200 Hz, i.e. from proton to sub-electron scales. We consider 93 10-minute intervals of Cluster/STAFF

measurements. We find that the fluctuations δB2
⊥ are not gyrotropic at a given frequency f , a property already

observed at larger scales (‖/⊥ mean parallel/perpendicular to the average magnetic B0). This non-gyrotropy
gives indications on the angular distribution of the wave vectors k: at f < 10 Hz, we find that k⊥ ≫ k‖,

mainly in the fast wind; at f > 10 Hz, fluctuations with a non-negligible k‖ are also present. We then consider

the anisotropy ratio δB2
‖/δB2

⊥, which is a measure of the magnetic compressibility of the fluctuations. This

ratio, always smaller than 1, increases with f . It reaches a value showing that the fluctuations are more or
less isotropic at electron scales, for f ≥ 50 Hz. From 1 to 15-20 Hz, there is a strong correlation between
the observed compressibility and the one expected for the kinetic Alfvén waves (KAW), which only depends
on the total plasma β. For f > 15-20 Hz, the observed compressibility is larger than expected for KAW;
and it is stronger in the slow wind: this could be an indication of the presence of a slow-ion acoustic mode of
fluctuations, which is more compressive and is favored by the larger values of the electron to proton temperature
ratio generally observed in the slow wind.

1. INTRODUCTION

For tens of years, the three orthogonal components of the
magnetic field fluctuations have been observed in the solar
wind, as functions of the frequency f in the frame of a sin-
gle spacecraft. Their frequency spectra display two kinds
of anisotropy. A first anisotropy is only related to the di-
rection of the average magnetic field B0: there is less en-

ergy in the compressive fluctuations δB2
‖( f ) parallel to B0

than in the transverse fluctuations δB2
⊥( f ) perpendicular to

B0. The other anisotropy is related to the direction of B0

and to the radial direction R, which is close to the direc-
tion of the expansion velocity of the solar wind: the fluc-

tuations δB2
⊥( f ) are non-gyrotropic (non-axisymmetric with

respect to B0), with less energy in the x direction perpen-
dicular to B0 in the plane (R,B0) than in the y direction,
perpendicular to both B0 and R (see e.g., Bruno & Carbone
2013; Oughton et al. 2015). These two kinds of anisotropy
have been observed at large scales, in the inertial range of
the magnetic turbulence (Belcher & Davis 1971; Bieber et al.
1996; Wicks et al. 2012). The fluctuations are still anisotropic
and non-gyrotropic at proton scales (around [0.1, 1] Hz) and
at sub-proton scales up to 10 Hz, a range sometimes called
dissipation range (Leamon et al. 1998; Turner et al. 2011). In
the present work, we study the anisotropies of δB from 1 Hz
to about 200 Hz, in a sample of 93 intervals of 10 minutes. In-
deed, the nature of the turbulent fluctuations in the solar wind
is still under investigation, and a study of their anisotropies
can throw some light on this question: previous works have

shown that the anisotropy δB2
‖/δB2

⊥ gives indications on the

nature of the dominant mode of the fluctuations, while the

1 LESIA-Observatoire de Paris, PSL Research University, CNRS,
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non-gyrotropy of δB2
⊥ gives indications on the directions of

the wave vectors k, i.e. the anisotropy of the k-distribution.
The general shape P(k) of the k-distribution can be de-

duced from the non-gyrotropy of δB2
⊥( f ), using the fact that

fluctuations with different k contribute to the reduced spec-
tral density observed at a same f . If P(k) is gyrotropic, a
2D turbulence (i.e. k⊥ ≫ k‖) will be observed with a non-

gyrotropic δB2
⊥( f ) in the satellite frame; for a slab turbu-

lence (i.e. k⊥ ≪ k‖), δB2
⊥( f ) will be gyrotropic in the satel-

lite frame (Bieber et al. 1996). Previous observations in the
inertial range have shown that the k-distribution is mainly
2D. However, the slab component is also present and its
proportion increases when f reaches the proton scales [0.1,
1] Hz (Bieber et al. 1996; Leamon et al. 1998; Hamilton et al.
2008).

The anisotropy of the k-distribution of the fluctuations has
also been estimated by a comparison of the correlation lengths
parallel and perpendicular to B0, with a single spacecraft,
assuming a stationary and gyrotropic k-distribution in the

MHD range, below 10−3 Hz (Matthaeus et al. 1990) and be-

low 10−2 Hz (Dasso et al. 2005). Multispacecraft measure-
ments also allow a comparison of the correlation lengths, par-
allel and perpendicular to B0, in the inertial range, still assum-
ing a gyrotropic k-distribution. Osman & Horbury (2007),
with Cluster observations, find an indication that the k-
distributions in the inertial range are more 2D for the com-

pressive fluctuations δB2
‖ than for the transverse fluctuations

δB2
⊥.
Using data from the four Cluster spacecraft, Chen et al.

(2010) find that δB2
‖ and δB2

⊥ have a k-distribution with

k⊥ > k‖, below 10 Hz. Using the k-filtering technique,

Sahraoui et al. (2010) find k⊥ ≫ k‖ up to 2 Hz. Still us-

ing the k-filtering technique below 1 Hz, for 52 intervals of
Cluster data, Roberts et al. (2015) find k⊥ ≫ k‖; except in

four intervals with a relatively fast wind, where quasi-parallel
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wave vectors are also present above 0.05 Hz, up to 0.3 Hz
where they disappear (Roberts & Li 2015). These quasi-
parallel wave vectors correspond to Alfvén Ion Cyclotron
waves (AIC) which are usually observed in this frequency
range, in a fast wind (Jian et al. 2014). At proton scales, in
the range [0.1,2.5] Hz, Perrone et al. (2016) find that the mag-
netic fluctuations in a slow wind are mainly compressive co-
herent structures, with k⊥ ≫ k‖. At the same scales, but in a

fast wind, Lion et al. (2016) find Alfvénic coherent structures
with k⊥ ≫ k‖, and quasi-monochromatic AIC waves with

k‖ ≫ k⊥, superimposed on a non-coherent and non-polarised

component of the turbulence. In these analyses, as well as
in Perschke et al. (2013), there is no clear mention of a non-
gyrotropy of the wave vector energy distribution in the solar
wind.

The second kind of anisotropy, the ratio δB2
‖/δB2

⊥, is a mea-

sure of the compressibility of the magnetic fluctuations. In the
inertial range, as well as at proton scales, the compressibil-
ity increases when the proton βp factor increases (Smith et al.
2006; Hamilton et al. 2008). βp (βe) is the ratio between
the proton (electron) thermal energy and the magnetic en-
ergy. The compressibility also increases when f increases,
from the inertial range to proton scales (Hamilton et al. 2008;
Salem et al. 2012) and from 0.3 to 4 Hz (Podesta & TenBarge
2012). At sub-proton scales, the compressibility still in-
creases with βp up to 10 Hz (Alexandrova et al. 2008a) and
still increases with f up to 100 Hz (Kiyani et al. 2013). We
call dp and de the proton and electron inertial lengths, ρp and
ρe the proton and electron gyroradii, calculated with the tem-
peratures perpendicular Tp⊥ and Te⊥ perpendicular to B0.

Even if isolated, coherent and non-linear structures are
present in the solar wind (Perri et al. 2012; Perrone et al.
2016; Lion et al. 2016), the comparison of observed dimen-
sionless ratios of the fluctuating fields and plasma quantities
(transport ratios) with the linear properties of the plasma wave
modes can give indications, in a first approximation, on the
nature of the dominant type of the fluctuations (Gary 1992;
Krauss-Varban et al. 1994; Denton et al. 1998). This usual
modelling of the turbulence as a superposition of linear waves
is discussed by Klein et al. (2012) and TenBarge et al. (2012)
who consider Alfvén, fast, whistler and slow modes from the
MHD to the kinetic range.

The slow mode is frequently neglected because it is strongly
damped, except when the electron to proton temperature ra-
tio Te/Tp is larger than 1. However Wind observations at
large scales (kρp < 0.05), in the inertial range, show that
the anticorrelation between the density and the compres-
sive magnetic fluctuations is typical of quasi-perpendicular
slow modes; kinetic slow waves may then be cascaded as
passive fluctuations by Alfvénic fluctuations, and thus ex-
ist at proton scales (Howes et al. 2012; Klein et al. 2012).
Narita & Marsch (2015) underline how difficult it is to distin-
guish between kinetic slow modes and kinetic Alfvén waves
(KAW), mainly in a high-beta plasma.

