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Abstract: 

Zircaloy-4 (Zr-1.5%Sn-0.2%Fe-0.1%Cr wt. %) was electrochemically charged with deuterium 
to create deuterides and subsequently analysed with atom probe tomography and scanning 
transmission electron microscopy to understand zirconium hydride formation and 
embrittlement. At the interface between the hexagonal close packed (HCP) a-Zr matrix and 
a face centred cubic (FCC) d deuteride (ZrD1.5-1.65), a HCP z phase deuteride (ZrD0.25-0.5) has 
been observed. Furthermore, Sn is rejected from the deuterides and segregates to the 
deuteride/a-Zr reaction front. 
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Zircaloy-4 is primarily used as a fuel cladding material in water based nuclear reactors due to 
its low neutron absorption cross section, good mechanical properties and corrosion 
resistance. However, the alloy is susceptible to hydrogen embrittlement (HE) through a 
mechanism known as delayed hydride cracking (DHC) or hydrogen-induced delayed cracking 
(HIDC) [1, 2]. Hydrogen ingress occurs during service due to exposure with the water coolant. 
Zirconium has a relatively high oxidation potential and will readily form a ZrO2 layer when in 
contact with water – through this process, hydrogen is released, some of which is absorbed 
into the underlying alloy [3]. The terminal solid solubility (TSS) of hydrogen in a-Zr is low, less 
than 10 wt. ppm at room temperature and ambient pressure [4], and so there is a high driving 
force for excess hydrogen to precipitate as a brittle solid zirconium hydride. The severity of 
the embrittlement is dependent on several factors, for instance, an increase in the volume 
fraction and size of the hydrides and a decrease in the strain rate are known to be more 
deleterious [2, 5, 6]. The orientation of hydride platelets also has a significant influence on 
toughness, with those perpendicular to the tensile-axis being more deleterious [7]. The atomic 
structure and interfacial chemistry are also expected to play a critical role. In particular it is 
interesting to note that Northwood et al. [8] report that during DHC, crack initiation occurs 
within the hydride itself and not at the hydride/α interface. It therefore follows that knowledge 
of the internal structure and chemistry is of utmost importance to elucidating the mechanisms 
of DHC.  



However, despite many decades of research on hydrogen interaction in zirconium alloys, 
including Zircaloy-4, there is still a lack of atomic-scale structural and compositional 
characterisation of the hydrides including the growth front, which is a focus in this letter. 
Significant uncertainty also exists in the thermodynamics of the Zr-H system and variation in 
the proposed phase diagrams is evident, particularly below the eutectic temperature of 550 ˚C 
[3, 9, 10]. Currently, four different zirconium hydride phases have been reported. In terms of 
crystal structure and approximate stoichiometry ZrHX, these are referred to as hexagonal close 
packed (HCP) z (x=0.25-0.5), face-centred tetragonal (FCT) g (x=1), face-centred cubic (FCC) 
d (x≈1.5-1.65) and FCT e (x≈1.75-2) [11-13]. z is fully coherent with the a-Zr matrix with a c-
axis twice as long, and may play a critical role as the intermediate phase in the dissolution and 
precipitation processes of the more stable d-hydride [14, 15]. The ambiguity in identifying the 
various hydride phases, particularly z, has been brought about, in part, by the much lower 
diffraction intensities of the hydride relative to the a-Zr matrix [14]. However, with the advent 
of aberration corrected transmission electron microscopy (TEM), greater clarity of atomic 
structure is now possible [16].  

