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Abstract

The choice network revenue management model incorporates customer purchase behavior

as probability of purchase as a function of the offered products, and is appropriate for air-

line and hotel network revenue management, dynamic sales of bundles, and dynamic assort-

ment optimization. The optimization problem is a stochastic dynamic program and is in-

tractable. Consequently, a linear programming approximation called choice deterministic linear

program (CDLP ) is usually used to generate controls. Tighter approximations such as affine

and piecewise-linear relaxations have been proposed, but it was not known if they can be solved

efficiently even for simple models such as the multinomial logit (MNL) model with a single

segment. We first show that the affine relaxation (and hence the piecewise-linear relaxation) is

NP-hard even for a single-segment MNL choice model. By analyzing the affine relaxation we

derive a new linear programming approximation that admits a compact representation, implying

tractability, and prove that its value falls between the CDLP value and the affine relaxation

value. This is the first tractable relaxation for the choice network revenue management problem

that is provably tighter than CDLP . This approximation in turn leads to new policies that,

in our numerical experiments, show very good promise: a 2% increase in revenue on average

over CDLP ; and the values typically coming very close to the affine relaxation. We extend

our analysis to obtain other tractable approximations that yield even tighter bounds. We also

give extensions to the case with multiple customer segments with overlapping consideration sets

where choice by each segment is according to the MNL model.
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1 Introduction and literature review

Revenue Management (RM) controls the sale of different products that share a resource to maximize

revenue, and in Network Revenue Management (NRM), the products in addition consume multiple

resources creating network dependencies. In this paper we consider NRM under a choice model of

consumer behavior. In the canonical airline example, resources correspond to flight legs and products

correspond to itineraries that span multiple flight legs; in the car-rentals application, resources are

automobiles of a category and a product is the the consecutive days of the rental; for the hotel

industry, resources correspond to hotel rooms for each night and products correspond to multi-night

stays. The network dependencies introduce a considerable amount of additional complexity to the

stochastic control problem.

The NRM problem can be formulated as a stochastic dynamic program. However, solving the

Bellman equation is intractable even for very small problems because of an explosion of the state

space. Considering the intractability of the NRM dynamic program, Gallego, Iyengar, Phillips, and

Dubey [5] and Liu and van Ryzin [12] proposed a linear programming approximation called the

choice deterministic linear program (CDLP ) (similar to some earlier deterministic approximations

proposed for solving NRM under the simpler perfect segmentation assumption; see Talluri and van

Ryzin [20]). The optimal objective function value of CDLP gives an upper bound on the value

function of the NRM dynamic program. Upper bounds are useful both for deriving controls from

them, as well as for assessing the sub-optimality of policies.

The CDLP , however, has a drawback—the number of columns are exponential in the number

of products; so it has to be solved using column generation. Liu and van Ryzin [12] show that the

CDLP column generation procedure is tractable for the multinomial logit (MNL) choice model with

multiple customer segments when the customers’ consideration sets do not overlap. More recently,

Gallego, Ratliff, and Shebalov [7] show that CDLP has a compact linear programming formulation

under the MNL model with disjoint consideration sets. On the other hand, for the problem with two

segments whose consideration sets overlap, CDLP is intractable even for the MNL model (Bront,

Méndez-Dı́az, and Vulcano [3], Rusmevichientong, Shmoys, Tong, and Topaloglu [17]). Zhang and

Adelman [22] investigate an affine relaxation (AF )to the NRM dynamic program and show that it

obtains a tighter upper bound than CDLP . The hardness result for the MNL choice model with

multiple customer segments and overlapping consideration sets carries over to the affine relaxation

as well. Due to the negative computational complexity results for obtaining bounds on the value
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function, some researchers have studied methods to obtain control policies such as bid-price controls

directly; see for example Chaneton and Vulcano [4], Meissner and Strauss [14] and Hosseinalifam,

Marcotte, and Savard [10].

There are two important dimensions to assess the different approximation methods. One is the

quality of the upper bound and the other is computational tractability. On the quality dimension,

the approaches proposed by Zhang and Adelman [22] and Meissner and Strauss [14] are provably

tighter than CDLP . However, in this paper, we show that the affine relaxation (AF ) of Zhang and

Adelman [22] turns out to be intractable even for the MNL model with a single segment.

On the other hand, the approximation methods proposed by Talluri [19] and Meissner, Strauss,

and Talluri [15] are tractable provided the consideration sets are small in size (polynomial in the

size of the consideration sets). However, they are not guaranteed to produce upper bounds that are

provably tighter than the CDLP bound. This motivates the need for tractable solution methods

that tighten the CDLP bound.

Kunnumkal and Talluri [11] establish analytic limits on how much the AF bound can improve

upon the CDLP bound and show that real improvements are possible only under low resource

availabilities, which is likely to happen closer to the end of the sales horizon. Since the upper

bound obtained by our approximation methods fall in between the CDLP and AF bounds, the

result of Kunnumkal and Talluri [11] applies to our formulations also, with the distinction that our

approximation methods are tractable, while AF is not.

This paper builds on these advances and makes the following research contributions:

1. We show that the affine relaxation of NRM is NP-hard even for the single-segment MNL model

(perhaps the simplest of choice models). Our result implies that stronger solution methods that

obtain tighter bounds than the affine relaxation (such as the piecewise-linear approximation

proposed by Meissner and Strauss [14]) are also NP-hard for the single-segment MNL model.

On the other hand, our hardness result motivates solution methods that tighten the CDLP

bound and remain tractable, at least for the single-segment MNL model.

2. We propose a new, compact, linear programming approximation that gives a tighter bound on

the dynamic program value function than CDLP , improving upon the work of Gallego et al.

[7]. Compact formulations are attractive from an implementation perspective for a number of

reasons: they do not require customized coding for constraint-separation or column-generation,

and they reduce the subjectivity involved in setting the stopping criterion for the constraint

3



or column-generation process. To our knowledge, this is the first tractable approximation

method for MNL that is also provably tighter than CDLP . In numerical experiments our

approximation typically produces upper bounds that are close to the affine bound (achieving

nearly 75% reduction of the gap between it and the CDLP ) and have good revenue performance

(obtaining on average above 95% of the revenues obtained by the affine relaxation). Running

times for our new approximation are typically a fraction of that of the affine relaxation (in its

faster reduced form (12) described in §2.5).

3. We show how our ideas can be extended to the mixture-of-multinomial-logits (MMNL) model

(McFadden and Train [13]), with both disjoint as well as overlapping consideration set assump-

tions.

4. We propose control policies based on the new approximation and test its performance through

an extensive numerical study. Our method yields noticeable benefits both in terms of tighter

bounds (over 1.5% above CDLP on average across instances) and improved revenue perfor-

mance (over 2% above CDLP on average across instances). The benefits primarily come from

sharper value function approximations towards the end of the selling horizon when capacity

tends to be relatively scarce. So one option for practitioners is to switch to our method during

the last few days of the sales horizon.

The remainder of the paper is organized as follows: In §2 we describe the choice NRM model, the

notation, and the basic dynamic program, the CDLP and the affine relaxation of the NRM dynamic

program. Next, in §3 we show that the affine relaxation is NP-hard even for the single-segment MNL

model. We describe our first tractable approximation method in §4. §5 discusses extensions to the

MMNL model. §6 contains our computational study using the new approximation.

2 Problem formulation

We are interested in controlling the sale of products over a finite sales horizon. A product is a

specification of a price and the set of resources that it consumes. Time is discrete and the sales

horizon consists of τ intervals, indexed by t. The sales horizon begins at time t = 1 and ends at

t = τ ; all the resources perish instantaneously at time τ + 1. We make the standard assumption

that the time intervals are fine enough so that the probability of more than one customer arriving

in any single time period is negligible.
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We let I denote the set of resources and J the set of products. We index resources by i and

products by j. We let fj denote the revenue associated with product j and use Ij ⊆ I to denote the

set of resources used by product j. We let �[·] denote the indicator function, 1 if true and 0 if false

and �[Ij ] denote the vector of resources used by product j, with a 1 in the ith position if i ∈ Ij and
a 0 otherwise. We use Ji ⊆ J to denote the set of products that use resource i.

In each period the firm offers a subset S of its products for sale, called the offer set. We write

i ∈ IS whenever there is a j ∈ S with i ∈ Ij ; that is, there is at least one product in the offer set S

that uses resource i.

We use superscripts on vectors to index the vectors (for example, the resource capacity vector

associated with time period t would be rt) and subscripts to indicate components (for example, the

capacity on resource i in time period t would be rti). Therefore, r1 = [r1i ] represents the initial

capacity on the resources and rt = [rti ] denotes the remaining capacity on the resources at the

beginning of time period t. The remaining capacity rti takes values in the set Ri = {0, . . . , r1i } and

R =
∏
iRi represents the state space at each time t.

2.1 Demand model

We have multiple customer segments, each with distinct purchase behavior. The segmentation of the

customers could be according to different criteria - for example, price sensitivities, demographics or

even geographic locations. We let L denote the set of customer segments. In each period a customer

from segment l ∈ L arrives with probability λl so that λ =
∑

l λl is the total arrival rate. Note that

conditioned on a customer arrival, λl/λ is the probability that the customer belongs to segment l.

Customer segment l has a consideration set Cl ⊆ J of products that it considers for purchase.

We assume this consideration set is known to the firm (by a previous process of estimation and

analysis). The choice probabilities of a segment-l customer are not affected by products not in its

consideration set. Given an offer set S, an arriving customer in segment l purchases a product j in

the set Sl = Cl ∩ S or leaves without making a purchase. The no-purchase option is indexed by 0

and is always present for the customer.

Within each segment, choice is according to the MNL model. The MNL model associates a

preference weight with each alternative including the no-purchase alternative. We let wlj denote the

preference weight associated with a segment-l customer for product j. Without loss of generality,

5



by suitably normalizing the weights, we set the no-purchase weight wl0 to be 1. The probability that

a segment-l customer purchases product j when S is the offer set is

P lj (S) =
wlj�[j∈Sl]

1 +
∑

k∈Sl
wlk

. (1)

The probability that the customer does not purchase anything is P l0(S) = 1/(1 +
∑

k∈Sl
wlk). We

note that the preference weights are inputs to our model; estimating them is outside the scope of

the paper. We refer the reader to Ben-Akiva and Lerman [2] for further background on this popular

choice model.

