Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li$_7$La$_3$Zr$_2$O$_{12}$ Electrolyte and LiCoO$_2$ Cathode

Gulin Vardar1,*, William J. Bowman1, Qiyang Lu2, Jiayue Wang1, Richard J. Chater3, Ainara Aguadero3, Rachel Seibert4, Jeff Terry4, Adrian Hunt5, Iradwikanari Waluyo5, Dillon D. Fong6, Angelique Jarry7,8, Ethan J. Crumlin8, Sondra L. Hellstrom9, Yet-Ming Chiang2, Bilge Yildiz1,2,*

1Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

3Department of Materials, Imperial College of Science, London SW7 2AZ, UK

4Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA

5National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA

6Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA

7Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA

8Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

9Bosch Research and Technology Center, Sunnyvale, California 94085, USA

*Current Address: Department of Mechanical Engineering, Bogazici University, Istanbul, 34342 Turkey

*Correspondence: byildiz@mit.edu

Abstract

All-solid-state batteries promise significant safety and energy density advantages over liquid-electrolyte batteries. The interface between the cathode and the solid electrolyte is an important contributor to charge transfer resistance. Strong bonding of solid oxide electrolytes and cathodes requires sintering at elevated temperatures. Knowledge of the temperature dependence of the composition and charge transfer properties of this interface is important for determining the ideal sintering conditions. To understand the interfacial decomposition processes and their onset temperatures, model systems of LiCoO$_2$ (LCO) thin films deposited on cubic Al-doped Li$_7$La$_3$Zr$_2$O$_{12}$ (LLZO) pellets were studied as a function of temperature using interface-sensitive techniques. X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and energy-dispersive X-ray spectroscopy (EDS) data indicated significant cation interdiffusion and structural changes starting at temperatures as low as 300°C. La$_2$Zr$_2$O$_7$ and Li$_2$CO$_3$ were identified as
decomposition products after annealing at 500°C by synchrotron X-ray diffraction (XRD). X-ray absorption spectroscopy (XAS) results indicate the presence of also LaCoO$_3$, in addition to La$_2$Zr$_2$O$_7$ and Li$_2$CO$_3$. Based on electrochemical impedance spectroscopy, and depth profiling of the Li distribution upon potentiostatic hold experiments on symmetric LCO|LLZO|LCO cells, the interfaces exhibited significantly increased impedance, up to 8 times that of the as-deposited samples after annealing at 500°C. Our results indicate that lower-temperature processing conditions, shorter annealing time scales, and CO$_2$-free environments are desirable for obtaining ceramic cathode-electrolyte interfaces that enable fast Li transfer and high capacity.

Introduction

One of the most exciting prospects of solid electrolytes is the possibility of using Li metal as the anode, which would greatly increase the gravimetric energy density over intercalation anodes $^{1-6}$. A number of solid electrolytes with conductivities close to that of liquid Li-conducting electrolytes have been reported $^{7-13}$. Li$_7$La$_3$Zr$_2$O$_{12}$ (LLZO) is a promising solid electrolyte due to its relatively high conductivity (in cubic phase, up to ~10^{-3} mS/cm), high chemical stability against Li metal and large electrochemical window (>5V vs. Li/Li$^+$) $^{9,14-20}$. Recent studies have identified the electrode|electrolyte interface as the main source of high resistance in solid state batteries, thereby limiting their power density $^{21-29}$. While there has been sustained efforts to study Li$^+$ conductivity in the bulk of solid electrolytes 9, the kinetics of Li$^+$ transfer at the electrolyte|electrode interfaces remains underexplored. Systematic and extensive studies on the chemical composition of these interfaces as a function of well-defined thermal and electrochemical conditions are needed to identify suitable synthesis conditions that form effective and durable interfaces.

Specifically for the LLZO electrolyte, the reaction layer at the Li|LLZO interface was recently identified and ways to eliminate it were demonstrated $^{30-35}$. The large resistance at the Li metal and LLZO interface was found to be due to the presence of a Li$_2$CO$_3$ interfacial layer that forms upon exposure of LLZO to ambient atmosphere prior to deposition of the Li anode. Those studies have shown that the elimination of the Li$_2$CO$_3$ layer, either by polishing in inert atmosphere, by annealing in Argon gas, 36,37 or by deposition of a lithiated interface coating 31,35,38, can both reduce the interfacial impedance and increase the critical current density at which Li dendrites form and propagate $^{29-32,34-42}$. Although these advances have been promising for the electrolyte/anode interface, the cathode/electrolyte interface was and still is a
large barrier. For example, infiltrating this interface with a liquid electrolyte was necessary to realize a full battery system with a reasonable current density38,43,44.

The interface between the solid electrolyte and cathode is a key contributor to impedance in solid-state batteries28,45,46, and thus, we believe this interface currently hinders the advancement of solid state batteries. Especially given that most cathodes are oxides, their use with ceramic solid electrolytes may necessitate elevated temperatures to densify and form strongly bonded interfaces with each other. However, these temperatures can facilitate interdiffusion and secondary phase formation that are detrimental to battery performance. Creating a strong contact between oxide cathodes and LLZO while preserving good electrochemical properties therefore remains as a significant challenge47. Several experiments have shown that depositing LiCoO\textsubscript{2} (LCO) cathode on LLZO above 500°C yields a good physical bond but cross-diffusion and decomposition can occur during deposition48–50. The use of interlayers between LCO and LLZO may minimize detrimental reactions, but operational batteries using this approach have exhibited limited battery cycling performance22,51,52. Another approach that has shown promise is the use of polymer interlayers for mechanical compliance53,54. Due to the low conductivity of the polymer interlayers, however, liquid electrolyte penetration of the polymer was necessary to yield a low interfacial impedance55.

Experimental probes sensitive to the onset of detrimental phase formation at such buried interfaces are scarce. Previous studies on the cathode/LLZO interface reactivity relied on XRD on mixed powder bulk specimens to identify secondary phases47,50,52,56,57. However, the detection limit for bulk XRD is too low to probe the onset of secondary phase formation at an electrochemical interface. Even the formation of a \textasciitilde{}10-nm-thick insulating interface can be detrimental to charge transfer but would not be detectable using XRD on bulk powders. The ability to detect the onset of detrimental reactions at the interface of LLZO with oxide cathodes is important for identifying the appropriate synthesis and operating conditions for these ceramic-ceramic interfaces. Studies using more interface-sensitive techniques such as cross-sectional transmission electron microscopy (TEM) or scanning TEM (STEM) are present24. Kim et al.49 suggested the presence of La\textsubscript{2}CoO\textsubscript{4} at the interface between a thin-film of LCO deposited at 663°C onto LLZO. Another study showed that annealing the LCO|LLZO interface at 700°C induced diffusion of Al (a dopant for cubic LLZO) from LLZO into LCO47. This resulted in a cubic-to-tetragonal LLZO phase transition and reduced the Li-ion conductivity of LLZO near the interface47. However, no secondary phases were reported, and the findings of these two experimental studies are not consistent with each other.
The thermodynamic instabilities between different cathode materials and LLZO have also been studied computationally. The decomposition products between LLZO and the cathode materials were predicted to be temperature and voltage dependent. Miara et al. have found that, a driving force exists at the LCO|LLZO interface for the system to decompose and form secondary phases such as La₂O₃, La₂Zr₂O₇, and Li₂CoO₃. The decomposition pathways that have been proposed by these computational works have provided much needed insight, but experimental validation is necessary, and any discrepancies should be understood. For example, the previously reported experimental results mentioned above are not consistent with the computational predictions. Furthermore, the reported computational studies largely ignored the existence of CO₂ in the sintering environment (typically air), and any potential presence of Li₂CO₃ is missing.

Here, we conducted a detailed structural and chemical study of the interface between thin, well-defined films of LCO cathode and LLZO electrolyte as a function of temperature, using both ex situ and in situ interface-sensitive experimental probes. LCO was chosen as the cathode material due to its high electrochemical potential (4.2V vs. Li/Li⁺) and its simplicity, as it contains only one transition metal cation that could react with LLZO. We observed decomposition of the LCO|LLZO interface with depth profiling tools, X-ray diffraction, and X-ray absorption spectroscopy. Furthermore, we showed that the chemical transformation of the annealed system degrades charge transfer kinetics significantly at the heterointerface. Importantly, we found that the interface decomposition can be onset at as low temperatures as 300 °C, with a detrimental impact on the interface charge transfer resistance. The findings of this work identify desirable processing guidelines, in particular lower-temperature processing conditions, shorter annealing time scales, and CO₂-free environments in the sintering of ceramic cathode-electrolyte interfaces.

