The Acetate Proton Shuttle between Mutually Trans Ligands

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Organometallics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>om-2018-00417b.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>16-Jul-2018</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | de Aguirre, Adiran; Universitat Rovira i Virgili Institut Catala d'Investigacio Quimica, Prof. Maseras Group
Diez-Gonzalez, Silvia; Imperial College London, Department of Chemistry
Maseras, Feliu; Institute of Chemical Research of Catalonia (ICIQ),
Martín, Marta; CSIC-Universidad de Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea
Sola, Eduardo; CSIC-Universidad de Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea |
The Acetate Proton Shuttle between Mutually Trans Ligands

Adiran de Aguirre,† Silvia Díez-González,‡§ Feliu Maseras,*† Marta Martín,‡ and Eduardo Sola*†‡

†Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
‡Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2Az, UK
‡Instituto de Síntesis Química y Catálisis Homogénea, CSIC – Universidad de Zaragoza, 50009 Zaragoza, Spain.

Supporting Information Placeholder

INTRODUCTION

The lone electron pairs in ligands in the first or second coordination sphere often play a role in the activation of σ bonds by unsaturated transition metal complexes.1 In fact, with the exception of some electron-rich derivatives able to offer at the metal both an empty orbital for reagent coordination and suitable electron density to break bonds via oxidative addition, most complexes must bring into play electrons outside the metal to complete bond cleavages.2 Depending on where in the complex these electrons are found, the bond cleavage may receive different mechanistic descriptors. In the particular field of C–H bond activations for example,3 1,2-additions, σ-bond metathesis and σ-CAM (σ-coordination-assisted metathesis)4 mechanisms utilize electrons formerly in metal-ligand bonds, while the so-called electrophilic substitutions5 and the CMD (concerted metalation deprotonation)6 or AMLA (ambiphilic metal ligand activation)7 alternatives turn on lone pairs in ligands or external bases. All these processes are very similar and resemble bond cleavages accomplished by cooperating Lewis pairs,8 the metal being the Lewis acid.9

Carboxylates are frequently used as assistant ligands for bond activations,10 particularly in C–C forming reactions catalyzed by palladium complexes via direct arylation.11 While the role of the carboxylate during the C–H activation step has been analyzed in depth,12 it is commonly assumed that the resulting carboxylic acid merely transfers the proton to a sacrificial base.13 Yet, this may not occur if, for instance, the proton returns to the original ligand to cause its tautomerization. Such a process, termed LAPS (ligand-assisted proton shuttle),14 has been recognized key in regioselective catalytic hydrations of terminal alkynes via ligand-facilitated vinylidene tautomers.15 Besides these possibilities, other destinations for the proton remain still conceivable. In particular, its transfer to a neighboring ligand seems a likely process that might unlock new reaction sequences and trigger more elaborate catalytic transformations.

This work shows that acetate can indeed play such a sophisticated role as functional ligand by offering a lone pair to break C–H bonds and subsequently delivering the proton to a neighboring ligand. These observations have been extracted from the behavior of the known ruthenium(II) hydride complex [Ru(κ2O2-OC(O)Me)H(CO)(PPr3)]16 and its alkényl17 and alkynyl derivatives,18 whose acetates drive the exchange of protons between ligands coordinating mutually trans. Such a process overcomes a typical reactivity limitation in octahedral coordination environments, which results from the preferred location of vacant coordination sites trans to strongly σ-donor ligands such as hydrides or alkényles.19 Accordingly, carboxylate ligands may not only enhance reactivity and change regioselectivity,16,12,14 but also modify chemoselectivity.20

