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Abstract: 

Large-scale genome-wide association studies (GWAS) have identified approximately 35 loci 

associated with epithelial ovarian cancer (EOC) risk. The majority of GWAS-identified disease 

susceptibility variants are located in non-coding regions, and causal genes underlying these 

associations remain largely unknown. Here we performed a transcriptome-wide association study 

to search for novel genetic loci and plausible causal genes at known GWAS loci. We used RNA 

sequencing data (68 normal ovarian-tissue samples from 68 individuals and 6,124 cross-tissue 

samples from 369 individuals) and high-density genotyping data from European descendants of 

the Genotype-Tissue Expression (GTEx V6) project to build ovarian and cross-tissue models of 

genetically regulated expression using elastic net methods. We evaluated 17,121 genes for their 

cis-predicted gene expression in relation to EOC risk using summary statistics data from GWAS 

of 97,898 women, including 29,396 EOC cases. With a Bonferroni-corrected significance level 

of P<2.2×10-6, we identified 35 genes including FZD4 at 11q14.2 (Z=5.08, P=3.83×10-7, the 

cross-tissue model; 1 Mb away from any GWAS-identified EOC risk variant), a potential novel 

locus for EOC risk. All other 34 significantly-associated genes were located within 1 Mb of 

known GWAS-identified loci, including 23 genes at 6 loci not previously linked to EOC risk. 

Upon conditioning on nearby known EOC GWAS-identified variants, the associations for 31 

genes disappeared and 3 genes remained (P<1.47 x 10-3). These data identify one novel locus 

(FZD4) and 34 genes at 13 known EOC risk loci associated with EOC risk, providing new 

insights into EOC carcinogenesis. 
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Introduction 

Epithelial ovarian cancer (EOC) has a substantial heritable component with a heritability 

estimated to be 22% (1). Genome-wide association studies (GWAS) have identified 

approximately 35 loci associated with EOC risk (2-12). Most reported associations are specific to 

the most common histologic subtype, serous EOC (2-7,9-12). Together, known GWAS-

identified variants account for approximately 6.4% of EOC risk in the general population (12), 

indicating that additional susceptibility variants remain to be identified. In addition, genes that 

underlie the large majority of GWAS-identified risk loci remain unknown; most GWAS-

identified variants are located in noncoding genomic regions that may be involved in regulation 

of gene expression. Recent mechanistic studies have demonstrated that GWAS-identified 

variants are more frequently located in active chromatin regions, and highly-enriched with 

expression quantitative trait loci (eQTL)(13,14). This evidence underscores the importance of 

transcriptional regulation in influencing human traits and disease susceptibility.  

   

Prior studies on genetically-regulated gene expression were largely limited to easily accessible 

sources, such as adipose tissue and peripheral blood cells (15). Although the sample size in 

eQTL studies of peripheral blood cells recently reached the thousands, a relatively small number 

of genes are expressed in blood cells compared with other tissue types (14). Conclusions from 

eQTL studies in tumor tissue (e.g., TCGA) should also be interpreted with caution due to the 

inherent complexity of transcriptional regulation caused by acquired somatic alterations (16). 

The Genotype-Tissue Expression (GTEx) project provides high-density genotype data and RNA 

sequencing (RNA-seq) transcriptome data from 53 tissues (14). We used these data to build 

models of genetically regulated expression for 17,121 genes. We investigated the association 
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between these genetically-predicted gene expressions and EOC risk using data from 97,898 

women including 29,396 EOC cases. We identified 35 genes at 14 loci associated with EOC risk, 

and provide additional evidence of a potential role for dysregulated ovarian function and 

imbalanced ovarian hormone production in ovarian carcinogenesis.  
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Materials and Methods  

Genomic and transcriptomic data  

The GTEx preliminary cleaned genome-wide genotype data and RNA-seq transcriptome data 

across 53 unique tissues (released on 2015-01-12) were downloaded from dbGaP (accession 

phs000424.GTEx.v6.p1). It included 183 GTEx donors genotyped on Illumina’s Omni 5M and 

267 GTEx donors genotyped on Omni 2.5M. Genomic and transcriptomic data were processed 

according to the GTEx protocol (http://www.gtexportal.org/home/documentationPage). The 

Omni 2.5M portion of hard-called genotypes from the Omni 2.5M or Omni 5M across all 450 

donors were extracted and merged for analysis. We excluded variants with a genotyping call rate 

< 98%, with differential missingness between Omni 2.5M and Omni 5M arrays, with Hardy-

Weinberg equilibrium P-value<10-6 (for subjects of European ancestry), or with batch effects. 