Approach and Experimental Methods

Our approach involved a large array of complementary characterization techniques to confirm the interface chemistry and its effect on the charge transfer kinetics. First, to confirm the formation of a smooth and continous LCO|LLZO interface, the thickness of the LCO layer and the initial phases present, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray reflectivity (XRR) and TEM were utilized. Second, composition profiles obtained by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) corroborated each other on the elemental diffusion at the interface. However, these measurements of the compositional depth profile is destructive because of the ion sputtering used in each, and thus, can induce artefacts. Third, to confirm the elemental mixing and depth profiles in a nondestructive
way, STEM energy-dispersive X-ray spectroscopy (EDX), hard X-ray photoelectron spectroscopy (HAXPES) and fluorescence mode X-ray absorption spectroscopy (XAS) were also used. The results from all methods agree that there is significant temperature-induced elemental intermixing at the interface of LCO|LLZO starting with as low temperatures as 300 °C. Furthermore, since the annealing temperatures being studied in this work target the onset of interface reactions, and thus, are not high enough to crystallize secondary phases fully, conventional characterization methods such as XRD are not suitable to detect secondary phases. Therefore, fourth, it was necessary to use spectroscopy methods such as extended X-ray absorption fine structure spectroscopy (EXAFS) and XAS to study the formation of non-crystalline secondary phases. Lastly, potentiostatic hold, electrochemical impedance measurements, and depth profiling of Li by XPS were necessary to reveal the detrimental effect of annealing on the Li transfer kinetics at the interface.

Thin film cathode layers deposited on LLZO electrolyte pellets were employed in this study. Dense thin film cathode layers make an ideal model system because the cathode-electrolyte interface can be accessed by different techniques, including depth profiling by ion sputtering with XPS and SIMS, as well as non-destructive depth profiling by HAXPES and electron yield mode XAS. LCO thin films of 20-500 nm thickness were fabricated in this work by radio frequency sputtering onto sintered and polished LLZO pellets.

The as-deposited LCO layers were characterized by SEM, XRD, and XRR (Figure S1). For XRR, LCO was deposited onto single-crystal sapphire substrates to confirm the quality and to calibrate thickness of the deposited films. The morphology of the LCO|LLZO interface in the as-deposited state and after annealing at 500°C was investigated by cross-sectional TEM. To investigate cation diffusion across the LCO|LLZO interface, several elemental profiling tools were utilized. We used XPS depth profiling in conjunction with Ar⁺ ion sputtering to identify the elemental distributions for Co, Li, O, La, Zr and C across the LCO|LLZO interface for a 20 nm LCO layer. Similarly, SIMS depth profiling in conjunction with Ga⁺ ion sputtering was used to profile Co, La, Li and O across the LCO|LLZO interface. Since the Ga⁺ ion sputtering removed more material per given time than Ar⁺ ion sputtering, a thicker LCO layer of 100 nm was studied with SIMS to be able to observe the LCO|LLZO interface. EDX was also used on the cross-sectional TEM samples to probe the Co, La and Zr distributions across the interface. These depth profiling tools reveal how the composition of the LCO|LLZO interface evolves as a function of annealing conditions.
Depth profiling by XPS and SIMS necessitates removal of the top layer of the sample by ion beam sputtering. This process can itself induce cation intermixing or preferential sputtering and introduce uncertainties into the information being collected. To negate such potential uncertainties, HAXPES experiments were performed with LCO layers of various thicknesses. HAXPES is a unique, non-destructive tool that allows for data collection at depths up to 30 nm into the sample at X-ray energies of 10 keV. By changing the data collection angle, or by changing the thickness of the films, it is possible to collect X-ray photoelectron information as a function of depth, making the results more or less sensitive to the buried interface for comparative purposes.

To identify the effect of annealing temperature on the electronic structure of the LCO|LLZO interface, XAS measurements were performed on LCO films of various thickness on LLZO. These results provide information on the oxidation state and fine structure of the different elements. The collection mode of the XAS measurements determines the sample configuration. For the total or partial fluorescence yield (TFY or PFY) mode, the data is bulk sensitive. For XAS measurements performed in fluorescence mode, the thickness of the LCO film was varied from 20 nm to 460 nm so that the measurements would be more or less interface sensitive, respectively. The detection depth of the partial electron yield (PEY) mode is on the same order as that of XPS. For in situ XAS measurements in PEY mode, 20 nm LCO films were used to determine whether the reaction at the LCO|LLZO interface propagates through the LCO films.

Previous studies used XRD to detect secondary phases in mixed cathode and electrolyte powders. However, to form secondary phases that are detectable by tube-based XRD, high annealing temperatures (>700°C) are needed to crystallize the compounds and form sufficient volume fractions. Here, we exploit synchrotron X-ray diffraction to probe a 20 nm LCO film on LLZO before and after annealing. The high intensity of synchrotron radiation was needed to detect possible secondary phases at the interface of this small-volume sample.

EXAFS is a powerful XAS technique that gives information on electron scattering events around the probed element. One advantage of EXAFS over XRD is that EXAFS does not need long range order for being able to probe the local atomic arrangements. EXAFS analysis was performed at the Co K-edge, La L3-edge, and Zr K-edge to understand the effect of annealing on the fine structure of these cations. Although EXAFS in TFY is a bulk-sensitive method, it is possible to probe the interface by changing the thickness of the LCO films. For example, since Co is only present in the LCO film, changes to Co fine structure at the interface due to annealing are more apparent for thinner LCO films (20 nm) on LLZO.
Evolution of the interface with annealing temperature affects the charge transfer resistance of the battery. Electrochemical testing was undertaken to understand the effect of annealing on Li transport properties through the LCO|LLZO interface. For this purpose, symmetric LCO|LLZO|LCO cells with Au current collectors were fabricated, and both electrochemical impedance spectroscopy (EIS) and potentiostatic-hold measurements were performed. EIS measurements were performed on LLZO and on LCO|LLZO|LCO to discern impedances associated with bulk conduction in LLZO and with Li-transfer across the LCO|LLZO interfaces before and after annealing. Such symmetric cells are ideal for deducing the LCO|LLZO interface charge transfer resistance by EIS. Using the same cell configurations, potentiostatic-hold experiments were performed at 3V for 1 hour, before and after annealing at 500°C, to test whether Li can flow through the cell upon sintering-induced formation of detrimental interface chemistries. The equilibrium potential for this symmetric cell to start with is 0 V, and we do not expect further Li-intercalation into the LCO layers. XPS depth profiling was used to measure the Li profiles on both sides of the LCO|LLZO|LCO samples after potentiostatic-hold to determine how much the Li transfer was impeded across the interface upon annealing. Upon potentiostatic hold, delithiation on one LCO and Li-plating on the opposite LCO was found, indicating that Li was able to flow through the cell. After annealing at 500°C, there was no discernible Li transport across the LCO|LLZO interfaces.

Results

A) Compositional Profiles across LCO|LLZO Interfaces

We measured evolution of the chemical composition across the interface by both local and lateral-averaging probes. While the former based on TEM gives detailed and local visualization, the latter based on XPS and SIMS provides a globally averaged understanding; they together give a more complete picture of chemical evolution.

In Figure 1, we present TEM images of the LCO|LLZO interface and elemental distributions across the interface as measured by STEM-EDX spectroscopy for both the as-deposited state and after annealing at 500 °C. The low magnification images in Figure 1(a) and (b) reveal that the interface in the as-deposited sample was mostly continuous and generally uniform. The interface after annealing at 500 °C exhibited regions of apparent porosity, visible as bright regions in Figure 1(b) and (d) separated by regions of interfacial continuity. The interface morphologies, as measured by high-resolution TEM (HRTEM), before and after annealing are shown in Figure 1(c) and (d). The apparent decrease in the LCO-LLZO contact area after annealing was accompanied by a morphological change in the LCO. The LCO exhibits well-defined
regions of strong diffraction contrast approximately 10 nm – 20 nm in diameter, e.g., those circled in Figure 1(b). These regions are attributed to nanocrystallites, which are directly observable as lattice fringe contrast in Figure 1 (d). The presence of nanocrystalline LCO was also evidenced with selected area electron diffraction (SAD), as shown in the inset of Figure 1(b). The SAD patterns obtained from the ‘bulk’ of LCO film (~200 nm from the interface) exhibit narrow, nearly continuous concentric rings of spots due to Bragg diffraction from randomly-oriented nanocrystallites. The SAD patterns from the as-deposited LCO film (see inset in Figure 1(a)) do not exhibit continuous rings but rather well-separated Bragg spots attributed to a lower volume fraction of the crystalline phase when compared to the annealed LCO layer. The diffraction data presented here were indexed to LCO, although it was not possible to differentiate between its polymorphs. Nanobeam diffraction patterns acquired from the bright regions of the annealed interface in Figure 1(b) indicate the absence of crystallinity; as discussed below, these interface regions are believed to be voids due to Li$_2$CO$_3$ decomposition based on STEM EDX measurements.