Given a customer arrival, and an offer set S, the probability that the firm sells j ∈ S is given by

Pj(S) =
∑
l
λl

λ P
l
j (S) and makes no sale with probability P0(S) = 1 −∑

j∈S Pj(S). The expected

sales for product j is therefore λPj(S) =
∑

l λlP
l
j(S), while 1 − λ + λP0(S) = 1 −∑

j∈S λPj(S) is

the probability of no sales in a time period. Given an offer set S, Qli(S) =
∑

j∈Ji
P lj(S) denotes the

expected capacity consumed on resource i conditional on a segment-l customer arrival and Qi(S) =∑
l
λl

λ Q
l
i(S) denotes the expected capacity consumed on resource i conditional on a customer arrival.

Note that λQi(S) =
∑
l λlQ

l
i(S) gives the expected capacity consumed on resource i in a time period.

The revenue functions can be written as Rl(S) =
∑

j∈S fjP
l
j(S) and R(S) =

∑
j∈S fjPj(S).

We assume that the arrival rates and choice probabilities are stationary. This is for brevity of

notation only, all our results go through with non-stationary arrival rates and choice probabilities.

2.2 Choice dynamic program

The dynamic program (DP) to determine optimal controls is as follows. Let Vt(r
t) denote the

maximum expected revenue to go, given remaining capacity rt at the beginning of period t. Then

Vt(r
t) must satisfy the Bellman equation

Vt(r
t) = max

S⊆S(rt)

⎧⎨
⎩
∑
j∈S

λPj(S)
[
fj + Vt+1

(
rt − �[Ij ]

)]
+ [λP0(S) + 1− λ] Vt+1

(
rt
)⎫⎬⎭ , (2)

where

S(r) = {
j |�[i∈Ij ] ≤ ri ∀i

}
represents the set of products that can be offered given the capacity vector r. The boundary

conditions are Vτ+1(r) = Vt(0) = 0 for all r and for all t, where 0 is a vector of all zeroes.

V DP = V1(r
1) denotes the optimal expected total revenue over the sales horizon, given the initial

capacity vector r1.
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2.3 Linear programming formulation of the dynamic program

The value functions can, alternatively, be obtained by solving a linear program (LP). The LP

formulation of (2) has a decision variable for each state vector in each period Vt(r) and is as follows:

V DPLP = min
V

V1(r
1) (3)

(DPLP ) s.t. Vt(r) ≥
∑
j

λPj(S)
[
fj + Vt+1

(
r − �[Ij ]

)− Vt+1 (r)
]
+ Vt+1 (r)

∀ r ∈ R, S ⊆ S(r), t.

Both dynamic program (2) and DPLP are computationally intractable, but DPLP turns out to be

useful in developing value function approximation methods, as shown in Zhang and Adelman [22].

In the following, we describe two approximations methods, namely, the choice deterministic linear

program and the affine relaxation. Carefully analyzing the differences between the two formulations

leads to our new tractable approximation.

2.4 Choice deterministic LP

The choice deterministic linear program (CDLP ) proposed in Gallego et al. [5] and Liu and van

Ryzin [12] is a certainty-equivalence approximation to (2). We write CDLP as the following LP:

V CDLP = max
h

∑
t

∑
S

λR(S)hS,t

(CDLP ) s.t.

t∑
k=1

∑
S

λQi(S)hS,k ≤ r1i ∀i, t (4)

∑
S

hS,t = 1 ∀t (5)

hS,t ≥ 0 ∀S, t.

The decision variable hS,t can be interpreted as the frequency with which set S (including the empty

set) is offered at time period t . The first set of constraints ensure that the total expected capacity

consumed on resource i up until time period t does not exceed the available capacity. Note that

since hS,t ≥ 0, constraints (4) are redundant except for the last time period. Still, this expanded

formulation is useful when we compare CDLP with other approximation methods. The second set

of constraints states that the sum of the frequencies adds up to 1.

The dual of CDLP turns out to be useful in our analysis. Associating dual variables γ =
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{γi,t | ∀i, t} with constraints (4) and β = {βt | ∀t} with constraints (5), the dual of CDLP is

V dCDLP = min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

(dCDLP ) s.t. βt +
∑
i

(
τ∑
k=t

γi,k

)
λQi(S) ≥ λR(S) ∀t, S (6)

γi,t ≥ 0 ∀i, t.

Liu and van Ryzin [12] show that the optimal objective function value of CDLP , V CDLP is an

upper bound on V DPLP .

Besides giving an upper bound on the value function, CDLP can also be used to construct

different heuristic control policies. We describe one heuristic control proposed by Zhang and Adel-

man [22] : Letting γ̂ = {γ̂i,t | ∀i, t} denote the optimal values of the dual variables associated with

constraints (4), we interpret γ̂i,t as giving the value of an additional unit of capacity on resource i

from time period t to t+ 1. With this interpretation,
∑τ

s=t γ̂i,s gives the marginal value of capacity

on resource i at time period t. Zhang and Adelman [22] approximate the value function Vt(r
t) as

V̂t(r
t) =

∑
i

(
τ∑
s=t

γ̂i,s

)
rti . (7)

The heuristic control replaces the value function by its approximation in optimality equation (2) to

determine the offer set. That is, if rt is the vector of remaining resource capacities at time t, the

heuristic control solves the problem

max
S⊆S(rt)

⎧⎨
⎩
∑
j∈S

λPj(S)
[
fj + V̂t+1

(
rt − �[Ij ]

)]
+ [λP0(S) + 1− λ] V̂t+1

(
rt
)⎫⎬⎭ , (8)

and offers the set that achieves the maximum in the above optimization problem.

The number of decision variables in CDLP is exponential in the number of products and so it

has to be solved using column generation. The tractability of column generation depends on the

underlying choice model. Liu and van Ryzin [12] show that the column generation procedure can be

efficiently carried out when choice is according to the MNL model and the consideration sets of the

different segments do not overlap. That is, we have Cl ∩ Cm = ∅ for segments l and m. Under the

same set of assumptions, Gallego et al. [7] further show that CDLP has the following equivalent,
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compact formulation

V SBLP = max
x

∑
t

∑
l

∑
j∈Cl

λlfjx
l
j,t

(SBLP ) s.t.
∑
t

∑
l

∑
j∈Ji∩Cl

λlx
l
j,t ≤ r1i ∀i, t (9)

xl0,t +
∑
j∈Cl

xlj,t = 1 ∀l, t

xlj,t
wlj

− xl0,t ≤ 0 ∀l, j ∈ Cl, t

xl0,t, x
l
j,t ≥ 0 ∀l, j, t.

In the above sales-based linear program (SBLP ), the decision variables xlj,t can be interpreted as

the sales rate for product j at time t. Note that SBLP is a compact formulation since the number

of constraints and decision variables is polynomial in the number of products and resources. On the

other hand, if the consideration sets overlap, Bront et al. [3] and Rusmevichientong et al. [17] show

that the CDLP column generation is NP-hard even under the MNL choice model.

2.5 Affine relaxation

The second approximation method we consider is the affine relaxation, where the value function is

approximated as Vt(r) = θt +
∑

i Vi,tri. Note that Vi,t can be interpreted as the marginal value of

capacity on resource i at time t. Substituting this value function approximation into the formulation

DPLP we get the affine relaxation LP

V AF = min
θ,V

θ1 +
∑
i

Vi,1r
1
i

(AF ) s.t. θt +
∑
i

Vi,tri ≥
∑
j

λPj(S)

⎡
⎣fj − ∑

i∈Ij

Vi,t+1

⎤
⎦+ θt+1 +

∑
i

Vi,t+1ri

∀ r ∈ R, S ⊆ S(r), t
θt ≥ 0, Vi,t ≥ 0 ∀i, t

with the boundary conditions θτ+1 = 0, Vi,τ+1 = 0. Zhang and Adelman [22] show that the optimal

objective function value V AF is an upper bound on the value function and that there exists an

optimal solution (θ̂, V̂ ) of AF that satisfies V̂i,t − V̂i,t+1 ≥ 0 for all i and t.

While the number of decision variables in AF is manageable, the number of constraints is ex-

ponential both in the number of products as well as the number of resources. Vossen and Zhang
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[21] use Dantzig-Wolfe decomposition to derive a reduced, equivalent formulation of AF , where the

number of constraints is exponential only in the number of products.

We give an alternative, simpler proof of the reduction below. The analysis we present also turns

out to be useful in the development of our tractable solution methods later. We make a change of

variables βt = θt − θt+1, and γi,t = Vi,t − Vi,t+1 and write AF equivalently as

min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

s.t. βt +
∑
i

γi,tri +
∑
j

λPj(S)

⎡
⎣
⎛
⎝∑
i∈Ij

τ∑
k=t+1

γi,k

⎞
⎠− fj

⎤
⎦ ≥ 0 ∀r ∈ R, S ⊆ S(r), t (10)

γi,t ≥ 0 ∀i, t,

where we use the fact that Vi,t =
∑τ

k=t γi,k and so
∑τ

k=t γi,k can be interpreted as the marginal

value of capacity on resource i at time t. Note that the nonnegativity constraint on γi,t is without

loss of generality, since there exists an optimal solution to AF that satisfies Vi,t − Vi,t+1 ≥ 0.

Now, constraints (10) can be written as

min
r∈R,S⊆S(r)

⎧⎨
⎩βt +

∑
i

γi,tri +
∑
j

λPj(S)

⎡
⎣
⎛
⎝∑
i∈Ij

τ∑
k=t+1

γi,k

⎞
⎠− fj

⎤
⎦
⎫⎬
⎭ ≥ 0 (11)

for all t. Since γi,t ≥ 0, the coefficient of ri in minimization problem (11) is nonnegative, and we

can assume ri ∈ {0, 1} in the minimization (as larger values of ri would be redundant in S ⊆ S(r)
and would only increase the objective value). Moreover, since γi,t ≥ 0, for any set S, we have ri = 0

for i 	∈ IS . On the other hand, feasibility requires we have ri = 1 for i ∈ IS . Therefore, (11) can be

written as

min
S

⎧⎨
⎩βt +

∑
i

�[i∈IS]γi,t +
∑
j

λPj(S)

⎡
⎣
⎛
⎝∑
i∈Ij

τ∑
k=t+1

γi,k

⎞
⎠− fj

⎤
⎦
⎫⎬
⎭ ≥ 0.

and we can write AF equivalently as

V RAF = min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

(RAF ) s.t. βt +
∑
i

�[i∈IS ]γi,t +
∑
i

[(
τ∑

k=t+1

γi,k

)
λQi(S)

]
≥ λR(S) ∀t, S (12)

γi,t ≥ 0 ∀i, t.

