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Abstract
A key component of task-oriented dialogue systems is the belief
state representation, since it directly affects the policy learning
efficiency. In this paper, we propose a novel, binary, compact,
yet scalable belief state representation. We compare the stan-
dard verbose belief state representation (268 dimensions) with
the domain-independent representation (57 dimensions) and the
proposed representation (13 or 4 dimensions). To test those
representations, the recently introduced Advantage Actor Critic
(A2C) algorithm is exploited. The latter has not been tested
before for any representation apart from the verbose one. We
study the effect of the belief state representation within A2C un-
der 0%, 15%, 30%, and 45% semantic error rate and conclude
that the novel binary representation in general outperforms both
the domain-independent and the verbose belief state represen-
tation. Further, the robustness of the binary representation is
tested under more realistic scenarios with mismatched semantic
error rates, within the A2C and DQN algorithms. The results
indicate that the proposed compact, binary representation per-
forms better or similarly to the other representations, being an
efficient and promising alternative to the full belief.
Index Terms: dialogue systems, belief state, binary belief state
representation, domain-independent parametrisation

1. Introduction
Conversational systems is a thriving research area with numer-
ous real-world applications, such as call-centers [1], tourist in-
formation [2], car navigation [3], education [4], social robots
[5], banking [6], health services[7], and games and entertain-
ment [8]. Many commercial applications are also emerging,
such as intelligent personal assistants, e.g. Microsoft’s Cortana,
Apple’s Siri, and Amazon’s Echo among others. Task-oriented
information seeking is a common case for a statistical dialogue
system, where a database is inquired for a specific item given a
set of hard restrictions [9]. In the traditional case, the database
covers one task, that is, a single domain, such as searching for
a restaurant. Challenges derive from the fact that the number of
belief state (BS) features and dialogue actions increases rapidly
as more context and domains are taken into account [10].

1.1. Relation to prior work

Regarding representations, the standard belief state (BS) fea-
tures have been widely used [11]. Their main advantage is that
they have been used and optimised for over a decade now and
are publicly available. Their main disadvantage is that they are

domain-dependent, very sparse, and with a high degree of re-
dundancy. The problem of operating across domains is resolved
by the use of domain-independent (DIP) features [12]. DIP re-
sults in a fixed-dimensional space, so domains with different
belief spaces are automatically mapped onto a common belief
space base. In this work, we make use of the amended DIP rep-
resentation, with four new features, such as the normalised turn
number, referred simply as DIP features from now on.

A family of novel state representations based on binary fea-
tures is firstly presented in this paper. This representation is
domain-transferable and compact, yet robust. The key idea is
that, in many domains, the knowledge of exact slot values may
not be as important for dialogue action selection, as the knowl-
edge of whether a slot value is known or not. Therefore, the pro-
posed features mark the presence or absence of a slot value at
each dialogue turn with a binary (0-absent or 1-present) value.
These abstract features are combined linearly for all domain
slots (BinLin) and may be augmented with auxiliary binary in-
formation about slot requests by the user (BinAux).

Regarding the policy manager part, traditional approaches
are using either Markov Decision Processes (MDPs) [13] or
Partially Observable Markov Decision Process (POMPDS) [14]
to solve the sequential decision problem. The most common
approach to solving the optimisation problem of sequential de-
cision making is the use of reinforcement learning (RL) [15].
Most recently, the use of deep neural networks (NNs) to solve
the optimisation problem is exploited. This may be attributed
partially to the fact that deep architectures with several hid-
den layers can be efficiently used for complex tasks and en-
vironments. Promising results have been achieved for exam-
ple with the Deep Q-Network (DQN) systems [16], leading to
many variations, such as the NDQN [17]. Lately, a trend to-
wards policy-gradient methods, such as Advantage Actor-Critic
(A2C), appeared [18], which have proven to be efficient in Atari
games, car simulators, and physics simulators [19]. Focusing
on dialogue systems, the authors of [18] test a deep A2C al-
gorithm, either initialised with supervised learning or not, on
the restaurants domain, as in this paper. Their main finding is
that the A2C algorithm converged faster than the DQN and the
GP-SARSA algorithms. Furthermore, A2C approaches are pre-
sented in [20], where improvements are introduced either by
the use of experience replay and the trust region policy optimi-
sation method or by an alternative approximation of the advan-
tage function. Experimental results prove the suitability of the
A2C algorithms for on-line learning. It should be noted that any
policy manager could serve for the aims of our work, since it is
the different input representations to the policy manager that are



studied here. We decided to resort to A2C methods, since they
are quite new and have not been tested before for representa-
tions other than the full belief, thus adding to the novelty.