The elemental distribution at the LCO|LLZO interfaces was measured using STEM EDX to investigate the influence of annealing on cation interdiffusion. Figure 1(e) and (f) present STEM annular dark field (ADF) images of the LCO|LLZO interfaces in the as-deposited state and after annealing at 500 °C. In STEM ADF images, the intensity is approximately proportional to the squared mean atomic number of the material, so the apparent voids visible as bright regions in Figure 1(b) and (d) appear as dark regions in Figure 1(e) and (f). Figure 1(g) and (h) present representative elemental distribution profiles for Co, Zr, and La measured in the as-deposited and annealed specimens through the LCO|LLZO interface. For quantitative comparison of cation interdiffusion behavior, analysis was performed in regions of the annealed interface where there is direct LCO|LLZO contact. The profiles were fit to logistic curves to estimate the interface chemical width. The interface widths determined from Co K$_\alpha$, Zr L$_\alpha$, and La L$_\alpha$ broadened from 14.2 ± 10.4 nm to 27.2 ± 5.9 nm, from 16.7 ± 9.8 nm to 22.2 ± 2.1 nm, and from 15.1 ± 9.1 nm to 28.7 ± 7.7 nm, respectively, upon annealing the as-deposited sample at 500 °C. These are mean values calculated from four measurements, with errors indicating one standard deviation. Using STEM ADF imaging, voids within the LCO are visible in addition to voids at the LCO-LLZO interface, as shown by Figure 1(f). Figure S2 presents STEM EDX analysis of the LCO-LLZO interface voids and LCO voids. It is possible that these apparent voids observed in the TEM specimen are the result of Li$_2$CO$_3$ decomposition during Ga+ ion beam milling used for TEM specimen preparation. Li$_2$CO$_3$ has been shown to exhibit high sensitivity to electron beam irradiation effects, with the authors attributing decomposition
to knock-on damage, ionization, and heating effects \(^{64}\), which, to varying degrees, are also expected during \(\text{Ga}^+\) beam irradiation.

Figure 1. Transmission electron microscopy (TEM) and scanning TEM (STEM) analysis of interface morphology and elemental distribution for LCO|LLZO samples, with 460 nm LCO deposited onto LLZO,
in the as-deposited state (a,c,e,g) and after annealing at 500 °C (b,d,f,h). (a,b) Low-resolution TEM bright field images, with inset diffraction patterns acquired in LCO phase. (c,d) High-resolution TEM bright field images showing interface morphology. (e,f) STEM annular dark field images with energy-dispersive X-ray spectroscopy (EDX) line scan paths highlighted with horizontal lines. (g,h) Representative STEM EDX elemental profiles; signal intensities are normalized to the total X-ray signal intensity (see Equation (1) in the Methods section).

Figure 2 shows depth profiles obtained by XPS and ion sputtering on 20 nm LCO films on LLZO in the as-deposited and annealed conditions. Co was confined mostly to the first 40 minutes of sputtering in the as-deposited film. After the films were annealed, the Co profile spread out over a longer period of sputtering, indicating that the Co diffused from the LCO film into the LLZO layer, forming a reaction zone. The maximum atomic percentage of Co in the as-deposited sample was 30% whereas this value dropped to 20% after annealing at 300°C and to 10% after 500°C. The Co/Li ratios of these samples are shown in Figure 2(d). The peak of the Co/Li ratio decreased and moved towards the LLZO substrate as a function of annealing.

Importantly, the carbon profile also changed significantly with annealing; the C signal rose near the surface and penetrated deeper into the sample. This indicated the formation of Li₂CO₃, as shown by examination of the C 1s X-ray photoelectron peaks in Figure 3. The C 1s XPS profile showed that there was adventitious carbon (285 eV) on the surface as well as Li₂CO₃ (290eV). The shape of the C1s peaks before any sputtering agreed well with previous literature. After Ar ion sputtering, the adventitious carbon signal was completely removed. However, the C1s signature from Li₂CO₃ was still present below the surface, within the LCO and LLZO zones of the annealed sample. The C 1s signature associated with Li₂CO₃ decreased as the sputtering progressed well into the bulk of LLZO.
Figure 2. Depth profiles of Li, Co, O, La, Zr, and C for LCO|LLZO samples, with a 20 nm deposited LCO layer, obtained by X-ray photoelectron spectroscopy and ion-sputtering in the (a) as-deposited state, (b)
after annealing at 300°C and (c) after annealing at 500°C. (d) Co/Li ratios obtained by Co 2p and Li 1s X-ray photoelectron spectroscopy data for the same samples shown in (a), (b) and (c).

Figure 3. C1s X-ray photoelectron spectra on an LCO|LLZO sample, with a 20 nm deposited LCO layer, after annealing at 500°C and after 0, 10, 20, 120 minutes of Ar ion sputtering.

Figure 4 shows depth profiles obtained by SIMS and Ga ion sputtering on LCO|LLZO samples, for a 100 nm LCO in the as-deposited state (a) and after annealing at 300°C (b). Li, La, and Co signals were normalized to the O signal. Similar to the XPS depth profiles in Figure 2, the Co/O signal spread out over a larger sputtering depth within the annealed sample. In order to understand cation interdiffusion, we focus on the region where the Co/O signal crosses the La/O signal. For the as-deposited sample, the Co/O intensity ratio starts a sharp decline before the La/O signal reaches 10^-1, which is the value of La/O ratio in the LLZO pellet. After annealing at 300°C, the Co/O signal shows a slower decline before the La/O signal stabilizes at the LLZO value of 10^-1. This change in the shape of the Co/O and La/O profiles indicate cation intermixing takes place at the interface, consistent with the XPS depth profiling shown above.
Figure 4. Depth profiles of Li, La, and Co for LCO|LLZO samples, with a 100 nm deposited LCO layer, obtained by secondary ion mass spectroscopy and ion-sputtering in the (a) as-deposited state and (b) after annealing at 300ºC.

Figure 5(a) shows the Co/Li ratios calculated from HAXPES data obtained on LCO|LLZO samples, with a 20 nm deposited LCO layer, as a function of emission angle. The lower emission angles correspond to more surface sensitive measurements, and the higher emission angles probe deeper into the sample (See Figure S3). For the as-deposited sample, there was a sharp decline in the Co/Li ratio as the emission angle is changed from 70º to 80º, indicating that in the 80º configuration the data originates from both the LLZO substrate as well as the LCO layer. After annealing at 300ºC and 500ºC, the Co/Li ratio decreased at lower emission angles and increased for higher emission angles. This result shows that Co penetrates deeper into the sample after annealing at these temperatures. The change in the Co/Li ratio after annealing agrees with the depth profiles measured by XPS and SIMS discussed above. In addition, the C 1s peak associated with Li₂CO₃ is also increased with annealing near the surface (Figure S4), which agrees with the XPS profiling results discussed above.
Figure 5. (a) Co/Li ratio obtained by Co 3d and Li 1s hard X-ray photoelectron spectroscopy as a function of emission angle for the LCO|LLZO samples, with a 20 nm deposited LCO layer, in the as-deposited state, and after annealing at 300°C and 500°C. (b) La/O ratios obtained by La 3d and O1s hard X-ray photoelectron spectroscopy as a function of emission angle, for a LLZO pellet and LCO|LLZO samples, with 20 nm deposited LCO layer in the as-deposited state, and with 5 nm, 20 nm, 60 nm, 100 nm deposited LCO layers after annealing at 500°C. (c) La 3d and (d) Zr 3s photoelectron emission peaks measured by hard X-ray photoelectron spectroscopy at 85° emission angle for a LLZO pellet and LCO|LLZO samples,
with 20 nm deposited LCO layer in the as-deposited state, and with 5 nm, 20 nm, 60 nm, 100 nm deposited LCO layers after annealing at 500°C.