Notice that the number of constraints in the reduced formulation RAF is an order of magnitude

smaller than AF . Taking the dual of RAF by associating dual variables hS,t with constraints (12),
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we get

V dRAF = max
h

∑
t

∑
S

λR(S)hS,t

(dRAF ) s.t.
∑
S

(
t−1∑
k=1

λQi(S)hS,k + �[i∈IS]hS,t

)
≤ r1i ∀i, t

∑
S

hS,t = 1 ∀t

hS,t ≥ 0 ∀S, t.

The above arguments imply that

Proposition 1. (Vossen and Zhang [21]) V AF = V RAF = V dRAF .

We close this section with two remarks. First, in addition to giving an upper bound on the

optimal expected total revenue, the affine relaxation can also be used to construct heuristic control

policies. Letting (β̂, γ̂), with β̂ = {β̂t | ∀t} and γ̂ = {γ̂i,t | ∀i, t}, denote an optimal solution to

RAF , we use
∑τ

k=t γ̂i,k to approximate the marginal value of capacity on resource i at time t. We

approximate Vt(r
t) using (7) and solve problem (8) using this value function approximation to decide

on the set of products to be offered at time period t. Second, Zhang and Adelman [22] show that the

upper bound obtained by AF is tighter than CDLP . In that sense, AF is a better approximation

than CDLP . At the same time, it is important to understand the computational effort required by

AF to obtain a tighter bound. We explore this question in the following section.

3 Tractability of the affine relaxation for MNL with a single

segment

In this section, we focus on the tractability of the affine relaxation for the single-segment MNL

model. We restrict our attention to the single-segment MNL since it is one of the few cases where

CDLP is tractable. We show that the affine relaxation is NP-hard even for this simple choice model.

Let the preference weights be wj (as mentioned earlier, we drop the segment index l when we

are analyzing a single segment problem). The choice probabilities, expected resource consumptions

and expected revenues are then given by

Pj(S) =
�[j∈S]wj

1 +
∑

k∈S wk
Qi(S) =

∑
j∈Ji∩S wj

1 +
∑

j∈S wj
R(S) =

∑
j∈S fjwj

1 +
∑
j∈S wj

. (13)
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Since RAF has an exponential number of constraints, we have to use constraint separation, and

generate constraints (12) violated by a solution on the fly. Following the result of Grötschel, Lovász,

and Schrijver [9], polynomial-solvability of an LP is equivalent to polynomial-time generation of

violated constraints and so we focus on separating constraints (12).

Substituting (13) into constraint (12), we obtain

βt + γS,t +
∑
i

[(
τ∑

k=t+1

γi,k

)
λ

∑
j∈Ji∩S wj

1 +
∑

j∈S wj

]
≥ λ

∑
j∈S fjwj

1 +
∑

j∈S wj

where

γS,t =
∑
i

�[i∈IS ]γi,t.

Multiplying both sides by the positive quantity 1+
∑
j∈S wj and simplifying, constraint (12) of RAF

can be equivalently written as

βt ≥ −γS,t
⎛
⎝1 +

∑
j∈S

wj

⎞
⎠−

∑
j∈S

ζj,t(β, γ), (14)

where

ζj,t(β, γ) = wj

⎡
⎣βt + λ

⎛
⎝
⎛
⎝∑
i∈Ij

τ∑
k=t+1

γi,k

⎞
⎠− fj

⎞
⎠
⎤
⎦ . (15)

Since the constraint has to be satisfied for every S and t, we have βt ≥ ΠAFt (β, γ) for all t, where

ΠAFt (β, γ) = max
S

⎧⎨
⎩−γS,t

⎛
⎝1 +

∑
j∈S

wj

⎞
⎠−

∑
j∈S

ζj,t(β, γ)

⎫⎬
⎭ (16)

and the affine relaxation constraint (12) can be equivalently written as

βt ≥ ΠAFt (β, γ) ∀t. (17)

Generating constraints on the fly involves checking, given a set of values (β, γ), if constraint

(14) is satisfied for all S. If not, we add the violated constraint to the LP. In other words, the

RAF separation problem at time t involves solving optimization problem (16) and determining if

βt ≥ ΠAFt (β, γ). If βt ≥ ΠAFt (β, γ), then constraint (14) is satisfied for all S at time t. Otherwise,

the set Ŝ which attains the maximum in problem (16) violates the constraint, and we add the

constraint for set Ŝ to the LP.

Proposition 2 below states that the affine relaxation separation problem for MNL with a single

segment, as given in (14), is NP-hard.

12



Proposition 2. The following problem is NP-complete:

Input: wj ≥ 0, 1 ≥ λ ≥ 0, fj ≥ 0, and values βt and γi,t ≥ 0.

Question: Is there a set S that violates (14)?

Proof

Proof given in the Appendix.

�

Therefore, even though the affine relaxation tightens the CDLP bound, it comes at a significant

cost. This motivates the solution method that we propose in the following section, which tightens

the CDLP bound while retaining tractability.

4 Weak affine relaxation

In this section we propose our tractable approximation method that tightens the CDLP bound.

We also show that our approximation method can, in fact, be formulated as a compact LP. In our

initial development, we restrict attention to the single-segment MNL choice model. While this is

primarily for clarity of exposition, we note that the single-segment results may be of independent

interest, especially in the context of optimization of personalized assortments; see for example [8]

and [6]. In §5 we show how the ideas can be readily extended to the MNL model with multiple

customer segments.

4.1 Preliminaries

All of our approximationmethods involve solving an optimization problem of the formminβ,γ
∑

t βt+∑
t

∑
i γi,tr

1
i subject to the constraints βt ≥ Πt(β, γ), where Πt(·, ·) is a scalar function of β =

{βt | ∀t} and γ = {γi,t | ∀i, t}. The following observation is useful in comparing the upper bounds

obtained by the different approximation methods.

Lemma 1. Let

V I = min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

(I) s.t. βt ≥ ΠIt (β, γ), γi,t ≥ 0 ∀i, t,

13



and

V II = min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

(II) s.t. βt ≥ ΠIIt (β, γ), γi,t ≥ 0 ∀i, t.

If ΠIt (β, γ) ≤ ΠIIt (β, γ) for all t, then V I ≤ V II .

Proof

The proof follows by noting that a feasible solution to problem (II) is also feasible to problem (I)

and both optimization problems have the same objective function.

�

4.2 CDLP vs. AF for single-segment MNL

We begin by comparing the CDLP and AF separation problems for the single-segment MNL model.

For this choice model, the CDLP constraints can be separated efficiently, while the AF separation

problem is intractable. Comparing the CDLP and AF separation problems helps us identify the

difficult term in the affine relaxation. Replacing this difficult term in the AF separation problem

with a more tractable term yields our approximation method.

Using the single-segment MNL formulas for the expected resource consumptions and expected

revenues, the CDLP dual constraint (6) can be written as

βt ≥ −
∑
j∈S

wj

⎡
⎣βt + λ

⎛
⎝
⎛
⎝∑
i∈Ij

τ∑
k=t

γi,k

⎞
⎠− fj

⎞
⎠
⎤
⎦ ∀t, S

which looks similar to the right-hand-side of (14) except that the inner summation over k runs from

t instead of t+ 1. To make the comparison with AF easier, we rewrite the above constraint as

βt ≥ ΠCDLPt (β, γ) ∀t (18)

where

ΠCDLPt (β, γ) = max
S

⎧⎨
⎩−λ

∑
j∈S

wj

⎛
⎝∑
i∈Ij

γi,t

⎞
⎠−

∑
j∈S

ζj,t(β, γ)

⎫⎬
⎭ , (19)

and ζj,t(β, γ) is defined in (15). Since 0 ≤ λ ≤ 1, and γS,t =
∑
i �[i∈IS]γi,t ≥

∑
i∈Ij

γi,t ≥ 0 for all

j ∈ S, we have

γS,t

⎛
⎝1 +

∑
j∈S

wj

⎞
⎠ ≥ λ

∑
j∈S

wj

⎛
⎝∑
i∈Ij

γi,t

⎞
⎠ .

14



Therefore ΠAFt (β, γ) ≤ ΠCDLPt (β, γ) and by Lemma 1, V AF ≤ V CDLP , which gives an alternative

proof of the AF bound being tighter than the CDLP bound. More importantly, the comparison

hints at how we can obtain tractable relaxations that are tighter than CDLP .

4.3 A new tractable approximation

We are now ready to describe our tractable approximation method, which we refer to as weak affine

relaxation (wAR). The difficult term in (16) is the γS,t(1 +
∑

j∈S wj), and CDLP is tractable as it

replaces this by λ
∑

j∈S wj(
∑

i∈Ij
γi,t). We instead replace the γS,t(1 +

∑
j∈S wj) term in (16) with

γS,t +
∑
j∈S wj(

∑
i∈Ij

γi,t) and solve the LP

V wAR = min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

(wAR) s.t. βt ≥ ΠwARt (β, γ) ∀t (20)

γi,t ≥ 0 ∀i, t,

where

ΠwARt = max
S

⎧⎨
⎩−γS,t −

∑
j∈S

wj

⎛
⎝∑
i∈Ij

γi,t

⎞
⎠−

∑
j∈S

ζj,t(β, γ)

⎫⎬
⎭ . (21)

Proposition 3 below shows that wAR obtains an upper bound on the value function that is weaker

than AF but stronger than CDLP .

Proposition 3. V AF ≤ V wAR ≤ V CDLP .

Proof

The proof follows by noting that

γS,t

⎛
⎝1 +

∑
j∈S

wj

⎞
⎠ ≥ γS,t +

∑
j∈S

wj

⎛
⎝∑
i∈Ij

γi,t

⎞
⎠ ≥ λ

∑
j∈S

wj

⎛
⎝∑
i∈Ij

γi,t

⎞
⎠ .