Atom probe tomography (APT) is another powerful microanalytical technique that offers a 
unique opportunity to reconstruct the three-dimensional position and elemental identity of 
atoms from a material specimen with sub-nm spatial resolution [17]. The technique has 
already been used to observe solute segregation, including H, at grain boundaries and the 
metal/oxide interface in zirconium alloys [18-22] but has had limited application to the study of 
zirconium hydrides directly. This is likely partially due to the technical challenges involved in 
identifying and quantifying hydrogen using APT. Background  H from the analysis chamber, 
typically in the range of 0.5-5 at.% [23], is routinely observed in the mass spectra. Ambiguity 
arises in determining which hydrogen atoms are from the chamber or the sample being 
analysed. Yet, recently, Chang et al. [24], reported on successfully using APT to characterise 
hydrides in the thermodynamically similar system of Ti-H – here we demonstrate that it can 
also be used to gain insights into the Zr-H system as well. A way to mitigate the challenges 
associated to H-quantification, as employed in this study, is to charge the material with the 
isotope deuterium (D or 2H), to minimise overlap with the background hydrogen peaks [23, 25-
27]. As a consequence, H analysis in atom probe is starting to emerge as a promising means 
of directly observing hydrogen in metals. Coupled with aberration corrected TEM as well as 
electron channelling contrast imaging (ECCI) [28] and electron back-scattered diffraction 
(EBSD) in the scanning electron microscope (SEM) – a multiscale approach to zirconium 
hydride analysis is presented herein.     

Commercial Zircaloy-4 (Zr-1.5%Sn-0.2%Fe-0.1%Cr wt. %) was received as a rolled and 
recrystallized plate with a typical split basal texture and average grain size of ~ 11 μm. The 
sample was then heat treated at 800 ˚C for two weeks to form large ‘blocky-alpha’ grains > 
200 μm similar to that recently reported by Tong and Britton [29]. The sample was then 
electrochemically charged with deuterium (galvanostatic charging, current density = 2 kA/m2) 
using a solution of 1.5 wt. % D2SO4 in D2O at 65 ˚C for 24 hours. After this process, a hydride 
layer of approximately 20 μm thickness formed at the surface. Annealing at 400 ˚C for 5 hours 
followed by furnace cooling of 0.5 ˚C/min was then used to redistribute the D from the surface 
into the bulk of the sample. The microstructure was then inspected using polarised light 
microscopy and a Zeiss Merlin scanning electron microscope (SEM).    

Fig. 1 provides an overview of the microstructure after D charging and annealing. Fig. 1 a is a 
polarised light-optical micrograph showing the different types of deuterides that have evolved. 
The grain boundary deuterides are the most common and the focus of further characterisation. 
Fig. 1 b is an ECCI image of a deuteride at higher magnification. Here, contrast changes are 
observed within the hydride and suggests a high dislocation density and internal strain as well 



as possible phase separation. The complex nature of the contrast in ECCI does not allow for 
directly assessing the size and nature of the various phases, but what seems like a single 
deuteride appears to be complex in nature and will be hereafter referred to as a deuteride 
packet. Fig. 1 c is an EBSD IPF map of the same region, the deuteride is indexed as d and 
follows the {0001}a || {111}d  , <11-20>a || <110>d  orientation relationship with the bottom 
matrix grain. This is in agreement with previous reports [14, 30]. Fig. 1 d is a misorientation to 
grain average orientation map which suggests an orientation gradient within the deuteride 
packet that is associated with a high dislocation density and internal strain. This deuteride 
packet also likely contains other hydrides, e.g. z, as well as metallic inclusions, but with 
respective volume fractions that do not allow for direct imaging at this scale, hence TEM was 
pursued.  

An overview of the TEM results is shown in Fig. 2. A TEM specimen was hence prepared from 
within the same grain boundary deuteride packet using a FEI Helios 600i dual-beam scanning 
electron microscope / focused-ion beam (SEM/FIB). The FIB was used to lift out a section of 
the grain boundary deuteride, as indicated in Fig. 2 a, and was subsequently thinned until it 
was electron transparent. Scanning transmission electron microscopy (STEM) imaging was 
conducted in an aberration-corrected STEM/TEM (FEI Titan Themis) at 300 kV. For high-
resolution high-angle annular dark field image (HAADF) imaging, a probe semi-convergence 
angle of 17 mrad and inner and outer semi-collection angles ranging from 73 to 200 mrad 
were chosen. Fig. 2 b is a high-angle annular dark field image (HAADF) of the grain boundary 
deuteride growth front from this sample. Within the a-Zr grain, 100–200 nm ahead of the 
growth front, variations in contrast suggest that intragranular deuterides are formed. Within 
approx. 100 nm from the growth front, a deuteride depletion zone is readily visible. Variations 
in contrast are observed behind the growth front, in what is referred to as a transition zone 
between the a-Zr matrix into the d-deuteride indicated in Fig. 2 b. This particular contrast could 
be partly due to an inclined interface relative to the incident electron beam, or to a rough 
interface. Fig. 2 c is a more highly magnified micrograph of this transitional zone that shows a 
rough interfacial network of 3 different phases. In Fig. 2 d the experimental fast Fourier 
transforms (FFT) computed from the highlighted regions in Fig. 2 c are contrasted with 
simulated electron diffraction patterns (using JEMS software [31]) of the suspected phases. 
The change in crystal structure across the growth front is clearly visible in the diffractograms. 
The slight deviations between the computed FFTs and the simulated diffraction patterns are 
related to dynamical scattering effects, local changes in sample thickness or orientation and 
variation in deuteride stoichiometry, but are considered negligible for phase identification. In 
particular, the additional sub-lattice spots, allow to unambiguously identify the z phase present 
in this transition zone.  