Figure 5(b) shows the La/O ratios calculated from HAXPES measurements on a reference LLZO sample, and on the LCO|LLZO samples in the as-deposited state and after annealing at 300°C and 500°C. For the LLZO reference, the measured La/O ratio was close to 0.25 which is in agreement with the La/O ratio expected in the bulk LLZO pellet. For the 20 nm LCO film on LLZO, there was no La signal detected at either angle, indicating that the detection depth of HAXPES at 10 keV was less than 20 nm, and that the 20 nm thick film continuously covered the LLZO surface. After annealing the LCO|LLZO samples at 500°C, La signal was detected at the surface of the films. In order to understand La diffusion to the surface of the LCO layers, several LCO layers of varying thicknesses were measured after annealing at 500°C. The La/O ratios decreased as the LCO film thickness increased from 5 nm to 100 nm, indicating that the La diffused across the LCO layer at elevated temperatures. From this data, the reaction zone between the LCO and LLZO was on the order of 100 nm after annealing at 500°C. In order to confirm that the La 3d signal detection was not due to the LCO film de-wetting from the LLZO surface, the Zr 3d signal was compared to the La signal (Figure 5(c) and 5(d)). Significant La signal was detected from 60 nm and 100 nm thick LCO layers annealed at 500°C, which was not the case for Zr. This comparison shows that the La diffuses further into the reaction zone than Zr.

B) Oxidation State Obtained by X-ray Absorption Spectroscopy

Figure 6 (a) shows Co K-edge XAS data collected in TFY mode from 460 nm thick LCO|LLZO samples in the as-deposited state and after annealing at 300°C and 500°C, as well as from reference LiCoO_2 and Co_3O_4 powders. All XAS spectra were normalized to equal 1 in intensity in the post-edge region and the edge energy was taken to be at an XAS intensity of 0.5. In fluorescence mode, X-rays penetrate through the entire LCO layer; therefore signal from La and Zr can be observed clearly in the spectra. (Figure S5) The La and Zr edge energies do not shift with annealing, however the annealing process induces an increase in the Co oxidation state as the Co K-edge shifts to higher energies. To quantify the change in the oxidation state, XAS data was collected from LiCoO_2 (Co^{3+}) and Co_3O_4(Co^{2.7+}) reference samples. The shift in the edge energy can be interpolated linearly with respect to the change in the oxidation state of Co^{67,68}. With
this approach, the as-deposited 460 nm LCO film corresponds to Co^{2.8+} (consistent with a Li-rich starting point) and LCO films after annealing at 300°C and 500°C correspond to Co^{2.9+}.

In Figure 6(b), we present *ex situ* Co L$_3$-edge XAS data collected in PFY mode from 460 nm LCO films on LLZO in the as-deposited state and after annealing at 300°C, 500°C, 700°C, as well as reference measurements on LiCoO$_2$ and Co$_3$O$_4$ powders. The shoulder on the low-energy side of the Co L$_3$-edge (~780 eV) indicates more reduced states for Co, whereas the shoulder on the high-energy side (~784 eV) indicates more oxidized states. Compared with the Co L$_3$-edge XAS spectra for LiCoO$_2$ and Co$_3$O$_4$, the low-energy shoulder is more prominent in the Co$_3$O$_4$ spectrum whereas the high-energy shoulder is more prominent for LiCoO$_2$. For the LCO films that have been annealed, the contribution from the low-energy shoulder decreases with annealing temperature. This change in the L$_3$-edge peak shape indicates an increase in the Co oxidation state with annealing and agrees with the Co K-edge XAS measurements. In addition to the shoulder/peak ratio, the features in the Co L$_3$-edge are sharper for the annealed samples, which indicates an increase in the crystal field strength. An increase in the crystallization of the LCO layer agrees with the TEM and EXAFS results. XAS measurements at the La L$_3$- and Zr K-edges (Figure S5) reveal no change with annealing.

![Figure 6](image)

Figure 6. (a) Co K-edge X-ray absorption spectra (total fluorescence yield mode) for Co$_3$O$_4$, LiCoO$_2$, and for LCO|LLZO samples, with a 460 nm deposited LCO layer in the as-deposited state, and after annealing at 300°C and 500°C. (b) Co L$_3$-edge X-ray absorption spectroscopy data (partial fluorescence yield mode) for Co$_3$O$_4$, LiCoO$_2$, and for LCO|LLZO samples, with a 460 nm deposited LCO layer in the as-deposited state, and after annealing at 300°C, 500°C, 700°C.
Figure 7 depicts O K-edge XAS data for 60 nm LCO films on LLZO in the as-deposited state, after annealing at 300\(^\circ\)C and 500\(^\circ\)C, and reference measurements on LCO and LLZO. Since these measurements were taken in fluorescence mode, it was possible to detect LLZO through a 60 nm film of LCO. The reference measurements on LCO and LLZO were useful in identifying the three peaks in the O K-edge spectra for the 60 nm LCO films. LCO has an O K-edge peak at 530.2 eV \(^{69}\). The LLZO pellet was exposed to atmosphere and therefore exhibits a peak for Li\(_2\)CO\(_3\) at 534 eV, and the O K-edge peak associated with LLZO can be observed at 532.1 eV as a shoulder to the Li\(_2\)CO\(_3\) peak.\(^{39}\) The O K-edge XAS data for the 60 nm LCO films are overlaid in order to see the effect of annealing. The Li\(_2\)CO\(_3\) peak was present for all the 60 nm LCO films and did not increase in intensity significantly with annealing. Similarly, the LCO peak remained at the same intensity with the annealing steps. However, the peak associated with LLZO decreased in intensity compared to the LCO and Li\(_2\)CO\(_3\), which could indicate the decomposition of the LLZO near the interface with LCO. The O K-edge data was collected also on an annealed 460 nm LCO film on LLZO and shows a similar decrease in LLZO peak intensity compared to LCO and Li\(_2\)CO\(_3\) (see Figure S6).

![O K-edge X-ray absorption spectroscopy data](image)

Figure 7. O K-edge X-ray absorption spectroscopy data (partial fluorescence yield mode) for LLZO, LCO, 60 nm thick LCO film on LLZO in the as-deposited state, after annealing at 300\(^\circ\)C and 500\(^\circ\)C.
C) Decomposition of the Li$_2$CO$_3$ on LLZO by Heating in Oxygen

To better understand the nature of Li$_2$CO$_3$ decomposition at elevated temperatures, we measured O K-edge X-ray absorption and C1s X-ray photoelectron spectra for a LLZO pellet as a function of temperature (Figure 8); the data were measured in situ while heating the specimens in O$_2$ gas. The atmosphere during the heating experiments was 30 mTorr of pure O$_2$ to avoid further formation of Li$_2$CO$_3$. Since the XAS spectra were collected in partial electron yield mode, the detection depths of the O K-edge measurements were similar to those for the C1s XPS spectra (~3 nm). The room temperature LLZO sample exhibited adventitious carbon (C-C, 284.8eV binding energy) and Li$_2$CO$_3$ species (C=O, 288.8eV binding energy), as can be seen in the C1s spectra. The O K-edge data were in agreement with the C1s XPS spectra and shows a large presence of lithium carbonate (534 eV) at room temperature. After heating the sample to 250$^\circ$C, the adventitious carbon disappeared, but the C1s peak associated with carbonate persisted on the LLZO pellet. When the sample was heated to 350$^\circ$C, all C species were removed from the surface, according to the C1s XPS spectrum. Furthermore, the O K-edge spectrum at 350$^\circ$C illustrated that the carbonate peak disappeared and a broad peak associated with LLZO appeared, indicating that the carbonate layer on top of the LLZO pellet was removed completely. In situ XPS spectra for all other regions are presented in Figure S7. Figure S7(b) shows the Li 1s spectra after the carbonate layer is removed and indicates that the LLZO layer under the carbonate layer is Li-poor. Furthermore, the La/Zr ratio (calculated from the La 4d and Zr 3d peaks in Figure S7) is ~1.5 after Li$_2$CO$_3$ evaporation, consistent with the La/Zr stoichiometry in LLZO. This indicates that the interface was still LLZO (also consistent with the LLZO peak remaining in the O K-edge XAS in Figure 8) and has not decomposed into La$_2$Zr$_2$O$_7$ upon removal of Li$_2$CO$_3$.
Figure 8 (a) O K-edge X-ray absorption spectroscopy data (in partial electron yield mode) and (b) C1s X-ray photoelectron spectroscopy spectra for a LLZO pellet measured in situ at room temperature, 250$^\circ$C and 350$^\circ$C in 30 mTorr pure O$_2$.