RESULTS AND DISCUSSION

The five-coordinate chloro complex [Ru(μCl)H(CO)(PPr3)] (1) was reported to form the alkényl derivative [Ru(μCl)(κ2-CH=CHPh)(CO)(PPr3)] (2) after insertion of just one equivalent of phenylacetylene (Scheme 1).21 In contrast, the six-coordinate acetate analogue [Ru{κO2-
OC(OMe)H(CO)(C\text{-}C\text{Ph})(CO)(P\text{Pr}_3)_2 \) (3) was observed to further react with a second, and even a third equivalent of this reagent. Monitoring of the latter by \(^3\text{P}\) NMR in toluene-d\(_6\) solution indicated that formation of alkenyl complex \([\text{Ru}\{\kappa\text{O}^2\text{-OC}(\text{OMe})_2(E\text{-CH=C}\text{CPh})(\text{CO})(\text{P\text{Pr}_3}_2)] \) (4) and its consumption to form alkynyl derivative \([\text{Ru}\{\kappa\text{O}^2\text{-OC}(\text{OMe})(\text{C=C\text{CPh}})(\text{CO})(\text{P\text{Pr}_3}_2]} \) (5) occur at comparable rates. As detailed in Figure 1, the kinetic features of the transformation of 4 into 5 are consistent with the expected second order reaction between the alkenyl precursor and the alkyne.

![Scheme 1](image)

Scheme 1

Figure 1. (above) Dependence upon phenylacetylene concentration of the experimental pseudo first-order rate constants \(k_{\text{obs}}\) for the transformation of 4 into 5. (below) Eyring analysis of the second-order rate constants.

The subsequent transformation of 5 into the alkenyl ester complex 6 was found to be slow, taking several days at room temperature. All complexes in Scheme 1 had been previously reported, although 4-6 were synthesized by procedures other than the present reaction sequence. This hydride \(\text{Ru-H} \rightarrow \text{alkenyl} \rightarrow \text{alkynyl} \) sequence is quite common in the chemistry of ruthenium and frequently ends in butynyl complexes formed after the coupling of two alkyne moieties. Actually, this is the case for the analogue of 2 bearing PPh\(_3\) instead of P\text{Pr}_3 ligands, which was found to form a five-coordinate butynyl derivative under forcing reaction conditions.

Complex 2, however, did not undergo reaction even in the presence of excess alkyne at high temperatures.

To rationalize the counterintuitive reactivity difference between 2 and 4, their reactions with phenylacetylene were studied by DFT methods. Initially, we computed a series of free energy profiles on model complexes with PMe\(_3\) as phosphine (calculations labeled with the suffix m) to explore different mechanistic scenarios. After, we calculated the most likely option with the experimental P\text{Pr}_3 system, for a straightforward comparison with the obtained kinetic data. Some of the computed profiles are presented here, while others are included as Supporting Information.

The insertion of phenylacetylene into the Ru−H bond of this type of complexes has been previously calculated and discussed by Eisenstein, Caulton and co-workers. As detailed for 1m in Figure 2, the reaction is feasible after distortion of the square-pyramidal ground-state geometry of the complex to allow the incoming alkyne coordinate cis to the hydride. The most favorable option is opening the vacancy trans to CO to attain intermediate 11m. Then, the alkyne would insert smoothly into the Ru−H bond, resulting in alkenyl complex 2m, 24.5 kcal mol\(^{-1}\) below the reactants. The calculated profile in Figure 2 continues with the non-observed alkynyl-to-alkenyl metathesis step in 2m, which would be exergonic by 11.7 kcal mol\(^{-1}\), but would require a highly attainable activation barrier of at least 27.3 kcal mol\(^{-1}\), probably higher for the more sterically encumbered real complex 2.