Genotype data were imputed to the Haplotype Reference Consortium reference panel using 

minimac3 for imputation and SHAPEIT for prephasing (17). Variants with high imputation 

quality (R2 ≥ 0.8), minor allele frequency (MAF) ≥ 0.05, and inclusion in the HapMap Phase 2 

project were used to build predicted expression models.  

 

We used gene level expression in Reads Per Kilobase of transcript per Million mapped reads 

(RPKM) from RNA-SeQC for gene expression data. For ovarian transcriptomic data, genes were 

required to have expression in ≥10 individuals with >0.1 RPKM and raw counts >6. For our 

analysis of cross-tissue derived transcriptomic data (below), genes were filtered on mean 

expression levels with >0.1 RPKM and RPKM >0 required in at least 3 individuals (18). We 

performed quantile normalization to transform the expression profile of each sample to the same 
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scale, and performed inverse quantile normalization for each gene to map each set of expression 

values to a normal distribution. Residual expression was calculated by regressing transformed 

expression data against three top principal components (PCs) derived from common genetic 

variants (MAF ≥0.05), top 15 or 35 probabilistic estimation of expression residuals (PEER) 

factors respectively for ovarian tissue and cross-tissue derived models (below)(19), sex (for 

cross-tissue only) to correct for batch effects and other potential experimental confounders.  

 

European ancestry analysis of GTEx subjects 

The ancestral analysis was conducted with 2,836 ancestry informative markers for 450 GTEx 

individuals and 1,092 individuals included in the 1000 Genome project (Phase 1)(20). Of the 

individuals with both genotype and transcriptome data available, 369 were clustered together 

with EUR populations (CEU, FIN, GBR, IBS and TSI) on the multidimensional scaling plot of 

the pairwise Identity-By-State distance and were included in the analysis, 68 of whom had 

transcriptome data available for ovarian tissue. 

 

Orthogonal tissue decomposition derived cross tissue estimation  

Mixed effect models were used to decompose gene expression levels into subject-specific and 

subject-by-tissue-specific components (18). GTEx data consisted of expression measurements 

from multiple tissues for each subject. The expression level of a gene at a given tissue for 

individual i was considered to be composed of a cross-tissue component represented as Yi
CT and 

a tissue-specific component that was estimated as the difference between the expression levels 

and cross-tissue components given the lack of replicated measurement for a specific 
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tissue/subject pair (18). Zʹi represents a vector of covariates that have effects of β on the 

expression levels of the gene, such as PEER factors, ancestry information derived from the 

principal component analysis, and sex. The expression of a gene for individual i in tissue t, Yi,t, is 

modeled as  

Yi,t = Yi
CT + Zʹi β + ϵi,t 

The mixed effect model parameters were estimated using the lme4 package in R. Posterior 

modes of the subject level random intercepts were used as estimates of the cross-tissue 

components (18). Cross-tissue model included gene expression from 6,124 GTEx tissue samples 

from 369 unique European individuals who had genome-wide genotype data available. 

 

Ovarian-specific and cross-tissue genetically regulated expression model building 

We built an expression prediction model for each gene using the elastic net method as 

implemented in the glmnet R package, with a ridge-lasso mixing parameter of α = 0.5 and a 

penalty parameter lambda chosen through 10-fold cross-validation (18,21,22). The elastic net 

method with α = 0.5 is a compromise between the ridge-regression penalty (α = 0) for solutions 

with many parameters (each of small effects) and the lasso penalty (α = 1) for solutions with 

fewer parameters (each of large effects)(18). The genetically regulated expression for each gene 

was estimated by including SNPs within 1 Mb of the gene start or end, as defined by GENCODE 

V19 gene annotations. Expression prediction models were built for protein-coding genes, long 

non-coding RNAs (lncRNAs), microRNAs (miRNAs), processed transcripts, immunoglobulin 

genes, and T cell receptor genes, according to categories described in the GENCODE V19 gene 

annotation file. Pseudogenes were not included in the present study because of potential concerns 
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of inaccurate calling (23). Prediction r2 values (the square of the correlation between predicted 

and observed expression) were generated to estimate the prediction performance for each gene in 

our prediction models.  

