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1. Introduction

We have collected the supplementary material for the article “A central limit theorem for the
realised covariation of a bivariate Brownian semistationary process” in this document. The key
background material needed for deriving our main results is the so-called Fourth Moment Theorem
by [7]. Hence we provide a brief introduction to this important result in Section 2. Moreover, since
the type of convergence arising in our central limit theorem is the so-called stable convergence
in law, we devote Section 3 to reviewing its definition and basic properties which we apply in
the proofs of our results. Finally, we have relegated some of the proofs of the main article to this
supplementary material, which are provided in Section 4.

2. Pathway to the Fourth Moment Theorem

The purpose of this section is to illustrate the background necessary to illustrate the techniques
developed by Nualart and Peccati that led them to proving the celebrated Fourth Moment Theorem.

We start with an introduction to Malliavin calculus. A good source for this material is Section 2
of [5]. A good summary of the necessary tools is also presented in [4]. The standard comprehensive
reference for Malliavin calculus is [6].
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2.1. Wiener Chaos decomposition

We fix a real, separable Hilbert space H, with its scalar product 〈·, ·〉H and norm ‖·‖H := 〈·, ·〉
1
2

H.
We denote by X = {X(h) : h ∈ H} an isonormal Gaussian process over H defined on some
probability space (Ω,F ,P), by which we mean a stochastic process indexed over H such that
E [X(g)X(h)] = 〈g, h〉H, for every f, g ∈ H. We will assume that F is generated by X.

The first important result is the granted existence of an isonormal process:

Proposition 2.1. Given a real, separable Hilbert space H, there exists an isonormal process over
H.

Proof. See [5], Theorem 2.1.1.

We now introduce the fundamental notion of Wiener chaos, which plays a crucial role in our
derivation of results. First, we recall:

Definition 2.2 (Hermite polynomials). Let p ≥ 0 be an integer. We define the p-th Hermite
polynomial as H0 := 1, for p = 0, and Hp+1(x) := xHp(x)− pHp−1(x), for p > 0.

Remark 2.3. This is just one of many equivalent definitions for the Hermite polynomials. See [5],
Definition 1.4.1 and Proposition 1.4.2 for alternative equivalent formulations and characterisations.

Definition 2.4. For each n ≥ 0, Hn denotes the closed linear subspace of L2(Ω) generated by
the random variables {Hn (X(h)) : h ∈ H, ‖h‖H = 1}. The space Hn is called the n-th Wiener
chaos of X.

Wiener chaoses of different order on a Gaussian space are orthogonal as the next proposition
shows.

Proposition 2.5. Let Z, Y ∼ N (0, 1) be jointly Gaussian. then, for all n,m ≥ 0:

E [Hn(Z)Hm(Y )] =

{
n! (E [ZY ])

n
, if n = m,

0, otherwise.

Proof. See [5], Proposition 2.2.1.

The next theorem states the fundamental fact that the L2-space of random variables can be
orthogonally decomposed as a direct sum of Wiener chaoses.

Theorem 2.6 (Wiener-Itô chaos decomposition). The following decomposition holds:

L2(Ω) =

∞⊕
n=0

Hn.

So, every variable F ∈ L2(Ω) can be written uniquely as:

F = E[F ] +

∞∑
n=1

Fn,

where Fn ∈ Hn and the series converges in L2(Ω).

Proof. See Theorem 2.2.4 in [5].
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2.2. Tensor products

In this section we give a very brief definition of tensor products of Hilbert spaces. The reference
that we use here is [9].

Let H1 and H2 be two real Hilbert spaces with inner products 〈·, ·〉H1
and 〈·, ·〉H2

. For g ∈ H1

and h ∈ H2, denote the bilinear form g ⊗ h : H1 ×H2 → R by:

[g ⊗ h](x, y) = 〈x, g〉〈y, h〉, (x, y) ∈ H1 ×H2.

Let E be the set of all finite linear combinations of such bilinear forms.