The profile for the model aceto complex 3m in this mechanistic scenario based on distortions of the complexes ground-state geometries, is qualitatively similar to that of the chloro analogue, although activation barriers increase by about 6 to 8 kcal mol\(^{-1}\) because of the extra oxygen atom coordination to the sixth position of the stable complexes. The initial phenylacetylene insertion has an overall activation barrier of 16.2 kcal mol\(^{-1}\), the highest point corresponding to the first transition state TS\(_{3m-2m}\). This value still corresponds to a reaction possible at room temperature. On the contrary, the calculated barrier for the (experimentally observed) alkenyl-to-alkynyl step is as high as 34.0 kcal mol\(^{-1}\) from intermediate 4m to transition state TS\(_{4m-5m}\). An alternative evolution of 4 based on the possible assistance of the acetate in the activation of the second molecule of phenylacetylene was hence explored. As a result, we found not only the expected facile alkyne C−H activation via concerted metalation deprotonation (CMD), but also a feasible pathway for the subsequent transfer of the proton to the alkenyl ligand, forming styrene and the alkynyl complex 5. This transfer is formally similar to previously reported examples of ligand-assisted proton shuttle (LAPS), although in this case the shuttle connects different ligands instead of different carbons of the same ligand. The structures and free energies calculated for this new reaction sequence in the real P\text{Pr}_3 system are summarized in Figure 3. A further key difference between this mechanism and that in Figure 2 is the initial alkyne coordination, which can now take place at the most readily accessible position of 4, trans to the alkene ligand.
Figure 2. Free energy profiles (in kcal mol\(^{-1}\)) for the hydride-to-alkenyl-to-alkynyl sequence in PMe\(_3\) models of 5-coordinate chloro complex \(1m\) (green) and 6-coordinated acetate complex \(3m\) (black), through a direct mechanism that generates vacant sites cis to hydride and alkenyl ligands.

Figure 3. Free energy profile (in kcal mol\(^{-1}\)) for the alkenyl-to-alkynyl transformation in 4, through a mechanism featuring C-H activation (CMD) and proton shuttle (LAPS) steps assisted by the acetate ligand. Energy relative to the precursor hydride complex 3.

The energy profile of Figure 3 features two high lying transition states, TS\(_{6-7}\) and TS\(_{7-5}\), with similar barriers (from 4) of 25.5 and 26.4 kcal mol\(^{-1}\), respectively. Both barriers are only slightly above the experimental estimation: 23.7 (±2.1) kcal mol\(^{-1}\), thus being good candidates for the rate-limiting step. Decomposition of free energies in enthalpic and entropic terms suggests that both TS are equally compatible with experiment. Experimental activation parameters are \(\Delta H^\ddagger = 16.2 (±1.3)\) kcal mol\(^{-1}\) and \(\Delta S^\ddagger = 7.1 (±0.8)\) kcal mol\(^{-1}\), while the respective calculated values are 12.0 and 13.6 kcal mol\(^{-1}\) for TS\(_{6-7}\) and 12.8 and 13.6 kcal mol\(^{-1}\) for TS\(_{7-5}\). Clearly, entropic effects are overestimated in the calculation, but the signs of the contributions are correct. A further piece of evidence coming from...
experiment is the kinetic isotopic effect observed using PhC=CD as reagent: \(k_{\text{obs}}/k_{\text{obs}} = 1.6 \). The value seems too close to 1 for a rate-limiting C–H or O–H bond breaking step,\(^{12,26}\) thus discounting \(TS_{\text{Ia}45} \) and \(TS_{\text{Ib}3.5} \), especially after confirming that their geometries are not particularly early.\(^{27}\) Accordingly, the KIE points to \(TS_{\text{Ib}47} \) as the highest energy point of the mechanism.

This \(TS_{\text{Ib}47} \), associated to the return of the acetic acid to the ruthenium coordination sphere, constitutes the only qualitative discrepancy between the reaction profile obtained from the real system and that derived from the PME\(_3\) model. In the latter (Figure S1), the acetic acid fragment of intermediate **IM** can rotate around the Ru–O bond to bring the proton close to the alkanyl group, whereas this is not feasible in the real intermediate **I5** because of steric reasons. Alternative mechanisms where the acetyl "slips" in the metal coordination sphere without rotation were explored without success. Instead, it is better for the acetic acid to separate from ruthenium and return with the proper orientation in **I7**. Calculations in the PME\(_3\) model produced an overall activation barrier much lower than the experimental (19.9 kcal mol\(^{-1}\)), while calculated structures close to the TS for acetic acid rotation seemed sterically crowded and likely sensitive to the phosphine size. The steric properties of the real PPr\(_3\) system were also found to increase the calculated free energy barrier for the first alkynyl insertion in 3 to form 4, up to 23.2 kcal mol\(^{-1}\) (Figure S2), although the shape of the energy profile does not change with respect to that in Figure 2. We also explored the possible occurrence of the CMD/LAPS sequence in complex 2 (Figure S3). The barrier is prohibitively high (34.8 kcal mol\(^{-1}\)) because the chloride ligand is much less basic than acetate, and thus less efficient as a proton acceptor.

