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Abstract—Model Predictive Control (MPC) is a computationally de-
manding control technique that allows dealing with multiple-input and
multiple-output systems, while handling constraints in a systematic way.
The necessity of solving an optimization problem at every sampling
instant often (i) limits the application scope to slow dynamical systems
and/or (ii) results in expensive computational hardware implementations.
Traditional MPC design is based on manual tuning of software and
computational hardware design parameters, which leads to suboptimal
implementations. This paper proposes a framework for automating the
MPC software and computational hardware co-design, while achieving
the optimal trade-off between computational resource usage and con-
troller performance. The proposed approach is based on using a bi-
objective optimization algorithm, namely BiMADS. Two test studies
are considered: Central Processing Unit (CPU) and Field-Programmable
Gate Array (FPGA) implementations of fast gradient-based MPC. Nu-
merical experiments show that optimization-based design outperforms
Latin Hypercube Sampling (LHS), a statistical sampling-based design
exploration technique.

Index Terms—Model predictive control, Hardware-software co-design,
FPGA, Multi-objective optimization, Design automation

I. INTRODUCTION AND RELATED WORK

Model predictive controller design is a multidisciplinary problem
that involves tuning several coupled design parameters. Traditionally
MPC controllers were tuned manually, with a trial and error approach,
which cannot be considered as a viable option for most present-
day applications, considering the number of design parameters and
design evaluation time [1]. Moreover, manual tuning often requires
understanding the nature of the controlled dynamical system and
MPC controller with the underlying optimization solver. Available
tuning guidelines for model predictive control, including heuristic
and systematic (but not automatic) approaches, are reviewed in [2].
Note that only high level optimal control problem parameters (e.g.
horizon length, weights on states/inputs) are considered in the review
paper, without regard to solving the underlying optimization problem.

The full design exploration approach, which can be considered
as the simplest way of design automation, leads to unacceptable
exponential complexity scaling with respect to the number of param-
eters. Statistical exploration methods, e.g. Monte Carlo methods [3]
and Latin Hypercube Sampling (LHS) [4] attempt to accelerate
exploration by randomising the sampling process. However, all above
techniques explore the design space without exploiting the knowledge
about evaluated designs. As a result, statistical algorithms often
achieve uniform distribution in the parameters space, without giving
priority to the most promising (in terms of performance criteria)
areas and hence waste time evaluating unpromising implementations.
However, Monte Carlo methods and LHS can be used for identifying
an initial guess for other algorithms.
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An alternative approach for taking humans out of the design loop
is based on systematic optimization [5]. The following applications of
optimization techniques to MPC design can be found in the literature:

• [6] presents an application of multi-objective optimization to the
Van de Vusse reaction considering two contradicting objectives:
maximizing the desired product and minimizing the unwanted
product. Several multi-objective optimization methods are em-
ployed in this work: normalized normal constraint [7], normal
boundary intersection [8] and weighted sum.

• Study [9] compares systematic multi-objective optimization-
based parameter tuning using enhanced normalized normal con-
straint method [10] against Monte Carlo simulations. The case
study considers NMPC applied to a biochemical system.

• Another algorithm for tuning NMPC controllers with application
to chemical processes is presented in [11]. Instead of exploring
the trade-offs the algorithm attempts to find a single compromise
design using the approach [12].

Other examples of automatic tuning of MPC controllers can be found
in [13] and [14]. The studies above share some common features:

• Multi-objective nature of MPC design problem is acknowledged
and hence dedicated multi-objective optimization algorithms are
used.

• Contradicting control objectives are considered as design goals
without explicit optimization of computational complexity.

• Optimization solver parameters are not systematically tuned, it is
assumed that optimal control problems are solved to optimality.
This might be a valid assumption for slow dynamical systems,
e.g. chemical reactors, but not for fast applications, e.g. robotics.

• Underlying computational platform parameters are not involved
in the tuning process.

In contrast, in this work we automate MPC controller design con-
sidering computational resources as a design objective. The control
performance can be traded off against resource usage by tuning both
algorithmic and computational hardware-related parameters.

The paper is organised as follows. Following the introduction,
the target computational platform is described in Section II. An ap-
proach for formulating predictive controller design as an optimization
problem is presented in Section III. Possible ways of formalising
design objectives and constraints are discussed within the section.
Following that, Section IV reviews algorithms for solving the design
optimization problem and justifies using the BiMADS algorithm [15]
for solving MPC design problems. Two case studies are considered in
Section V: CPU-based and FPGA-based designs for a fast gradient-
based predictive controller. Section VI concludes the paper.