The results from a representative APT dataset are summarised in Fig. 3. The APT specimens 
were prepared from a similar grain boundary deuteride to that shown in the previous figures, 
and a SEM micrograph of the deuteride is shown in Fig. 3 a. APT specimens were prepared 
using the lift-out procedure introduced by Thompson et al. [32] on an FEI Helios dual-beam 
plasma focused ion beam (PFIB). APT experiments were performed on a CAMECA local 
electrode atom probe (LEAP) 5000 XR. While voltage pulsing has typically been used in the 
past for H analysis related experiments in order to mitigate H surface diffusion and molecular 
ion evaporation [25-27], this was found to have very low success rates, while not entirely 
preventing the evaporation of molecular H species in this system. UV laser pulsing was thus 
used, which drastically improved yield. A base temperature of 60 K, laser pulse energy of 60 
pJ, pulse repetition rate of 250 kHz and a detection rate of 1-2 ions per 100 pulses were used 
during the experiments. 



A specimen containing the deuteride/alpha growth front, is shown in Fig. 3 b. In Fig. 3 c are 
displayed the atom maps of the reconstructed data for the Zr and Sn. From these maps, an 
interface between a-Zr and the selected grain boundary deuteride is readily visible. Sn is seen 
to partition to a-Zr with a segregate region in the vicinity of this interface. The presence of 
deuterium in the specimen can be clearly assessed by the peaks present in the mass spectrum 
displayed in Fig. 3 d, that shows a comparison between a loaded specimen and the one 
obtained from a control sample that had not been electrochemically loaded. In addition, a few 
peaks corresponding to H- and D- containing molecular ions, e.g. ZrH2+/ZrD2+ were also 
observed. The presence of hydrogen in the analysis may be due to a partial hydration during 
deuterium charging, the subsequent exchange of D by H or residual H from the APT chamber 
[24]. FIB milling may also induce hydride formation [33, 34] but the relative amount of D 
detected is consistent with the presence of a deuteride packet formed during the deuterium 
loading that has remained stable during sample preparation. Nevertheless, the distribution of 
D and precise quantification of the deuteride packet remains a challenge and an in-depth 
discussion on this topic falls outside the scope of this study. 

Fig. 4 a shows a close-up on this interface taken from the region of interest (ROI) highlighted 
by the dashed line square in Fig. 3 c. This map highlights the variation in D-content (ions 
corresponding to the first peak in the mass spectrum, which is entirely H, have not been 
included in this analysis). Zr and Sn isocomposition surfaces have been used to highlight the 
rough z/a interface. A representative 1D composition profile across the interface is shown in 
Fig. 4 b. The variation in the deuterium content from d into z and then a agrees qualitatively 
with our TEM observations. The increase in the amount of D at the d/z and z/a interfaces could 
be due to changes in the local electrostatic field that leads to variations in the amount of 
molecular 1H2

+ that overlaps with the deuterium peak.  