Viewed as a mere hydrogen transfer, the overall process of Figure 3 has several well-characterized precedents in solvent-, counteranion-, and ligand-assisted tautomerizations and related reactions.\(^{14,15,28}\) However, when considering that the origin and destination of the hydrogen atom are two trans ligands, the case emerges as a simple paradigm to circumvent the ubiquitous energy-consuming distortions required to accommodate reactive ligands in relative cis positions of catalytically active complexes. Consequences of this extra mechanistic resource of the acetyl can be inferred from the reported catalytic behavior of this type of complexes in 1-alkyne hydrosiylation.\(^{29,30}\) The replacement of chloride by acetic acid in [RuC\(_2(H)(CO)(PPh_3)_2\)] catalyst precursors was observed to change the chemoselectivity in the addition of triethylsilane to phenylacetylene, favoring products of dehydrogenative silylation (PhC≡CSiEt\(_2\)) and styrene (trans D) over those of hydrosilylation (Z- and E-alkynyldisilanes).\(^{30}\) Such a selectivity change is an expected result of ease alkynyl-to-alkynyl metathesis, since the reaction produces styrene together with alkynyl complexes: proposed key intermediates in dehydrogenative silylations.\(^{31}\) In agreement with this, we have confirmed (by \(^1\)H and \(^31\)P NMR) that both alkynyl 4 and alkynyl 5 react with excess triethylsilane to regenerate hydride 3, thus closing competing catalytic cycles for phenylacetylene hydrosilylation and dehydrogenative silylation, respectively.

CONCLUSION

Our results show that acetate ligands can not only assist C–H bond activations at adjacent metal coordination positions but also subsequently deliver the H atom to other neighboring ligands. In particular, this can enable reactions between ligands mutually trans to each other, not feasible through conventional concerted elementary steps. This additional resource can expand the reactivity of complexes and modify their catalytic performance.

EXPERIMENTAL SECTION

All manipulations were carried out with exclusion of air by using standard Schlenk techniques. Solvents were obtained from a solvent purification system (MBrum). Deuterated solvents were dried with appropriate drying agents and degassed with argon prior to use. NMR spectra were recorded on a Bruker Avance 300 MHz spectrometer. GC–MS analysis was carried out in an Agilent 6890 Series GC System, equipped with an Agilent 5973 Network Mass Selective Detector, using a crosslinked methyl silicone capillary column.

Complex 4 was prepared from 2 and sodium acetate, as detailed in reference 17. Complex 5 was prepared by treatment of 4 (191 mg, 0.31 mmol) with phenylacetylene (73 \(\mu \)L, 0.66 mmol) in 5 mL of toluene. After 4 h of reaction at 353 K, the solution was taken to dryness and the residue was treated with cold hexane, decanted, and dried in vacuo (yield 152 mg, 80%). The \(^1\)H, \(^{31}\)P(\(^1\)H) and \(^13\)C(\(^1\)H) NMR spectra of the resulting yellow solid matched those previously reported for 5 in reference 18. The reaction between 4 and triethylsilane excess in toluene-d\(_6\) at room temperature was observed by \(^1\)H and \(^31\)P NMR to cleanly produce the E-alkynyldisilane and complex 3, though this outcome slowly evolved into other unidentified products. Similarly, complex 5 and triethylsilane excess reacted to initially form 3 (NMR) and PhC≡CSiEt\(_2\) (GC–MS), though these products readily disappeared to form an intricate mixture of several other products.