Figure 9 shows the O K-edge spectra and C1s photoelectron spectra for a 20 nm LCO film on LLZO as a function of temperature measured in situ. According to the C1s spectra, the as-deposited film exhibited Li$_2$CO$_3$ species as well as adventitious carbon. The O K-edge spectra confirmed the presence of Li$_2$CO$_3$ species on the surface and in the LCO layer. When the sample was heated to 100$^\circ$C, the adventitious carbon C1s XPS peak diminished and the O K-edge intensity showed decreased Li$_2$CO$_3$ and increased LCO signal. When the sample was heated to 250$^\circ$C, the C1s peaks completely disappear, indicating that all carbon species were removed from the surface. Data at the O K-edge confirmed removal of the carbonate species, as the peak at 534 eV photon energy was absent. After heating the sample to 350$^\circ$C, the spectra at the C1s and the O K-edge remained unchanged compared to the spectra measured at 250$^\circ$C. In situ XPS spectra for all other regions is presented in Figure S8. Figure S8(d) shows that a weak La 4d peak could be detected at the surface of the 20 nm LCO films at 350$^\circ$C, however Zr could not be detected, which agrees with the ex situ HAXPES results. Therefore, the reaction zone between LCO and LLZO is less than 20 nm at 250$^\circ$C but close to 20 nm at 350$^\circ$C.
Figure 9 (a) O K-edge X-ray absorption spectra (in partial electron yield mode) and (b) C1s X-ray photoelectron spectra for a LCO|LLZO sample, with a 20 nm deposited LCO layer, measured in situ at room temperature, 100°C, 250°C, and 350°C in 30 mTorr of pure O₂.

D) Secondary Phase Formation at the LCO|LLZO Interfaces

The structure of the phases as a result of the reaction between the LCO film and the LLZO pellet was examined by synchrotron XRD and EXAFS. While XRD is sensitive to crystalline states, XAS can be used to detect the onset of reactions even if they have not yet formed a phase with long-range crystalline order. Figure 10 shows XRD spectra collected from the LLZO pellet and 20 nm LCO films on LLZO in the as-deposited state and after annealing at 500°C. The XRD spectrum for the LLZO pellet showed reflections for both cubic LLZO and Li₂CO₃ (ICDD:96-900-8284). For the as-deposited LCO|LLZO sample, a small peak from LCO was observed at 20 = 45.3° in addition to those from LLZO and Li₂CO₃. Intensities from the Li₂CO₃ were more prominent for the LCO|LLZO sample. A 500°C anneal of that sample induced the appearance of many new XRD peaks. The emergence of La₂Zr₂O₇ (ICDD: 04-015-3304) could be observed clearly, and the broad peak at lower angles (≲ 25°) suggests the growth of semi-amorphous phases. It is also possible that LaCoO₃ is a secondary phase that emerges as a result of annealing. However, this was difficult to conclude because many of the LaCoO₃ reflections overlap with those of LLZO, except one. The two most intense peaks for LaCoO₃—(110) at 32.98° (100% intensity) and (104) at 33.30° (99.2% intensity)—overlap with the broad La₂Zr₂O₇ (400) peak at 33.37°. The second most intense peak for LaCoO₃ (024),
at 47.57° (55.2% intensity), overlaps with the LLZO(631) peak at 47.41°. The third most intense peak for LaCoO$_3$ (012), at 23.27° (29.0% intensity), is obscured by the broad semi-amorphous peak at the lower angles. This leaves only the fourth most intense peak for LaCoO$_3$ (202) at 40.75° (25.2% intensity) for phase identification. The LaCoO$_3$ (214) peak at 59.10° (30.9% intensity) was not accessible due to the angular limit in the synchrotron XRD setup. Similar peak overlap issues have hindered the identification of secondary phases in cathode/LLZO powder mixtures previously.63 Similar measurements were conducted with a laboratory XRD system using thicker LCO layers. Again, the emergence of La$_2$Zr$_2$O$_7$ peaks was observed after high temperature annealing (Figure S9).

Figure 10. Synchrotron XRD spectra for the LLZO pellet, and the 20 nm LCO film on LLZO in the as-deposited state and after annealing at 500°C.

Figure 11(a) shows Fourier-transforms (FT) of the k^3-weighted Co K-edge EXAFS oscillations from 460 nm LCO films on LLZO in the as-deposited state, and after annealing at 300°C and 500°C. The FT plots highlight the radial distances associated with the scattering events. The first-shell Co-O and Co-Co scattering events were represented strongly at 1.4 Å and 2.4Å. The coordination associated with first-shell Co-O and Co-Co scattering events increase as a result of annealing. While it is known that RF
sputtering at room temperature produces low-crystallinity films, depositing the LCO films at room temperature and then annealing the LCO|LLZO structures at certain temperatures was necessary to control cation diffusion at the interface. The trend in the Co fine structure as a function of temperature indicates that the LCO films improve their crystallinity with annealing. This result also agrees with TEM and *ex situ* XAS findings that suggest a larger fraction of crystalline LCO after annealing.

The Co EXAFS references indicate that there is no evidence of Co$_3$O$_4$ impurities in the LCO films. (The reference Co$_3$O$_4$ EXAFS data is presented in Figure S10.) After annealing at 500 °C, the EXAFS results for the LCO film agree well with the LCO powder reference sample. The results of fitting the LCO EXAFS spectra with individual scattering paths are presented in Figure S11 and Table S1.

![Figure 11](image)

Figure 11. (a) Fourier-transform of Co extended X-ray absorption fine structure spectra for LCO powder reference sample, LCO|LLZO samples, with a 460 nm deposited LCO layer, in the as-deposited state, and after annealing at 300°C and 500°C. (b) Fourier-transform of Co extended X-ray absorption fine structure spectra for LCO|LLZO samples, with 20 nm, 60 nm, 100 nm and 460 nm deposited LCO layers after annealing at 500°C.

Figure 11(b) shows Fourier-transforms of the k^3-weighted Co K-edge EXAFS oscillations for LCO|LLZO samples with different LCO layer thicknesses after annealing at 500°C. The EXAFS spectra for 460 nm, 100 nm, and 60 nm films agree well with the LCO reference sample in terms of the radial positions of the peaks. However, for the 20 nm sample, EXAFS peaks in the range of 3.8 Å and 4.3 Å are observed. Reference spectra for La$_{0.6}$(Sr$_{0.4}$)CoO$_3$ show prominent EXAFS features between 3 Å and 4.3 Å.
The EXAFS spectra for the 20nn sample was fit using calculated LaCoO$_3$ paths (simulated using FEFF9.0 74,75) and it was determined that these scattering peaks could correspond to Co-La-O scattering events. (see Figure S12 and Table S2) Therefore, it is possible that the 20 nm LCO film after annealing at 500°C has characteristics of a La-Co-O phase near the LCO|LLZO interface.

EXAFS spectra were collected for Zr and La in fluorescence mode for various LCO thickness films and under different annealing conditions. However, Zr and La are present in the bulk of the LLZO pellet as well as at the interface, and the signal depth in this measurement mode is large. Therefore, it was not possible with these results to deduce any changes associated with La and Zr coordination at the LCO|LLZO interface compared to bulk LLZO (see Figure S13).

E) Electrochemical Degradation of the LCO|LLZO Interfaces

In order to assess modifications to the interface resistance due to the chemical and structural changes presented above, two types of experiments were performed: one profiled the Li distribution after a potentiostatic hold and the other quantified the interface impedance, with both experiments performed on symmetric cells. Figure 12 shows the Li, Co, O, and Au profiles obtained by XPS for two symmetric LCO|LLZO|LCO cells after a 3V potentiostatic hold using Li-ion blocking Au electrodes. One measurement was conducted in the as-deposited state, with the other after annealing at 500°C. The current responses during the 3V potentiostatic hold are plotted in Figure S15. For the as-deposited LCO|LLZO|LCO cell, the potentiostatic hold was able to move Li through the LCO|LLZO interfaces. One LCO electrode was polarized at 3 V. As a result, the opposite LCO electrode was depleted in Li (Figure 12(a), right). As expected, the LCO electrode that was held at 3V did not intercalate more Li, but rather plated out Li between LCO and Au contact (Figure 12(a), left). It is clear that the Li peak does not overlap with the Co profile peak, and the Li profile within the LCO region (where Co peaks) is consistent with the unpolarized profile shown in Figure 2(a). The Li profile peak in this potentiostatically held electrode is rather between Au and LCO. The shape of the Li 1s peak taken at the position where the Li concentration profile peaks also confirms the formation of metallic lithium (Figure S16) 76. The Co 2p spectrum taken from the left side of the cell upon potentiostatic hold also shows LCO layer still has Co-oxide binding environment and not Co metal (See Supporting Information file for explanation of this process in the symmetric cell). As a result, in this experiment we could flow Li from the right to the left side of the symmetric cell, and formed in situ a cell configuration that represents nearly a full cell, as
Au|Li|LCO|LLZO|LCO(delithiated)|Au, with delithiation of one LCO electrode and Li-plating on the opposite electrode.