A clear Sn enrichment of up to approximately 2 at.% is observed at the deuteride/a reaction 
front. The profile also indicates partitioning of the Sn between the two deuterides and 
preference for the Sn to partition to the a-matrix. We propose that these observations suggest 
the following qualitative statements: 

• Sn solubility is higher in the a-matrix than in the deuteride phases 
• Deuteride growth rate is controlled by the partition of Sn to the a-Zr matrix which leads 

to the formation of the Sn spike at the reaction front.     

This fits well with the recent ab inito studies by Christensen et al. [35] that suggest of all the 
solute additions present in Zircaloy-4, Sn has the highest destabilizing effect on hydride 
phases and that Sn is relatively more stable in pure Zr than in any zirconium hydride. It follows 
that an enrichment of Sn at the reaction front as well as the need for Sn to leave the deuteride 
may retard further deuteride growth and have a significant influence on the growth rate. 
However, conversely, higher Sn content in Zr alloys increases surface oxidation and a recent 
trend among fuel manufacturers has been to reduce Sn content in Zr cladding material for 
reactors [36]. More research is needed on the effects Sn content and distribution has on the 
oxidation and hydride formation mechanisms combined and APT provides a valuable tool for 
investigating the segregation and partitioning behaviour of this critical solute addition. 

Based on our body of evidence, we conclude that the grain boundary deuteride packets 
present in deuterium-charged Zircaloy-4 samples contain a network of d and z with a rough 
z/a-Zr matrix growth front. The exact mechanism of formation of the z deuteride remains 
unclear. Possibly, d grew during annealing at 400 °C and has partially transformed into the 
z  phase during cooling while the amount of deuterium in the d phase was increased at lower 
temperatures, as suggested by the phase diagram proposed by Grosse et al. [3]. Another 



possibility is that z formed first during the annealing as an intermediate transition phase and 
remained at the reaction front to accommodate the stresses between d and a-Zr, in closer 
agreement with that proposed by Li et al. [14] and Shen et al. [16]. The FFT analysis of high 
resolution STEM images (Fig. 2 d) confirm the presence of the two deuteride phases. From 
the APT results, accurate quantification of D was challenging. Nevertheless, the 1D 
concentration profile (Fig. 4 b) shows a distinct change in relative D content consistent with 
the presence of multiple deuteride phases and the a-Zr matrix. The 1D concentration profile 
within the APT reconstruction at the growth front also showed a partitioning effect of Sn to the 
a-Zr matrix. The behaviour of Sn may have a significant influence over deuteride growth and 
is perhaps the rate-limiting factor due to the need for Sn to partition to the a-Zr matrix for 
further growth. Such information could have significant implications for controlling hydride 
evolution in Zr based alloys and reducing the severity of delayed hydride cracking.  
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Fig. 1 (a) Polarised light micrograph of Zircaloy-4 after deuterium charging showing evidence of deuteride formation 
(b) SEM-ECCI image of the same grain boundary deuteride indicated in (a). (c) relative crystal orientation EBSD map 
and unit cell orientations of the detected δ and α phases. (d) Misorientation to grain average orientation map. IPF: 
Inverse pole figure.  

 



 
Fig. 2 (a) SEM image of TEM lift-out location on grain boundary hydride of interest (b) STEM-HAADF micrograph 
showing a transitional region between matrix and hydride. (c) Detail HAADF micrograph of interfacial region showing 
hydride structure. (d) FFT of different regions in (c) with corresponding simulated diffraction patterns confirming 
different crystal structures of the α, ζ and δ regions.    

 



 
Fig 3. (a) APT lift-out region at grain boundary deuteride. (b) SEM image of specimen prior to APT experiment. The 
blue arrow indicates the suspected hydride/a interface. (c) APT reconstruction atom map cross-sections (5 nm thick). 
The region of interest and direction for the ID composition profile in Figure 4(b) is shown in the Sn map. (d) mass 
spectrum of dataset (red) which clearly shows the presence of peaks indicating D (or 2H) content after charging, a 
reference mass spectrum (black) from a non-charged specimen has also been included for comparison.  

 



 
Fig 4. (a) zoomed in insert of region of interest across deuteride/a interface. A Zr isocomposition surface (85 at.%) 
and a Sn isocomposition surface (1.9 at.%) have been used to highlight the interface. (b) 1D composition profile of Sn 
in the x-direction. 
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