 

With genome-wide genomic data and RNAseq-based tissue transcriptome data, we built an 

ovarian tissue cis genetically-regulated expression model for 8,580 genes that had predicted 

performance of r 2 > 0.01 and a cross-tissue cis genetically-regulated expression model for 

14,085 genes that had predicted performance of r2 > 0.01.  

 

Association analysis of predicted gene expression with EOC risk 

Associations between predicted gene expression levels and EOC risk were evaluated using 

MetaXcan (22). Briefly, the formula:  

ܼ ≈   ∈୭ୢୣ୪ݓ
ොߪොߪ   (መߚ)መseߚ 

was used to estimate the Z-score of the association between predicted gene expression and 

ovarian cancer risk. Here ݓ is the weight of SNP ݈ for predicting the expression of gene ݃, ߚመand se(ߚመ) are the association regression coefficient and its standard error for SNP ݈ in GWAS, 

and ߪො and ߪො are the estimated variances of SNP ݈ and the predicted expression of gene ݃ 

respectively. The input variables for the MetaXcan analyses include the weights for gene 

expression predicting SNPs, GWAS summary statistics results, and correlations between 

predictor SNPs. We integrated prediction models of gene expression levels with summary 
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statistics from GWAS of EOC risk for 97,898 European women with 29,396 EOC cases from the 

Ovarian Cancer Association Consortium (OCAC) and Consortium of Investigators of Modifiers 

of BRCA1/2 (CIMBA)(12) based on the variance and covariance matrix of genetic variants 

derived from 1000 Genome phase 3 EUR population (N = 503). The performance of MetaXcan 

has been shown to be similar to PrediXcan that uses individual level genetic data for the 

identification of genes with expression that is associated with disease risk (21,22).  

 

Details of individual contributing studies were previously reported (12). Briefly, the OCAC 

summary statistics were based on analysis of 40,941 controls and 25,509 population-based EOC 

cases (22,406 invasive cases and 3,103 borderline cases). OCAC cases included 1,954 serous 

borderline ovarian cancers, 1,149 mucinous borderline ovarian cancers, 1,417 mucinous invasive 

ovarian cancer, 1,012 low-grade serous ovarian cancers, 13,037 high-grade serous ovarian 

cancers, 2,810 endometrioid ovarian cancers, 1,366 clear-cell ovarian cancer and 2,764 other 

EOC cases. The CIMBA summary statistics were based on the analysis of 19,036 BRCA1 and 

12,412 BRCA2 mutation carriers, of whom 2,933 and 954, respectively, were diagnosed with 

EOC. Details of the genotyping procedure and QC have been described elsewhere (12). In brief, 

samples were excluded if they had a genotyping call rate < 95%, excessively low or high 

heterozygosity, if they were not female or had ambiguous sex, or were duplicates (cryptic or 

intended)(12). SNPs were excluded for a call rate <95%, deviating from Hardy-Weinberg 

equilibrium (P<10-7 in controls or unrelated samples in CIMBA and P <10-12 in cases) and 

concordance <98% among 5,280 duplicate pairs (12). All participants provided written informed 

consent and each contributing study was approved by the appropriate local institutional ethical 

review board. The studies were conducted in accordance with Declaration of Helsinki.  
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We used a Bonferroni-corrected P-value threshold of 2.21×10-6 (adjusting for 22,665 gene-tissue 

pairs) to determine a statistically significant association in our analysis. This threshold was 

conservative as 5,544 genes appeared in both ovarian and cross-tissue models. We did the 

primary analysis for high-grade serous EOC, as this had the largest sample size. In our secondary 

analyses, we also evaluated other histotypes or the combined histotypes, even though power to 

discover novel gene associations was relatively low for some (i.e. clear-cell, endometrioid, or 

low-grade serous). To determine whether associations identified between genetically-predicted 

gene expression and EOC risk were influenced by variants previously-identified by GWAS, we 

conducted conditional analyses adjusting for index SNPs. Briefly, we performed conditional 

analyses developed by Yang et al. (24) (GCTA-COJO) to calculate association betas and 

standard errors of SNPs with ovarian cancer risk after adjusting for index SNPs of interest. This 

was followed by re-performing MetaXcan analyses using updated summary statistics.  