1.2. Contribution of this work

This paper presents: i) a novel binary belief state representation
(BinLin, BinAux); ii) the first use of the A2C algorithm with
compact representations (DIP, BinLin, BinAux); iii) a system-
atic comparison between the full and the compact representa-
tions in matched and miss-matched semantic error conditions;
and iv) a confirmation that compact representations can attain
high performance at considerably lower computational cost.

2. Method
2.1. The dialogue model

For the sake of completeness, a short introduction to the dia-
logue model is presented. The input to the model is the belief
state (BS) bt at each time t. The model’s role is to find an
optimal policy π that maximises the discounted total return:

R =

T−1∑
t=0

γt rt(bt, at), (1)

where t is the current turn number, T is the total number of di-
alogue turns, γ is a discount factor, and rt(bt, at) is the reward
of taking action at when being at BS bt. For the A2C dialogue
manager presented here, the output is a distribution of proba-
bilities over the next action π(at|bt) and also one extra scalar
standing for the value function of the BS b given the policy:

V (b) =

T−1∑
t=0

γt rt
(
bt, at

∣∣ π,b0 = b
)
. (2)

2.2. The A2C algorithm

A2C is a policy-gradient RL method [20]. It approximates the
policy directly in a model-free way. That is, the policy is repre-
sented as a network that maps from the BS (or equivalently any
other feature set) to the action space in a probabilistic manner:

πθ(at|bt) = π(at|bt;θ) = P(at|bt,θt = θ), (3)

where θ is the weight vector of the policy network. The policy
parameters are learned by gradient-based optimisation. In order
to search for the optimal θ parameters, we need to define the
objective function J(θ), the expected reward over all possible
dialogue trajectories given a starting state. Hence, the aim is to
maximise J(θ) based on the Policy Gradient Theorem [21]:

Theorem 1. For any differentiable policy πθ(at|bt) and for the
average reward or the start-state objective function, the policy
gradient can be computed as

∇θJ(θ) = Eπθ

[
∇θ log πθ(at|bt)Qπθ (bt, at)

]
. (4)

This can be seen as having πθ(at|bt) be the actor and
Qπθ (bt, at) = E(rt + γrt+1 + . . . |bt, at) be the critic [22].
Nevertheless, the direct use of Equation (4) has proven to be
unstable due to high variance [23]. To reduce variability with-
out changing the gradient, a baseline function is used. It holds
that subtracting V πθ (bt) from Qπθ (bt, at) does not change
the gradient. Hence, the advantage function is introduced:

Aπθ
w (bt, at) = Qπθ (bt, at)− V πθ (bt), (5)
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Figure 1: A2C-{BS, DIP, BinLin, BinAux} system architec-
ture: The experience replay pool contains several dialogues
from which a mini batch of turns is selected. Then the 268-
dimensional BS is transformed to the 57-dimensional DIP, 4-
dimensional BinLin or 13-dimensional BinAux features that are
given as input to the two NNs. The policy network has the θ
weight vector and the value network has the w weight vector.
The output is the probability over actions P(at|bt,θt) and the
value function of the specific belief state V πθ (bt) respectively.
For A2C-BS, no conversion takes place, i.e. the belief state is
given directly as input to the two NNs.

with w being the weight vector of the value network. The in-
sight of usingAπθ

w is to determine not just how good the actions
are, but how much better they turn out to be than expected (ad-
vantage). Combining Equation (4) with Equation (5) we get:

∇θJ(θ) = Eπθ

[
∇θ log πθ(at|bt)Aπθ

w (bt, at)
]

(6)

Here, πθ(at|bt) is the actor and Aπθ
w (bt, at) is the critic. Fi-

nally, to reduce the number of network parameters, the advan-
tage function is estimated using the temporal difference [24]:

Aπθ
w (bt, at) ≈ δw(t) = rt + γV πθ

w (bt+1)− V πθ
w (bt). (7)

A graphical representation of the system architecture described
in this Section is depicted in Figure 1.