Therefore ΠAFt (β, γ) ≤ ΠwARt (β, γ) ≤ ΠCDLPt (β, γ) and the result now follows from Lemma 1.

�

In the remainder of this section, we show that the weak affine relaxation upper bound, V wAR, can

be obtained in a tractable manner; moreover we show that the weak affine relaxation LP can, in

fact, be reformulated as a compact LP where the number of variables and constraints is polynomial

in the number of products and resources.
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Observe that solving problem (21) in an efficient manner is key to separating the weak affine

relaxation constraints efficiently. Therefore, we focus on solving optimization problem (21). Intro-

ducing decision variables qi,t and uj,t, respectively, to indicate if resource i and product j are open

at time t, problem (21) can be formulated as the integer program

ΠwARt (β, γ) = max
q,u

−
∑
i

γi,tqi,t −
∑
j

⎡
⎣ζj,t(β, γ) + wj

⎛
⎝∑
i∈Ij

γi,t

⎞
⎠
⎤
⎦ uj,t (22)

s.t. uj,t − qi,t ≤ 0 ∀i ∈ Ij , ∀j (23)

qi,t ≤ 1 ∀i (24)

uj,t ≥ 0, integer ∀j. (25)

Note that the first constraint ensures that a product is open only if all the resources it uses are open.

Now, observe that the constraint matrix of the above integer program has exactly one +1 and one

−1 coefficient in each row, and hence is totally unimodular. So we can ignore the integer restriction

and solve (22)–(25) exactly as an LP. In fact, problem (22)–(25) can also be solved combinatorially

as a flow problem: the dual of the LP can be transformed to be a network flow problem on a

bipartite graph with one set of nodes representing products and the other side resources and edges

representing product-resource incidence, and flow from a source to a sink node, each connected to

the product and resource nodes respectively; fast algorithms of Ahuja, Orlin, Stein, and Tarjan

[1] can then be used to solve the problem in time O(|I||E| + min(|I|3, |I|2√|E|)) where |I| is the

number of resources and |E| is the number of edges in this graph. Therefore, problem (22)–(25) can

be solved efficiently and separating the wAR constraints is tractable.

We next show that wAR can be formulated as a compact LP eliminating the need for generating

constraints on the fly. Since the separation problem can be solved as an LP where all the fixed

values (β, γ) appear in the objective function only, we can fold it into the original LP as follows:

First take the dual of (22)–(25) with dual variables πi,j,t corresponding to (23), and ψi,t to (24):

ΠwARt (β, γ) = min
π,ψ

∑
i

ψi,t

s.t.
∑
i∈Ij

πi,j,t ≥ −
⎡
⎣ζj,t(β, γ) + wj

⎛
⎝∑
i∈Ij

γi,t

⎞
⎠
⎤
⎦ ∀j

−
∑
j∈Ji

πi,j,t + ψi,t = −γi,t ∀i

πi,j,t, ψi,t ≥ 0 ∀i, j ∈ Ji.
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Then use the second constraint in the above LP to eliminate the variable ψi,t to write the dual as

ΠwARt (β, γ) = min
π

∑
i

⎡
⎣∑
j∈Ji

πi,j,t − γi,t

⎤
⎦

s.t.
∑
i∈Ij

πi,j,t ≥ −
⎡
⎣ζj,t(β, γ) + wj

⎛
⎝∑
i∈Ij

γi,t

⎞
⎠
⎤
⎦ ∀j (26)

∑
j∈Ji

πi,j,t ≥ γi,t ∀i (27)

πi,j,t ≥ 0 ∀i, j ∈ Ji.

Now we fold in the above LP formulation of ΠwARt (β, γ) into constraints (20) and write wAR

equivalently as

V wAR = min
β,γ,π

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

s.t. βt ≥
∑
i

⎡
⎣∑
j∈Ji

πi,j,t − γi,t

⎤
⎦ ∀t

(26), (27)∀t
γi,t, πi,j,t ≥ 0 ∀i, j ∈ Ji, t.

The size of the above LP is polynomial in the number of resources and products. Hence, not only

is wAR stronger than CDLP , it is also tractable and has a compact formulation. Notice that this

formulation would have been hard to derive and justify without the line of reasoning starting from

AF .

The dual of the above LP gives more insight into the weak affine relaxation. We get the dual LP

as

V wAR = max
x,ρ

∑
t

∑
j

λfjxj,t

(dwAR) s.t. x0,t +

t−1∑
s=1

∑
j∈Ji

λxj,s +
∑
j∈Ji

xj,t − ρi,t ≤ r1i ∀i, t

x0,t +
∑
j

xj,t = 1 ∀t

xj,t
wj

− x0,t + ρi,t ≤ 0 ∀i, j ∈ Ji, t
x0,t, xj,t, ρi,t ≥ 0 ∀i, j, t.

If we interpret xj,t as the sales rate for product j at time t and x0,t − ρi,t as the resource level no-

purchase rate at time t, then we can view wAR as a refinement of SBLP of Gallego et al. [7], where
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the sales rates at each time period are modulated by the expected remaining resource capacities.

The weak affine relaxation is based on isolating the difficult term in the affine relaxation and

replacing it with a simpler, more tractable term. The separation problem involving the simpler, more

tractable term can be formulation as an LP. Taking the dual of the LP formulation of the separation

problem yields the compact formulation of the weak affine relaxation. One advantage of having a

compact formulation is that it eliminates the overhead associated with optimizing the constraint-

separation code and memory management. Another benefit is that it reduces the subjectivity involved

in setting the stopping criterion for the constraint-separation process. It is possible to build on these

ideas and obtain other tractable approximation methods that further tighten the wAR bound. We

describe two such approximations in the Appendix.

5 MNL with multiple customer segments

In this section we describe how to extend the weak affine relaxation of §4 to the mixture-of-

multinomial-logits (MMNL) model. The MMNL model is a rich choice model that can approximate

any random utility choice model arbitrarily closely; McFadden and Train [13]. In §5.1 we consider

the MMNL choice model with disjoint consideration sets. In §5.2 we consider the case where the

consideration sets of the different segments overlap. It is also possible to extend the weak affine

relaxation idea to the general attraction model of Gallego et al. [7] in a transparent manner.

5.1 Disjoint consideration sets

We consider the case where the total demand is comprised of demand from multiple customer

segments. The consideration sets of the different segments are disjoint and so we have Cl ∩ Cm = ∅
for segments l and m. We note that the case of disjoint consideration sets for the segments is one of

the few known cases where the CDLP formulation is tractable. We describe below how wAR can

be extended to tighten the CDLP bound in a tractable manner. The key idea is to look at the AF

separation problem for each customer segment, which again turns out to be intractable. We apply

the ideas from the single-segment case to get a tractable relaxation.

Let Il = {i ∈ I | ∃j ∈ Cl and j ∈ Ji} and Li = {l ∈ L | i ∈ Il}. We can interpret Il as the set

of resources that are used by segment l and Li as the set of segments that use resource i. Letting

λl denote the arrival rate for segment l, we can interpret
∑

l∈Li
λl as the effective arrival rate for
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resource i.

Now consider the separation problem for AF . Using λQi(S) =
∑

l λlQ
l
i(Sl) and λR(S) =∑

l λlR
l(Sl), where Sl = S ∩ Cl, constraint (12) can be written as

βt +
∑
i

�[i∈IS]γi,t +
∑
i

[(
τ∑

k=t+1

γi,k

)∑
l

λlQ
l
i(S)

]
≥
∑
l

λlR
l(S). (28)

We first split this constraint into l separate constraints, one for each segment, by introducing variables

βl,t. The constraint for segment l at time t is that

βl,t +
∑
i∈Il

�[i∈ISl ]
γi,tλ

l
i +

∑
i

[(
τ∑

k=t+1

γi,k

)
λlQ

l
i(Sl)

]
≥ λlR

l(Sl) (29)

for each Sl = S ∩ Cl, where λli = λl/
∑
l′∈Li

λl′ can be interpreted as the probability of a segment-l

arrival given the arrival of a segment that uses resource i. The proof of Proposition 4 below shows

that the segment level constraints (29) imply (28) and that we obtain a looser upper bound by

separating over (29) instead of (28).

We observe that the segment level constraints (29) have the same form as constraints (12) in the

single-segment case, and are therefore hard to separate. So we use the same relaxation as we did for

the single-segment case to obtain a tractable separation problem at the segment level:

ΠswARl,t (β, γ) = max
q,u

−
∑
i∈Il

λliγi,tqi,t −
∑
j∈Cl

⎡
⎣ζlj,t(β, γ) + wlj

∑
i∈Ij

λliγi,t

⎤
⎦uj,t

s.t. (23)− (25)

where

ζlj,t(β, γ) = wlj

⎡
⎣βl,t + λl

⎛
⎝
⎛
⎝∑
i∈Ij

τ∑
k=t+1

γi,k

⎞
⎠− fj

⎞
⎠
⎤
⎦ . (30)

We replace constraint (29) with βl,t ≥ ΠswARl,t (β, γ) to obtain a segment-based weak affine relax-

ation (swAR):

V swAR = min
β,γ

∑
t

∑
l

βl,t +
∑
t

∑
i

γi,tr
1
i

s.t. βl,t ≥ ΠswARl,t (β, γ) ∀l, t
γi,t ≥ 0 ∀i, t.

Moreover, by following the same steps as for the single-segment case, it is possible to show that
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swAR can be formulated as the following compact LP

V swAR = min
γ,β,π

∑
t

∑
l

βl,t +
∑
i

∑
t

γi,tr
1
i

(swAR) s.t. βl,t ≥
∑
i∈Il

⎡
⎣ ∑
j∈Ji,j∈Cl

πi,j,t − λliγi,t

⎤
⎦ ∀l, t

∑
i∈Ij

πi,j,t ≥ −
⎡
⎣ζ
jj,t(β, γ) + w


j
j

⎛
⎝∑
i∈Ij

λ

j
i γi,t

⎞
⎠
⎤
⎦ ∀j, t

∑
j∈Ji,j∈Cl

πi,j,t − λliγi,t ≥ 0 ∀i, l ∈ Li, t

γi,t, πi,j,t ≥ 0 ∀, i, j ∈ Ji, t,

where �j denotes the segment to which product j belongs. swAR can be viewed as an extension

of wAR to the MNL model with multiple segments and disjoint consideration sets. In particular,

swAR coincides with wAR if there is only a single segment. Note that swAR is again tractable as

it is a compact LP. Proposition 4 below shows that it also obtains an upper bound on the value

function that is tighter than CDLP .