 

Results 

Gene expression prediction model building 

We constructed genetically-regulated expression models based on genome-wide genotype data 

and RNA-seq transcriptome data from the GTEx project (14) (Supplementary Figure 1). Ovarian 

transcriptome data were available for 68 European individuals, and 8,580 genes achieved a 

prediction performance of r2 ≥0.01 in the ovarian model (Table S1). Because a large portion of 

cis expression regulation is shared across multiple tissues (14,18), we also used transcriptome 

data for 6,124 tissue samples from 369 European individuals to build cross-tissue models for 

14,085 genes with a prediction performance of r2 ≥0.01 (Table S1).  
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Association analyses between predicted gene expression and EOC risk 

We evaluated associations between predicted gene expression levels and EOC risk using 

MetaXcan (22) with summary statistics for individual GWAS SNPs from 97,898 European 

women including 29,396 EOC cases from OCAC and CIMBA(12) (Supplementary Figure 1). 

Our primary analysis focused on high-grade serous EOC; secondary analyses included other 

EOC histotypes (Supplementary Figure 1). 

 

In total, we identified 35 genes with genetically-predicted expression that were associated with 

EOC risk at a Bonferroni-corrected threshold of P <2.21×10-6 (Figure 1, Supplementary 

Figure 2, Supplementary Figure 3, Tables 1, 2 and S2). One gene at 11q14.2 (FZD4), was 

more than 1 Mb away from any GWAS-identified EOC susceptibility variant (Figure 1), 

suggesting a potential novel risk locus for this disease. High predicted FZD4 expression was 

associated with increased risk of high-grade serous EOC (Z = 5.08, P = 3.83 × 10-7, Figure 1). 

The remaining 34 genes were located within 1 Mb of previously identified EOC susceptibility 

variants (Tables 1, 2, S2 and S3), including 11 genes (at 8 loci) that were previously implicated 

in EOC risk using functional annotation, bioinformatic prediction, in vitro cellular models or 

known gene biology. Our study provides additional evidence to support these previous findings 

(Tables 2 and S3). However, 23 genes (at 6 known risk loci) had not been reported to be 

associated with EOC risk in prior studies (Tables 1 and S3). For 31 of these 34 genes, the 

associations were no longer statistically significant at P < 1.47 x 10-3 (multiple comparisons 

correction of 0.05/34) after adjustment for the nearest SNP identified by EOC GWAS (Table 
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S4), indicating that the previously identified GWAS SNPs for EOC at these 31 regions might 

regulate the expression of these associated gene to affect EOC risk. Associations for three genes 

(Z= 6.84 vs 3.27 for DNALI1, Z= 5.16 vs 3.81 for HOXD3 and Z= -8.60 vs -4.18 for CCDC171; 

Table 1, 2 and S4) remained statistically significant at P < 1.47 x 10-3 after adjusting for the 

nearest EOC risk SNP, although the strength of the association was attenuated. Four loci (2q31.1, 

9p22.3, 17q21.31 and 17q21.32) had multiple nearby genes associated with EOC risk (Tables 1 

and 2). This may be partially due to co-regulated gene expression in these chromosomal regions 

(Table S5 and Online Supplementary Material).  

 

Consistent with the etiologic heterogeneity of EOC(25), GWAS-identified risk variants differed 

across histologic subtypes(12). Therefore, we investigated associations between genes with P < 

2.21 × 10-6 across all major histotypes of EOC (Table S6). The majority of identified genes were 

associated with high-grade serous EOC risk, likely due to the large number of cases in our 

primary analysis. A few additional histotype specific associations were identified from secondary 

analyses. HOXD3 at 2q31.1 was associated with borderline mucinous EOC risk (Tables 2 and 

S6: Z = 5.16, P = 2.42 × 10-7). RP11-403A21.1 at 18q11.2 was associated with low-grade or 

borderline serous EOC risk (Tables 1 and S6: Z = -5.53, P = 3.13 × 10-8). ZNF546 at 19q13.2 

was associated with mucinous EOC risk (Tables 1 and S6: Z = 7.14, P = 9.07 × 10-13 for 

invasive/borderline mucinous EOC combined; Z = 5.99 and P = 2.14 × 10-9 for borderline 

mucinous EOC only). HOXD1 at 2q31.1 was associated with both invasive serous (Table S6: Z 

