Samples	Parameter	Value
FCC	Particle size, d_p	2.54 (<i>mm</i>)
	Number of particles	3200
RMD and RML	Particle size, d_p	2.3-2.7 (<i>mm</i>)
	Number of particles	34986
FCC, RMD and RML	Particle density, $ ho_p$	2230 (kg/m^3)
	Particle shear modulus, G_p	$25 \times 10^{9} (Pa)$
	Particle Poisson's ratio, v_p	0.2
	Transmitter frequency, f	20 (<i>kHz</i>)
	Transmitter amplitude, A	2.5 (<i>nm</i>)

Table 1. DEM simulation parameters for FCC, RMD and RML samples.

Table 2. Summary of exponents depending on correction adopted.

F(e)	n_{prop}	n _{osc}	n_{third}
B = 1.186	0.12	0.18	0.05
$B^{*} = 1.484$	0.17	0.15	0.03
B varied with p^\prime	0.07	0.12	-0.01
$B = 1.186, C_N$	0.13	0.17	0.05
$B^* = 1.484, C_N^*$	0.16	0.15	0.03
B varied with p' , C_N	0.07	0.12	-0.01

Table 3. Summary of errors $\frac{\left|G_{oscprop}^{DEM} - G_{oscprop}^{regression}\right|}{G_{oscprop}^{regression}}$ using various void ratio corrections

$F(e) = \frac{(B-e)^2}{1+e} C_N^{\alpha}$	$mean \left G_{oscprop}^{DEM} - G_{oscprop}^{regression} \right $	$max \left G_{oscprop}^{DEM} - G_{oscprop}^{regression} \right $
	$G_{oscprop}^{regression}$	$G_{oscprop}^{regression}$
B = 1.186	0.0193	0.0637
$B^* = 1.484$	0.0209	0.0573
B varied with p'	0.0130	0.0889
$B = 1.186, C_N$	0.0177	0.0797
$B^* = 1.484, C_N^*$	0.0142	0.0595
B varied with p' , C_N	0.0106	0.0669

Figure 1 Random packings with boundary conditions (a) C_N of dense sample at isotropic compression, p' = 300 kPa (b) illustration of generating shear wave to measure G_{zx} based on changes in shear stress on both rigid walls.

Figure 2 Coordination number and void ratio at the start of shearing for samples considered (a) C_N versus geometric mean of geometric mean of the stresses in oscillation and propagation directions $(\sqrt{\sigma_{osc}\sigma_{prop}})$ (b) C_N^* (mechanical coordination number) versus $\sqrt{\sigma_{osc}\sigma_{prop}}$ (c) Void ratio versus $\sqrt{\sigma_{osc}\sigma_{prop}}$

Figure 3 Variation in $G_{oscprop}$ with anisotropic stress state: (a) $G_{oscprop}$ versus geometric mean of stresses in oscillation and propagation directions ($\sqrt{\sigma_{osc}\sigma_{prop}}$) (b) $G_{oscprop}$ versus stress orthogonal to plane of propagation (σ_{third})

Figure 4 Variation in shear wave velocities with isotropic stress

Figure 5 Sensitivity of the relationship between the normalized shear modulus and $\sqrt{\sigma_{osc}\sigma_{prop}}$ to the void ratio correction function chosen: (a) $G_{oscprop}/F(e, B = 1.186)$ versus $\sqrt{\sigma_{osc}\sigma_{prop}}$ (b) $G_{oscprop}/F(e, B \text{ varied})$ versus $\sqrt{\sigma_{osc}\sigma_{prop}}$ (c) $G_{oscprop}/F(e^*, B^* = 1484)$ versus $\sqrt{\sigma_{osc}\sigma_{prop}}$

Figure 6 Exploration of packing density correction functions by comparison of regression analysis data with data from DEM simulations: (a) $G_{oscprop}$ versus $\sqrt{\sigma_{osc}\sigma_{prop}}$ (b) $G_{oscprop}$ versus $\sqrt{\sigma_{osc}\sigma_{prop}}$ including C_N^* and C_N (c) $G_{oscpprop}^{DEM}/G_{oscpprop}^{Regression}$ versus $\sqrt{\sigma_{osc}\sigma_{prop}}$ (d) $G_{oscpprop}^{DEM}/G_{oscpprop}^{Regression}$ versus $\sqrt{\sigma_{osc}\sigma_{prop}}$ including C_N

Figure 7 (a) Sensitivity of the relationship between the normalized shear modulus by $F(e) = C_N/(1+e))^{2/3}$ and $\sqrt{\sigma_{osc}\sigma_{prop}}$ (b) Plot of G_{zx} normalized by particle stiffness and mean effective stress versus $C_N/(1+e))^{2/3}$

Figure 8 Comparison of stiffness and fabric anisotropies with stress anisotropies (a) Variation in G_{zx}/G_{zy} with $\sqrt{\sigma_x/\sigma_y}$ (b) Variation in $\sqrt{\phi_{xx}/\phi_{yy}}$ with $\sqrt{\sigma_x/\sigma_y}$