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Abstract. 7 

This contribution assesses the influence of stress anisotropy on stiffness using discrete 8 

element method (DEM) simulations of true-triaxial tests supplemented with analytical 9 

studies. The samples considered comprised normally consolidated random 10 

monodisperse samples. The simulations were carried out at four different mean stress 11 

levels; at each stress level various combinations of the three principal stresses were 12 

considered. Stiffness was measured using planar wave propagation simulations.  Using 13 

regression analysis it is shown that density effects can be considered using void ratio 14 

correction factors derived for isotropically compressed samples.  However, a void ratio 15 

correction factor that considers coordination number is seen to be more marginally 16 

appropriate than the conventional form used in geotechnical experimental work.   17 

Material exponents that quantify the influence of each stress component on the stiffness 18 

were then determined. Analytical expressions derived from effective medium theory are 19 

less effective than the correction functions following the form used in current 20 

experimental practice.  21 
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Introduction 23 

The power-law relationship between elastic shear stiffness and mean effective stress, 24 

𝐺0 ∝ 𝑝′𝑛
 is well established (Hardin & Richart 1963; Houlsby & Wroth 1991). The 25 

relative magnitudes of the principal stress components also impact the stiffness values. 26 

Bellotti et al. (1996) experimentally related stiffness to all three principal stresses using 27 

the following expression (modified from the original form): 28 

𝐺0 = 𝐶𝑝𝐹(𝑒)(𝜎𝑝𝑟𝑜𝑝)
𝑛𝑝𝑟𝑜𝑝(𝜎𝑜𝑠𝑐)𝑛𝑜𝑠𝑐(𝜎𝑡ℎ𝑖𝑟𝑑)𝑛𝑡ℎ𝑖𝑟𝑑  (1) 

where  𝐹(𝑒)  is a normalizing function to eliminate void ratio effects, and 𝐶𝑝  is a 29 

(dimensional) experimentally determined material constant. The stresses in the 30 

directions of propagation and oscillation of the stress wave are denoted  𝜎𝑝𝑟𝑜𝑝 and 𝜎𝑜𝑠𝑐, 31 

respectively, while the remaining orthogonal stress is denoted 𝜎𝑡ℎ𝑖𝑟𝑑 ; typically these 32 

stresses correspond to the principal stresses. The material exponents 𝑛𝑝𝑟𝑜𝑝,  𝑛𝑜𝑠𝑐  and 33 

𝑛𝑡ℎ𝑖𝑟𝑑  quantify the influence of each principal stress on  𝐺0.  34 

Referring to prior studies of stiffness using discrete element method (DEM) (e.g. Khalili 35 

et al. 2017; Magnanimo et al. 2008), where particle-scale data are available a more 36 

appropriate form of Equation 1 might be: 37 

𝐺0 = 𝐹(𝑒, 𝐶𝑁 𝜒, 𝜐𝑝, 𝐸𝑝)(𝜎𝑝𝑟𝑜𝑝)
𝑛𝑝𝑟𝑜𝑝(𝜎𝑜𝑠𝑐)𝑛𝑜𝑠𝑐(𝜎𝑡ℎ𝑖𝑟𝑑)𝑛𝑡ℎ𝑖𝑟𝑑 (2) 

where 𝐶𝑁  is the average coordination number, 𝜒 is a measure of the orientation fabric 38 

and 𝜐𝑝 and 𝐸𝑝 are the Poisson’s ratio and Young’s modulus of the solid particle material, 39 

and the units of 𝐹(𝑒, 𝐶𝑁 𝜒, 𝜐𝑝, 𝐸𝑝) must ensure dimensional consistency.   40 

Most prior research has concurred that only 𝜎𝑝𝑟𝑜𝑝 and 𝜎𝑜𝑠𝑐  measurably influence the 41 

elastic stiffness (e.g. Roesler 1979). O’Donovan et al. (2015) used DEM  simulation data 42 

considering lattice packings and a limited number of stress combinations to argue that 43 