Salem et al. (2012) compare the observed compressibility
with the compressibility expected for whistler waves or for
KAW, and find that the compressibility up to 1 Hz can be ex-
plained by KAW-like fluctuations, with nearly perpendicular
wave vectors. Quasi-perpendicular KAW are generally found
up to proton scales, i.e. up to 1 to 3 Hz (Sahraoui et al. 2010;
He et al. 2012; Podesta & TenBarge 2012; Podesta 2013;
Roberts et al. 2015). Conversely, Smith et al. (2012) find that
KAW cannot be the only component below 1 Hz, at least when

βp is larger than 1. Comparing the spectra of the density and
of the magnetic field fluctuations measured on the ARTEMIS-
P2 spacecraft, Chen et al. (2013) find KAW between 2.5 and
7.5 Hz, i.e. kρp ≃ 5 to 14.

Calculations of Podesta et al. (2010) show that the linear
collisionless electron Landau damping prevents KAW to cas-
cade to the electron scales, so that the energy cascade to
these scales must be supported by wave modes other than
the KAW mode. On the other hand, analytical calculations
and numerical simulations of the turbulence at sub-proton
scales show that a cascade characterized by KAW-like prop-
erties can be sustained between proton and electron scales
(Howes et al. 2011; TenBarge et al. 2013; Franci et al. 2015;
Schreiner & Saur 2017) and can explain the shape of the spec-
tra observed by Alexandrova et al. (2012), controlled by the
electron gyroradius.

With 2D kinetic simulations, Camporeale & Burgess
(2011b) analyse the dispersion relation and the electron com-
pressibility (i.e. the ratio between the electron density and the
magnetic field modulus of the fluctuations) up to kρe = 1 or
more, for βp = βe = 0.5. They find that the electron compress-
ibility of the simulated fluctuations is too small to be related to
slow-ion acoustic waves, and much too large to be related to
whistler waves, while KAW are damped. They conclude that
the fluctuations are probably a mixture of different modes.

In this paper, we consider the two types of anisotropy dis-
cussed above: (i) the non-gyrotropy of δB⊥ and (ii) the com-

pressibility of the magnetic fluctuations δB2
‖/δB2

⊥. After a

presentation of the Cluster/STAFF instrument (section 2) and
of the data selection procedure (section 3), we study the non-
gyrotropy of δB⊥. In section 4, we compare our observa-
tions, from 1 Hz to 50 Hz or more, in the fast wind and in the
slow wind, with the calculations of Saur & Bieber (1999): this
gives us indications on the k-distribution, assumed to be gy-
rotropic in the plasma frame. Note that the values of the field-
to-flow angle θ are near 90◦ in our sample, otherwise Cluster
would be magnetically connected to the Earth’s bow shock. In
section 5, we study the compressibility of the magnetic fluc-
tuations. We show how the compressibility depends on the
plasma parameters in our sample. Then, we compare our ob-
servations with the predictions for KAW. We show that the ob-
served magnetic compressibility agrees with the KAW com-
pressibility up to 15-20 Hz, which corresponds to kde ≃ 0.3 in
our sample (where the electron inertial length de is about 1 to
3 km). Above 20 Hz, the magnetic fluctuations are more com-
pressive than KAW, and more compressive in the slow wind
than in the fast wind. It is well-known that the electron to
proton temperature ratio Te/Tp is larger in the slow wind. A
larger Te/Tp increases the damping of KAW for several values
of βp and k (Schreiner & Saur 2017) but reduces the damping
of the slow-ion acoustic mode; so that we cannot exclude the
presence of this last mode for f > 20 Hz, i.e. for kde ≥ 0.3,
a mode which would be less damped and more compressive
than the KAW mode.

2. INSTRUMENTS AND DATA

The present study relies on data sets from different exper-
iments onboard a spacecraft (Cluster 1) of the Cluster fleet.
The Spatio-Temporal Analysis of Field Fluctuations (STAFF)
experiment on Cluster (Cornilleau-Wehrlin et al. 1997, 2003)
measures the three orthogonal components of the magnetic
field fluctuations in the frequency range 0.1 Hz - 4 kHz, and
comprises two on board analysers, a wave form unit (SC)
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and a Spectrum Analyser (SA). STAFF-SC provides digi-
tized wave forms, which are projected in the Magnetic Field
Aligned (MFA) frame given by the FGM experiment every 4
seconds; Morlet wavelet spectra are then calculated between
1 and 9 Hz. The Spectrum Analyser builds a 3x3 spectral ma-
trix every 4 s, at 27 frequencies between 8 Hz and 4 kHz. This
spectral matrix is also projected in the MFA frame: the Prop-
agation Analysis of STAFF-SA Data with Coherency Tests
(PRASSADCO program) gives the fluctuation properties, di-
rection of propagation, phase and polarisation with respect to
B0 (Santolı́k et al. 2003). Both experiments, SC and SA, al-
low to see whether the observed fluctuations are polarised or
not. In some intervals, circularly-polarised fluctuations are
observed, with a direction of propagation near B0, at frequen-
cies displaying a small or large spectral bump. These fluctua-
tions are quasi-parallel whistler waves (Lacombe et al. 2014).
In the present work we only consider intervals without such
quasi-parallel whistler waves.

The WHISPER experiment (Décréau et al. 1997) is used to
check that Cluster is in the free solar wind, i.e. that the mag-
netic field line through Cluster does not intersects the Earth’s
bow shock: there is no electrostatic or Langmuir wave, typical
of the foreshock, in our sample. Some of the intervals stud-
ied by Perri et al. (2009), Narita et al. (2010, 2011a,b), Narita
(2014), Comişel et al. (2014), and Perschke et al. (2014) con-
tain incursions of Cluster in the foreshock.

The Cluster Science Data System gives the magnetic field
B0 every 4 s (FGM experiment, Balogh et al. (1997)), the pro-
ton density Np, the wind velocity Vsw and the proton tem-
peratures Tp‖ and Tp⊥, parallel and perpendicular to B0 of

the whole proton distribution (CIS experiment, Rème et al.
(1997)). The electron parameters given by the Low Energy
Electron Analyser of the PEACE experiment (Johnstone et al.
1997) are taken from the Cluster Science Archive: we use the
electron temperatures Te‖ and Te⊥ of the whole electron dis-

tribution.

3. DATA SET

We first consider the same sample of solar wind intervals as
Alexandrova et al. (2012), observed on Cluster 1 from 2001 to
2005. This sample contains 100 intervals of 10 minutes, when
magnetic fluctuations (which are not circularly polarised) are
observed above 1 Hz, up to 20 to 400 Hz according to the
intensity of the fluctuations. These frequencies are above the
proton cyclotron frequency fcp = [0.08 - 0.3 Hz] in our sam-
ple. With the Taylor hypothesis 2π f = ω ≃ k ·Vsw, where k
is the wavenumber of the fluctuations, the scales correspond-
ing to the observed frequencies decrease from kde ≃ 0.01 to
kde ≃ 3 (kdp ≃ 0.4 to 130).

For each 10-minute interval, average spectra are calculated
over 150 points (4 s spectra) in the three directions of the MFA
frame. The 4 s FGM magnetic field B0 can be considered as
a quasi-local mean field, giving an average frame valid for
fluctuations above ≃ 1 Hz. It is not really a local mean B0,
which would be computed with waveforms at each scale: such
a computation is impossible with the STAFF-SA data, above
1 Hz. A consequence of this use of a quasi-local mean B0, in
place of a local field, will be mentioned in section 4.1.

Alexandrova et al. (2012) studied the spectral shape of the
total variance of the fluctuations, summed in the three di-
rections (without subtraction of the background noise). We
now want to study the anisotropies of the variance of the
magnetic fluctuations. It is well known that the variance
is anisotropic, in the inertial range and at kinetic scales,

Figure 1. Ranges of the solar wind parameters of our sample. a) the factors
βp and βe. The dotted lines indicate the ranges of small and large βp con-

sidered in Figures 6 and 7d. b) The wind speed and Te/Tp. The dotted lines
indicate the ranges of slow and fast wind considered in sections 4.3 and 5.2.
c) Tp⊥/Tp‖ is always weaker than 1. d) Te⊥/Te‖ is generally weaker than 1.

and that the anisotropies are weaker at small scales (see
e.g. Turner et al. (2011), and references therein; Kiyani et al.
(2013)). At high frequencies, the Power Spectral Density
(PSD) is weaker, and tends towards the instrument back-
ground noise, which is an additive noise. It is thus neces-
sary to subtract the background noise, not only for the total
3D magnetic variance but also for the 1D variance in each
direction. This subtraction has been done as explained in Ap-
pendix. As a result, 7 intervals among 100 have been with-
drawn from the sample because their signal-to-noise ratio was
smaller than 3 at 20 Hz and above. We thus obtain 93 inter-
vals with 1D and 3D spectra intense enough up to 20 Hz or
more, after subtraction of 1D and 3D background noise. The
importance of the noise subtraction is illustrated in Figure 4
of Howes et al. (2008).