= 4.92, P = 8.55 × 10-7) and borderline mucinous (Table S6: Z = 5.24, P = 1.59 × 10-7) EOC 

risk. 
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Evidence from previous eQTL analyses of identified EOC susceptibility risk variants supports 

several currently identified gene associations (Tables 2 and S3). Reduced OBFC1 expression 

was associated with risk allele of GWAS identified EOC SNP at 10q24.33 (12), and we found 

that higher predicted OBFC1 expression was associated with lower EOC risk. Similarly, reduced 

RCCD1 expression was associated with risk allele of GWAS identified EOC SNP (11), and we 

found that higher predicted RCCD1 expression was associated with reduced EOC risk at 

15q26.1. In addition, multiple lines of evidence support our finding between higher predicted 

ABHD8 and increased EOC risk at 19p13.11. Increased ABHD8 expression was associated with 

risk allele of GWAS identified EOC SNP (26). Copy number variant analysis indicated that 

forty-six percent of high-grade serous EOC had amplification at 19p13.11 that contains ABHD8 

(3). 

 

  

on July 29, 2018. © 2018 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on July 27, 2018; DOI: 10.1158/0008-5472.CAN-18-0951 

http://cancerres.aacrjournals.org/


19 
 

Discussion 

In this large transcriptome-wide association study (TWAS) among 97,898 women of European 

ancestry, we identified 35 genes with genetically-predicted expression levels associated with 

EOC risk. One of these genes (FZD4) is located more than 1 Mb away from any previously 

identified GWAS EOC variant (25 Mb away from the nearest reported EOC risk variant(11)), 

suggesting it is a potential novel risk locus. All other 34 genes identified were located within 1 

Mb of known GWAS loci, including 23 genes at 6 loci that had not previously been associated 

with EOC risk.  After adjustment for nearby known EOC GWAS-identified variants, the 

associations for 3 of the 34 genes retained. 

 

FZD4 is a member of the frizzled gene family that encodes seven-transmembrane domain 

proteins (Fzs) as the receptors for the secreted Wnts signaling ligands. Several Wnts and Fzs 

(including Fzd4 and Wnt4), as well as downstream targets of the canonical WNT signaling 

pathway, are expressed at different stages of ovarian follicular development, ovulation, and 

luteinization, suggesting specific functions for these signaling molecules in the mature 

ovary(27). Recent studies using transgenic mouse models demonstrated that Wnt4, Fzd4 and 

Ctnnb1 are required for normal folliculogenesis, luteogenesis and steroidogenesis, and that 

dysregulated WNT signaling leads to granulosa cell tumor development (27,28). FZD4-null 

female mice are infertile and exhibit reduced progesterone production, reduced luteinization-

associated gene expression, impaired corpora lutea formation and function, and impaired 

vascular development (28). Interestingly, WNT4 (1p36.12) encodes a potential Fzd4 binding 

ligand, which was also recently identified as a potentially causal gene underlying EOC risk by 

GWAS (Table S3)(7). Aberrant activation of WNT signaling in adult tissues has been implicated 
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in the pathogenesis of several types of cancer, including colorectal cancer (29). The positive 

association between FZD4 expression and invasive serous EOC risk suggests that dysregulated 

corpus luteum function and/or progesterone production may contribute to EOC pathogenesis.  

 

A locus 17q21.31 was previously identified by GWAS as associated with EOC risk (10,30). This 

region contains a 900-kb inversion in Europeans that has extensive linkage-disequilibrium likely 

due to restriction from crossovers in individuals who are heterozygous with respect to inversion 

(31). The H2 haplotype is less frequent (20% in Europeans) and is associated with higher number 

of children born to women (31). Interestingly, minor alleles of genetic variants in this region 

were almost universally associated with reduced breast cancer risk but increased EOC risk at 

genome-wide significance levels (Table S7 and Online Supplementary Material)(10,30). 