𝜎𝑡ℎ𝑖𝑟𝑑 also has finite influence on 𝐺0. These limitations compromised the clarity of their 44 

data and consequently the generality of their conclusions. This contribution addresses 45 

the resultant gap in understanding by using an improved DEM simulation approach to 46 

assess the material behaviour over a range of 𝑝′  values and a large number of 47 

permutations/combinations of the three principal stresses in each case. The shear 48 

stiffnesses were determined using wave propagation, reflecting the popularity of bender 49 

element testing in experimental soil mechanics research.  Dynamic bender element 50 



testing is attractive as is difficult to measure stiffnesses at very small strains accurately 51 

using conventional, load-deformation techniques even where local deformation 52 

transducers are mounted to measure locally (Clayton, 2011); furthermore when used in 53 

a triaxial cell bender elements can give the shear moduli in the principal stress planes 54 

(Lings et al. , 2000) and they can be mounted in a wide range of apparatuses (Clayton, 55 

2011; Hamlin, 2014).   The DEM wave propagation simulations were supplemented with 56 

and stress probes. 57 

DEM simulation approach  58 

The simulation approach broadly follows that documented in Otsubo et al. (2017) and 59 

Nguyen et al. (2017). For completeness, a brief overview is provided here. A modified 60 

version of the granular LAMMPS code was used (Plimpton, 1995), with a simplified 61 

Hertz-Mindlin contact model; simulation parameters are summarized in Table 1. Rigid 62 

wall boundaries were applied perpendicular to the direction of wave propagation while 63 

the remaining lateral boundaries were periodic to minimize boundary effects (Figure 1).  64 

 65 

Random monodisperse dense and loose samples (RMD and RML respectively) were used. 66 

The randomly packed specimens were created from an initial cloud of 34986 non-67 

contacting particles; a two-stage compression process was used. The dense random 68 

samples (RMD) were initially isotropically compressed to a mean effective stress, 𝑝′ , of 69 

1 kPa with 𝜇𝑝 = 0 while 𝜇𝑝 = 0.15 for the first compression stage for the loose samples 70 

(RML). The interparticle friction was then increased to 𝜇𝑝 = 0.35. After modifying 𝜇𝑝 , 71 

there was a subsequent servo-controlled isotropic compression to a target confining 72 

pressure of 𝑝′  =  70 kPa, 𝑝′  = 200 kPa, 𝑝′  =  700 kPa,  or 𝑝′  = 7000 kPa (depending 73 

on the final 𝑝′  required). Then starting from each of these isotropic stress states, the 74 

principal stresses were either maintained constant or increased to generate various 75 

combinations of stress anisotropy with target values of  𝑝′  =  100 kPa, 𝑝′  = 300 kPa,76 

𝑝′  =  1000 kPa,  or  𝑝′  = 10000 kPa. Using this approach each sample was then isotropic 77 

and normally consolidated; there was inherent anisotropy induced by previous loading 78 

or by simulation of a deposition process. The stress combinations were constrained so 79 

that the minimum and maximum principal stresses considered were σ3 = 0.75𝑝′  and 80 

σ1 = 1.25𝑝′  respectively, to avoid gross yield.   These stress combinations are similar to 81 

those that are considered in physical cubical cell experiments (e.g. Hamlin, 2014)  82 



 83 

Figure 2(a) illustrates the variation in  𝐶𝑁 , with the geometric mean of the stresses in 84 

oscillation and propagation directions( √𝜎𝑜𝑠𝑐𝜎𝑝𝑟𝑜𝑝  ) for each simulation considered, 85 

while Figure 2(b) illustrates the variation in the average mechanical coordination 86 

number, 𝐶𝑁
∗  , (calculated by excluding particles with 0 or 1 contacts) with  √𝜎𝑜𝑠𝑐𝜎𝑝𝑟𝑜𝑝.  87 

Both sets of data indicate that, at a given value of  𝑝′,  there is not a significant variation 88 

in the number of contacts in the sample as a function of the stress anisotropy; nor are 89 

there significant variations in void ratio (Figure 2(c)).  Note that the relationship between 90 

void ratio and coordination number is not unique; Magnanimo et al. (2008) who also 91 

considered monodisperse samples, applied a particular DEM simulation approach which 92 

achieved random dense samples with 𝐶𝑁 value that varied between 4.88 and 6.65 all with 93 

a void ratio ≈ 0.64. 94 

 95 

Once the desired stress state was achieved, shear waves were generated by applying a 96 

single-period sine motion to one rigid wall and the change in stress measured at the 97 

opposite wall was used to determine the shear wave velocity (𝑉𝑠) using the peak-peak 98 

method as described in Otsubo et al. (2017) and Nguyen et al. (2017). To avoid inter-99 

particle sliding, following Magnanimo et al. (2008) during stress wave propagation, 𝜇𝑝 =100 