2.3. DIP feature representation

DIP is an alternative representation of the BS. DIP features are
domain-independent, so they can facilitate learning a policy in
an abstract way. Policies learned on that fixed-dimensional base
space can be transfered to new domains. This is done by explor-
ing the nature and commonness of the underlying tasks in dif-
ferent domains and parameterising different slots according to
their relations and potential contributions. The original set [12]
includes the number of values, their distribution in the database
(DB), and how likely filling a slot will (or not) reduce the num-
ber of matching DB records below a threshold. This represen-
tation is further amended by the importance and priority of the
slots [25]. Four additional features are added for this work:

• how many entities of the database (DB) satisfy the query
given the current BS b: |DB(b)|

• whether the system has already provided an entity to the
user or not

• whether the system couldn’t provide any information
(i.e. can’t help)

• the normalised turn number t/NT , with t being the cur-
rent turn number andNT the maximum number of turns.

The overall number of DIP features is 57.



2.4. Binary feature representation

The proposed binary features consist an abstraction of the ver-
bose full belief state (BS) representation proposed within the
PyDial toolkit framework. This latter belief state is a high-
dimensional vector, which is extremely sparse and has a high
degree of redundancy. Our goal is to define compact, yet robust,
forms of the state-vector representation, which could serve as a
more informative alternative to the original belief. The reduced
size of the proposed binary features leads to diminished com-
putational cost, hence facilitating real-time systems, as well as
systems that don’t have access to large computational power.

The proposed binary abstraction is valid under the assump-
tion that the most important information for a dialogue manager
is whether a slot name is activated (its value is not NULL) at a
specific dialogue turn, rather than knowing its exact slot value.
This idea is also motivated and supported by the fact that the
distributions over slot values within the belief vector are in al-
most all dialogue instances extremely sparse; the grand major-
ity of the slot values have zero probability. Under the proposed
abstraction, it is not necessary to know the detailed domain’s
ontology and all the possible values a slot can take. Likewise,
it is not required to unnecessarily grow the feature vectors to
accommodate discreteness for all possible slot values. Instead,
we can obtain only binary values for the available slots in the
belief vector (one binary feature per slot).

Specifically, the proposed BinLin representation comprises
the binary abstract features for the domain slots combined lin-
early. More specifically, the slots are turned into a linear bi-
nary vector of size equal to the number of slots and we mark
the presence or absence of a slot value at each dialogue turn
with a binary (0-absent or 1-present) value. In this way, the ab-
stract binary feature vector only consists of n components for n
slots. Hence, in the CamRestaurants domain, BinLin will create
a feature-vector of size 4, since there are only 4 domain slots:
area (7 values), food (93 values), name (114 values), price range
(5 values). This simple representation can be augmented by an
auxiliary part that contains the information of whether a slot has
been requested or not by the user, information which is other-
wise discarded in BinLin, although it is contained in the verbose
belief state. The addition of the auxiliary part to BinLin leads
to the BinAux features and adds robustness to the pure binary
linear (BinLin) representation. In the CamRestaurants domain,
BinAux yields a feature-vector of size 4 + 9 = 13, since, in
addition to the 4 domain slots, there are 9 slots in the auxiliary
part that the user may request, namely: address, area, descrip-
tion, food, name, phone, postcode, price range, and signature.
Notice that the proposed representations (both BinLin and Bin-
Aux) scale linearly with the number of slots and therefore are
applicable to large domains. Apart from the two representations
described here, it is possible to design a family of similar binary
feature choices, for example using separate and complementary
on/off bit features for presence and absence of a slot value.

3. Experimental Results
Experiments are conducted using the software toolkit PyDial
[11]. The CamRestaurants domain refers to restaurants in the
Cambridge, UK area and consists of 113 restaurants, each with
7 slots (database attributes), of which 4 can be used by the sys-
tem to constrain the search (food, area, name, price range) and 3
are system-informable properties (phone number, address, post-
code) available once a database entity has been found. An
agenda-based simulator is used, operating at dialogue act level.

A2C is realised as two fully connected feed-forward NNs
with two hidden layers: the policy network and the value net-
work. Both NNs have the same architecture, besides the output
layer, and share the same input. Mini batches of dialogue ex-
periences (bj , aj , rj ,bj+1) are randomly sampled from a re-
play pool. The dialogue experiences can be represented either
as BS, DIP, BinLin or BinAux features. That is, the input to
the NNs can be either the 268-dimensional BS from PyDial,
the 57-dimensional DIP, the 4-dimensional BinLin, or the 13-
dimensional BinAux. The output size is 15 + 1 = 16, corre-
sponding to 15 dialogue actions determining the system intent
at the semantic level plus one scalar value for the V πθ (bt), as
can be seen in Figure 1. Weights are randomly initialised from a
Gaussian function with a zero mean value and a standard devi-
ation of 0.01. The value of the γ discount factor is set to 0.99.
The total return R is computed as: R = Isuccess − 0.05 × T,
where Isuccess is the indicator function of success and T is the
dialogue length that has a maximum value of 30. A dialogue is
deemed successful, if the retrieved restaurant complies with the
set of target preferences provided by the simulated user for the
specific dialogue. Isuccess can also be seen as the task completion
flag. Small reward values are used to avoid gradient instability
and network training inconsistency. The Adam optimiser [26] is
used with an initial learning rate of 0.001 for both the actor and
the critic. During training, an ε-greedy policy is used, where ε
is initially set to 0.5 and is annealed to 0.0 over 2000 dialogues.