During these intervals in the free solar wind, the Cluster
orbit implies that the average magnetic field B0 makes a large
angle with the solar wind velocity: the sampling direction is
far from the B0 direction. The acute angle θ between B0 and
R, which is close to the field-to-flow angle, is always larger
than 52◦ in our sample; its average value is 78◦.

Figure 1 gives the ranges of the plasma properties which
can be found in our data set. It displays scatter plots of the
beta factors βe and βp, of the solar wind speed Vsw, of the elec-
tron to proton temperature ratio Te/Tp, and of the anisotropy
ratios of the proton and electron temperature, Tp⊥/Tp‖ and

Te⊥/Te‖. βp varies between 0.28 and 5.1, and βe between

0.08 and 3.9 (Fig. 1a). Te/Tp varies between 0.22 and 2.2,
and Vsw between 300 and 690 km/s (Fig. 1b). Tp⊥/Tp‖ varies

between 0.12 and 0.97 (Fig. 1c), and Te⊥/Te‖ between 0.57

and 1 (Fig. 1d). Within these ranges, the plasma is expected to
be sufficiently far from the thresholds of proton and electron

kinetic instabilities (e.g., Hellinger et al. 2006; Štverák et al.
2008; Matteini et al. 2013; Chen et al. 2016), at least in the
majority of the intervals analysed. We then exclude that a
possible wave activity associated to these processes may sig-
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Figure 2. The most intense, and one of the weakest spectra of our sample.
The green long-dashed line gives the average background noise bn1D( f ) on
a search coil (see Appendix). The two vertical solid lines give the frequency
fρe = Vsw/(2πρe) corresponding to the electron gyroradius scale for the two
spectra, (1) and (2) .

nificantly affect the results of this work.

4. OBSERVATIONS, AND WAVE VECTOR DISTRIBUTION

4.1. Spectra and anisotropies

We consider the anisotropic Power Spectral Density (PSD)
P( f ) of the magnetic fluctuations as a function of f . The PSD
of the transverse fluctuations, perpendicular to B0, is P⊥( f ) =
Pxx( f )+Pyy( f ). Pyy is the PSD perpendicular to B0 and to R,
and Pxx is the PSD perpendicular to B0 in the plane (R,B0).
We call compressive the fluctuations parallel to B0 i.e. to z,
P‖ = Pzz. We call P3D( f ) the sum of the fluctuations in the

three directions P3D = P‖+P⊥. Two spectra of our sample are

shown in Figure 2. For each spectrum, the solid line gives Pyy,
the dashed line Pxx and the dash-dot line Pzz. We see that Pyy

is the most intense spectrum and that Pxx is generally the least
intense. Pzz is close to Pxx at the lowest frequencies, and close
to Pyy at the highest frequencies.

Figure 3a displays the anisotropy of the variance of the fluc-
tuations in the two directions x and y perpendicular to B0. The
93 solid lines are the ratios of the 10-minute averages of the
PSD in these two directions, anisotropy ratios as functions
of f (see a discussion about different averaging methods in
TenBarge et al. (2012)). The red diamonds are average val-
ues of these anisotropy ratios over the 93 events, at each fre-
quency. Pyy/Pxx is always larger than 1. This implies that the
transverse fluctuations are not gyrotropic at a given frequency
in the spacecraft frame. The fact that the non-gyrotropy of
P( f ) could be compatible with a gyrotropic wave vector en-
ergy distribution has been suggested by Alexandrova et al.
(2008b). By analytical calculations and numerical simula-
tions, Turner et al. (2011) have shown that this suggestion was
valid for the magnetic fluctuations in the solar wind, from the
inertial range to 10 Hz, if the frequency f is only due to the
sampling along Vsw (Taylor hypothesis) and if the modulus q
of the spectral index of the fluctuations is larger than 1.

The compressibility P‖/P⊥ of the 93 events, observed as

a function of f , is given in Figure 3b: the average value of
P‖/P⊥ at each frequency is shown by red diamonds. The

Figure 3. Variance anisotropies: ratios between the 10-minute averaged PSD
in different directions. The solid lines are for the 93 events. The red diamonds
are averages of these ratios, at each frequency. a) ratio (Pyy/Pxx)( f ) between
the average PSD in the two directions x and y perpendicular to B0. b) the
magnetic compressibility (P‖/P⊥)( f ), ratio between the compressive PSD

and the total transverse PSD. In each panel, the thick horizontal bars give the
frequency range of fρp = Vsw/(2πρp), fdp = Vsw/(2πdp), fρe = Vsw/(2πρe)

and fde =Vsw/(2πde) in the sample.

compressibility increases when f increases. The Figure 10
of TenBarge et al. (2012) illustrates how the compressibility
depends on the chosen local B0 field: the compressiblity cal-
culated with a field averaged over 1 hour can be 2 to 3 times
larger than the compressibility calculated with a local field.
We thus think that our quasi-local field (4 s average) can lead
to a slight overestimation of the compressibility at the highest
frequencies.

According to Figure 3 (see the horizontal bars in each
panel), the frequencies fρp corresponding to the proton gy-

roscale (kρp = 1) are generally found between 1 and 4 Hz,
and the frequencies fdp between 0.7 and 2 Hz. For the elec-

tron scales, fρe is mainly found between 30 and 200 Hz, and
fde between 30 and 100 Hz.

In the following subsection, we shall look for wave vec-
tor distributions consistent with the non-gyrotropy in the fre-
quency domain displayed in Figure 3a. The other anisotropy,
the compressibility P‖/P⊥ (Fig. 3b), will be studied in section
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5.

4.2. Angular distributions of the wave vectors

Saur & Bieber (1999) consider four models for the wave
vector angular distribution in the solar wind, and the resultant
PSD anisotropies in the frequency domain, assuming that the
fluctuations are stationary and frozen-in (Taylor hypothesis).
The four distributions are:

a) a slab symmetry with respect to B0 i.e. k strictly parallel
to B0.

b) a gyrotropic 2D distribution, with k strictly perpendicu-
lar to B0. The corresponding fluctuations are in planes which
contain B0, and can make any angle with it, with a component
P‖ parallel to B0 and a component P⊥ perpendicular to B0.

c) an isotropic wave vector distribution.
d) a slab symmetry with respect to the radial direction i.e.

k strictly parallel to R.
Equations (33) to (43) of Saur & Bieber (1999) give the val-
ues of Pxx( f ), Pyy( f ) and Pzz( f ) for the four above distribu-
tions, as functions of f , θ and (P‖/P⊥)( f ). The PSD are

power laws ≃ f−q. The spectral index q of the fluctuations
is assumed to be the same in the three directions x, y and z,
and constant over the whole frequency range.

The equations of Saur & Bieber (1999) are valid at MHD
scales, larger than ρp and dp. However, at smaller scales, the
Hall term starts to show its effects in the induction equation.
As clearly shown by Kiyani et al. (2013) (see also the detailed
derivation of Schekochihin et al. 2009), the Hall term implies
interactions between the compressive Pzz and transverse P⊥
fluctuations, and an enhancement of the magnetic compress-
ibility. Thus, the MHD terms Pzz/Pyy and Pzz/Pxx given by
Saur & Bieber (1999) are no more valid at proton and elec-
tron scales. The term Pyy/Pxx, which only involves transverse
fluctuations, can be considered as less affected by the Hall
effect: it does not depend on P‖/P⊥. It is thus able to give

indications on the wave vector distribution at scales smaller
than the MHD scales.

Figure 4. For (Pyy/Pxx)( f ), comparison of the observations with two models
(Eqs. 2 and 3). Red diamonds: the observed average anisotropies, given by
diamonds in Figure 3a; the error interval at each frequency, related to the
standard deviation over the 93 intervals, is given by the red lines. Thick
black lines: the average anisotropy calculated for two models of the angular
distribution of the wave vectors; a) the 2D model (Eq. 2); b) the isotropic
model (Eq. 3). The thin black lines give the standard deviation for each
model, related to the dispersion of the spectral index q over the 93 intervals.