 0.45 was used for both RMD and RML samples. The corresponding shear modulus was 101 

then calculated as 𝐺0
𝐷𝐸𝑀 = 𝜌𝑉𝑠

2 where 𝜌 is the sample density (𝜌 =
𝜌𝑝

1+𝑒
, 𝜌𝑝 is the particle 102 

density). At each 𝑝′ value 14 to 16 simulations were performed for each sample type. 103 

 104 

To confirm that the wave propagation simulations give reasonable stiffness values, small 105 

stress increment triaxial probes were simulated. In these probes the vertical stress was 106 

increased by 𝛿𝜎𝑧 =1 kPa while the horizontal stresses were maintained constant (𝛿𝜎𝑥 =107 

𝛿𝜎𝑦 = 0) to obtain the equivalent stiffness, 𝐺𝑒𝑞𝑢
𝑝𝑟𝑜𝑏 = 𝛿𝑞/3𝛿𝜀𝑠  (δq = 𝛿σz − 𝛿σx) and the 108 

shear strain increment is 𝛿𝜀𝑠 = 2(𝛿εz − 𝛿εx)/3 ; 𝛿εz  and 𝛿εx  are the principal strain 109 

increments in z and x directions respectively). For a real soil with an anisotropic fabric 110 

this stiffness value does not correspond to either G𝑧𝑥 𝑜𝑟 G𝑧𝑦  (e.g. Lings et al. 2011). 111 

However for the isotropic random samples here there should be agreement; for the 112 

random dense sample with  𝑝’ = 300 kPa, 𝐺𝑒𝑞𝑢
𝑝𝑟𝑜𝑏  = 279.3 MPa, 𝐺𝑧𝑥

𝐷𝐸𝑀  = 280.9 MPa and 113 



𝐺𝑧𝑦
𝐷𝐸𝑀 = 281.6 MPa; confirming the ability of the dynamic simulations to give a correct 114 

measure of stiffness. Note that one could also use the analytical approach proposed by  115 

Agnolin and Roux, (2007) to determine the stiffness tensor from the particle-scale data 116 

available from the DEM simulations.   117 

 118 

 119 

Simulation results  120 

Previous empirical investigations (Hardin & Blandford 1989; Sadek et al. 2007) assumed 121 

𝑛𝑝𝑟𝑜𝑝 = 𝑛𝑜𝑠𝑐  and neglected the contribution of 𝜎𝑡ℎ𝑖𝑟𝑑; consequently correlations of the 122 

form 𝐺𝑜𝑠𝑐𝑝𝑟𝑜𝑝 ∝ (𝜎𝑜𝑠𝑐𝜎𝑝𝑟𝑜𝑝)𝑛  were explored as in Figure 3. The data for the random 123 

samples give 𝑛 = 0.355  for RMD samples and  𝑛 = 0.388  for RML samples; these are 124 

close to the exponent 𝑛 = 0.333 that is obtained by applying effective medium theory 125 

(EMT) to a random packing of spherical particles for this Hertzian contact model (Walton, 126 

1987; Chang et al., 1991; Liao et al., 2000) . 127 

For the three sample types considered, the exponent, 𝑛, observed for the scenario where 128 

𝑝′ remains constant differs from the 𝑛 value that fits the data when 𝑝′ varies. In all three 129 

cases the relationship between 𝐺0 and 𝜎𝑜𝑠𝑐𝑝𝜎𝑝𝑟𝑜𝑝 depends on the stress anisotropy. The 130 

𝑛  values (obtained from least squares regression) for the isotropic stress cases are 131 

measurably higher than 𝑛 values obtained by fitting a line to the data obtained for the 132 

various stress combinations examined at a given 𝑝′ value. In comparison with the RMD 133 

samples, there is more scatter in the data for the RML sample.  134 

Here 𝜐𝑝 and 𝐸𝑝 are constant for all the simulations and so, to facilitate examination of the    135 

𝐺0  dependancy on 𝜎𝑝𝑟𝑜𝑝  and 𝜎𝑜𝑠𝑐 , referring to Equation 2, an appropriate function 136 