II. TARGET COMPUTATIONAL PLATFORM

In this work we prototype predictive controller implementations
using Xilinx Zynq-7000 XC7Z020 System-on-a-Chip (SoC), which
incorporates a dual-core ARM Cortex-A9 processor and Artix-
7 FPGA logic. The FPGA fabric contains 53200 Lookup Tables
(LUTs), 106400 Flip-Flops (FFs), 220 DSP blocks and 140 block
RAMs (BRAMs) with total capacity of 4.9 Mb. Using SoC allows



2

prototyping both Central Processing Unit (CPU) and FPGA imple-
mentations using one single chip.

The following techniques can be used to accelerate optimization-
based controllers on FPGAs:
• Data-level parallelization refers to splitting computations across

multiple processors, so that different sets of data are processed
simultaneously. Usually applied on regular data structures, e.g.
arrays.

• Data pipelining is based on connecting processing units in series,
so that the output of one unit is the input to the next one. The
elements of this chain, i.e. pipeline, process data simultaneously.

• Tailoring number representation for a given algorithm, instead
of using standard single/double precision floating point arith-
metic, allows achieving better time vs resource usage trade-offs.
For example, for fixed-point number representation arithmetic
operations complexity is identical to that of integers.

In this work we synthesize FPGA circuits using vendor’s high level
synthesis tool, namely Vivado HLS. Vivado HLS allows describing
FPGA circuit architecture with C code and additional optimization
directives for implementing the above above-discussed acceleration
techniques. The entire FPGA design flow involves multiple stages:
• High-level synthesis: Converting the C code with synthesis

directives (e.g. loop unrolling or pipelining) into low level
Hardware Description Language (HDL) code.

• Synthesis: The process of transforming HDL code into a netlist, a
graph that defines the connection of all logic gates and registers.

• Place-and-route (P&R): Solving a set of optimization problems
in order to fit the netlist to a particular FPGA. The outcome of
P&R is a bitstream that can be uploaded onto the FPGA.

• Functional verification of the circuit. For optimization-based
control applications, the FPGA circuit has to be verified in the
loop with a plant model.

We automate the above design flow with Protoip [16].

III. FORMULATING THE DESIGN PROBLEM AS AN OPTIMIZATION

PROBLEM

A. Design objectives and constraints

1) Performance: Quantifying controller performance is not a
trivial task: depending on the nature of the dynamic system and
design requirements several performance criteria might be considered.
Fortunately, optimization-based controllers often perform explicit
performance optimization and hence can be evaluated using objective
measures. Depending on the application different control objectives
might be selected, e.g. energy consumption or settling time. It should
be emphasized that the solution of a single optimal control problem
cannot serve as a performance indicator, since the ultimate goal is
achieving desired closed-loop behaviour [17]. Instead, a closed-loop
cost function should be calculated based on a closed-loop simulation.

Considering the closed-loop cost function as an objective within
an optimization framework, it is important to take into consideration
the continuity and monotonicity properties of the cost function.
According to [18], even for a constrained LQR formulation, which is
arguably the simplest MPC setup, neither continuity nor monotonicity
with respect to horizon length and sampling time can be guaranteed
in general. This significantly limits the range of optimization tools
that can be used for MPC design optimization.

2) Computation time: In relation to CPU implementations, where
several algorithms might share the same hardware platform, algorithm
execution time becomes both a design objective and design constraint.
On the one hand, minimizing algorithm execution time keeps pro-
cessor load low and hence enables sharing processor time with other
algorithms. On the other hand there is a fundamental constraint for

MPC design problems: in order to implement the controller in real-
time, the optimization algorithm execution time has to be smaller
than the sampling time of the system. There are certain exceptions
to this rule [19], which are not considered in this work.

In contrast, for FPGAs, where a circuit is synthesised for one
particular algorithm, minimizing computation time would not give
any benefits, since the logic cannot be reused by other algorithms.
Moreover, for certain cases it could be worthwhile to increase
computation time by decreasing the circuit size and hence saving
resources. However, computation time can only be increased up to
the sampling time, which can be formalized as a design constraint.

For a given algorithm the CPU implementation execution time
might not be fully predictable, because of a complex memory hier-
archy, sharing resources with other routines and having an operating
system on the underlying level. For FPGA circuits, execution time
(in terms of clock cycles) can often be determined based on the
architecture and hence efficiently predicted before circuit synthesis.