The anisotropy Pyy/Pxx can be calculated with the formulas
of Saur & Bieber (1999) for the four above distributions. For
the slab symmetry with respect to B0,

(Pyy/Pxx)( f ) = 1. (1)

This distribution gives a gyrotropic variance, which is not ob-
served. For the 2D distribution, Pyy( f ) and Pxx( f ) depend on
(P‖/P⊥)( f ) in the same way, so that their ratio does not de-

pend on it:

(Pyy/Pxx)( f ) = q, (2)

where q is the spectral index of Pxx and Pyy. For the isotropic
distribution, Pyy( f ) and Pxx( f ) do not depend on (P‖/P⊥)( f ):

(Pyy/Pxx)( f ) =
(1+ q)/2

cos2θ(1+ q)/2+ sin2θ
(3)

where θ is the field-to-flow angle. For the slab symmetry with
respect to R,

(Pyy/Pxx)( f ) = 1/cos2θ, (4)

In Figure 4, the observations of Pyy/Pxx are compared with
two models (Eqs. 2 and 3). The calculated anisotropies de-
pend on the observed spectral index q. To get an average value
< q > of the spectral index at each frequency, we use succes-
sive averaging processes: we first calculate the local slope
(linear fit over three contiguous frequencies) of the total spec-
trum P3D of each event of our sample; then, we smooth this
local slope over 11 contiguous frequencies for each event; fi-
nally, we average the slope over the 93 events, and find < q >.

In Figures 4a and 4b, the observed average anisotropy (red
diamonds) Pyy/Pxx shown in Figure 3a is drawn as a func-
tion of f . As the dispersion of Pyy/Pxx for the 93 events is
large (Fig. 3a), the two red lines of Figures 4a and 4b give
the error interval (average ± the standard deviation) at each
frequency. Following Eq. (2), Pyy/Pxx for the 2D distribution
is equal to the spectral index. Thus, in Figure 4a, the thick
black solid line for the 2D k-distribution shows the observed
average < q >: it varies between 2.7 and 2.9 below 6 Hz;
then it increases up to 4 when f increases. This regular in-
crease of < q > is due to the exponential shape of the spectra
(Alexandrova et al. 2012). The thin black lines give the stan-
dard deviation for < q> over the 93 events, i.e. the dispersion
of the 2D model itself. Taking into account the standard de-
viation of the observed ratio Pyy/Pxx (red lines), it is clear that
the observations from 1 Hz to 6 Hz are close to the ratio for
a 2D k-distribution. Above 10 Hz (at sub-proton and electron
scales) the observations are further from the 2D model.

In Figure 4b, the observations are compared with the
isotropic model (with its standard deviation). Below 10 Hz,
the observations are far from the isotropic model. Above
10 Hz, the observations are near the ratio for an isotropic k-
distribution. At any frequency, the slab model (Eq. 1) is far
from the observations. The ratio (Eq. 4) for the model with
a slab symmetry with respect to R is not drawn in Figure 4
because it is generally larger than 10. We conclude that the
2D model is better below 6 Hz, and the isotropic model better
above 10 Hz. However, this conclusion relies on the hypoth-
esis of Saur & Bieber (1999) that the spectral index q is con-
stant over the whole frequency range: this is not exact above
about 10 Hz (Fig. 4a). Our results are just an indication, given
by the non-gyrotropy of the PSD, that the k-distribution tends
to be 2D below 6 Hz, and more isotropic above 10 Hz.

Several authors assume that the turbulence is in critical bal-
ance, i.e. the nonlinear cascade rate is of the order of the
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Figure 5. Ratios (Pyy/Pxx)( f ) for two samples: a sample (16 events) with
Vsw < 380 km/s (blue symbols), and a sample (16 events) with Vsw > 630 km/s
(red symbols). (a) the thin lines give Pyy/Pxx for the considered events, the
crosses give the average values over 16 events. (b) The crosses are the same
average values as in (a); the thin solid lines give the error interval (average
± the standard deviation) for the observations in the fast and the slow wind.
From about 2 Hz to 10 Hz, the difference between the fast and the slow wind
is significant. (c) the red crosses are the average values of Pyy/Pxx given in
(b) for the fast wind intervals. (d) the blue crosses are the average values
of Pyy/Pxx given in (b) for the slow wind intervals. In c) and d), the thick
black lines are the average ratios for the 2D (solid line) and isotropic (dash-
dot line) distributions (Eqs. 2 and 3) in the same (respectively fast and slow)
wind intervals. In (c) and (d), the thin lines on either side of the 2D and the
isotropic model give the error interval of the model (average ± the standard
deviation), related to the dispersion of the spectral index. The horizontal bars
give the frequency ranges corresponding to the proton and electron scales
respectively in the fast and slow wind intervals.

linear frequency. Such a model implies relations between k‖
and k⊥, i.e. privileged directions of the wave vectors, with
more and more energy in k⊥ when the wavenumber increases
(see Fig. 1 of Howes et al. 2008). It can be valid from the
inertial range to the kinetic range (Goldreich & Sridhar 1995;
Howes et al. 2008; Schekochihin et al. 2009; TenBarge et al.
2013). In our sample, the critical balance model could be
valid at low frequency (below 6 Hz) where the wave vec-
tors are quasi-perpendicular; but it is probably less valid at
higher frequency, where the k-distribution is more isotropic,
i.e. with relatively more energy in oblique or parallel wave
vectors when the wavenumber increases.

To explain the variations of the observed anisotropies with
the field-to-flow angle θ at a given frequency, different au-
thors consider a linear combination of two of the above dis-
tributions (Saur & Bieber (1999) and references therein), slab,
slab/R, 2D and isotropic, in different frequency domains in the

solar wind. At frequencies [10−3 Hz, 2 10−2 Hz], Bieber et al.
(1996) find that the turbulence in the inertial range can be de-
scribed by≃ 85% of the energy in 2D fluctuations, and≃ 15%
in slab fluctuations. Leamon et al. (1998) find that the pro-
portion of slab fluctuations increases at proton scales (0.1 to
1 Hz). Hamilton et al. (2008) find an even larger proportion
(more than 80%) of slab fluctuations at proton scales. How-
ever, the pure 2D + slab combination is oversimplified: an an-

gular lobe of wave vectors along each axis has probably to be
considered. This is illustrated by the work of Mangeney et al.
(2006) who study the variations, as a function of θ, of the PSD
of the magnetic fluctuations and of the PSD of the electric
fluctuations observed by Cluster in the magnetosheath from
8 Hz to 2 kHz. They find that the electromagnetic PSD, up
to kde ≃ 30 or more, can be explained by a 2D k-distribution,
with an aperture angle of about 10◦; the electrostatic fluctua-
tions, above kde ≃ 160 can be explained by a slab distribution,
with the same aperture angle for k around B0.

A more or less smooth transition from a 2D to an isotropic
k-distribution, when f increases, could be a model of our
observations more realistic than a two-components model
with an increasing proportion of slab fluctuations when f in-
creases.

4.3. Wavevector distribution in the fast and slow winds

In the inertial range (resolution of about 1-minute),
Dasso et al. (2005) and Weygand et al. (2011) find that fast
streams are dominated by wave vectors quasi-parallel to
B0, while intermediate and slow streams have quasi-2D k-
distributions. Osman & Horbury (2007), using 4 s FGM data
on Cluster, do not find any relation between the solar wind
speed and the ratio of the parallel to perpendicular correlation
lengths. Hamilton et al. (2008) do not find a significant differ-
ence between the k-distribution in the fast and the slow wind,
neither in the inertial range nor at proton scales.

In our sample, the wind speed varies from 300 to 700 km/s
(Fig. 1b). We consider separately a sample of 16 inter-
vals with Vsw > 630 km/s, and a sample of 16 intervals with
Vsw < 380 km/s. Figure 5a displays Pyy/Pxx as a function of
f for the fast wind (red) and for the slow wind (blue). The
crosses give the average value of each sample. We see that
the average value of Pyy/Pxx is larger for the fast wind, be-
low 10 Hz. Is this difference significant, in view of the large
dispersion of Pyy/Pxx in each sample? In Figure 5b, the av-
erage values of Figure 5a (crosses) are shown again, as well
as the error interval for each sample (average ± the standard
deviation) given by the solid lines of the same color. Be-
tween 2 Hz and 10 Hz, the average values given by the red
(blue) crosses are at the boundary of the blue (red) error inter-
val: the difference between the averages of Pyy/Pxx in the fast
wind and the slow wind is thus significant at these frequen-
cies. Figures 5c and 5d allow a comparison of the averages
of Pyy/Pxx observed in the fast and the slow wind (crosses) to
Pyy/Pxx calculated for two models of the k-distribution given
by Saur & Bieber (1999) (Eqs. 2 and 3).

We thus find that the 2D character of the k-distribution
is stronger in the fast wind than in the slow wind, from 1
to 10 Hz. This is contrary to the observations in the iner-
tial range (quoted above). In the same way, simulations lead
Verdini & Grappin (2016) to conjecture that the turbulence is
more isotropic in the fast wind than in the slow wind, still in
the inertial range. A reason for these differences could be that
our frequency range is more than one hundred times higher
than the inertial range, so that the operating physical processes
can be different.