𝐹∗(𝑒, 𝐶𝑁 , 𝜒)  was sought so that the influence of stress could be appropriately isolated. 137 

To remove the influence of stress and fabric anisotropy equivalent simulations on 138 

isotropic samples with the same particle parameters documented in Otsubo (2016) were 139 

considered. Referring to Figure 4, 7 DEM samples were created and the friction coefficient 140 

was varied so that the void ratio at 1kPa ranged from 0.545 to 0.689.  Each of these 141 

samples was then isotropically compressed to 10 MPa and 𝐺0 values were determined 142 

systematically during the compression.  Following earlier soil mechanics research 143 



(Hardin and Richart 1963), assuming such correction function, considering void ratio 144 

alone takes the form F(e) =
(𝐵−𝑒)2

1+𝑒
 and, applying regression analysis to the entire dataset 145 

gives a value of 𝐵 = 1.186 (Otsubo 2016). Referring to Figure 5(a) when the 
𝐺0

F(e)
 data are 146 

considered a clearer correlation with √𝜎𝑜𝑠𝑐𝜎𝑝𝑟𝑜𝑝  emerges, and the differences between 147 

loose and dense and isotropic and anisotropic stress states are less apparent. Revisiting 148 

the data on Figure 4,  𝐵 appears to be stress-level dependent and a simple curve fitting 149 

gives 𝐵𝑝 = 𝑒𝑥𝑝(−0.1 + 0.046𝑝’); use of this approach effectively unifies the loose and 150 

dense data (Figure 5(b)); however both the correction and the stiffness now have a 151 

stress- dependency.  One can also isolate particles that contributed to the stress 152 

transmission network and consider only particles with at least two contacts, so that 𝑒∗ =153 

𝑉𝑇𝑜𝑡𝑎𝑙−∑ 𝑉𝑠
𝑖∞

𝑖=2

∑ 𝑉𝑠
𝑖∞

𝑖=2

  in which 𝑉𝑠
𝑖  is the sum of the volume of particles with a coordination 154 

number 𝑖, and 𝑉𝑇𝑜𝑡𝑎𝑙 is the total sample volume. Using 𝑒∗ and again assuming a functional 155 

form F(e∗) =
(𝐵∗−e∗)2

1+e∗ , gives 𝐵∗=1.484; application of this correction factor is less effective 156 

at unifying the data than the pressure-sensitive correction (Figure 5(c)). 157 

 158 

To assess the relative merits of these void ratio corrections linear regression analyses 159 

were applied to Equation 1, where the unknown parameters are 𝐶𝑝 , 𝑛𝑝𝑟𝑜𝑝,  𝑛𝑜𝑠𝑐 ,and 160 

𝑛𝑡ℎ𝑖𝑟𝑑 .   These regressions are compared with the DEM data on Figures 6(a) and (c); while 161 

the resulting exponent values are provided on Table 2. 162 

 163 

Effective medium theory (EMT) indicates that for an isotropic stress state a correction 164 

factor of the form 𝐹𝐸𝑀𝑇(𝑒, 𝐶𝑁) = [𝐶𝑁/(1 + 𝑒)]2/3 can be used.  The results support an idea 165 

that the normalized stiffness (G/(F(e*)) has a power−law dependency on 𝐶𝑁; i.e.   166 

𝐹(𝑒, 𝐶𝑁) =
(𝐵∗ − e∗)2

1 + e∗
𝐶𝑁

𝛼 (3) 

Figure 6 (b) gives the resulting regression; and includes comparison of a regression 167 

including only 𝐹(𝑒∗). Comparing values of the ratio of the prediction of the regression 168 

and the simulation data are plotted as a function of √𝜎𝑜𝑠𝑐𝜎𝑝𝑟𝑜𝑝 on Figure 6(c) and (d); 169 

confirming that including 𝐶𝑁 improves the prediction, but that the discrepancy can be as 170 

large as 5.6%.  Referring to the summary of the relative errors on Table 3, there are minor 171 

improvements in the predictive ability of the regression when comparing the case with 172 