3) Computational logic usage and energy consumption: An FPGA
designer often aims to minimize the amount of silicon that is required
for implementing a particular control algorithm to get a size- and
cost-efficient solution. As discussed in Section II, a modern FPGA
has the following resources: flip-flops, lookup tables, block RAMs
and DSPs. We measure the silicon (or computational logic) usage as

RFPGA =
√
R2
FF +R2

LUT +R2
DSP +R2

BRAM , (1)

where RFF , RLUT , RDSP and RBRAM denote relative utilization
of each resource type. The Euclidean norm is a compromise between
the L1 and L∞ norms, where the former would not take into account
a possible imbalance between different types of resources and the
latter would penalize only the most heavily used resource.

There is seldom a linear correspondence between circuit size and
energy consumption. For instance, in some cases it could be energy-
efficient to create a large circuit by parallelizing all computations
in order to quickly perform all calculations and switch to idle
mode [17]. In such cases, energy consumption may be considered
as a separate design objective, which is particularly important for
energy-autonomous embedded platforms.

The above discussion is also valid for software (i.e. CPU-only)
implementations. Similarly to FPGA implementations, CPU-only
realizations might be constrained by the amount of available external
RAM memory or electrical energy.

B. Design parameters

1) Horizon length and sampling time: Horizon length and sam-
pling time are fundamental design variables that have a crucial impact
both on closed-loop performance of a system and computational
hardware requirements. These two parameters, being tightly coupled
with each other, define the quantity of predicted information in a
predictive controller. Horizon length defines the “vision distance”,
while sampling rate sets the “quality of the picture” [18]. Sampling
frequency also defines the response delay of the controller. See [2]
for an overview of techniques for manual tuning of these parameters.

2) Problem formulation: condensed vs non-condensed: Eliminat-
ing the states from decision variables by expressing them via the
current state and input sequence leads to a compact condensed
formulation [20], which results in a worst-case cubic scaling of
the number of floating point operations in horizon length for the
primal-dual interior point algorithm iteration. A sparse formulation
implies the opposite approach: keeping the dynamics in constraints
and treating both inputs and states as decision variables. Although
the problem size becomes larger, exploiting the sparsity pattern
allows linear scaling of computational effort in horizon length. The
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condensed and non-condensed formulations can be considered as two
extreme points of a sparsity level design variable. Controlling the
level of sparsity can be achieved by dividing the prediction horizon
into sub-intervals and performing partial condensing. This provides
the possibility of adjusting the block size of linear algebra problems
in order to find the optimal level of sparsity in terms software and
hardware resources utilization [21].

3) Optimization algorithm parameters: Optimization algorithms
that solve optimal control problems often have many tuning parame-
ters. The first fundamental design choice is the algorithm type [17]:

• first vs second order methods
• interior point vs active set algorithms
• gradient-based vs derivative-free approaches

In addition to making high level design decisions, it is important
to tune low level parameters, which might include:

• number of iterations / termination criterion
• barrier parameter update strategy for interior-point algorithms
• globalization strategy (line search vs trust region)

The above parameters must be tuned with respect to closed-
loop performance, which is not necessary correlated with a single
optimization problem’s optimality conditions [17]. For example, a
sub-optimal controller with a longer prediction horizon might perform
better than an optimal controller with a shorter horizon. More details
on sub-optimal MPC can be found in [22].

4) Number representation: There are usually two types of choices
that have to be made in relation to number representation:

• The conceptual choice of data representation type: e.g. floating
point or fixed point.

• The numbers of bits to be allocated for different parts of a
number, e.g. mantissa and exponent in floating point arithmetic.

5) Data-level parallelism and pipelining: Data-level parallelism
and pipelining were discussed in Section II. The main algorithmic
choices in relation to these techniques are:

• The number of parallel processors.
• The number of pipeline stages, i.e. pipeline depth.

It should be emphasized that parallelism and pipelining affect
algorithm execution time and resource usage, which may or may
not have an impact on the closed-loop performance.

C. The resulting optimization problem

The design parameters considered in Section III-B can be classified
in two categories: software parameters (e.g. prediction horizon length)
and hardware parameters (e.g. number representation). Conventional
approaches propose sequential design: initially the algorithm is de-
signed at a high level of abstraction without regard to the intended
hardware platform and, following this, the algorithm is implemented
on a hardware platform by selecting appropriate hardware parameters.
This decoupled approach usually leads to inefficient resource utiliza-
tion [17]. In contrast, the co-design approach implies simultaneous
design of both software and hardware components in order to achieve
the best possible performance for a given set of available resources.
However, improvement of the closed-loop performance cannot be
considered as the only design objective. As can be seen from
Section III-A there are often several contradicting design objectives,
which might include performance and computational hardware re-
source usage. Instead of looking for one optimal design (which often
does not exist due to conflicts between objectives), engineers might
make a decision based on the whole series of Pareto optimal designs,
i.e. designs that cannot be improved in terms of one objective without
worsening at least one of the other objectives.