For A2C-BS, the input to the NNs is a BS with 268 di-
mensions. The NNs have two hidden layers, the first with 130
neurons and the second with 50 neurons. The mini batch size
is 64 and the capacity of the experience replay pool is 6000.
For the A2C-DIP case, the input to the NNs has 57 dimensions.
The NNs have two hidden layers, the first with 200 neurons and
the second with 150 neurons. The mini batch size is 70 and
the capacity of the experience replay pool is 100. For A2C-
Bin{Lin,Aux}, the input to the NNs has 4 and 13 dimensions
respectively. The NNs have two hidden layers, the first with
250 neurons and the second with 75 neurons. The mini batch
size is 64 and the capacity of the experience replay pool is 1000.
The difference in the size of the experience replay pool can be
partially attributed to the different sizes and nature of the input.

3.1. Training and testing in matched conditions

The studied models are first evaluated under 0%, 15%, 30%,
and 45% semantic error rate, as can be seen in Table 1. The
number of training dialogues is 2000 and the number of test-
ing dialogues is 300. To validate the quality and stability of
the learned policies, accuracy is averaged over 5 independent
runs of 2000 training dialogues / 300 evaluation dialogues cy-
cles each. Two figures-of-merit are used: the objective success
and the reward, the latter since this is the criterion the algorithm
aims to optimise. Note that the optimal set of figures-of-merit
for dialogue systems evaluation is still an open problem [27].

For the 0% semantic error rate, A2C-BinAux achieves sig-
nificantly higher success and reward, while all other represen-
tations are quite close to each other in terms of performance.
In addition, it is remarkable that even the extremely compact,
4-dimensional feature set, used in the A2C-BinLin method, is
able to achieve comparable performance to the much higher-
dimensional representations. It should be noted that all feature
representations have similar standard deviation, which means
that they exhibit similar robustness.

As expected, the performance for all methods deteriorates,
when noise is introduced to the semantic input; however, the



Table 1: Dialogue success rate and reward in the CamRestaurants domain for various semantic error rates under matched error rate
conditions. The results are given in the form of mean value (standard deviation). Best performance is highlighted in boldface.

Method
Semantic error rate (%)

0% 15% 30% 45%
success reward success reward success reward success reward

A2C-BS 83.9 (6.2) 10.4 (1.1) 75.9 (7.6) 8.1 (1.5) 64.5 ( 7.5) 5.4 (1.3) 46.5 (11.3) 1.1 (1.8)
A2C-DIP 82.0 (8.3) 10.0 (1.6) 73.8 (9.8) 6.8 (2.0) 57.0 (10.1) 3.3 (1.8) 47.6 ( 8.8) 3.0 (1.5)
A2C-BinLin 82.4 (8.2) 10.3 (1.5) 76.7 (9.3) 8.7 (1.9) 61.8 (12.6) 5.1 (2.3) 49.7 ( 8.8) 1.8 (1.5)
A2C-BinAux 94.8 (7.6) 12.9 (1.5) 82.5 (5.9) 9.6 (1.2) 69.9 (11.2) 6.5 (2.1) 52.9 (12.9) 2.5 (2.3)

relative performance picture remains the same. Specifically, for
the 15% semantic error rate, the A2C-BinAux exhibits a per-
formance deterioration similar to all other methods, but still re-
mains the highest performing one. The differences become less
prominent for the 30% and the 45% semantic error rates, al-
though A2C-BinAux still outperforms all other representation
choices. Clearly, the addition of the auxiliary part in BinAux
has a significant positive effect on the proposed binary repre-
sentation. Overall, with respect to all error rates, A2C-BinAux
is systematically better than all other representations for both
success and reward, despite the 13-dimensional representation.