5. MAGNETIC COMPRESSIBILITY OF THE FLUCTUATIONS

The compressibility P‖/P⊥ of the 93 events of our sample

(Figure 3b) increases with the frequency. The average value
of P‖/P⊥ is about 0.2 at 1 Hz, and reaches 0.5 at 50 Hz, close

to the values displayed in Figure 1 of Kiyani et al. (2013).
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Above 50 Hz, P‖/P⊥ is larger than the value 0.5 correspond-

ing to an isotropic variance, and it still increases up to 0.65 at
200 Hz. To allow comparisons with other works, Figure 6a
displays P‖/P3D, another definition of the compressibility, as

a function of f . Salem et al. (2012) find that P‖/P3D reaches

0.5 at 2 Hz. This is larger than what we find.

Figure 6. The compressibility, here defined as P‖/P3D, as function of f in

(a) and of k in (b) for the 93 events. In (a), the red diamonds give the com-
pressibility at each frequency, averaged over the 93 events; the lower dashed
red curve gives the average compressibility for the five events with the low-
est values of βp (0.28 < βp < 0.35), while the upper dashed red curve gives

the average compressibility for the five events with the largest values of βp

(2.6 < βp < 5.1). In (b), the five lower (upper) red lines give the compress-

ibility for the same five events with the lowest (largest) values of βp .

The ranges of βp values of our sample are given in Figure
1a. The lower red dashed line in Figure 6a is the average
of P‖/P3D for five events with a small βp, and the upper red

dashed line for five events with a large βp (see the selected
values of βp in the caption). These red lines show that the
compressibility, and the variation of the compressibility with
f , depend strongly on βp.

5.1. Compressibility in the wavenumber domain

Converting the observed frequency f into a wavenumber
k = 2π f/Vsw (Taylor hypothesis) we calculate the PSD Pxx(k),
Pyy(k), Pzz(k) and P3D(k) in nT2km (in spite of the fact that
this conversion is problematic for anisotropic k-distributions
and reduced spectra; we shall return to this point in the Dis-
cussion). In Figure 6b, similar to Figure 6a, we see that the
variation of the compressibility P‖/P3D with the wavenumber

k depend strongly on βp.
We then normalize k to the electron inertial length de, or to

the gyroradii ρe or ρp, and interpolate the normalized PSD at
15 values of kde, kρe or kρp. Figures 7a and 7b give the total
power P3D as functions of kde and kρe. The slope of the spec-
tra is close to -2.8 at the largest scales. At the smallest scales,
the spectra are steeper, with an exponential shape controlled
by the electron gyroradius (Alexandrova et al. 2012).

Figure 7c gives the compressibility P‖/P3D as a function of

kde. The vertical bars in the abscissae give kdp = 1, 10 and
100. With high-resolution 2D hybrid simulations of a decay-
ing turbulence, for βp = βe = 0.5, Franci et al. (2015) obtain
a compressibility P‖/P3D increasing from 0.1, at kdp = 0.1,

to 0.5 at kdp = 2, and a nearly constant (plateau) value ≃ 0.6
for kdp = 5 to 10. (See also the gyrokinetic simulations in
Fig. 9 of TenBarge et al. 2012). After a kind of plateau from

Figure 7. In the wavenumber domain, for the 93 intervals. (a) 3D spectra as
functions of kde. (b) 3D spectra as functions of kρp. The dotted line helps to

see that the spectral slopes are close to -2.8. (c) Compressibility P‖/P3D a a

function of kde . (d) Ratio P⊥/P‖ as a function of kρp . The upper solid red

line is the average value of P⊥/P‖ for the five events with the lowest values of

βp (0.28 < βp < 0.35), while the lower solid red line is the average value for

the five events with the largest values of βp (2.6 < βp < 5.1). In (c) and (d),
the red diamonds give the average value at each scale. The vertical bars in
the abscissae of (a) and (c) give kdp = 1, 10 and 100. The horizontal dashed
lines indicate values corresponding to an isotropic PSD.

kdp = 2 to 10, the observed average P‖/P3D (Fig. 7c) in-

creases from kdp = 10 to 100, but it is always smaller than
0.4 (reached for kde ≃ 2, kdp = 100). We conclude that the
observed and the simulated compressibility have similar vari-
ations up to kdp = 10; but the observed compressibility is 2 to
3 times weaker: we shall discuss this last point in section 6.
For kdp > 10, a domain not reached by these simulations, the
observed compressibility still increases.

Figure 8. Ratios (P‖/P⊥)( f ) for two samples: a sample (16 events) with

Vsw < 380 km/s (blue symbols), and a sample (16 events) with Vsw > 630
km/s (red symbols). (a) the thin lines give P‖/P⊥ for the considered events,

the crosses give the average values over 16 events. (b) The crosses are the
same average values as in (a); the solid lines give the error interval (average
± the standard deviation) for the fast and the slow wind. Above about 20 Hz,
the difference between the compressibility in the slow and the fast wind is
significant.
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5.2. Compressibility in the fast and slow winds

In Figure 8a, we compare the compressibility P‖/P⊥ for a

sample of 16 intervals in the fast wind (red) and 16 intervals in
the slow wind (blue). The crosses give the average values for
each sample. In Figure 8b, taking into account the standard
deviation of each sample, we see that the compressibility is
the same in the fast wind and in the slow wind for f < 10 Hz.
For f > 15-20 Hz, it is larger in the slow wind. It is well-
known that there is a correlation between Vsw and Tp, in the
solar wind: fast winds have a higher proton temperature than
slow winds, the electron temperature having a smaller range
of variation (see e.g. Mangeney et al. 1999): Te/Tp is anticor-
related with Vsw (Fig. 1b). Thus, the larger compressibility
observed in the slow wind above 15-20 Hz could be related to
larger values of Te/Tp.

5.3. Role of βp

Smith et al. (2006) in the inertial range, Hamilton et al.
(2008) up to 0.8 Hz, Alexandrova et al. (2008a) from 0.3 Hz
to 10 Hz, find that the compressibility increases when βp in-
creases. This is clear in Figure 9, for the present sample, at
2 Hz and 5 Hz. The slope of P‖/P⊥ as a function of logβp

(solid lines in Figure 9) decreases when f increases, from 5
to 22 Hz. At 56 Hz, the compressibility is no more correlated
with βp.

5.4. Compressibility versus different plasma parameters

Figure 9. P‖/P⊥ as a function of βp, at four frequencies (2, 5, 22 and 56 Hz),

cuts of Figure 3b. The correlation coefficient Cc between P‖/P⊥ and βp is

given in each panel.

The correlations of the compressibility with different
plasma parameters in the solar wind can help to identify
the nature of the dominant mode in the magnetic fluctua-
tions. Figures 10a to 10f display the correlation coefficients
of (P‖/P⊥)( f ) with local parameters related to the proton or

electron temperature. Scatter plots of these plasma parame-
ters are shown in Figure 1. The correlation of P‖/P⊥ with βp

Figure 10. As functions of the frequency, correlations of the observed com-
pressibility (P‖/P⊥)( f ) with plasma parameters: (a) βp, (b) Tp⊥/Tp‖, (c) βe,

(d) the compressibility Cka
‖/⊥ of kinetic Alfvén waves (eq. 5), (e) Te/Tp, (f)

1/Vsw (the diamonds give the correlations between the considered quantities,
and the crosses, between the logarithms). In the six panels, the dotted line
gives the fraction of the 93 events which are intense enough at this frequency
to be implied in the correlation: the fraction is 1 (93 events) up to 22 Hz,
more than 0.6 (≃ 60 events) up to 40 Hz, but less than 0.3 (≃ 30 events)
above 80 Hz. The horizontal bars in (d) and (e) give the frequencies corre-
sponding to proton and electron scales as in Figs. 3 and 4.

(Fig. 10a), as a function of f , is larger than 0.7 from 3 to
10 Hz. It decreases clearly for f > 15 Hz. The correlation
with βe (Fig. 10c) is weaker than with βp, but it extends up
to 20-30 Hz. The correlation with Tp⊥/Tp‖ (Fig. 10b) is good

(around 0.6) from 10 to 50 Hz. The correlation with Te⊥/Te‖

(not shown) is always weaker than 0.55.
Boldyrev et al. (2013) (see also Schekochihin et al. 2009;

TenBarge et al. 2012) give analytical formulas for the mag-
netic and the electron compressibilities of sub-proton electro-
magnetic fluctuations, i.e. kinetic Alfvén waves (KAW) and
whistler waves (see also Gary & Smith 2009). The whistler
magnetic compressibility does not depend on β, but only on
the wave vector direction. Conversely, the magnetic com-

pressibility Cka
‖/⊥ for kinetic Alfvén waves, in the framework

of the electron-reduced MHD (kρp > 1 and kρe < 1), depends
on βp and βe, not on the wavenumber:

Cka
‖/⊥ =

βp +βe

2+βp+βe

. (5)

Figure 10d displays the correlation between the observed

magnetic compressibility P‖/P⊥ and Cka
‖/⊥, as a function of

f . This correlation is everywhere larger than the correlation
with βp (Fig. 10a). It is larger than the correlation with βe
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(Fig. 10c) except in a narrow frequency range around 15 to
25 Hz. The correlation of Figure 10d is larger than 0.7 be-
tween 1.5 and 15 Hz.