The problem of investigating design trade-offs is usually formal-
ized as a multi-objective optimization (MOO) problem. The main
bottleneck that prevents efficient solution of MOO design problems
in relation to MPC are the properties of the objective functions:
• Long function evaluation time. Evaluation of the design objec-

tive functions requires time-consuming simulations.
• Absence of derivative information. There are no accurate ana-

lytical expressions for the derivates of the design objectives.
• Mixed domain. Design variables can be both discrete (e.g.

number of bits for data representation) and continuous (e.g.
sampling rate).

• Noisiness. For example, the same HLS code may result in
different resource usage values depending on a vendor’s software
version or other factors that are not taken into account by
conventional models.

The next section will review existing algorithms for solving
multi-objective optimization problems with focus on BiMADs, a bi-
objective version of a mesh adaptive direct search algorithm.

IV. DERIVATIVE-FREE MULTI-OBJECTIVE OPTIMIZATION

A. Problem statement

We consider the following multi-objective optimization problem:

min
p∈S

f(p) :=
(
f (1)(p), . . . , f (l)(p)

)
(2)

where S is q-dimensional decision space. Since the objectives of
MOO are often contradicting, there is no single solution to the
problem. Instead, a set of Pareto optimal solutions can be obtained.

Definition IV.1. A feasible solution p∗ ∈ S is Pareto optimal if there
does not exist another feasible solution p ∈ S such that fi(p) ≤
fi(p

∗) for all i ∈ {1, . . . , l} and fi(p) < fi(p
∗) for at least one

index j ∈ {1, . . . , l}. The Pareto frontier is the set of all Pareto
optimal points.

Definition IV.2. A point y′ = f(p′) (strongly) dominates y′′ =
f(p′′) iff ∀i ∈ {1, . . . , l} : y′i ≤ y′′i and y′ 6= y′′. The shorthand
notation for this is y′ ≺ y′′. Analogously, for weak dominance, y′ �
y′′ means ∀i ∈ {1, . . . , l} : y′i ≤ y′′i .

P (U) is the set of non-dominated points for a given set of eval-
uated points U , i.e. the current approximation of the Pareto frontier.
The quality of a Pareto frontier approximation can be assessed by
means of the hypervolume.

Definition IV.3. For a given reference point yref and Pareto frontier
approximation P , the hypervolume is defined as a set of points in
the objective space {y � yref ∈ Rl|∃y′ ∈ P : y′ � y}.

The quality of the approximation of P is defined to be the Lebesgue
measure of the hypervolume L(P, yref ), i.e. hypervolume space.

B. Review of derivative-free multi-objective optimization algorithms

1) Derivative-free single-objective optimization: Deterministic al-
gorithms for single-objective derivative-free optimization can be
classified into [23]:
• Trust-region interpolation algorithms. Trust-region algorithms

propose building a local approximation of the objective function
based on evaluated samples. Based on this approximation, the
function is minimized inside the trust region.

• Line search algorithms for derivative-free optimization are con-
ceptually similar to their derivative-based counterparts: they per-
form search along a particular direction. However, for derivative-
free algorithms, the search direction is calculated without gra-
dient information.
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• Direct Search Methods (DSMs) do not attempt to approximate
derivatives either explicitly or implicitly. Instead, optimization is
based on evaluation of a finite set of points around the current
solution guess, so that a point with smaller objective function
value can be found.

Among the considered classes of algorithms, only direct search
methods of directional type have been extensively studied in relation
to multi-objective optimization [24], hence rest of the section will be
focused on DSMs.

Each iteration of a DSM is split into two parts: a search step
and poll step. The latter step must be rigidly defined to guarantee
convergence, while the former is more flexible and can be tuned to
improve numerical performance. Assuming there is a given feasible
solution guess, the general structure of a DSM of directional type
can be described as follows [23]:

• Search step. Evaluate the objective function at a finite set of
points. If any of these points provide a better objective value
compared to the current guess, declare the iteration as successful
and skip the poll step.

• Poll step. Perform a local search around the current best point
by evaluating a set of poll points, which are defined by poll
directions and a step size. Depending on the result of this search,
declare the iteration as successful or unsuccessful.

• Mesh parameter update. Reduce step size for unsuccessful
iterations, increase or maintain step size for successful ones.

Practical examples of DSM algorithms of directional type are the
coordinate-search method [23] and the Mesh Adaptive Direct Search
(MADS) algorithm [25].

2) Derivative-free multi-objective optimization: There are two fun-
damentally different ways for tackling multi-objective optimization
problems:

• Direct algorithms for multi-objective optimization attempt to
approximate the Pareto frontier directly.