𝐵 = 1.186  and e with the other correction options considered. It is important to 173 

recognize however that the dataset does not include samples at the same void ratio with 174 

differing coordination numbers.  175 

 176 

Excluding the case where 𝐵 is varied with 𝑝′, whichever correction function is applied the 177 

contributions of  𝑛𝑝𝑟𝑜𝑝  and 𝑛𝑜𝑠𝑐  greatly exceed the contribution of 𝑛𝑡ℎ𝑖𝑟𝑑  however it is 178 

difficult to clearly say whether 𝜎𝑝𝑟𝑜𝑝  or 𝜎𝑜𝑠𝑐 dominates. 179 

 180 

The correction function F(e) is clearly empirical and based on experimental practice.  181 

Informed by EMT, Figure 7 considers the data from an alternative perspective. EMT 182 

suggests a correlation between 𝐺0  and [𝐶𝑁/(1 + 𝑒)]2/3  and this is confirmed in Figure 183 

7(a) (neglecting consideration of the stress anisotropy 𝐺0  is normalized by 𝐸𝑝
2/3

𝑝′1/3)  .   184 

For the relatively small stress anisotropies considered here a clear trend emerges; these 185 

data indicate a dependency of  𝐺0  on both the 𝐶𝑁 and 𝑒 in line with EMT.  However the 186 

data on Figure 7(b) show that normalization of the 𝐺0 data by the product 𝐸𝑝
2/3

𝑝′1/3 ×187 

[𝐶𝑁/(1 + 𝑒)]2/3 is less effective than use of the F(e) =
(𝐵−𝑒)2

1+𝑒
 or its variants considered 188 

above; these observations also hold for the isotropic dataset developed by Otsubo (2016). 189 

Yimsiri and Soga (2000) attributed the inability of EMT to capture the stress-dependancy 190 

of soil stiffness to its inability to capture variations in fabric with stress.  In their DEM 191 

simulations, Magnanimo et al (2008) found that the variation of  𝐺0  /𝑝′1/3  with 𝐶𝑁 192 

differs from the EMT prediction.  More sophisticated theoretical EMT expressions 193 

(e.g. Thornton, 1993) also failed to capture the observations noted here; 194 

assumptions such as affine deformations and irrotational particles limit use of this 195 

theory.   196 

  197 

Referring to Figure 8(a) there is a clear link between the stiffness ratio and the stress 198 

ratio; as would be expected from Equation 1. Inclusion of various measures of fabric 199 

anisotropy in the regression analyses did not support further extension of the correction 200 

function to include a 𝜒 term.  This can be understood by reference to Figure 8(b); for 201 

these samples with only stress induced anisotropy the fabric and stress anisotropies are 202 

closely linked and so the 𝜒 term cannot be considered an independent variable. 203 



 204 

 205 

Conclusions 206 

DEM simulations of dynamic plane wave propagation have been used to consider the 207 

influence of stress anisotropy on sample stiffness in a fundamental manner and the 208 

following observations are made.  209 

1. In the absence of a void ratio correction relationships between stiffness and the 210 

principal stresses (i.e. between 𝐺0 and √𝜎𝑜𝑠𝑐𝜎𝑝𝑟𝑜𝑝 ) differ for the cases of isotropic 211 

compression, where 𝑝’ is varied, and anisotropic compression, at a constant 𝑝′.  212 

2. Application of void ratio functions derived using equivalent samples subject to 213 

isotropic stress states unifies the dense and loose sample at each stress level for all the 214 

stress anisotropies considered and confirms the negligible influence of 𝜎𝑡ℎ𝑖𝑟𝑑 .   215 

3. The empirical void ratio correction function with a form F(e) =
(𝐵−𝑒)2

1+𝑒
 served better to 216 

unify the data than a normalization derived from isotropic EMT which has already been 217 

shown to have limited validity. 218 

4. Regression analysis that incorporates the 𝐹(𝑒∗) correction function and assumes a 219 

power-law correlation with the coordination number give a only slightly better match to 220 

the simulation data when compared with a macro-scale, conventional void ratio 221 

correction function. However these conclusions may not be universally applicable;  the 222 

𝐶𝑁-e relationship is not unique, and this data set does not include samples with similar 223 

void ratios and very different coordination numbers as were examined by Magnanimo et 224 

al. (2008). 225 

5. For the samples considered here the stress and fabric anisotropies are closely linked 226 

and so inclusion of a fabric term, independent of stress, in the overall expression for 227 

stiffness cannot be justified. 228 
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