Proposition 4. V AF ≤ V swAR ≤ V CDLP .

Proof

In Appendix.

�

As we show in the next section, it is possible to extend the swAR approximation to the MNL model

with multiple segments when the consideration sets overlap. The dual of swAR, which we give

below, turns out to be useful for this purpose.

V dswAR = max
x,ρ

∑
t

∑
l

∑
j∈Cl

λlfjx
l
j,t

(dswAR) s.t.
∑
l∈Li

⎡
⎣λlixl0,t + t−1∑

s=1

∑
j∈Ji∩Cl

λlx
l
j,s +

∑
j∈Ji∩Cl

λlix
l
j,t − λliρ

l
it

⎤
⎦ ≤ r1i ∀i, t (31)

xl0,t +
∑
j∈Cl

xlj,t = 1 ∀l, t

xlj,t

wlj
− xl0,t + ρli,t ≤ 0 ∀l, i, j ∈ Ji ∩ Cl, t (32)

xl0,t, x
l
j,t, ρ

l
i,t ≥ 0 ∀l, i, j ∈ Ji ∩ Cl, t.
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5.2 Overlapping consideration sets

When the segment consideration sets overlap, the CDLP formulation is difficult to solve, even for

MNL with just two segments. So one would imagine that it is difficult to find a tractable bound

tighter than CDLP in this case. One strategy, pursued in Meissner et al. [15] is to formulate

the problem by segments and then add a set of consistency conditions called product-cut equalities

(PC-equalities). These equalities apply to any general discrete-choice model and appear to be quite

powerful in numerical experiments, often bringing the solution close to CDLP value. Strauss and

Talluri [18] subsequently show that when the consideration set structure has a certain tree structure,

the cuts in fact achieve the CDLP value. Talluri [19] shows how to specialize the PC-equalities to

the MNL choice model. In this section we describe how the PC-equalities, specialized for MNL, can

be added to dswAR to tighten the approximation.

We begin with a brief description of the PC-equalities: Meissner et al. [15] allow different sets to

be offered to different segments. However, to ensure consistency, they require that for any product

j ∈ Cl ∩Cm, the length of time it is offered to segment l must be the equal to the length of time it is

offered to segmentm. This leads to a set of consistency constraints which they term as PC-equalities.

Talluri [19] uses choice probabilities (1) to specialize the PC-equalities to the MNL model as:

xlj,t

wlj
=

∑
{S⊆(Cl∩Cm) | j∈S}

yl,mS ∀l,m, j ∈ Cl ∩ Cm (33)

yl,mS,j ≤ yl,mS ∀l,m, S ⊆ Cl ∩ Cm, j ∈ Cl \ Cm (34)

∑
{T⊆(Cl∩Cm) |T⊇S}

⎧⎨
⎩

∑
j∈Cl\Cm

wljy
l,m
T,j + (1 +W l

T )y
l,m
T

⎫⎬
⎭ =

∑
{T ′⊆(Cm∩Cl) |T ′⊇S}

⎧⎨
⎩

∑
j∈Cm\Cl

wmj y
m,l
T ′,k + (1 +Wm

T ′)y
m,l
T ′

⎫⎬
⎭ ∀l,m, S ⊆ Cl ∩ Cm, (35)

where W l
S =

∑
j∈S w

l
j and we have new variables of the form yl,mS defined for all pairs of segments

l,m and for all S ⊆ Cl ∩ Cm; see Talluri [19]. If the overlap in the consideration sets of the different

segments is not too large, then the number of PC-equalities is manageable.

Talluri [19] shows that adding PC-equalities (33)-(35) to the sales-based linear program (SBLP )

of Gallego et al. [7] further tightens the SBLP bound. We are also able to tighten the dswAR

bound by doing the same thing. Moreover, comparing dswAR with SBLP , it is easy to see that

a feasible solution to dswAR is also feasible to SBLP . Therefore, dswAR is tighter than SBLP .

It follows that dswAR augmented with the PC-equalities, continues to be tighter than SBLP with
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the same PC-equalities. So in conclusion, when segment consideration sets overlap, we also have

Proposition 5. The objective function value of dswAR with (33–35) added, is less than or equal

to the objective function value of SBLP with (33–35) added.

In closing, we note that dswAR augmented with the PC-equalities is not guaranteed to be tighter

than CDLP . We numerically compare the performance of dswAR with CDLP in our computational

experiments that we present next.

6 Computational experiments

In this section, we compare the upper bounds and the revenues obtained by CDLP , wAR and AF .

We begin by describing the experimental setup.

6.1 Test network

We consider a hub-and-spoke network with a single hub that serves N spokes. Half of the spokes

have two flights to the hub, while the remaining half have two flights from the hub so that the total

number of flights is 2N . All the flights have identical capacities. Figure 1 shows the structure of the

network with N = 8.

The total number of fare-products is 2N(N+2). There are 4N fare products connecting spoke-to-

hub and hub-to-spoke origin-destination pairs, of which half are high fare-products and the remaining

half are low-fare products. The high fare-product is 50% more expensive than the corresponding

low fare-product. The remaining 2N2 fare-products connect spoke-to-spoke origin-destination pairs.

Half of the 2N2 fare-products are high fare-products and the rest are low fare-products, with the

high fare-product being 50% more expensive than the corresponding low fare-product.

Each origin-destination pair is associated with two customer segments. The first segment con-

siders only the low fare products connecting its origin-destination pair, while the second segment

considers the high fare products as well. Therefore the consideration sets of the different customer

segments overlap. Moreover, within each segment choice is governed by the MNL model and we

sample the preference weights of the fare-products in its consideration set from a poisson distri-

bution with a mean of 100 and set the no-purchase preference weight to be 0.5
∑
j∈Cl

wlj . So the
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probability that a customer does not purchase anything when all the products in the consideration

set are offered is 1/3.

We measure the tightness of the leg capacities using the nominal load factor, which is defined in

the following manner. Letting Ŝt = argmax SR(S) denote the optimal set of products offered at

time period t when there is ample capacity on all flight legs, we define the nominal load factor

α =

∑
t

∑
i λQi(Ŝt)∑
i r

1
i

,

where λ denotes the total arrival rate in a time period. We set λ = 0.9 and have τ = 200 time

periods in all of our test problems. We label our test problems by (N,α) where N ∈ {4, 6, 8} and

α ∈ {0.8, 1.0, 1.2, 1.6}.

6.2 Results

As we mentioned earlier, it is known that the gap between CDLP and affine relaxation diminishes to

0 with increasing capacities (Kunnumkal and Talluri [11]). So, it is not possible to get large problems

where the gap between weak affine relaxation and CDLP values are significant. Most of the benefits

of wAR therefore are likely to happen when the capacities are small, near the end of the booking

horizon. We validate this intuition by performing numerical experiments on (i) the differences in the

values of the various methods at small capacities (ii) revenue simulations with small capacities (iii)

revenue simulations on larger real-world networks where we turn on wAR recommended controls at

the half-way point, with CDLP recommendations controlling the initial half.

6.2.1 Upper bounds

Table 1 gives the upper bounds obtained by the benchmark solution methods. The first two columns

in the table give the problem characteristics. The third, fourth and fifth columns, respectively, give

the upper bounds obtained by CDLP , wAR and AF . The last two columns give the percentage

gap between the upper bounds obtained by CDLP and wAR and CDLP and AF , respectively.

We note that by wAR, we mean the segment-based weak affine relaxation augmented with product-

cut equalities described in §5.2 and by AF , we mean the reduced formulation RAF . We solve

CDLP and AF using column generation and stop when they are within 1% of optimality. Based

on initial setup runs, this seemed to provide a good balance between the quality of the solution

and the computational effort involved. Figure 2 illustrates how the quality of the solution and the
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computational time required to solve CDLP varies with the stopping criterion for a representative

test problem.

AF generates the tightest upper bound, followed by wAR and then by CDLP . The average

percentage gap between wAR and CDLP is 1.24%, although we observe instances where the gap

is as high as 3%. In our test problems, there is overlap in the consideration sets of the different

segments and therefore wAR is not guaranteed to be tighter than CDLP . However, we observe that

overall wAR tends to obtain tighter bounds than CDLP . The percentage gap between wAR and

CDLP seems to increase with the nominal load factor and the number of spokes in the network.

AF obtains bounds that are on average 1.88% tighter than CDLP . wAR closes about 70% of the

gap between the AF and CDLP bounds.

6.2.2 Revenue results

Table 2 gives the expected revenues obtained by the different benchmark methods. We evaluate the

revenue performance by simulation and use common random numbers in our simulations. In our

revenue simulations, we divide the booking period into five equal intervals. At the beginning of each

interval, we re-solve the benchmark solution methods to get fresh estimates for the marginal value

of capacity on the resources. Recall that all of the benchmark methods give a solution of the form

(β̂, γ̂) with
∑τ

s=t γ̂i,s being an estimate for the marginal value of capacity on resource i at time t.

We use these marginal values to construct a value function approximation V̂t(r) =
∑

i(
∑τ

s=t γ̂i,s)ri

and solve problem (8) to decide on the offer set. We continue to use this decision rule until the

beginning of the next interval where we re-solve the benchmark solution methods.

The columns in Table 2 have a similar interpretation as in Table 1 except that they give the

expected total revenues. In the last two columns, we use a � to indicate that the corresponding

benchmark method generates higher revenues than CDLP at the 95% level, an � if the difference

in the revenue performance of the benchmark method and CDLP is not significant at the 95% level

and a × if the benchmark method generates lower revenues than CDLP at the 95% level. wAR on

average generates revenues that are 2.17% higher than CDLP , although we observe instances where

the gap is as high as 6%. As with the upper bounds, the revenue boosts are more noticeable at the

higher load factors. It is interesting to note that the magnitude of the revenue gaps is larger than

that of the upper bounds. AF generates revenues that are on average 1.75% higher than CDLP

and its revenue performance is comparable with that of wAR.
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Problem Avg. Upper Bound % Gap with CDLP

(N,α) capacity CDLP wAR AF/RAF wAR AF/RAF

(4, 0.8) 21 7,069 7,094 7,060 -0.35 0.13

(4, 1.0) 16 6,309 6,266 6,241 0.69 1.08

(4, 1.2) 14 5,975 5,907 5,879 1.14 1.60

(4, 1.6) 11 5,207 5,140 5,098 1.30 2.10

(6, 0.8) 13 6,783 6,807 6,773 -0.35 0.14

(6, 1.0) 11 6,240 6,149 6,109 1.46 2.10

(6, 1.2) 9 5,789 5,683 5,645 1.84 2.48

(6, 1.6) 7 4,770 4,704 4,675 1.38 2.01

(8, 0.8) 10 5,921 5,916 5,883 0.08 0.63

(8, 1.0) 8 5,342 5,233 5,193 2.04 2.79

(8, 1.2) 7 4,848 4,719 4,684 2.67 3.37

(8, 1.6) 5 4,170 4,044 3,998 3.03 4.14

avg. 1.24 1.88

Table 1: Comparison of the upper bounds for the hub-and-spoke test problems with overlapping

consideration sets.