Permuth-Wey et al.(10) investigated several of these genes, including KIF18B, C1QL1, DCAKD, 

NMT1, PLCD3, ACBD4, HEXIM1, HEXIM2, FMNL1, C17orf46, MAP3K14, ARHGAP27, 

PLEKHM1, CRHR1, IMP5 and MAPT; extensive functional analysis suggested that ARHGAP27 

and PLEKHM1 may be EOC susceptibility genes (10). One of the other candidate genes at this 

region, CRHR1, is involved in regulating ovarian function; it is expressed in ovarian thecal cells, 

granulosa cells and luteal cells (32), and upregulated in EOC (10). High CRHR1 expression was 

almost universally associated with minor alleles of multiple genetic variants in this chromosome 

17 region (Table S8 and Online Supplementary Material)(33). Enhanced CRHR1 activation in 

the ovary leads to reduced production of testosterone(32) and estrogen(32,34-36), but increased 

progesterone accumulation and production (32). This may explain the lower breast cancer risk 

associated with variants in this region from lower estrogen exposure and higher progesterone 
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exposure associated with multiparity (31,37). Similarly, this also suggests that imbalanced 

estrogen and/or progesterone production contributes to EOC pathogenesis.  

 

Two of the candidate genes at the 17q21.32 locus, HOXB2 and HOXB3, belong to the homeobox 

gene family, which is important for normal vertebrate limb and organ development. This gene 

family was also recently shown to be enriched for genes underlying serous EOC risk by GWAS 

(38). Inconsistent tumorigenic effects of HOXB2 and HOXB3 were reported across several types 

of cancers (breast, pancreatic, lung, cervical cancer and acute myeloid leukemia)(39-43). This 

may be due to context-dependent effects from specific tumor microenvironments (39,43). With 

regard to ovarian cancer, increased HOXB2 and HOXB3 expression were associated with 

reduced EOC risk; potential molecular mechanisms underlying HOXB suppressive effect on 

EOC warrant further investigation.  

 

Several additional findings from this study are noteworthy. The precise function of DNALI1 at 

1p34.3 is not known. It is a potential candidate gene for primary cilia syndrome or Kartagener 

syndrome, in which the action of cilia lining the respiratory tract and Fallopian tube is 

compromised (44). A marked reduction in fertility was observed in female Kartagener's 

syndrome patients due to dysfunction of the oviductal cilia (45). The predicted expression of 

CCDC171 at 9p22.3 was associated with reduced EOC risk. CCDC171 was shown to interact 

with KRAS by a stringent screening for Ras-synthetic-lethal genes (46). Several lncRNAs were 

associated with EOC risk, including RP11-403A21.1 at 18q11.2 (Table 1). Little is known about  

their particular function in either tumor initiation or tumor development, but lncRNAs have been 
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increasingly implicated in many classic cancer biology pathways (47). In addition to HOXD3 and 

HOXD1 at 2q31.1 (Table 2 and Table S3)(4,8), ZNF546 at 19q13.2 was identified as a novel 

candidate gene for mucinous EOC. Enrichment for expression in gonadal tissues (14) supports a 

potential role in EOC pathogenesis. Because of the complexity of mucinous EOC, and 

undetermined cell/tissue of origin, identification of associated genetic variants and/or genes is 

particularly important (8,25). 

 

The tissue samples used in building gene expression models in GTEx (V6) came most from the 

people who recently died of traumatic injury (for these young donors) or cardio-cerebrovascular 

diseases (for the old donors). There were no overlaps between the tissues used in building gene 

expression models and the samples used in EOC GWAS in OCAC or CIMBA. Our ability to 

detect genes significantly associated with EOC risk is affected by tissue specificity and the 

sample size of the data set used to build genetic prediction models for gene expression. Four 

genes were identified from both ovarian and cross-tissue models; eight genes were only 

identified based on ovarian models; and twenty-three genes were only identified from cross-

tissue models (Table S2). The ovarian tissue transcriptome that we used to model gene 

expression was potentially derived from multiple ovarian cell types, including surface epithelial 

cells, oocytes, granulosa cells, Theca cells, luteal cells and other interstitial cells. Because of the 

importance of tissue or cell specific regulators (i.e., transcription factors or epigenomic features) 

in governing development and function, the ovarian-specific model should best capture 

transcriptional regulatory mechanisms of the ovary. However, in light of abundant shared cis 

regulation of expression across multiple tissues (14,18), we also pooled constitutive variant-

dependent regulatory information across tissues and built cross-tissue gene expression models. 
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We would expect this model to yield greater power as the number of tissues in which a variant is 

functional increases. By coupling both tissue specific and cross-tissue models, we aimed to 

robustly capture genetically regulated genes expression using a large sample size. Due to 

insufficient samples in the GTEx project, we did not build Fallopian tube-specific models.     