5.5. Modes of the fluctuations

5.5.1. For f < 15-20 Hz

At these frequencies (corresponding to kρp ≤ 10) our ob-
servations can be compared with the Vlasov-Maxwell results
of TenBarge et al. (2012). These authors calculate P⊥/P‖ for

Alfvén, fast and slow modes up to kρp = 10, for different val-
ues of βp, assuming that the turbulence is in critical balance

(k‖ ∝ k
2/3

⊥ ) i.e. with quasi-perpendicular wave vectors.

We have seen (Fig. 9) that P‖/P⊥ increases when βp in-

creases: this is typical of KAW, but excludes the presence
of fast waves for which P‖/P⊥ decreases when βp increases.

The observations of Figure 7d are also consistent with KAW
properties up to kρp = 10 (Fig. 2 of TenBarge et al. 2012):
for the lowest values of βp, the observed P⊥/P‖ (upper solid

red line) decreases strongly when kρp increases, while P⊥/P‖
decreases weakly for the largest values of βp (lower solid
red line). Finally, Figure 10d confirms that fluctuations with
a KAW polarisation are generally dominant at sub-proton
scales, for f < 15-20 Hz).

However, the observed P⊥/P‖ profiles (Fig. 7d) have a

large dispersion, so that they could be consistent, in some
cases, with other modes, oblique whistler waves with a criti-

cal balance distribution (k‖ ∝ k
1/3

⊥ , Figure 4 of TenBarge et al.

2012); or with different mixtures of Alfvén, fast and slow
wave modes (Figs. 2 and 6 of TenBarge et al. 2012) for which
P⊥/P‖ changes strongly from kρp ≃ 0.5 to kρp ≃ 10.

5.5.2. For f > 15-20 Hz

The weaker correlation between P⊥/P‖ and Cka
‖/⊥ observed

in Figure 10d above 15 Hz (and below 1.5 Hz) can be due to

different reasons: i) Eq. 5 for Cka
‖/⊥ is valid in a limited scale

range, ii) the KAW are damped, and/or iii) another mode, with
a different compressibility, is present. Let us discuss these
three points:

i) validity of Eq. 5? Eq. 5 is valid for kρp > 1 and kρe < 1.
This is shown in Figure 2a of TenBarge et al. (2012) where

the compressibility is indeed equal to Cka
‖/⊥ for k⊥ρp = 2 to

10, at least for the observed values βp ≃ [0.28− 5.1] . In our
sample, for all the events, kρp > 1 if f > 3 Hz, and kρe < 1 if
f < 50 Hz. Thus, in Figure 10d, the weaker correlation below
3 Hz can be due to the lack of validity of Eq. 5. Conversely,
the weaker correlation from 15-20 Hz to 50 Hz has to be due
to other reasons.

ii) KAW damping? Figure 10e shows the correlation be-
tween P‖/P⊥ and Te/Tp as a function of f . This correlation

is zero up to 10 Hz, and still very small up to 50 Hz. Above
80 Hz, the correlation reaches 0.5 among about 20 events (a
number given by the dotted line, see the caption) which are
the most intense at these frequencies. Figure 10f shows that
the correlation between P‖/P⊥ and Te/Tp (Fig. 10e) could be

related to the anticorrelation of P‖/P⊥ with Vsw, above 20 Hz.

According to Figure 1 of Schreiner & Saur (2017) larger val-
ues of Te/Tp increase the damping of KAW, at least for the βp

values of our sample, and for small scales k⊥ρp ≃ [10− 100]
(see also Howes et al. 2006). The decrease of the correlation
between P⊥/P‖ and Cka

‖/⊥ above 20 Hz (Fig. 10d) can thus

be due to a stronger damping of KAW, itself due to relatively
larger values of Te/Tp. Note that Bruno & Telloni (2015) ob-
serve that KAW (below 4 Hz) tend to disappear when the wind
speed decreases.

Figure 11. Comparison between the compressibility P‖/P⊥, observed at four

frequencies, and the compressibility of kinetic Alfvén waves (eq. 5). The
dotted line is the bisectrix.

iii) another mode? The weaker correlation between P⊥/P‖

and Cka
‖/⊥ for f > 15-20 Hz (Fig. 10d) can be due to the pres-

ence of another mode, with another compressibility, superim-
posed or not on the KAW mode. What could be this other
mode? At electron scales, neither the electron temperature
anisotropy (Fig. 1d) nor the heat flux are unstable: whistler
waves are not observed. The βe values are generally too low
to give an electron parallel firehose instability (Matteini et al.
2013). The correlation of P‖/P⊥ with Te/Tp (Fig. 10e) above

80 Hz, which could imply the presence of slow modes, is not
strong. But it is consistent with the results of Figure 8, above
20 Hz: the compressibility is larger in the slow wind, where
Te/Tp is larger. Te/Tp varies between 0.22 and 2.2 in our sam-
ple, with 60% of the intervals for Te/Tp < 1 (Fig. 1b). These
values seem to be too low to prevent the damping of slow-
ion acoustic modes. However, we recall that Te and Tp are
average values for the whole distributions, without distinc-
tion between the temperatures of core, halo, strahl or beam.
A better description of the distribution functions could show
whether slow-ion acoustic modes could be less damped above
20 Hz, mainly in the slow wind: Tong et al. (2015) under-
line how the KAW damping depends on realistic distribution
functions, with electron drifts. Furthermore, the correlation
of the compressibility with Tp⊥/Tp‖ (Fig. 10b) is larger for

f > 15-20 Hz than in the KAW frequency domain. According
to Narita & Marsch (2015), quasi-perpendicular kinetic slow
modes could produce a proton heating so that the correlation
of Figure 10b could be another indication for the presence of
kinetic slow modes, cascading above 15-20 Hz.

In Figure 11, P‖/P⊥ observed at four fixed frequencies is

drawn as a function of Cka
‖/⊥ (Eq. 5). On each panel, Cc gives
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the correlation coefficient between P‖/P⊥ and Cka
‖/⊥. At 2 Hz

the observed compressibility is always weaker than Cka
‖/⊥, the

compressibility expected for KAW (Fig. 11a). At 6.6 Hz (Fig.

11b), where Cc peaks, P‖/P⊥ is still weaker but closer to Cka
‖/⊥.

At 22 Hz the observed compressibility is, on an average, equal

to Cka
‖/⊥ (Fig. 11c). At 56 Hz, P‖/P⊥ is mainly larger than

Cka
‖/⊥ (Fig. 11d).

Taking into account that the observed magnetic compress-
ibility (P‖/P⊥)( f ) can be underestimated with respect to sim-

ulations or numerical calculations (see section 6), we con-
clude that P‖/P⊥ is larger than the KAW compressibility for

f > 15-20 Hz, i.e. kρp ≥ 10.
A few simulations of the slow-ion acoustic mode reach

the scales kρp ≃ 100 or kρe ≃ 1 corresponding to our
observations. The hybrid Vlasov-Maxwell simulations of
Valentini et al. (2008) and Valentini & Veltri (2009) reach
kdp ≃ 100 and show the generation of ion-acoustic tur-
bulence; but these simulations imply a temperature ratio
Te/Tp = 10 much larger than the values of our sample (Fig.
1b). Camporeale & Burgess (2011b) reach kρe ≃ 10 but
the electron compressibility of their simulated fluctuations is
weaker than the calculated electron compressibility of slow-
ion acoustic waves. An interesting result of Figure 3 of
Camporeale & Burgess (2011a) is that the electron compress-
ibility of the slow-ion acoustic mode is larger for a small prop-
agation angle (θkB = 45◦) than for θkB = 60◦ or 80◦. This is
another point in favor of the presence of slow-ion acoustic
modes in our data. Indeed, we have concluded (section 4.2)
that the k-distribution is more isotropic, so that small θkB an-
gles are more frequent, when f increases. Thus, a larger elec-
tron compressibility should be found when f increases (θkB

decreases) if slow-ion acoustic modes are present. We did not
measure the electron compressibility, but Figures 6a and 11
show that the magnetic compressibility increases when f in-
creases. Calculations similar to those of Gary & Smith (2009)
would tell us whether the magnetic compressibility of slow-
ion acoustic modes increases when θkB decreases.