For the LCO|LLZO|LCO cell that was annealed at 500°C, the same potentiostatic hold experiment yielded no difference in the Li profiles on either side of the symmetric LCO|LLZO|LCO cell. The absence of a change in Li content from the right to the left LCO electrode in Figure 12(b) demonstrates that Li transport was blocked at the LCO/LLZO interfaces and it does not flow after annealing the cell at 500°C. This is also consistent with the largely smeared Co profile, as also shown in Figure 2. As a result, we can conclude that the thermal effect on interface chemistry dominates over the presence of even a large potential at this interface.

Figure 12. Li, Co, O and Au depth profiles through the Au electrodes (marked in yellow) using X-ray photoelectron spectroscopy taken on both sides of two symmetric LCO/LLZO/LCO cells, with 60 nm deposited LCO layers on LLZO, after a potentiostatic hold at 3V for 1 hour. (a) Data taken on an as-prepared cell, and (b) data taken on a cell after it was annealed at 500°C for 4 hours.
Figure 13(a) shows EIS spectra for an LLZO pellet and a symmetric LCO|LLZO|LCO sample, with 60 nm as-deposited LCO layers, using Li-ion blocking Au electrodes. Over the studied frequency range, a semicircle and a low-frequency tail can be observed for the LLZO pellet. The low-frequency tail is due to the blocking nature of the Au electrodes. The semicircle is characterized by a frequency of 250 kHz and is present in all measurements with LLZO pellets. The EIS spectra for the LLZO pellet was simulated using a (R_{ohmic})(R_{pellet}Q_{pellet}) equivalent circuit model, where the R_{ohmic} element accounts for the resistance associated with measurement setup and the (R_{pellet}Q_{pellet}) element accounts for the bulk conduction in the LLZO pellet. The value for R_{ohmic} is less than 20 Ω.cm^2 for all cells measured. Fitting the LLZO pellet EIS spectra with a (R_{ohmic})(R_{pellet}Q_{pellet}) circuit reveals that the 250 kHz semicircle has a equivalent capacitance value of ~10^{-9} F. The bulk and grain boundary transport capacitances in LLZO are expected to be on the order of 10^{-12}F and 10^{-9}F, respectively. Therefore, the semicircle characterized by 250 kHz is assigned to be the impedance associated with grain boundary conduction. The inter-grain and grain boundary contributions to bulk LLZO conduction could not be distinguished at room temperature, which is the case for many reports on LLZO in the literature. The Li-ion conductivity of the LLZO pellet, calculated using R_{pellet} and the dimensions of the sample, is 0.19 mS/cm, in agreement with cubic LLZO conductivities reported in literature.

The symmetric LCO/LLZO/LCO sample exhibits an additional semicircle with a peak at 5 kHz, which can be assigned to the LCO/LLZO interface since this semicircle is not present for the LLZO pellet (Figure 13(a)). Figure 13(b) shows EIS data for the symmetric LCO|LLZO|LCO samples in the as-deposited state and after annealing at 300°C and 500°C. The EIS data were fitted with the model used for the LLZO pellet and an additional (R_{electrode}Q_{electrode}) element to account for the LCO/LLZO interface. The capacitance value associated with the (R_{electrode}Q_{electrode}) element is ~10^{-7} F, which is consistent with other values reported for electrode interactions. The R_{electrode} element corresponds to an area specific resistance (ASR) associated with the LCO|LLZO interface. Since the R_{electrode} element includes contributions from two identical LCO|LLZO interfaces, the value of R_{electrode} was divided by two to obtain the ASR of a single LCO|LLZO interface. Figure 13 (c) shows that the ASR associated with LCO|LLZO interfaces increases significantly after annealing at 300°C and 500°C, compared to the as-deposited state. The value of the LCO|LLZO ASR increases from 0.6 kΩ.cm^2 in the as-deposited state to 3.6 kΩ.cm^2 and 4.3 kΩ.cm^2 after annealing at 300°C and 500°C, respectively. These ASR values for the LCO|LLZO interfaces found here are on the same order as previously reported ASR values for LCO|LLZO interface.
created by high-temperature pulsed laser deposition. The relative increase in ASR upon annealing here is consistent with the decrease of the initial current during the potentiostatic-hold, down to ~23\% of the as-prepared LCO|LLZO|LCO structure upon annealing at 500\degree C (see Figure S15).

Figure 13. (a) Electrochemical impedance spectroscopy data acquired at room temperature for Au|LLZO|Au and Au|LCO|LLZO|LCO|Au symmetric cells in the as-deposited state. (b) Electrochemical impedance spectroscopy data for Au/LCO/LLZO/LCO/Au symmetric cells in the as-deposited state and after annealing at 300\degree C and 500\degree C. (c) ASR values for the LCO|LLZO interface in the as-deposited state and after annealing at 300\degree C and 500\degree C.

Discussion

As seen from a comprehensive set of experimental results reported above, there is evidence for significant cation intermixing and a solid phase reaction at the LCO/LLZO interface as a result of annealing in air. Specifically, Co and La are observed to intermix at the interface based on results from STEM EDX, XPS, SIMS, and HAXPES. The significant redistribution of Co indicates that the LCO phase decomposes near the interface. As a consequence, excess Li is available for reaction with CO\(_2\) to form Li\(_2\)CO\(_3\) throughout the surface, the LCO layer, and the near-interface zone, as shown in Figure 2. The out-diffusion of La is consistent with decomposition of LLZO into relatively La-poor phases such as La\(_2\)Zr\(_2\)O\(_7\), as also confirmed by XRD. The cross-diffusion of La and Co, and EXAFS and XRD signatures, strongly suggest the emergence of a La-Co-O phase. Previous studies of LCO|LLZO interface reactions indicated the formation of La-Co-O phases such as La\(_2\)CoO\(_4\) and LaCoO\(_3\). Zr shows negligible, if any, reactivity with LCO for the annealing conditions studied in this report. The decomposition reaction creates excess La
available for out-diffusion, leaving behind Zr stably in the reaction product La₂Zr₂O₇. It is possible that the resulting picture from this observation is that the La₂Zr₂O₇ forms closer to the LLZO interface, and the La-Co-O phases form closer to the top surface.

O K-edge measurements can be used to clearly distinguish between the LCO, LLZO and Li₂CO₃ phases. These measurements were performed in the fluorescence (ex situ) and electron (in situ) yield mode to probe the reaction at the LCO/LLZO interface as a function of temperature. In these measurements, the peak associated with LLZO (532 eV) decreased in comparison to the LCO (530 eV) and Li₂CO₃ (534 eV) peaks. This indicated that LLZO near the interface decomposes with increasing annealing temperature. This is consistent with the eventual formation of La₂Zr₂O₇, as identified by XRD. The O K-edge peaks for La₂Zr₂O₇ are at 531 eV and 533.8 eV. Another possible decomposition product, LaCoO₃, exhibits O K-edge peaks at 530 eV and 535 eV. Yet another possible decomposition product, La₂CoO₄, exhibits O K-edge peaks at 529.5 eV and 532 eV. Therefore, the decomposition of LLZO into either La₂Zr₂O₇ or LaCoO₃ would result in a decrease of the XAS intensity at 532 eV. Since O K-edge peak for La₂CoO₄ is at 532 eV, this could point that LaCoO₃ is the more likely La-Co-O decomposition phase rather than La₂CoO₄. The preference to LaCoO₃ is also supported by the observation of the LaCoO₃(202) at 40.75° in the LCO/LLZO sample after annealing at 500°C. It was not possible to identify La₂Zr₂O₇ or LaCoO₃ clearly in the O K-edge XAS because their peaks overlap with those of LCO and Li₂CO₃.