• Scalarization-based approaches propose converting the multi-
objective problem into a sequence of single-objective problems.

The Direct Multisearch (DMS) algorithm [26], which belongs to
the class of direct multi-objective optimization algorithms, is a gen-
eralization of DSM algorithms for single-objective optimization. The
main components of a DMS are the same as DSM as discussed in the
previous subsection: the search step, the poll step and mesh update.
The algorithm keeps a list of non-dominated points, which represents
the current Pareto frontier approximation. The local poll search is
performed around several non-dominated points. Successfulness of
an iteration is decided based on the changes in the Pareto frontier
approximation. The search step, similarly to single-objective DSM
algorithms, is flexible and is not required for convergence [24].
However, it can help to improve the distribution of the points along
the Pareto frontier, although this is not a systematic way of ensuring
uniformity of the frontier.

A classical example of scalarization-based algorithms is the
weighted-sum method. The method scalarizes the objective vector
into a single objective by taking an affine combination of the
objectives. Tuning the weights of the scalarized function allows
movement along the Pareto frontier, but in a non-systematic way.
As a result, some regions become over-represented and others may
suffer from lack of information. In addition, this approach cannot
deal with non-convexities and discontinuities in the Pareto frontier
and hence loses some Pareto optimal solutions.

The BiMADS algorithm [15] performs scalarization in a different

Fig. 1. Mass-spring-damper system.

way. For a problem with two objectives the scalarized function is

φr(p) :=


−

2∏
i=1

(ri − f (i)(p))2 if f(p) � r,
2∑
i=1

(max{0, (f (i)(p)− ri)})2 otherwise,
(3)

where r is a reference point in the objective space. The problem
of minimizing φr(·) is solved by the MADS [25] algorithm. The
formulation (3) with appropriate selection of a reference point allows
the recovery of all Pareto optimal solutions, which is not the case for
the weighted-sum reformulation. For achieving good distribution of
non-dominated solutions, the reference point must be selected in a
particular way. The BiMADS algorithm proposes a formal method
for identifying the biggest gap in the Pareto frontier approximation
and presents a procedure for selecting an appropriate reference point.
See [15] for details.

The BiMADS algorithm will be used for solving the multi-
objective co-design problem. The main advantages are:
• Both BiMADS and the underlying single-objective MADS

solver are supplied with a mathematical proof of conver-
gence [15], [25], which is not the case for other considered
algorithms.

• BiMADS has proven to be efficient for solving real-world
engineering problems [27].

• There is a free software application that implements the algo-
rithm, namely NOMAD [28]

• NOMAD provides various interfaces, including a Matlab front-
end, which simplifies integration with Protoip [16].

Although there is ongoing work on extending BiMADS for han-
dling three and more objectives [29], at the moment the algorithm
is limited to bi-objective problems, which is the main drawback.
Potentially, handling more than two objectives can be achieved by
aggregating the problem into a bi-objective formulation. However,
aggregation-based approaches are not considered in this work.

The next section will present an application of BiMADS to
predictive controller design problems. Although only a subset of
design parameters, objectives and constraints described in Section III
will be considered, the proposed approach can be extended to a
wider range of design problems, which includes handling parameters,
objectives and constraints not described in this paper.

V. CASE STUDIES

A. Fast gradient-based controller for a mass-spring-damper system:
CPU-only implementation

The system under control represents a chain of ten masses that
are connected via springs and dampers (Figure 1). The first mass is
also connected to a fixed wall. Each mass can be actuated with an
input force that has input and output limits. It is assumed there is no
gravitational force. The system can be modelled with a continuous-
time linear state space model:

ẋ(t) = Acx(t) +Bcu(t) (4)

where Ac ∈ Rn×n, Bc ∈ Rn×m are continuous-time state and input
matrices. For a system of ten masses n = 20 and m = 10.
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The following optimal control formulation is considered:

minimize
u,x

∫ T

0

(
1

2
xT (t)Qcx(t) +

1

2
uT (t)Rcu(t)

+xT (t)Wcu(t)
)
dt+

1

2
xT (T )Pcx(T ) (5a)

subject to x(0) = x̂ (5b)

ẋ(t) = Acx(t) +Bcu(t), ∀t ∈ [0, T ] (5c)

umin ≤ u(t) ≤ umax, ∀t ∈ [0, T ] (5d)

where Qc ∈ Sn+, Rc ∈ Sm++, Wc ∈ Rn×m and Pd ∈ Sn++ are state,
input, cross and terminal penalty matrices accordingly. Sn++(Sn+)
denotes a set of positive (semi-)definite matrices.