3.2. Training and testing in mismatched conditions

In real-world situations the semantic error is not zero, due to
a multitude of factors, such as ASR mistakes (e.g. acoustic
confusability), ambiguity of natural language, incomplete ut-
terances, etc. In existent conversational systems the error rate
of the top hypothesis is typically 20%-30%. To approach real-
word scenarios and test for robustness under different training
and testing semantic error rates, we applied the same experi-
mental protocol, but with mismatched conditions. That is, we
trained the policy with a 15% semantic error rate and tested with
30% and 45% semantic error rates. Since the 0% rate is unlikely
to occur in a real world scenario, it is not studied here. The 30%
and 45% semantic error rates are chosen, since making the sys-
tem available to real users is expected to lead in an increase to
the word error rate, as has already been proven [28][29].

The mismatched conditions results can be seen in Ta-
ble 2. Once again, A2C-BinAux is clearly the best performing
method, both in success and reward. It is also worth noting that
for the mismatched conditions A2C-BinAux exhibits the low-
est variation among all methods, even in the Train 15% – Test
45% case, where it comes second in reward performance. Once
again, A2C-BinLin remains close to A2C-BS despite its sim-
plicity and small dimension; similarly to the matched case, the
results indicate that the addition of the user-requested slots (the
auxiliary part) is important to achieve higher performance.

Table 2: Dialogue success rate and reward in the CamRestau-
rants domain for various semantic error rates under mis-
matched conditions, shown as mean value (standard deviation).

Method
Semantic error rate (%)

Train 15% - Test 30% Train 15% - Test 45%
success reward success reward

A2C-BS 68.3 (5.6) 5.8 (1.0) 54.9 (5.0) 2.6 (0.8)
A2C-DIP 64.8 (9.2) 5.1 (1.8) 54.2 (9.9) 4.2 (2.2)
A2C-BinLin 66.3 (6.4) 5.9 (1.2) 55.7 (5.2) 3.4 (0.9)
A2C-BinAux 72.1 (5.1) 6.8 (1.0) 58.9 (3.4) 3.5 (0.6)

3.3. Comparison to other methods

Although the policy manager per se is not the focus of this pa-
per, for comparison purposes, the A2C algorithm was substi-
tuted with DQN [16] [30] and the representations were tested
under the mismatched conditions of the previous section. Com-
parative results can be seen in Table 3.

The use of the well-studied DQN gives a significant per-
formance gain to the BS and DIP representations. Interest-
ingly, DQN-DIP moves to the top, whereas DQN-BS and DQN-
BinAux perform similarly. DQN-BinLin exhibits lower perfor-
mance compared to DQN-BinAux, which is consistent with the
A2C results. In any case, the choice of A2C or DQN has mini-
mal influence on the performance of BinLin and BinAux.

4. Conclusion and Future Work
This paper introduces the first use of the A2C algorithm along
with the BinLin, BinAux, as well as the DIP, features. It was
found that the reduction of dimensions obtained by the conver-
sion of the BS to DIP or Bin{Lin,Aux} has noteworthy advan-
tages, both when the training and testing of the system is done
under the same semantic error rate conditions, as well as when
the testing semantic error rate is substantially higher than the
training one. This may be partially attributed to the redundancy
and sparseness of the standard BS representation. In all ex-
perimental conditions within A2C, the proposed BinAux repre-
sentation is consistently better than the BS and DIP ones. The
newly proposed BinAux features are i) domain-transferable,
ii) low-dimensional, offering an order of magnitude reduction
compared to the full BS, iii) scalable to domains with many
slots and many slot values, and iv) computationally efficient. In
the future we aim to test BinAux on larger and multiple domains
to assess if performance and scalability findings generalize.
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Table 3: Dialogue success rate and reward in the CamRestau-
rants domain for various semantic error rates under mis-
matched conditions with a DQN policy (instead of A2C).

Method
Semantic error rate (%)

Train 15% - Test 30% Train 15% - Test 45%
success reward success reward

DQN-BS 72.7 (5.6) 7.2 (1.1) 59.9 (4.9) 3.9 (1.0)
DQN-DIP 76.8 (5.2) 9.0 (1.0) 67.2 (2.6) 6.4 (0.5)
DQN-BinLin 66.7 (8.9) 6.1 (1.6) 56.5 (7.4) 3.5 (1.1)
DQN-BinAux 70.6 (7.2) 6.8 (1.3) 59.2 (6.7) 3.8 (0.9)
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Barahona, P.-H. Su, S. Ultes, and S. Young, “A network-based
end-to-end trainable task-oriented dialogue system,” in Proc. Eu-
ropean Chapter of the Association for Computational Linguistics,
April 2007, pp. 438–449.
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