Problem Avg. Expected Revenue % Gap with CDLP

(N,α) capacity CDLP wAR AF/RAF wAR AF/RAF

(4, 0.8) 21 6,862 6,828 6,835 -0.49 × -0.39 �
(4, 1.0) 16 5,827 5,887 5,913 1.04 � 1.48 �
(4, 1.2) 14 5,515 5,584 5,650 1.24 � 2.45 �
(4, 1.6) 11 4,592 4,774 4,750 3.98 � 3.44 �
(6, 0.8) 13 6,337 6,439 6,291 1.61 � -0.73 ×
(6, 1.0) 11 5,799 5,738 5,730 -1.04 × -1.19 ×
(6, 1.2) 9 5,147 5,367 5,236 4.26 � 1.71 �
(6, 1.6) 7 4,109 4,357 4,390 6.06 � 6.85 �
(8, 0.8) 10 5,554 5,591 5,557 0.67 � 0.05 �
(8, 1.0) 8 4,803 4,894 4,887 1.90 � 1.74 �
(8, 1.2) 7 4,267 4,384 4,370 2.73 � 2.41 �
(8, 1.6) 5 3,528 3,674 3,641 4.13 � 3.19 �

avg. 2.17 1.75

Table 2: Comparison of the expected revenues for the hub-and-spoke test problems with overlapping

consideration sets.
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6.2.3 Robustness checks

A natural question that arises concerns the sensitivity of the upper bounds and the revenues to

the column generation stopping criterion. To address this, we compare the performance of the

benchmark methods on an additional set of test problems where we solve CDLP to optimality.

We continue to work with the hub-and-spoke network structure, except that we now associate each

origin-destination pair with a single customer segment. Moreover, each segment is only interested

in the fare-products connecting the particular origin-destination pair. Therefore the consideration

sets of the different customer segments do not overlap now and we can solve CDLP to optimality

using the compact sales-based formulation (SBLP ). Table 3 gives the upper bounds obtained by the

benchmark solution methods, while Table 4 gives the expected revenues. We observe that the nature

of the results do not change significantly even when we solve CDLP to optimality. wAR generates

tighter bounds than CDLP and closes nearly 75% of the gap between the AF and CDLP bounds.

The revenue performance of wAR continues to be superior to that of CDLP and is comparable with

that of AF .

Figure 3 shows a representative plot of how the marginal values of capacity obtained by the

benchmark methods change over the course of the booking horizon. Recall that wAR, CDLP and

AF all yield a solution of the form (β̂, γ̂) where
∑τ

k=t γ̂i,k can be interpreted as being an estimate

of the marginal value of resource i at time t. The marginal values of capacity are used in (8) to

obtain a control policy. CDLP yields static marginal values, while the wAR and AF marginal

values change with time. The wAR and AF marginal values start decreasing towards the end of the

booking horizon reflecting the perishability of the resources. Consequently, we expect the controls

based on them to have superior revenue performance.

As another robustness check, we compare performance of the dynamic programming decomposi-

tion approaches based on CDLP and wAR. Liu and van Ryzin [12] describe how the CDLP dual

solution can be used to decompose the network problem into a number of single resource problems

and Zhang and Adelman [22] show that this approach obtains a bound that is tighter than the

CDLP bound. It is possible to apply a similar decomposition idea to wAR as well by using the

optimal dual variables associated with constraints (31); we omit the details. Table 5 gives the upper

bounds obtained by dynamic programming decomposition approaches based on CDLP and wAR,

referred to as DP −CDLP and DP −wAR, respectively. The second and third columns in Table 5

give the upper bounds obtained by DP −CDLP and DP −wAR, respectively, while the last column

gives the percentage gap in the upper bounds obtained by DP −CDLP and DP −wAR. The results
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are in line with the earlier observations. DP − wAR generates bounds that are on average 1.24%

tighter that DP −CDLP and we observe gaps as high as 4.4%. It is also worthwhile noting that in

many cases the wAR bound (from Table 3) is itself tighter than DP − CDLP .

6.2.4 Larger real-world networks

Finally, to understand how the performance of the solution methods scales with the size of the

problem, we test them on a larger flight network with a longer booking horizon. Our larger network

is based on that of a European carrier network and has 30 flight legs that connect around 125

origin-destination pairs. There are, on average, six fare-products that are offered between each

origin-destination pair so that the total number of fare-products is 752. There are, on average, two

customer segments interested in the fare-products between each origin-destination pair and their

consideration sets overlap so that the total number of customer segments is 402. We set the fares

and flight capacities according to the given data and use the observed demand for a fare-product as a

proxy for its preference weight. Our base case has a booking horizon of length τ = 640 periods. We

vary the length of the booking horizon and proportionally scale the flight leg capacities to obtain

different test problems. In particular, we consider τ ∈ {160, 320, 480, 640} in our computational

experiments.

Table 6 shows the upper bounds and the computational times for the three solution methods

for the large flight network. The first column gives the length of the booking horizon. The second

column gives the minimum, maximum and average flight leg capacity in the network. The third,

fourth and fifth columns, respectively, give the upper bounds obtained by CDLP , wAR and AF .

The next two columns, respectively, give the percentage gap between the upper bounds obtained

by wAR and AF relative to the CDLP bound. The last three columns, respectively, give the CPU

seconds required by CDLP , wAR and AF . All of our computational experiments are carried out on

a Xeon E5 desktop and we use CPLEX 12.6 to solve all LPs. We solve CDLP and AF by column

generation to within 1% of optimality and report the corresponding solution times. We solve wAR

(with product-cut equalities) to optimality as it has a compact formulation. We see that the gap

between the CDLP and AF upper bounds shrinks as we have longer booking horizons and larger

flight capacities. This is in line with the result in [11], who show that the AF bound is within a

factor of 1 + 1/mini{r1i } of CDLP where r1i is the capacity of flight leg i. Since the wAR bound

is sandwiched between the CDLP and AF bounds, the improvements from the wAR upper bound

also tend to be relatively small when the capacities are large. Indeed, we see that the benefits of
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wAR (both in terms of the upper bound and the computation time) are the greatest for the test

problems with a relatively smaller number of time periods and flight leg capacities.

Inspired by the observations in the preceding paragraph, we test the effect on the revenue perfor-

mance by switching to wAR towards the end of the booking horizon. In particular, we consider our

base case test problem with a booking horizon of length τ = 640 periods. For each sample path, we

solve CDLP at the start of the booking horizon and use the CDLP control policy up to time period

t = 320. At that point, we switch to wAR and use the wAR control policy for the remaining time

periods. Table 7 shows the expected revenue obtained by this hybrid control policy and benchmarks

it with other control policies. The first column in Table 7 describes the control policy using a pair

where the first element denotes the solution method used to obtain the controls for time periods

1 − 320 and the second element denotes the solution method used to obtain the controls for time

periods 321 − 640. So (CDLP,wAR) refers to the control policy described above. On the other

hand, (CDLP,CDLP ) refers to a control policy which uses CDLP controls for time periods 1-320,

resolves CDLP at time t = 320 and uses the refreshed CDLP solution to make the decisions for

the remaining time periods. We use Φ to indicate that we do not refresh the controls at the halfway

point (t = 320). So, for example (CDLP,Φ) refers to a control policy where we solve CDLP only at

the beginning of the booking horizon. The second column gives the expected revenues obtained by

the control policies and the last column gives the percentage difference with the (CDLP,Φ) control.

We use a � to indicate that the revenue differences are significant at the 95% level. We observe

that control policies based on wAR generate noticeably higher revenues. As observed previously, the

revenue gaps tend to be larger than the corresponding gaps in the upper bounds. (CDLP,wAR)

provides about a 2% revenue boost compared to (CDLP,CDLP ). Therefore, switching from CDLP

to wAR at the halfway mark (t = 320) can lead to significantly higher revenues. An added benefit

is that wAR also tends to have significantly shorter run times when we solve it at the halfway mark.

7 Conclusions

CDLP and the affine relaxation are two methods in the literature that give upper bounds on the

value function for choice network revenue management. While CDLP is known to be tractable for

the MNL model with disjoint consideration sets, we show that the affine relaxation is NP-hard even

for the single-segment MNL model. Nevertheless, by analyzing the affine relaxation we obtain a

weaker but tractable approximation. We show that our approximation yield an upper bound that is
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Problem Avg. Upper Bound % Gap with CDLP

(N,α) capacity CDLP wAR AF/RAF wAR AF/RAF

(4, 0.8) 21 7,180 7,176 7,155 0.06 0.35

(4, 1.0) 16 6,462 6,377 6,352 1.31 1.70

(4, 1.2) 14 6,138 6,053 6,027 1.38 1.81

(4, 1.6) 11 5,389 5,304 5,277 1.57 2.08

(6, 0.8) 13 6,918 6,891 6,860 0.39 0.84

(6, 1.0) 11 6,357 6,241 6,205 1.83 2.39

(6, 1.2) 9 5,799 5,683 5,654 2.00 2.50

(6, 1.6) 7 4,796 4,704 4,672 1.91 2.57

(8, 0.8) 10 6,040 5,992 5,959 0.79 1.33

(8, 1.0) 8 5,460 5,328 5,288 2.43 3.15

(8, 1.2) 7 4,993 4,857 4,817 2.73 3.52

(8, 1.6) 5 4,243 4,129 4,089 2.70 3.63

avg. 1.59 2.16

Table 3: Comparison of the upper bounds for the hub-and-spoke test problems with disjoint consid-

eration sets.