Kinetics: The reaction of 4 with phenylacetylene excess was followed by monitoring the decrease in the intensity of the \(^{31}\)P(\(^1\)H) NMR signal of 4 in toluene-d\(_6\) solution. Samples were prepared from aliquots of a 4.14 E-2 M common solution of 4 in this solvent. After addition of the corresponding phenylacetylene excess, sample volumes were adjusted to 0.5 mL. \(k_{\text{obs}} \) values (Table 1) were obtained from exponential fittings of the intensity vs. time data. Errors in the magnitudes obtained from the Eyring regressions were estimated through conventional error propagation formulas,\(^{32}\) assuming 1 K error in the temperature and a 10% error in the rate constant.

Computational Details: All calculations were carried out using the Gaussian09 (Rev.D01) package.\(^{33}\) The oB97X-D level of theory was used for all calculations.\(^{34}\) All the structures were optimized in solution (toluene: \(\varepsilon = 2.3741 \)) using the SMD implicit solvent mol-<ref>el.\(^{35}\) Vibrational frequency calculations for all stationary points were carried out in order to assign their nature as minima (zero imaginary frequencies) or as transition state (one imaginary frequency). 6-311++G(d,p) basis set\(^{36}\) for H, C, P, O and Cl atoms and SDD for Ru atom and its corresponding pseudopotential\(^{37}\) were used for optimizations and frequency calculations. For the real system (PPr\(_3\) ligand), potential energies were further refined through single point calculations in solution using the 6-311++G(d,p) basis set\(^{38}\) for H, C, P, O and Cl atoms. All the reported energies are free energies in solution at 298 K and 1 atm. The accurate calculation of free energies of reaction in solution is still a topic of discussion,\(^{39,40}\) and a number of refinements have been proposed, some including scaling factors for specific functionalities.\(^{32}\) The issue is not critical for the interpretation of the results in the current manuscript. A dataset collection of all computational data is available in the ioChem-BD repository.\(^{42}\)

Table 1. Experimental kinetic data for the reactions of complex 4 with phenylacetylene.

<table>
<thead>
<tr>
<th>(T) (K)</th>
<th>[PhC≡CH] (M)</th>
<th>(k_{\text{obs}}) (s(^{-1}))</th>
<th>(k_{\text{obs}}/[\text{PhC=CD}]) (M(^{-1})s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>313</td>
<td>1.48</td>
<td>1.64 E-4</td>
<td>1.11 E-4</td>
</tr>
<tr>
<td>323</td>
<td>1.48</td>
<td>3.71 E-4</td>
<td>2.51 E-4</td>
</tr>
<tr>
<td>323</td>
<td>1.48 (PhC≡CD)</td>
<td>2.36 E-4</td>
<td></td>
</tr>
</tbody>
</table>
ASSOCIATED CONTENT

Supporting Information
A set of additional free energy profiles and the corresponding discussion, plus a text file of all computed Cartesian coordinates (XYZ file). The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION

Corresponding Authors
*fmaseras@iciq.es
*sola@unizar.es

ORCID
Adiran de Aguirre: 0000-0001-7991-6404
Silvia Díez-González: 0000-0003-3950-5156
Feliu Maseras: 0000-0001-8806-2019
Marta Martín: 0000-0001-7819-670X
Eduard Solà: 0000-0001-5462-6189

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENT
The authors would like to dedicate this work to Professor Ernesto Carmona on the occasion of his 70th birthday. The authors are thankful for financial support from Ministerio de Economía, Industria y Competitividad (MINECO) / Fondo Europeo de Desarrollo Regional (FEDER) (Grants CTQ2015-64486-R and CTQ2017-87792-R), MINECO-Severo Ochoa Excellence Accreditation 2014-2018 (Grant SEV-2013-0319) and Gobierno de Aragón / FEDER (E08 17R). A. de A. thanks MINECO for a FPI fellowship (BES-2015-073012).

REFERENCES

(4) Perutz, R. N.; Sabo-Etienne, S. The σ-CAM Mechanism: σ Complexes as the Basis of σ-Bond Metathesis at Late-Transition-Metal Centers. Angew. Chem., Int. Ed. 2007, 46, 2578–2592.

(19) For a discussion, see: Sola, E.; Garcia-Camprubí, A.; Andrés, J. L.; Martín, M.; Plou, P. Iridium Compounds with k-P,P,Si

ACS Paragon Plus Environment