 

In summary, we identified one novel locus (FZD4) and 34 genes at 13 known EOC risk loci 

associated with EOC risk, and these findings may help improve our mechanistic understanding 

of EOC pathogenesis. In line with tentative observations of increased borderline EOC risk from 

ovarian hormone dysregulation for women who received fertility drug treatment with in vitro 

fertilization(48-50), the known biology of FZD4 and CRHR1 in the ovary implicates the 

potential of long-term dysregulated ovarian function or imbalanced ovarian hormone production 

as a possible mechanism underlying EOC pathogenesis. 
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Table 1. Association results for genes in known loci not previously reported in association with epithelial ovarian cancer risk 

Region Genea Z-score P value r2b Histotype Model GWAS Index SNPe Distance to the 
index SNP (kb) f 

1p34.3 DNALI1 6.84 7.84E-12 0.29 High-grade serousc cross-tissue rs58722170 64 
9p22.3 CCDC171 -8.60 8.08E-18 0.02 High-grade serousc ovary rs10962692 854 
9p22.3 C9orf92 -5.16 2.45E-07 0.15 High-grade serousc ovary rs10962692 640 

17q21.31 ADAM11 -4.86 1.19E-06 0.05 High-grade serousc ovary rs1879586 708 
17q21.31 AC091132.1 -7.18 7.02E-13 0.03 High-grade serousc cross-tissue rs1879586 26 
17q21.31 RP11-798G7.8 6.58 4.77E-11 0.05 High-grade serousc ovary rs1879586 42 
17q21.31 CRHR1 8.61 7.23E-18 0.60 High-grade serousc cross-tissue rs1879586 132 
17q21.31 RP11-105N13.4 6.77 1.33E-11 0.05 High-grade serousc ovary rs1879586 132 
17q21.31 MAPT-AS1 7.74 9.60E-15 0.10 High-grade serousc cross-tissue rs1879586 354 
17q21.31 RP11-669E14.6 -8.35 6.64E-17 0.30 High-grade serousc cross-tissue rs1879586 545 
17q21.31 KANSL1-AS1 8.26 1.48E-16 0.85 High-grade serousc cross-tissue rs1879586 704 
17q21.31 LRRC37A 8.38 5.08E-17 0.54 High-grade serousc ovary rs1879586 803 
17q21.31 LRRC37A2 8.26 1.44E-16 0.55 High-grade serousc ovary rs1879586 1022 
17q21.31 NSF -5.55 2.78E-08 0.02 High-grade serousc ovary rs1879586 1101 
17q21.32 RP11-138C9.1 5.54 3.04E-08 0.02 High-grade serousc cross-tissue rs7207826 741 
17q21.32 RP11-6N17.6 5.93 3.00E-09 0.19 High-grade serousc cross-tissue rs7207826 475 
17q21.32 PNPO 5.34 9.38E-08 0.30 High-grade serousc cross-tissue rs7207826 475 
17q21.32 PRR15L -4.91 9.18E-07 0.04 High-grade serousc cross-tissue rs7207826 465 
17q21.32 HOXB2 -5.48 4.28E-08 0.40 High-grade serousc cross-tissue rs7207826 118 
17q21.32 HOXB-AS1 -5.15 2.59E-07 0.29 High-grade serousc cross-tissue rs7207826 120 
17q21.32 HOXB3 -5.59 2.30E-08 0.12 High-grade serousc cross-tissue rs7207826 126 
18q11.2 RP11-403A21.1 -5.53 3.13E-08 0.11 Low grade/borderline serousd cross-tissue rs8098244 132 
19q13.2 ZNF546 7.14 9.07E-13 0.01 Invasive/borderline mucinousd ovary rs688187 757 

a ARHGAP27 and PLEKHM1 were previously considered as potential EOC candidate susceptibility genes by Permuth-Wey et al.(10) with an 
integrated molecular analysis of multiple genes at 17q21.31 locus (See Table 2 and Table S3);  
b r2 of tissue model's correlation to gene's measured transcriptome (prediction performance); 
c the analyses were based on summary statistics for high-grade serous ovarian cancers from Ovarian Cancer Association Consortium (OCAC) and 
Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA);  
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d the analyses were based on summary statistics from OCAC; 
e See Table S4 for detailed information in selecting the GWAS index SNPs; 
f If the GWAS index SNP is located upstream of the gene, the gene start position is used; otherwise, the gene end position was used; LRRC37A2 
and NSF are within 1M of reported GWAS SNPs considering the association of all variants with EOC risk at P < 5×10-8 at this locus (See text and 
Table S4 for details). 
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Table 2. Association results for genes in known loci previously reported in association with ovarian cancer risk 