Problem Avg. Expected Revenue % Gap with CDLP

(N,α) capacity CDLP wAR AF/RAF wAR AF/RAF

(4, 0.8) 21 5,755 5,748 5,744 -0.13 � -0.19 �
(4, 1.0) 16 5,263 5,242 5,305 -0.39 � 0.80 �
(4, 1.2) 14 5,056 5,080 5,136 0.47 � 1.57 �
(4, 1.6) 11 4,413 4,570 4,580 3.56 � 3.78 �
(6, 0.8) 13 5,487 5,531 5,473 0.81 � -0.25 �
(6, 1.0) 11 5,047 5,127 5,098 1.58 � 1.00 �
(6, 1.2) 9 4,665 4,764 4,760 2.12 � 2.02 �
(6, 1.6) 7 3,824 4,101 4,075 7.23 � 6.56 �
(8, 0.8) 10 4,829 4,888 4,862 1.22 � 0.69 �
(8, 1.0) 8 4,343 4,434 4,456 2.09 � 2.61 �
(8, 1.2) 7 3,969 4,091 4,125 3.08 � 3.93 �
(8, 1.6) 5 3,384 3,579 3,570 5.77 � 5.49 �

avg. 2.28 2.34

Table 4: Comparison of the expected revenues for the hub-and-spoke test problems with disjoint

consideration sets.
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Problem Upper Bound % Gap between DP − CDLP

(N,α) DP − CDLP DP − wAR and DP − wAR

(4, 0.8) 7,146 7,158 -0.17

(4, 1.0) 6,415 6,363 0.82

(4, 1.2) 6,091 6,038 0.88

(4, 1.6) 5,323 5,266 1.08

(6, 0.8) 6,838 6,857 -0.28

(6, 1.0) 6,306 6,225 1.28

(6, 1.2) 5,750 5,667 1.43

(6, 1.6) 4,749 4,675 1.55

(8, 0.8) 5,961 5,969 -0.13

(8, 1.0) 5,408 5,310 1.80

(8, 1.2) 4,941 4,835 2.15

(8, 1.6) 4,200 4,015 4.41

avg. 1.24

Table 5: Comparison of the upper bounds obtained by the dynamic programming decomposition

approaches for the hub-and-spoke test problems with disjoint consideration sets.

Problem Cap Upper Bound % Gap with CDLP CPU secs.

τ (min, max, avg) CDLP wAR AF/RAF wAR AF/RAF CDLP wAR AF/RAF

160 (3, 9, 5) 65,530 64,305 62,536 1.87 4.57 720 129 2,727

320 (5, 17, 10) 127,844 126,979 124,863 0.68 2.33 1,566 670 4,730

480 (8, 25, 14) 188,880 188,153 185,876 0.38 1.59 2,648 1,566 5,208

640 (10, 33, 18) 249,638 249,236 246,483 0.16 1.26 2,961 3,017 7,400

Table 6: Comparison of the upper bounds and computation times for the large network with 30

flight legs.

Control Policy Expected Revenue % Gap with (CDLP,Φ)

(1− 320, 321 − 640)

(CDLP,Φ) 222,648

(wAR,Φ) 231,410 3.94 �
(CDLP,CDLP ) 226,351 1.66 �
(CDLP,wAR) 230,892 3.70 �
(wAR,wAR) 234,593 5.36 �

Table 7: Comparison of the expected revenues obtained by the different control policies for the large

network with 30 flight legs and 640 time periods.
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Figure 1: Structure of the airline network with a single hub and eight spokes.

Figure 2: CDLP objective function values, revenues and CPU times as a function of the stopping

optimality gap for the hub-and-spoke test problem (6, 1.0). OPT means that CDLP is solved to

optimality.
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Figure 3: Marginal values of capacity obtained by CDLP , wAR and AF as a function of time for

the hub-and-spoke test problem with disjoint consideration sets and problem parameters (6, 1.6).

in between the CDLP and the affine bounds. Our relaxation retains the appeal of the formulation

discovered in Gallego et al. [7] in that it involves solving a compact LP, eliminating the need for

constraint or column generation. We extend our approximation to the mixture-of-multinomial-logits

model with disjoint as well as with overlapping consideration sets. Our computational study indi-

cates that our approximation typically produces upper bounds that are close to the affine bound

(achieving nearly 75% reduction of the gap between it and the CDLP ), have good revenue per-

formance (obtaining on average above 95% of the revenues obtained by policies from the affine

relaxation) and can be a tractable alternative to solving the affine relaxation, with running times

typically a fraction of that of the reduced affine relaxation.
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Appendix

Proof of Proposition 2

Proof

Our reduction is from the NP-complete maximum edge biclique problem (Peeters [16]). We state

first the definitions and notation in the problem.

The problem is defined on an undirected, bipartite graph G = (V1 ∪ V2, E), with |V2| = m2. A

(k1, k2)-biclique is a complete bipartite subgraph of G, i.e., a subgraph consisting of a pair (X,Y )

of vertex subsets X ⊆ V1 and Y ⊆ V2, |X | = k1 > 1, |Y | = k2 > 1, such that there exists an edge

(x, y) ∈ E, ∀x ∈ X, y ∈ Y . Note that the number of edges in the biclique is k1k2.

Maximum edge biclique problem (MBP)

Input: A bipartite graph G = (V1 ∪ V2, E) and a positive integer p.

Question: Does G contain a biclique with at least p edges?

Consider the complement bipartite graph Ḡ of G defined on the same vertex set as G, where

there is an edge e = (u, v) in graph Ḡ if and only if there is no edge between u and v in G.

Define a cover CS ⊆ V2 of a subset S ⊆ V1 in the complement graph Ḡ, as CS = {v ∈ V2 | ∃e =
(u, v) ∈ Ḡ, u ∈ S}. By definition if CS is a cover of some subset S, it means there is no edge from

any u ∈ S to any v ∈ V2\CS in the graph Ḡ. Hence, as G is a complement of Ḡ, there is an edge

from every u ∈ S to every v ∈ V \C(S) in G, thus representing a biclique between S and V \C(S) in
the graph G.

Now we set up the reduction for the separation for (14). In equation (14), for each u ∈ V1, we

associate a product j with fj = m2
(p+1)
p and wj = m2. For each v ∈ V2, we associate a resource i

with weights γi,t =
1
p and γi,k = 0, k > t. The resource consumptions of the products j are defined

from the graph Ḡ: j contains all the i such that there is an edge between the associated nodes in

Ḡ. We let λ = 1, βt = m2.

We now claim that G has a (k1, k2)-biclique with k1k2 > p if and only if there is a set S that

violates the inequality (14) for this instance.
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With the above values, S ⊆ V1, with |S| = k1, |C(S)| = m2 − k2 violates (14) if and only if

m2 −
∑

j∈S
(p+1)
p (m2)

2

(1 +
∑

j∈S m2)
< −

∑
i∈C(S)

1

p

or,

m2 − (p+ 1)m2k1

p
(

1
m2

+ k1

) < − (m2 − k2)

p

or multiplying both sides by the positive number p( 1
m2

+ k1),

m2p

(
1

m2
+ k1

)
− (p+ 1)m2k1 < −(m2 − k2)

(
1

m2
+ k1

)

or,

p < − (m2 − k2)

m2
+ k2k1.

The term 0 < (m2−k2)
m2

< 1 implies, if and only if

p < k2k1.

�

Proof of Proposition 4

Proof

Using the MNL choice probability (1), (30) and rearranging terms, the swAR constraint βl,t ≥
ΠswARl,t (β, γ) can be equivalently written as

βl,t ≥ λl

[
Rl(Sl)−

∑
i∈Il

τ∑
k=t+1

Qli(Sl)γi,k

]
−
∑
i∈Il

�[i∈ISl ]
γi,tλ

l
i

⎛
⎝∑
j∈Ji

P lj(Sl) + P l0(Sl)

⎞
⎠ (36)

for all Sl ⊆ Cl, where λli = λl∑
l′∈Li

λl′
.

Consider now two intermediate problems:

V = min
β,γ

∑
t

∑
l

βl,t +
∑
t

∑
i

γi,tr
1
i

s.t. (29) ∀l, Sl ⊆ Cl, t
γi,t ≥ 0 ∀i, t,

36



and

V̄ = min
β,γ

∑
t

∑
l

βl,t +
∑
t

∑
i

γi,tr
1
i

s.t. βl,t ≥ λl

[
Rl(Sl)−

∑
i∈Il

τ∑
k=t

Qli(Sl)γi,k

]
∀l, Sl ⊆ Cl, t (37)

γi,t ≥ 0 ∀i, t.

We can interpret the first problem as a segment based relaxation of AF , while the second problem

can be viewed as a segment based relaxation of CDLP .

We next show that V AF ≤ V ≤ V swAR ≤ V̄ = V CDLP , which completes the proof of the

proposition.

(i) V ≤ V swAR ≤ V̄ . Since the objective functions of all the problems are the same, we only need to

compare the corresponding constraints. Since
∑

j∈Ji
P lj (Sl) + P l0(Sl) ≤ 1, it follows that constraint

(36) implies constraint (29) and we have V ≤ V swAR.

On the other hand, the right hand side of constraint (37) can be written as

λl

[
Rl(Sl)−

∑
i∈Il

τ∑
k=t+1

Qli(Sl)γi,k

]
−
∑
i∈Il

λlQ
l
i(Sl)γi,t.