6. DISCUSSION

In this work, we consider the reduced power spectral den-
sities Pxx( f ), Pyy( f ) and Pzz( f ) of the magnetic field fluctua-
tions observed at a given frequency f in the three directions
with respect to the quasi-local magnetic field B0 (4 s average),
P‖( f ) = Pzz( f ) and P⊥( f ) = Pxx( f )+Pyy( f ). The sampling

direction is in the plane (x, z) i.e. perpendicular to the y di-
rection.

In section 5, the magnetic compressibility observed in the
frequency domain, (P‖/P⊥)( f ) is compared with analytical

and numerical calculations and simulations in the wave vec-
tor domain, which only consider two components k‖ and k⊥,

and give the compressibility (P‖/P⊥)(k⊥). But this compari-

son is not really valid: we cannot assume that (P‖/P⊥)( f ) is

equal to (P‖/P⊥)(k⊥). Indeed, if there is only one wave vec-

tor k1 perpendicular to B0, along x for instance, the PSD in
the directions perpendicular to k1, Pyy(k1) and Pzz(k1), will
be observed as Pyy( f1) and Pzz( f1) at the same frequency
f1 = k1 ·Vsw/2π (see Podesta & TenBarge 2012, section 2.1),
and will display a phase relation between δBy and δBz corre-
sponding to their polarisation. If there is also a wave vector
k2 perpendicular to B0, along y, with a wavenumber k2 = k1,
Pxx(k2) and Pzz(k2) will be observed as Pxx( f2) and Pzz( f2)

at the same frequency f2 = k2 ·Vsw/2π, but f2 will be much
smaller than f1 because k2 is more or less perpendicular to
the sampling direction Vsw. Thus, even if two wave vectors
perpendicular to B0 have the same k⊥, they will not be ob-
served at the same frequency in Pxx( f ), Pyy( f ) and Pzz( f ).
Inversely, at a given frequency, Pxx( f ), Pyy( f ) and Pzz( f ) do
not correspond to the same wavenumbers and wave vectors:
they do not belong to the same fluctuations, there is no clear
phase relation between the components x, y and z. Further-
more, a PSD like Pzz, or like P⊥ = Pxx+Pyy or P3D = P⊥+Pzz,
at a given frequency, is a mixture of fluctuations with different
wavenumbers and different phases. Thus, analytical and 2D
numerical calculations, which involve the same wave vectors
for all the PSD, and simulations which do not ”fly through”
the simulation box with the solar wind velocity, cannot predict
exactly what is observed at a given frequency. This is prob-
ably one of the reasons why the observed compressibility is
sometimes weaker than the simulated or calculated compress-
ibility (see section 5).

The Taylor hypothesis has been assumed to be valid from
1 to 100 Hz: in Figures 6b and 7, the wavenumber depen-
dency relies on this hypothesis. However, at proton or electron
scales, some fluctuations can be present, with a frequency ω0

in the solar wind frame non-negligible with respect to k.Vsw.
Thus, any detailed comparison of observations with calcula-
tions in the wavenumber domain (section 5.1) has to take into
account the possibility that k is not always proportional to ω,
in the kinetic range, and that wave modes could be present
with a non-negligible ω0. What could be these wave modes?

Howes et al. (2014) show that the Taylor hypothesis is valid
for all the linear modes (Alfvén, fast, slow) in the near-Earth
solar wind, except for quasi-parallel whistler waves. Our fre-
quency range [1 - 200 Hz] is below the electron gyrofrequency
range fce: in our sample, fce varies from 150 to 550 Hz,
with an average value of 300 Hz. Quasi-parallel whistler
waves could thus be present below fce (Lacombe et al. 2014;
Stansby et al. 2016; Kajdič et al. 2016); but their characteris-
tic right-handed polarisation with respect to B0, and the cor-
responding spectral bump, are not observed, in our sample;
so that even if weak underlying quasi-parallel whistlers were
present, they could not play an important role.

The observed frequency range is well above the proton gy-
rofrequency range fcp = [0.08 - 0.3 Hz]. Thus, ion Bernstein
modes, at low harmonics (1, 2 or 3) of fcp cannot be observed.

Our frequency range is well below the proton plasma
frequency ( fpi varies from 400 Hz to 1.5 kHz, average
≃ 800 Hz): slow-ion acoustic waves could be present, which
propagate below fpi. But the only magnetic compressibility
cannot allow the identification of non-Alfvénic wave modes
(Narita & Marsch 2015). This is illustrated by TenBarge et al.
(2012). To remove these ambiguities, fluctuations other
than the magnetic field fluctuations, or other transport ratios,
would be considered, notwithstanding the fact that each wave
identifier has its own ambiguity (Krauss-Varban et al. 1994;
Denton et al. 1998; Klein et al. 2012). However, at small
scales ( f > 15-20 Hz, see section 5.5.2), the observed com-
pressibility is larger than the KAW compressibility (Fig. 11).
It is larger in the slow wind than in the fast wind (Fig. 8)
i.e. larger when the electron to proton temperature ratio Te/Tp

is larger (Fig. 1b). Is there a mode which has a compress-
ibility larger than the KAW compressibility, which could be
more present in the slow wind, where Te/Tp is larger, and
which can propagate at oblique or small angles with respect
to B0? According to Figure 1 of Gary (1992), if Te/Tp ≥ 1



11

and βp > 1, there is always a slow mode which is only
weakly damped for small propagation angles. This is valid
for MHD modes, and up to kdp = 0.1 (Gary & Winske 1992;
Krauss-Varban et al. 1994). This is still valid up to kρe ≃ 10
(Camporeale & Burgess 2011a) at least for βp = βe = 0.5.
The magnetic compressibility of this kinetic mode has to be
calculated to be compared to our observations.

The comparison of the observed polarisation ratios with
those of linear modes is not always justified. But it could be
more valid at the smallest scales ( f > 20 Hz, or kρe > 0.2),
when some angles θkB are probably smaller than the values
giving the critical balance condition, i.e. smaller than the val-
ues at which the role of non-linear effects becomes dominant
(Fig. 1 of Howes et al. 2008).

7. SUMMARY AND CONCLUSION

We have analyzed 93 10-minute intervals of the solar wind
magnetic field fluctuations observed on Cluster 1, from 1 Hz
to about 200 Hz. These intervals, between 2001 and 2005,
are selected with two conditions: 1) there is no indication of
a connection to the Earth’s bow shock; as a consequence, the
Cluster orbit implies that the field-to-flow angle θ is large; 2)
there is no indication of the presence of quasi-parallel whistler
waves, which are easily detected by their quasi-circular right-
handed polarisation (Lacombe et al. 2014).

The power spectral density (PSD) of the magnetic field tur-
bulence is measured in the three directions of the magnetic
field aligned (MFA) frame, an average quasi-local frame given
by the 4 s magnetic field data. The PSD is anisotropic. It de-
creases when f increases; it goes down to the instrumental
background noise at different frequencies in the different di-
rections. As explained in section 3 and Appendix, we only
consider the PSD when it is larger than 3 times the noise in
any direction; then, we subtract the noise to obtain the cor-
rected signal.

The corrected power spectral density P( f ) is itself
anisotropic. It is maximum in the y direction, which is per-
pendicular to B0 and to the radial direction. P( f ) is weaker
in the x direction, perpendicular to B0 and y: the ratio
Pyy( f )/Pxx( f ) > 1 implies that the transverse fluctuations are
not gyrotropic at a given frequency f in the spacecraft frame.

Following Saur & Bieber (1999), the non gyrotropic ratio
(Pyy/Pxx)( f ) gives indications on the shape of a gyrotropic
distribution of k. We find that the k-distribution P(k) is
mainly 2D (i.e. k⊥ ≫ k‖) up to about 6 Hz, i.e. kde ≃ 0.1
or kρp ≃ 3. There is also a slight proportion of wave vectors
parallel to B0. By a separate study of intervals of fast wind

and of slow wind, we show that P(k) is closer to a 2D dis-
tribution in the fast wind, and contains a larger proportion of
wave vectors parallel to B0 in the slow wind, at f < 10 Hz.
At frequencies f > 10 Hz, P(k) is less 2D, and tends towards
isotropy around 50 Hz: wave vectors oblique or parallel to
B0 become relatively more important when the frequency in-
creases (section 4.2).

We call compressibility the anisotropy ratio (P‖/P⊥)( f ) be-

tween the compressive and the transverse fluctuations: this
polarisation ratio increases from 1 to 200 Hz. From 2 Hz to
about 15-20 Hz, the observed compressibility is very well cor-
related (Fig. 10d) and nearly equal (Fig. 11) to the compress-
ibility (Eq. 5) of linear kinetic Alfvén waves (KAW), which
only depends on the beta factor β = βp+βe: fluctuations with
a KAW-like polarisation are dominant below 20 Hz, i.e. be-
low kde ≃ 0.2 or kρp ≃ 10.