Region Gene Z-score P value r2a Histotype Model GWAS Index SNPe 
Distance to 

the index SNP 
(kb) f 

2q31.1 HOXD3 5.16 2.42E-07 0.04 Borderline mucinousc cross-tissue rs711830 0 
2q31.1 HOXD1 6.07 1.31E-09 0.04 High-grade serousb cross-tissue rs711830 16 

3q25.31 LEKR1 -5.81 6.24E-09 0.46 High-grade serousb cross-tissue rs62274041 108 
8q21.13 CHMP4C -6.69 2.24E-11 0.47 High-grade serousc cross-tissue rs11782652 0 
9q34.2 ABO 5.44 5.37E-08 0.49 High-grade serousb ovary rs635634 4 

10q24.33 OBFC1 -5.09 3.66E-07 0.01 Borderline serousc cross-tissue rs7902587 16 
15q26.1 RCCD1 -5.46 4.64E-08 0.59 High-grade serousc  cross-tissue rs8037137 0 

17q21.31d PLEKHM1 4.80 1.59E-06 0.01 High-grade serousb cross-tissue rs1879586 0 
17q21.31d KANSL1 4.74 2.15E-06 0.18 High-grade serousb ovary rs1879586 540 
17q21.31d WNT3 6.81 9.82E-12 0.40 High-grade serousb cross-tissue rs1879586 1273 
19p13.11 ABHD8 4.79 1.69E-06 0.23 High-grade serousb cross-tissue rs4808075 13 

a r2 of tissue model's correlation to gene's measured transcriptome (prediction performance); 
b the analyses were based on summary statistics for high-grade serous ovarian cancers from Ovarian Cancer Association Consortium (OCAC) and 
Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA);  
c the analyses were based on summary statistics from OCAC; 
d Eleven novel genes associated with EOC risk at this locus were presented in Table 1; 
e See Table S4 for detailed information in selecting the GWAS index SNPs; 
f If the GWAS index SNP is located upstream of the gene, the gene start position is used; otherwise, the gene end position was used; WNT3 is 
within 1M of reported GWAS SNPs considering the association of all variants with EOC risk at P < 5×10-8 at this locus (See text and Table S4 for 
details). 
  

on July 29, 2018. ©
 2018 A

m
erican A

ssociation for C
ancer R

esearch. 
cancerres.aacrjournals.org 

D
ow

nloaded from
 

A
uthor m

anuscripts have been peer review
ed and accepted for publication but have not yet been edited. 

A
uthor M

anuscript P
ublished O

nlineF
irst on July 27, 2018; D

O
I: 10.1158/0008-5472.C

A
N

-18-0951 

http://cancerres.aacrjournals.org/


35 
 

 
 
Figure 1 | Regional plot of OCAC and CIMBA GWAS summary statistics around the FZD4 gene associated with high-grade serous 

EOC risk (Z = 5.08, P = 3.83 × 10-7 based on the cross-tissue model of r2 = 0.07, see supplementary Table 2 for details). Each symbol 

represents the significance (P value on a log10 scale) of a SNP with invasive EOC risk as a function of the SNP’s genomic position 

(NCBI Build 37). The most significantly associated SNP is represented in the purple color. The color of all other SNPs indicates LD 

with this SNP (estimated by EUR r2 from the 1000 Genome Project data). Recombination rates were also estimated from 1000 

Genome Project data, and gene annotations were obtained from the UCSC Genome Browser. The circle shape denotes the SNPs 

included in the model construction of genetically regulated FZD4 expression and the square shape denotes the SNPs not included in 

the model construction. The gene model was constructed including SNPs within 1 Mb of the gene start or end, and one SNP included 

in the model construction was located outside the 1Mb window size of the locus zoom plot (rs7944482 at chr11:86091532, P = 0.52 

for association with high-grade serous EOC risk).  
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