Now note that

λlQ
l
i(Sl)γi,t = λl�[i∈ISl ]

Qli(Sl)γi,t = λl�[i∈ISl ]

⎡
⎣∑
j∈Ji

P lj(Sl)

⎤
⎦ γi,t

≤ λli�[i∈ISl ]

⎡
⎣∑
j∈Ji

P lj(Sl)

⎤
⎦ γi,t ≤ λli�[i∈ISl ]

⎡
⎣∑
j∈Ji

P lj(Sl) + P l0(Sl)

⎤
⎦ γi,t

where the first equality holds since if �[i∈ISl ]
= 0, then Qli(Sl) = 0 and the first inequality holds

since
∑

l′∈Li
λl′ ≤ 1 and so λl ≤ λl∑

l′∈Li
λl′

= λli. Therefore constraint (37) implies constraint (36)

and we have V swAR ≤ V̄ . (ii) V AF ≤ V. Suppose that (β̂, γ̂) satisfies constraints (29). We show

that it satisfies constraints (28) as well. Fix a set S and let Sl = S ∩Cl. Adding up constraints (29)
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for all the segments

∑
l

β̂l,t ≥
∑
l

{
λl

[
Rl(Sl)−

∑
i∈Il

τ∑
k=t+1

Qli(Sl)γ̂i,k

]
−
∑
i∈Il

�[i∈ISl ]
γ̂i,tλ

l
i

}

= λ

[
R(S)−

∑
i

τ∑
k=t+1

Qi(S)γ̂i,k

]
−
∑
i

γ̂i,t
∑
l∈Li

�[i∈ISl ]
λli

≥ λ

[
R(S)−

∑
i

τ∑
k=t+1

Qi(S)γ̂i,k

]
−
∑
i

γ̂i,t
∑
l∈Li

�[i∈IS ]λ
l
i

= λ

[
R(S)−

∑
i

τ∑
k=t+1

Qi(S)γ̂i,k

]
−
∑
i

γ̂i,t�[i∈IS ],

where the first equality uses the fact that Qli(Sl) = 0 for l /∈ Li and hence λQi(S) =
∑

l λlQ
l
i(Sl) =∑

l∈Li
λlQ

l
i(Sl). The second inequality holds since �[i∈ISl ]

≤ �[i∈IS]. Letting β̃ = {β̃t =
∑

l β̂l,t | ∀t},
it follows that (β̃, γ̂) satisfies constraints (28). Therefore V AF ≤ ∑

t β̃t +
∑
t

∑
i γ̂i,t = V. Meissner

et al. [15] prove the following that we include for completeness.

(iii) V̄ = V CDLP . (Meissner et al. [15])

Constraints (6) in dCDLP are equivalent to

βt = max
S

{
λ

[
R(S)−

∑
i

τ∑
k=t

Qi(S)γi,k

]}

= max
S

{∑
l

λl

[
Rl(S ∩ Cl)−

∑
i∈Il

τ∑
k=t

Qli(S ∩ Cl)γi,k
]}

=
∑
l

max
Sl

{
λl

[
Rl(Sl)−

∑
i∈Il

τ∑
k=t

Qli(Sl)γi,k

]}

where the last inequality uses the fact that the consideration sets are disjoint. Therefore, the dCDLP

constraint is equivalent to the constraints βt =
∑
l βl,t and

βl,t = max
Sl

{
λl

[
Rl(Sl)−

∑
i∈Il

τ∑
k=t

Qli(Sl)γi,k

]}
,

which is exactly constraint (37).

�
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Tractable relaxations that tighten the wAR bound

In this section, we describe two tractable approximation methods that further tighten the wAR

bound. We again restrict attention to the single-segment MNL model to reduce notational overhead,

but the ideas can be extended in a transparent manner to multiple segments.

Weak affine relaxation+ (wAR+)

In this section we describe a simple way to tighten the wAR bound while retaining a compact

formulation. Associating decision variables qi,t and uj,t, respectively, to indicate if resource i and

product j are open, the AF separation problem (16) can be written as

ΠAFt (β, γ) = max
q,u

−
∑
i

γi,tqi,t

⎛
⎝1 +

∑
j

wjuj,t

⎞
⎠−

∑
j

ζj,t(β, γ)uj,t

s.t. (23), (24), (25).

Now wAR replaces the product term qi,tuj,t for j /∈ Ji in the first summation with 0 and since

qi,tuj,t ≥ 0, we have ΠAFt (β, γ) ≤ ΠwARt (β, γ). Noting that qi,tuj,t ≥ qi,t + uj,t − 1, we propose

replacing the right hand side of constraints (17) with

ΠwAR
+

t (β, γ) = max
q,u

−
∑
i

γi,tqi,t −
∑
i

∑
j /∈i

γi,twjχi,j,t −
∑
j

⎡
⎣ζj,t(β, γ) + wj

⎛
⎝∑
i∈Ij

γi,t

⎞
⎠
⎤
⎦uj,t

s.t. (23), (24)

χi,j,t ≥ qi,t + uj,t − 1 ∀i, j /∈ i

uj,t, χi,j,t ≥ 0 ∀j, i /∈ Ij .

The following lemma is immediate.

Lemma 2. ΠAFt (β, γ) ≤ ΠwAR
+

t (β, γ) ≤ ΠwARt (β, γ).

Therefore, we replace the right hand side of constraints (17) with ΠwAR
+

t (β, γ) and solve the LP

V wAR
+

= min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

(wAR+) s.t. βt ≥ ΠwAR
+

t (β, γ) ∀t (38)

γi,t ≥ 0 ∀i, t.

We refer to this method as weak affine relaxation+ (wAR+). Lemma 2 together with Lemma 1

implies that V AF ≤ V wAR
+ ≤ V wAR. Therefore, wAR+ further tightens the wAR bound. Note
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however that the wAR+ separation problem can have as many as |I||J | additional constraints

compared to wAR. Still, the wAR+ separation problem involves solving an LP and hence is tractable.

Moreover, it is possible to obtain a compact formulation of wAR+ by following the steps in §4.3; we
omit the details.

A hierarchical family of relaxations

In this section we show how to construct a hierarchical family of relaxations that at the highest

level (level-n, the number of products) gives us the affine relaxation. Naturally, because of the NP-

hardness of solving the affine relaxation, we cannot expect tractability, and so we concentrate on

small levels. The level-1 relaxation already turns out to be a tighter relaxation than wAR. While

the level-1 relaxation separation problem can be solved in a tractable manner, a potential drawback

is that, unlike wAR and wAR+, it cannot be folded into the original problem to yield a compact

formulation.

For simplicity we describe the level-1 formulation and remark on how it extends to a hierarchy

of relaxations. In the level-1 relaxation, which we refer to as hierarchical affine relaxation (hAR),

we replace the γS,t(1+
∑

j∈S wj) term in (16) with γS,t+(
∑

j∈S wj)(maxj′∈S
∑
i∈Ij′

γi,t) and solve

the LP

V hAR = min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

(hAR) s.t. βt ≥ ΠhARt (β, γ) ∀t (39)

γi,t ≥ 0 ∀i, t,

where

ΠhARt = max
S

⎧⎨
⎩−γS,t −

⎛
⎝∑
j∈S

wj

⎞
⎠
⎛
⎝max
j′∈S

∑
i∈Ij′

γi,t

⎞
⎠−

∑
j∈S

ζj,t(β, γ)

⎫⎬
⎭ .

(40)

We have the following lemma.

Lemma 3. ΠAFt (β, γ) ≤ ΠhARt (β, γ) ≤ ΠwARt (β, γ).

Proof

By definition, we have Ij ⊆ IS for all j ∈ S. Therefore, γS,t =
∑

i∈IS
γi,t ≥ ∑

i∈Ij
γi,t for all

j ∈ S and so γS,t ≥ maxj∈S
∑
i∈Ij

γi,t. The proof now follows by noting that γS,t

(
1 +

∑
j∈S wj

)
≥

40



γS,t +
(∑

j∈S wj
)(

maxj′∈S
∑

i∈Ij′
γi,t

)
≥ γS,t +

∑
j∈S wj

(∑
i∈Ij

γi,t

)
.

�

Lemma 3 together with Lemma 1 implies that V AF ≤ V hAR ≤ V wAR. Therefore, hAR obtains a

tighter bound than wAR.

Next, we show that hAR separation problem (40) can be solved in a tractable manner. Associ-

ating binary decision variables qi,t and uj,t, respectively, to indicate if resource i and product j are

open, problem (40) can be written as

ΠhARt (β, γ) = max
q,u

−
∑
i

γi,tqi,t −
⎛
⎝∑

j

wjuj,t

⎞
⎠
⎛
⎝max

j′

∑
i∈Ij′

γi,tuj′,t

⎞
⎠−

∑
j

ζj,t(β, γ)uj,t

s.t. (23)− (25).

Although the above optimization problem has a nonlinear objective function, we can solve it through

a sequence of LPs in the following manner. We fix a product ĵ as the one achieving the maximum

value of maxj′ γi,tuj′,t. Since ĵ achieves the maximum value, we must have uĵ,t = 1 and uj,t = 0 for

j with
∑

i∈Ij
γi,t >

∑
i∈Iĵ

γi,t. Letting Ĵĵ =
{
j | ∑i∈Ij

γi,t >
∑

i∈Iĵ
γi,t

}
, we solve the following

linear integer program for product ĵ:

ΠhAR,ĵt (β, γ) = max
q,u

−
∑
i

γi,tqi,t −
∑
j

⎡
⎣ζj,t(β, γ) + wj

⎛
⎝∑
i∈Iĵ

γi,t

⎞
⎠
⎤
⎦uj,t

s.t. (23), (24)

uĵ,t = 1

uj,t = 0 ∀j ∈ Ĵĵ
uj,t ≥ 0 integer ∀j ∈ J \Ĵĵ .

Since the constraint matrix is totally unimodular, we can solve the above linear integer program

equivalently as an LP. So we solve the LP for each product ĵ ∈ J and obtain ΠhARt (β, γ) =

maxĵ∈J ΠhAR,ĵt (β, γ).

Since problem (40) can be solved in a tractable manner, separating the hAR constraints is

tractable, and hAR can be solved in polynomial time by the ellipsoid method. However, unlike

wAR+, hAR does not seem to have a compact LP formulation. This is because the set Ĵĵ depends

on the values of the γ’s in a nonlinear fashion and the duality argument in §4.3 that we used to fold

the separation problem back into the original LP does not hold. On the other hand, an appealing

feature of hAR is that its separation problem has fewer number of decision variables and constraints

than wAR+.
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Remark: One can get further relaxations by considering pairs of elements j′, j
′′
for a level-2 relax-

ation (or triples for level-3, and so on) such that we find the offer set S that maximizes

−
⎛
⎝1 +

∑
j∈S

wj

⎞
⎠
⎡
⎢⎣ max
{j′,j′′∈S}

∑
i∈I{j′,j′′ }

γi,t

⎤
⎥⎦ .

In this way, we can control the degree of approximation to the affine relaxation. We limit our

numerical results to fixing a single element j′.
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