It is worth here to compare our experimental finding to the previously reported computational and experimental studies. La₂Zr₂O₇ as a result of reactions between LCO and LLZO was proposed by those earlier works, which was also found by the XRD and XAS in this study. Formation of a La-Co-O phase was not predicted computationally, but has been suggested in several experimental papers. In this work, we conclude that LaCoO₃ is the more likely La-Co-O phase, rather than La₂CoO₄, due to the O K-edge XAS data and XRD. Several computational studies predicted the formation of La₂O₃ as a decomposition product of LLZO. In this work, there is no evidence from XRD or EXAFS analysis for the formation of La₂O₃. In computational studies, several Li-rich Li-Co-O phases (Li₂CoO₅, Li₅CoO₄, Li₇Co₅O₁₂) were predicted as a result of LCO decomposition. In this study, we did not observe any evidence (by composition or by structural analysis) to the formation Li-rich LCO phases. This is likely because the previous computational studies did not consider Li₂CO₃ as a decomposition product in the presence of CO₂ in the environment, as a means to uptake Li instead of Li-rich LCO phases.
The secondary phases that were detected in this study (Li$_2$CO$_3$, La$_2$Zr$_2$O$_7$, LaCoO$_3$/La$_2$CoO$_4$) are known to be poor Li conductors14,39,86. Therefore, it is not surprising that annealing LCO|LLZO samples is detrimental to the battery performance. Depth profiles of Li measured across LCO|LLZO|LCO symmetric cells upon a potentiostatic hold unequivocally demonstrate that Li transfer is blocked across these interfaces as a result of annealing. Consistent with that observation, the ASR of the interface increased up to 8 times that of the as-prepared (not annealed) sample, according to EIS measurements. In addition to the secondary phases that form at the interface, there is a morphological change at the interface between LCO|LLZO and possible void formation, as shown in the TEM studies, which could also result in an increase in the ASR of the interface.

It is possible that the presence of an electrochemical potential at the LCO|LLZO interface could also induce a decomposition reaction at the interface. However, the magnitude of the decomposition as a result of potentiostatic hold at 3V in this symmetric cell experiment was negligible compared to the reaction induced by annealing at 500°C for 4 hours. The compositional profile of the non-polarized (Fig. 2(a)) and polarized LCO|LLZO interfaces (Fig. 12(a)) show similar La, Zr and Co profiles. The cation profiles for LCO|LLZO interface after annealing at 500°C also look similar for the non-polarized (Fig. 2(c)) and polarized cases (Fig. 12(b)). Therefore, the dominant decomposition effect appears to be the thermal effect rather than the polarization effect in the instability of the LCO|LLZO interface.

The reaction zone between the LCO and LLZO is expected to be temperature-dependent. Choosing the optimal annealing parameters to bond a ceramic cathode and LLZO in a solid-state battery will depend on knowledge of the reaction width and chemistry as a function of temperature. XRD is an extremely useful technique in identifying emerging phases. However, it is a bulk-sensitive measurement with limited utility for interface studies, unless performed in a special geometry. Previous research reported mixing different ratios of cathode and LLZO powders and annealing them at relatively high temperatures (above 500°C) before the observation of new peaks in the XRD scans.47,56,63 This is because higher temperatures are necessary for the crystallinity and volume fraction of secondary phases to reach XRD-detection levels. In our work, the thin film configuration of the samples and the spectroscopic measurements that do not require long range crystallinity allows us to deduce the onset of interface reactions at relatively low temperatures, below 500°C. By depositing LCO layers at room temperature, the formation of a reaction layer in our samples prior to annealing was avoided or minimized. By changing the thickness of the LCO films on LLZO, it is possible to identify the reaction zone width as a function of temperature. HAXPES
measurements on the 5 nm, 20 nm, 60 nm, and 100 nm LCO films show that annealing them at 500°C for 4 hours results in a ~100-nm-thick reaction zone at the LCO/LLZO interface. At 250°C, the reaction zone was less than 20 nm. In summary, the onset of degradation at the LCO|LLZO interface starts to take place at temperatures (300-500°C) much lower than those in typical ceramic sintering and bonding. The temperatures that have been reported for LCO deposition and co-sintering in the literature are all above 500°C. At this temperature, we found significant reaction and degradation affecting a thickness near the interface over >100 nm. This finding was only possible by using interface-sensitive measurement techniques and well-defined thin films. Going forward, other densification methods such as very fast spark plasma sintering,87–89 or humidity-assisted room-temperature sintering 90 might be desirable to bond ceramic cathodes to LLZO without the formation of extensive reaction zones.

Although garnet solid-state electrolytes such as LLZO are considered more stable in air than sulfide solid-state electrolytes, their surfaces are still susceptible to Li$_2$CO$_3$ formation.91 Similarly, LCO reacts with CO$_2$ to form Li$_2$CO$_3$ on its surface.91 The Li$_2$CO$_3$ thickness on LCO increases with annealing in an atmosphere containing CO$_2$, as XPS depth profiling shows. The effect of Li$_2$CO$_3$ on Li|LLZO interfaces has been studied thoroughly by symmetric cell cycling and spectroscopy. In this work, we show that Li$_2$CO$_3$ forms also at the LLZO|LCO interface, and within the LCO near this interface, and is detrimental for the interface impedance. Moreover, it is possible to remove Li$_2$CO$_3$ from the LLZO and LCO surfaces by heating the samples in a pure O$_2$ atmosphere. The Li$_2$CO$_3$ layer was removed from LCO and LLZO at 250°C and 350°C respectively, in 30 mTorr of O$_2$. Polishing the surface of LLZO in a carbon-free environment has been proposed as an effective means of avoiding Li$_2$CO$_3$ formation prior to anode or cathode deposition. Annealing the LLZO under O$_2$ or other carbon-free gases could be an alternative method for Li$_2$CO$_3$ removal.37

Conclusions

The interface between Li cathode materials and LLZO is of significant interest to the solid-state battery development. Several studies have focused on identifying the secondary phases and compositional profiles across the interface. The present work focuses on systematically studying the effect of annealing temperature on the LCO|LLZO interface using thickness-controlled thin films and interface-sensitive detection methods. XPS, SIMS, HAXPES, and STEM EDX results show that Co and La diffuse extensively across the LCO|LLZO interface. As a result of annealing in air up to 500 °C, the most likely reaction products at this interface are Li$_2$CO$_3$, La$_2$Zr$_2$O$_7$, and LaCoO$_3$, as identified by XRD, XAS and EXAFS. The
interface reaction width was found in HAXPES and \textit{in situ} XPS measurements to be less than 20 nm at 250\textdegree C and close to 100 nm at 500\textdegree C. These reaction products at the LCO|LLZO interface are detrimental. Depth profiling of Li across the interfaces show that the reacted interfaces block Li transfer, leading to an 8-fold increase in the interface impedance. The exposure of LCO and LLZO to the atmosphere induces Li$_2$CO$_3$ formation; however, the Li$_2$CO$_3$ on the surface could be completely removed by heating the sample to 350\textdegree C under an O$_2$ atmosphere. The thin-film cathode geometry and the interface-sensitive measurement techniques allow us to observe the formation of interface reaction products at temperatures much lower than in traditional ceramic sintering and bonding processes. Our results indicate that processing conditions at lower temperatures, short time scales, and in CO$_2$-free environments are highly desirable for obtaining ceramic cathode-electrolyte interfaces that enable fast Li transfer and high capacity.

\textbf{Acknowledgments}

The authors acknowledge the support of Bosch Energy Research Network (BERN) grant and MISTI MIT-Imperial College grant. This work made use of the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under Award Number DMR 14-19807. D.D.F. was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This research used resources of the 23-ID-2 beamline of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Zhan Zhang, Jon Tischler, Joshua Wright, John Katsoudas, Fatih Piskin and Maximilian Jensen for their help with experiments at beamlines.

\textbf{Experimental Procedures}

\textit{Sample Preparation}

Cubic LLZO powders (dopant: Al, 99.9\%) were purchased from MSE Supplies (Arizona, USA). Phase purity of LLZO powders were confirmed by XRD. LLZO powder were pressed into pellets (10mm diameter, 1mm thickness) and sintered at 1150\textdegree C for 8 hours in air. Sacrificial LLZO pellets were placed
under and above the LLZO pellet of interest during sintering to minimize Li loss. The LLZO pellets were polished with 800, 1200 and 2400-grit SiC paper to a mirror finish. Immediately prior to LCO deposition, LLZO surfaces were dry-polished with 2400-grit SiC paper to remove surface Li$_2$CO$_3$ layer.