In this experiment the following prediction matrices were used:

Rc = Im×m ⊗ [0.0001], Qc = In×n ⊗
[
1 0
0 qspeed

]
,

Wc = 0m×n, Pc = Qc, (6)

where I and 0m×n denote identity and zeros matrices accordingly.
Tuning qspeed, which is a design parameter, allows for changing the
ratio between penalising positions and velocities for all the masses. A
small penalty is applied to inputs to ensure numerical stability, while
allowing aggressive controller response. Terminal penalty is selected
a priory: Pc = Qc, although the test setup can be improved further
by considering Pc as another design parameter.

For the purpose of digital control, the continuous-time state-space
model (4) and optimal control problem (5) are discretized, assuming
a zero-order hold to give

minimize
u0...uN−1,x0...xN

N−1∑
k=0

(
1

2
xTkQdxk +

1

2
uTkRduk

+xTkWduk
)
+

1

2
xTNPdxN (7a)

subject to x0 = x̂ (7b)

xk+1 = Adxk+Bduk, ∀k ∈ {0, . . . , N − 1} (7c)

umin ≤ uk ≤umax, ∀k ∈ {0, . . . , N − 1} (7d)

Note that the discrete-time penalty matrices Qd, Rd, Wd and Pd
are model-dependent [18]. The optimal control problem (7) can be
transformed into a condensed quadratic programming problem by
eliminating the states, which leads to the following formulation

minimize
1

2
θTHθ + θTh (8a)

subject to θmin ≤ θ ≤ θmax (8b)

Note that the gradient term h depends on the current state, while
the Hessian H is fixed and hence can be precalculated offline.
More details on condensed and sparse formulations for predictive
control can be found in [20]. Since (8b) has the form of box
constraints, calculating projection on the feasible set becomes compu-
tationally cheap. This facilitates using Nesterov’s projected gradient
algorithm [30], also known as the Fast Gradient Method (FGM).
The method proposes moving in the anti-gradient direction and
performing projection P (·) on the feasible set after each iteration
(Algorithm 1). The extra momentum step with a parameter β achieves
an optimal convergence rate. The constant step scheme [30] implies
β =

√
L−√µ√
L+
√
µ

, where L is the largest eigenvalue of the Hessian H and
µ is the convexity parameter, which is equal to minimum eigenvalue
of the Hessian.

The algorithm was implemented on an ARM Cortex A9 processor
of the Xilinx Zynq-7000 XC7Z020 system-on-a-chip employing
one processing core and using single precision arithmetic for data

Algorithm 1 Projected fast gradient algorithm for constrained opti-
mization with constant step size.

1: Initial guess: θ0
2: v0 = θ0
3: for i = 0 to NFGM do
4: θi+1 = (I − (1/L)H)νi − (1/L)h . anti-gradient step
5: zi+1 = P (θi+1) . projection on the feasible set
6: vi+1 = (1 + β)zi+1 − βzi . extra-momentum step
7: end for

Fig. 2. CPU in the loop test setup.

representation. Using the Protoip toolbox allowed for fast verification
of the controller in the loop with the plant model as shown in
Figure 2. For the considered setup, the computational delay of the
MPC controller is neglected.

The problem of interest is automatic design of a fast gradient-based
controller. The following design objectives are considered:
• Controller performance is judged based on settling time. In

this experiment, settling time is defined as the time elapsed
from the beginning of closed-loop simulation to the time at
which ‖x(t)‖2 ≤ ε, where ε = 0.01. Several simulations with
different initial conditions were performed in order to calculate
performance measure as a sum of settling times for different
initial conditions; see [31] for details. Since the performance
criterion and MPC objective are different, it is essential to
tune the prediction matrices in order to achieve the desired
performance.

• Algorithm computational time. As discussed in Section III-A2,
computational time is the main measure of algorithm complexity
for CPU implementations.

Design constraints:
• Algorithm computational time, in addition to being a design

objective, appears in a constraint function: in order to implement
the controller in real-time the algorithm execution time has to be
smaller than the sampling time of the system (Section III-A2).

• Stability constraint captures whether the controller was able to
stabilize the system. Unstable response might happen due to
short horizon, numerical errors or other reasons.

Note that the former constraint is quantifiable while the latter is
non-quantifiable. A quantifiable constraint is a constraint for which
the degree of feasibility and violation can be quantified [32]. In
this work, non-quantifiable constraints are handled with the extreme
barrier approach, which implies setting the objective to infinity for
all infeasible points and therefore not allowing infeasible iterations.
For quantifiable constraints the progressive barrier approach is
adopted. Progressive barrier constraint handling allows exploiting
knowledge of the violation degree by accepting infeasible iterations.
Both extreme and progressive barrier approaches are implemented in
NOMAD. More details can be found in [32], [28].