At smaller scales, f > 20 Hz, we suggest that the fluctua-
tions could be related to a slow-ion acoustic mode. The iden-
tification of the three modes, Alfvénic or compressive, and
the estimation of their damping rates and of their polarisa-
tion and transport ratios is a difficult task in the kinetic range
where the modes cross each other in the dispersion plane
(Krauss-Varban et al. 1994; Klein & Howes 2015). Calcula-
tions of the dispersion relation and of the compressibility of
the modes, for different propagation directions, different βp

and different Te/Tp, would be necessary to confirm (or infirm)
the presence of slow-ion acoustic modes with a large mag-
netic compressibility and relatively small propagation angles,
for kρp ≥ 10.

Note, however, that recent studies (Chen & Boldyrev 2017;
Passot et al. 2017) suggest that the compressibility of KAW
can further increase when reaching the electron inertial length
scale, thus in possible good agreement with the trend observed
in this dataset for frequencies above 20 Hz.
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APPENDIX

SUBTRACTION OF THE BACKGROUND NOISE

For a precise measurement of weak spectral levels on Cluster, the subtraction of the instrument noise has been justified by
Alexandrova et al. (2010): the frequency-dependent background instrument noise is a random variable; the solar wind turbulence
is a random variable; these random variables are independent. It is well known that the average value of the sum of two inde-
pendent random variables is the sum of their average values. Thus, the true spectral level at the frequency f is the difference
P3D( f )− bn3D( f ), where P3D( f ) is the average of the trace of the spectral matrix measured on the triaxial search coils (signal +
noise), and bn3D( f ) is the average of the trace of the background noise (additive noise). The background noise is generally called
sensitivity, but this name is misleading because it implies a threshold, which has to be crossed, not an additive noise which has to
be subtracted.

The average background noise is easily measured every year in Summer, when Cluster crosses the magnetospheric lobes: in
these regions, the in situ fluctuations are so weak that the measured signal is considered as the receiver noise. This instrument
noise is close to the values obtained by Earth’s ground measurements (Cornilleau-Wehrlin et al. 2003). Robert et al. (2014) show,
in their Figure 9, that the background noise is rather stable from 2001 to 2004, and even until 2011. At the STAFF-SC frequencies
(below 8 Hz) the observed solar wind spectra (Figure 2) are intense enough, so that there is no need to subtract the noise. On
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Figure 12. Example of subtraction of the background noise on Cluster 1 (day 2004/01/22, 01:55-02:05 UT) (a) for the 3D spectrum P3D( f ), (b) for Pxx( f ). On
each panel, the dashed line gives the measured spectrum (signal + noise), the solid line gives the corrected spectrum, at frequencies where the conditions (6) and
(7) are both fulfilled. The lowest dotted line gives the background noise, respectively bn3D( f ) ( left panel) and bn1D( f ) (right panel). The upper dotted line on
each panel gives 3 times the noise, the lowest significant value of the measured signal (Eqs. A1 and A2).

STAFF-SA (above 8 Hz), from 2001 to 2005, we consider that the 3D-background noise bn3D( f ) is given by a one-hour average
of the 3D power Plobe measured in a lobe on 2004/06/03 (14:00-15:00 UT) on Cluster 1. Histograms of logPlobe( f ) during this
interval, at different f , show that the instantaneous background noise can be as large as 2 to 3 times the average value bn3D( f )
below 60 Hz, and 1.3 to 1.5 times bn3D( f ) above 60 Hz. (Above 60 Hz, the power of each STAFF-SA spectrum relies on 8 times
more measures than below 60 Hz, so that the relative uncertainty on the power level is weaker). To reach the true spectral level by
a subtraction P3D( f )−bn3D, we have to take into account this uncertainty on bn3D, which is at most 3 times bn3D. The corrected
spectral level is the average value of P3D − bn3D, but at the only frequencies where P3D is larger than 3bn3D,

P3D( f )≥ 3bn3D( f ). (A1)

There is no simple reliable way to separate the signal and the instrument noise at frequencies for which P3D is weaker than 3bn3D.
For the background noise in every direction x, y and z, we use bn1D( f ) = bn3D( f )/3 (as in Figure 2). Even if the three search

coils in the spacecraft frame (SR2) have not exactly the same 1D-background noise, it is not useful to distinguish them: indeed,
the on-board (SR2) spectral matrix (signal + noise) is projected and analyzed in the Magnetic Field Aligned frame, x, y and z, so
that the role played by each search coil is time-dependent, through the angles between the SR2 and the MFA frames. Anyway,
the considered uncertainty (3 times the noise) broadly takes into account the differences between the three search coils.

The present work is based upon measurements of the PSD anisotropies. We have to subtract the 1D background noise from
Pxx( f ), Pyy( f ) and Pzz( f ). As Pxx( f ) (dashed lines in Fig. 2) is the weakest 1D spectrum (above 8 Hz), we first have to check that
the noise subtraction is significant forPxx: indeed, the subtraction from P3D( f ) can be valid (if P3D( f ) is larger than 3bn3D( f )),
while the subtraction from Pxx( f ) is not valid, if Pxx( f ) is equal to the 1D background noise. To prevent errors in the subtraction
of the noise from Pxx( f ) we thus put a second condition:

Pxx( f ) ≥ 3bn1D( f ). (A2)

As Pxx( f ) is always weaker than Pyy( f ) and Pzz( f ), this second condition implies that the 1D noise can be subtracted without
errors in every direction x, y and z. Figure 12 illustrates the two conditions (Eqs. A1 and A2) to get valid measurements of a 3D
spectrum, of Pxx( f ), Pyy( f ) and Pzz( f ), and thus of the anisotropy ratios of Figure 3. The lower dotted lines in Figure 12 give
the background noise for the 3D noise (left panel) and the 1D noise (right panel). The upper dotted lines respectively give 3bn3D

and 3bn1D. The dashed lines give P3D (left panel) and Pxx (right panel) before any subtraction. The solid lines give the corrected
spectra, which obey the two above conditions, and after subtraction respectively of bn3D and bn1D.

All the spectra used in the present paper are corrected in this way.
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Hellinger, P., Trávnı́ček, P., Kasper, J. C., & Lazarus, A. J. 2006,

Geophys. Res. Lett., 33, 9101
Howes, G. G., Bale, S. D., Klein, K. G., Chen, C. H. K., Salem, C. S., &

TenBarge, J. M. 2012, ApJ, 753, L19
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E., &

Schekochihin, A. A. 2006, ApJ, 651, 590
—. 2008, J. Geophys. Res., 113, 5103
Howes, G. G., Klein, K. G., & TenBarge, J. M. 2014, ApJ, 789, 106
Howes, G. G., TenBarge, J. M., Dorland, W., Quataert, E., Schekochihin,

A. A., Numata, R., & Tatsuno, T. 2011, Phys. Rev. Lett., 107, 035004
Jian, L. K., et al. 2014, ApJ, 786, 123
Johnstone, A. D., et al. 1997, Space Sci. Rev., 79, 351
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2006, Annales Geophysicae, 24, 3507

Mangeney, A., et al. 1999, Annales Geophysicae, 17, 307
Matteini, L., Hellinger, P., Goldstein, B. E., Landi, S., Velli, M., &

Neugebauer, M. 2013, J. Geophys. Res., 118, 2771
Matthaeus, W. H., Goldstein, M. L., & Roberts, D. A. 1990,

J. Geophys. Res., 95, 20673
Narita, Y. 2014, Nonlinear Processes in Geophysics, 21, 41
Narita, Y., Gary, S. P., Saito, S., Glassmeier, K.-H., & Motschmann, U.

2011a, Geophys. Res. Lett., 38, 5101
Narita, Y., Glassmeier, K.-H., Goldstein, M. L., Motschmann, U., &

Sahraoui, F. 2011b, Annales Geophysicae, 29, 1731
Narita, Y., Glassmeier, K.-H., Sahraoui, F., & Goldstein, M. L. 2010,

Phys. Rev. Lett., 104, 171101

Narita, Y., & Marsch, E. 2015, ApJ, 805, 24
Osman, K. T., & Horbury, T. S. 2007, ApJ, 654, L103
Oughton, S., Matthaeus, W. H., Wan, M., & Osman, K. T. 2015,

Philosophical Transactions of the Royal Society A, 373, 20140152
Passot, T., Sulem, P. L., & Tassi, E. 2017, J. Plasma Phys., 83, 4.
Perri, S., Goldstein, M. L., Dorelli, J. C., & Sahraoui, F. 2012, Physical

Review Letters, 109, 191101
Perri, S., Yordanova, E., Carbone, V., Veltri, P., Sorriso-Valvo, L., Bruno, R.,
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