LCO layers were deposited by radio frequency (RF) sputtering in an argon-oxygen atmosphere from an LCO target. The argon to oxygen ratio during sputtering was 3:1 (9 Ar sccm : 3 O$_2$ sccm). The LCO films were deposited on LLZO pellets at room temperature. The sputtering deposition rate of the LCO layer was determined using a quartz balance in the sputtering chamber. Post-annealing steps were 300°C and 500°C for 4 hours in an air atmosphere.

Transmission Electron Microscopy (TEM)

Specimens for TEM analysis were prepared by conventional lift-out procedure using a dual-beam SEM equipped with a Ga$^+$ focused ion beam column (Helios Nanolab 600, Thermo Fisher Scientific). Specimen thinning to a final thickness of ~50 nm was performed using ion beam accelerating voltages ranging from 30 kV – 2 kV, and specimen tilt of ± 3° relative to the optic axis of the ion beam. TEM specimens were stored in an Ar glovebox, though reaction with the atmosphere during sample handling is expected to form surface phases on the TEM specimen surfaces, which may have resulted in amorphous contrast visible in HRTEM images. TEM and STEM analyses were performed using a JEOL 2010F operating at 200 kV; for EDX, the STEM probe diameter was ~1 nm. The profiles presented in Figure 1 are a qualitative indication of elemental distribution, with the intensity in each cations’ profile defined by normalizing its detected X-ray counts by the sum of all ions’ counts, e.g. Equation (1) exemplified for Co. This normalization also effectively accounts for variation in specimen thickness.

$$I_{Co} = \frac{I_{Co}}{I_{Co} + I_{Zr} + I_{La} + I_{O}} \quad \text{Equation (1)}$$

Elemental profiles were fit using the logistic function

$$f(x) = \frac{s}{1 + e^{-k(x-x_0)}} + y \quad \text{Equation (2)}$$

where s scales the fit vertically, k defines the steepness of the sloped transition region spanning the interface, x is the position along the line scan, x_0 is the x position where the value of the fit is 50 % of the difference between maximum and minimum fit values, and y shifts the fit vertically. Least-squared fitting was implemented in Python. The calculated chemical widths are so-called 10%-90% widths, defined by
the separation of x positions corresponding to 10% and 90% of the maximum fit values after scaling the fit between zero and one.

X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS)

XPS profiling measurements were carried out with a Kratos Axis Ultra spectrometer using a monochromatic Al Kα source. The sputtering of the sample was performed with an Ar ion source (2μA) over a 2mm by 2mm area. The sample was rotated during the sputtering to ensure homogenous removal of material from the surface. Detailed scans for Li 1s, Co 2p, O 1s, La 3d, Zr 3d and C 1s were collected after every 2 minutes of Ar sputtering. The quantification of the atomic concentrations were performed using the Multipak software and the relative sensitivity factors in the Multipak software. The Co/Li ratios were calculated by dividing the atomic percentage of Co with Li.

Ex situ Co L-edge and O K-edge XAS spectra were measured at the CSX-2 (23-ID-2) beamline at the National Synchrotron Light Source II. Partial fluorescence yield (PFY) spectra were collected using a Vortex silicon drift detector. Samples were pre-annealed prior to loading into the UHV chamber and measurements were done at room temperature.

In-situ heating XPS and XAS measurements were carried out at the 9.3.2 beamline at ALS in PFY mode. The sample was heated from a heater in the back of the sample holder and the temperature was measured using a thermocouple on the surface of the sample. The atmosphere in the chamber during the heating experiment was 30mTorr of pure O₂. XPS measurements were taken at a photon energy of 760eV. XAS scan of the O K-edge were taken over 515eV to 560eV with a detection energy of 210eV.

Hard X-ray photoelectron spectroscopy measurements were carried out at 33-ID beamline at APS with a photon energy of 10keV. The angle between the detector and sample surface was changed from 60⁰ to 85⁰ to change the detection depth. The elemental ratios were calculated after fitting the spectra with CasaXPS software. The photoionization cross sections decay significantly at higher photon energies. The XPS peaks used for elemental ratio analysis (Co 3d with Li 1s and La 3d with O 1s) show similar cross section decay with respect to photon energy up to 1.5keV. (see Figure S14) If the decay in cross section is assumed to be linear up to 10keV, then the elemental ratios could be calculated using the sensitivity factors for Al Kα source X-rays. Furthermore, the La/O ratio (~0.25) calculated from the reference LLZO sample using hard (10keV) X-ray photoelectron spectroscopy experiments matches closely with soft (1.5eV) X-ray
photoelectron spectroscopy measurements and therefore the assumption that the ratio of photoionization cross sections for La 3d and O 1s is similar at 1.5 eV and 10 keV is assumed valid.

Extended X-ray absorption fine structure (EXAFS) measurements were carried out at 10-ID beamline at APS for Co K-edge (7709 eV), La L3-edge (5483 eV) and Zr K-edge (17998 eV). Data alignment, summation, calibration, and error correction was done with Athena software. Spectral fitting of the LCO powder spectra was done with Artemis software using theoretical EXAFS paths created with FEFF6.0. The reference spectra for compounds were calculated using the FEFF9.0 software and cif files obtained from the International Crystal Database.

Secondary Ion Mass Spectroscopy (SIMS)

SIMS measurements were performed using a focused ion beam (FIB)-SIMS instrument. The current of gallium ion flux was 593 pA. The samples are required to be tilted at 30° towards the HIDEN SIMS detector during the FIB-SIMS depth profile analyses for optimum secondary ion detection. The area selected for FIB-SIMS depth profiles are 20µm² areas with the sample tilted so that the actual area on the sample is rectangular with the crater side in the direction of the tilt being slightly longer at ~23.1 µm.

Both polarity SIMS ions are detected simultaneously during the depth profiles. The FEI SIMS detector is set up for negative ion detection and HIDEN SIMS detector set up for positive ion detection. Typical positive and negative SIMS mass spectra were obtained before depth profiling in order to check on the correct peak positions on the mass/charge scale of the secondary ions of interest for each detector used during the depth profiles. Both polarity SIMS ions are detected simultaneously during the depth profiles.

The FEI SIMS detector is set up for negative ion detection and HIDEN SIMS detector set up for positive ion detection. Typical positive and negative SIMS mass spectra were obtained before depth profiling in order to check on the correct peak positions on the mass/charge scale of the secondary ions of interest for each detector used during the depth profiles.

X-ray Diffraction (XRD)

XRD measurements on 20 nm LCO deposited samples were carried out at 33-ID beamline at APS with a photon energy of 10keV. The 2θ angles from the 10keV measurements were converted to 2θ values for a
Cu Kα source to simplify phase identification. The XRD measurements on 460 nm LCO deposited samples were performed with a PANalytical X’Pert Pro with a Cu Kα source.

Electrochemical Impedance Spectroscopy (EIS)

EIS measurements were performed with a PARSTAT400 potentiometer in the 5MHz to 1Hz range with a potential amplitude of 100mV. The Au electrodes were coated using RF sputtering and had an approximate thickness of 100 nm. The edges of the Au-coated sintered pellets were polished to avoid a short circuit. Au electrodes were deposited after the annealing step for the LCO|LLZO/LCO cells to avoid diffusion of Au with LCO layers. EIS spectra were fit with equivalent circuit models using EC-Lab software.

Supporting Information

SEM, XRD and XRR information on deposited LCO layers. Cross-sectional STEM EDX analysis of the LCO|LLZO interface. Configuration of the HAXPES data collection setup. Carbonate to carbon ratio as determined by HAXPES measurements. Zr K-edge and La L3-edge EXAFS data. O K-edge XAS measurements. O 1s, Li 1s, Zr 3d, La 4d in-situ XPS measurements. XRD data for LCO|LLZO samples. Fourier transforms of Co K-edge EXAFS data for reference samples. EXAFS Fourier fitting for LCO reference sample and 20nm LCO|LLZO interface. Fourier transforms of Zr K-edge and La L3-edge EXAFS data. Photoionization cross sections for La 3d, O 1s, Co 3d, Li 1s. Current vs. time data for potentiostatic hold experiment. Li 1s, Co 3d and Co 2p XPS data during the XPS profiling experiment.

References

(53) Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J. B. Plating a Dendrite-Free

TOC GRAPHIC