The design parameters are the following:
• Horizon length, N in (7); bounds: 1 ≤ N ≤ 12.
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Fig. 3. The impact of horizon length and sampling time on Hessian condition
number.

• Sampling time, Ts; bounds: 0.02 ≤ Ts ≤ 0.5.
• Number of fast gradient algorithm iterations, NFGM in Algo-

rithm 1; bounds: 20 ≤ NFGM ≤ 200.
• State penalty matrix, particularly qspeed parameter in (6);

bounds: 0.2 ≤ qspeed ≤ 5.

The above parameters are tightly coupled with each other. For
example, consider Figure 3 that illustrates the impact of horizon
length and sampling time on the Hessian condition number.

It can be observed that both parameters have a significant impact
on the condition number, which in turn affects the convergence rate
of the fast gradient algorithm [30]. As a result, the number of fast
gradient algorithm iterations NFGM required for convergence will
also change. However, NFGM must be selected with respect to
closed-loop performance, rather than open-loop optimality conditions,
which complicates the tuning process even more.

The above design problem was solved using the BiMADS al-
gorithm. The results are compared to LHS, which is a statistical
sampling method commonly used for design exploration and for
design-of-experiments in particular. Compared to ‘simple’ random
sampling, LHS achieves more evenly distributed sampling points
across all possible values [4]. For both experiments the number
of evaluations was restricted to 200. Design evaluation involves
compiling the source code and performing processor-in-the-loop tests,
which takes 1-4 minutes for the considered setup, depending on a
design complexity and the sampling time. Observe that full design
exploration is not a viable approach: even using a coarse grid with
ten points for the continuous variables, full exploration will require
217200 evaluations. As can be seen from Figure 4, the Pareto frontier
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Fig. 4. Pareto frontier approximation for CPU implementations of the FGM:
BiMADS vs LHS.
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Fig. 5. Hypervolume profiles for CPU implementations of the FGM: BiMADS
vs LHS.

returned by BiMADS dominates the front identified by LHS, i.e.
any design sampled by LHS is dominated by at least one design
identified by BiMADS (see Definition IV.2). Moreover, according to
the hypervolume profile (Figure 5), BiMADS provides a satisfactory
approximation of the Pareto frontier on the early stages, which opens
the possibility of early termination, depending on the time and/or
simulation resource availability.

Given the Pareto frontier (Figure 4) a designer will be able to select
an implementation based on the available processing time, e.g.

• For the computational budget of 100 ms, LHS-based exploration
achieves a settling time of 10.31 s, while optimization-based
design allows settling of the plant in 9.75 s.

• Tightening the computational budget to 2 ms leads to sampling
times of 16.82 s and 11.40 s for LHS- and optimization-based
approaches accordingly.

B. Fast gradient-based controller for a mass-spring-damper system
- FPGA implementation

This case study considers implementation of the Algorithm 1
with fixed point arithmetic on the FPGA logic of Xilinx Zynq-7000
XC7Z020 SoC. The testing setup is similar to that of Section V-A,
both in terms of the optimal control problem formulation (5) and
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the plant model (Figure 1). The algorithm was implemented with
the Vivado HLS FPGA synthesis tool using Protoip for automatic
deployment and verification in the loop with the plant model (Fig-
ure 2). As can be seen from Algorithm 1, FGM relies only on addition
and multiplication operators, while all divisions can be precalculated
offline. The following techniques were used to accelerate vector-
vector and matrix-vector operations (lines 4-7):
• Loop pipelining [33]. Data pipelining, as a general acceleration

technique, was discussed in Section II. In relation to loops,
pipelining implies overlapping iterations, i.e. starting a new
iteration before finishing the previous. For the considered
implementation, the initiation interval was set to one clock cycle
and was not treated as a design parameter.

• Loop flattening [33] is transforming nested loops into a single
loop with multiple counters. Flattening allows efficient pipelin-
ing of nested loops. This technique was applied to matrix-vector
multiplication (line 4), where loop nests arise when iterating over
matrix rows and columns.

Fixed point arithmetic often introduces overflow and round-off
errors. The former issue can be addressed by precalculating the upper
bound on the largest absolute value of algorithm iterates using interval
arithmetic. Regarding round-off errors, the number of fraction bits
has to be sufficiently large to maintain numerical stability of an
iterative algorithm. A procedure for precalculating the minimum
number of integer and fraction bits for fixed point implementations of
a fast-gradient algorithm is presented in [34]. However, [34] does not
attempt to formalize the problem of selecting the number of fraction
bits for optimal resource usage vs performance trade-offs.

The following objectives are considered in this design optimization:
• Controller performance is measured similarly to the previous

case study (Section V-A) with ε = 0.02.
• FPGA logic usage. As discussed in Section III-A FPGA de-

signers often aim to minimize the amount of logic used for a
particular algorithm. Logic usage is measured as the Euclidean
norm of relative utilization of each resource type, see (1) in
Section III-A.

Design constraints:
• Algorithm execution time. Similarly to the previous case study,

in order to implement the controller in real-time, the algorithm
execution time has to be smaller than the sampling time of the
system. This constraint is treated with the progressive barrier
approach. Note that for FPGA setup (in contrast to CPU),
computational time does not appear as an objective. This is
explained by the fact that FPGA logic is synthesized for a
particular algorithm and cannot be reused for other applications.

• Objective function convexity constraint. Due to assumptions
on the weight matrices in formulation (5), the Hessian of the
objective function (8a) is positive definite. However, a fixed
point representation of the true Hessian may be non-convex
because of truncation errors, which might affect convergence of
the fast-gradient algorithm. To avoid non-convex formulations,
a positivity constraint on the smallest eigenvalue of the fixed
point representation of the Hessian must be set. Although this is
a quantifiable constraint, which potentially can be treated with
a progressive barrier approach, we will use the extreme barrier
method that rejects all infeasible iterations. Since identifying
Hessian convexity is significantly faster compared to the full
design evaluation, which involves circuits synthesis and closed
loop simulation, rejecting infeasible iterations allows saving
design time.

• Stability constraint, similarly to the previous case study.
The following design parameters are considered:
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• Horizon length, N in (7); bounds: 1 ≤ N ≤ 12.
• Sampling time, Ts; bounds: 0.02 ≤ Ts ≤ 0.5.
• Number of fast gradient algorithm iterations, NFGM in Algo-

rithm 1; bounds: 20 ≤ NFGM ≤ 200.
• State penalty matrix, particularly qspeed parameter in (6);

bounds: 0.2 ≤ qspeed ≤ 5.
• Number of fraction bits for fixed point number representation,
Nfrac; bounds: 5 ≤ Nfrac ≤ 25.

Similarly to the previous case study, the multi-objective optimiza-
tion problem with the above design objectives and constraints was
solved using BiMADS algorithm and results were compared to Latin
hypercube sampling allowing 200 evaluations for both algorithms. In
contrast to software compilation, FPGA circuit synthesis is a time-
consuming process, which leads to the design evaluation time in the
range of 20-35 minutes. For this case study full design exploration
would require 4561200 evaluations, assuming a grid of ten points
for the continuous parameters.

It can be observed from Figure 6 that BiMADS outperforms LHS,
i.e. the BiMADS Pareto frontier dominates frontier identified by
LHS. However, unlike with the previous case study, LHS outperforms
BiMADS in the early stages of design exploration, which can be vi-
sualized with the hypervolume profile in Figure 7. This might happen
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due to bad selection of initial guesses for BiMADS. Moreover, LHS,
being a statistical method, might occasionally identify Pareto optimal
designs faster than deterministic algorithms. It can be observed from
Figure 7 that, after achieving a certain hypervolume space in the
beginning of exploration process, LHS does not improve the Pareto
frontier approximation significantly further. In contrast, BiMADS,
having a poor initial guess, improves the solution and outperforms
LHS when reaching an evaluation limit.

Given the Pareto frontier (Figure 6) a designer will be able to select
a particular implementation based on the available FPGA resources
(RFPGA). For example:
• For RFPGA = 0.1, LHS-based exploration achieves a settling

time of 10.87 s, while optimization-based design allows settling
of the plant in 8.71 s.

• Tightening the resource limit to RFPGA = 0.05 leads to sam-
pling times of 19.31 s and 10.56 s for LHS- and optimization-
based approaches accordingly.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed automating predictive control design by
employing systematic optimization. It was shown that the bi-objective
optimization-based design outperforms a statistical exploration tech-
nique and allows systematic investigation of resource-performance
trade offs. Two case studies considered CPU and FPGA implementa-
tions accordingly, although the proposed approach can be applied to
a broader range of computing architectures, including heterogeneous
computers.

In this work parameter tuning problem was solved for a pre-
defined algorithm, namely FGM. Further work might be focused
on formalizing the problem of algorithm selection, e.g. FGM vs
splitting algorithms or first-order vs second order algorithms. Another
direction for further research is extending the proposed approach to
the problems with more than two contradicting objectives in order to
be able to capture a wider range of real-world problems.
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