Lemma 2.7. The bilinear form � ·, · � on E defined by:

� g1 ⊗ h1, g2 ⊗ h2 �:= 〈g1, g2〉H1
〈h1, h2〉H2

(1)

is symmetric, well defined and positive definite, and thus defines a scalar product on E.

Proof. See [9].

The space E with the scalar product � ·, · � is obviously not complete. Hence we give the
following definition.

Definition 2.8 (Tensor product). The tensor product of the Hilbert spaces H1 and H2 is the
Hilbert space H1 ⊗H2 defined to be the completion of E under the scalar product in (1).

Furthermore, we denote by H⊗n the n-fold tensor product between H and itself.
Symmetric tensors will play an important role in our discussion, and are defined next:

Definition 2.9 (Symmetrisation of a tensor product). If f ∈ H⊗n is of the form:

f = h1 ⊗ · · · ⊗ hn,

then the symmetrisation of f , denoted by f̃ , is defined to be:

f̃ :=
1

n!

∑
σ∈Sn

hσ(1) ⊗ · · · ⊗ hσ(n),

where the sum is taken over all permutations of {1,. . . , n}. The closed subspace of H⊗n generated
by the elements of the form f̃ , is called the n-fold symmetric tensor product of H, and is denoted
by H�n.

A recurrent construction that we will encounter is that of contracting a tensor product, defined
as follows:

Definition 2.10 (Contraction of tensors). Let g = g1⊗ · · · ⊗ gn ∈ H⊗n and h = h1⊗ · · · ⊗ hm ∈
H⊗m. For any 0 ≤ p ≤ min(n,m), we define the p−th contraction of g⊗h as the following element
of H⊗m+n−2p:

g ⊗p h := 〈g1, h1〉H . . . 〈gp, hp〉Hgp+1 ⊗ · · · ⊗ gn ⊗ hp+1 ⊗ . . . hm.

Note that, even if g and h are symmetric, their p-th contraction is not, in general, a symmetric
tensor. We therefore denote by g ⊗̃ph its symmetrisation.
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2.3. The derivative operator

In this section we define the Malliavin derivative operator. We will need this to define its adjoint
operator, the multiple integral, that we will use later for the proof of the central limit theorem.

Let S denote the set of smooth random variables, i.e. of the form:

f (X(h1), . . . , X(hm)) , (2)

where m ≥ 1, f is a test function, i.e. f ∈ C∞ and f and all of its derivatives have at most
polynomial growth and hi ∈ H, for i ∈ {1, . . . ,m}.

Lemma 2.11. The space S is dense in Lq(Ω) for every q ≥ 1.

Proof. See Lemma 2.3.1 in [5].

We need one last technical definition before we can introduce the Malliavin derivative.

Definition 2.12. Given a probability space (Ω,F ,P) and a generic real, separable Hilbert space
H, we denote by Lq(Ω,H) := Lq(Ω,F ,P;H) the class of those H-valued random elements Y that
are F -measurable and such that E [‖Y ‖qH] <∞.

We proceed to define the Malliavin derivative of a smooth variable.

Definition 2.13 (Malliavin Derivative). Let F ∈ S be given by (2), and p ≥ 1 an integer. The
p-th Malliavin derivative of F with respect to X is the element of L2(Ω,H�p) defined by:

DpF :=

m∑
i1,...,ip=1

∂p

∂xi1 . . . ∂xip
f (X(h1), . . . X(hm))hi1 ⊗ · · · ⊗ hip .

In order for us to define the adjoint of the Malliavin derivative, we need to make sure that
the latter operator is at least closable, or else its adjoint could be defined in too small a subset
of L2(Ω,H�p). Indeed, recall the following result from functional analysis (we denote by A∗ the
adjoint of a linear operator A):

Proposition 2.14. A linear operator A : D(A) → H is closable if and only if A∗ is densely
defined.

The following theorem establishes the fundamental fact that the Malliavin operator is indeed
closable.

Theorem 2.15. Let q ∈ [1,∞), and let p ≥ 1 be an integer. Then the operator Dp : S ⊂
Lq(Ω)→ Lq(Ω,H�p) is closable.

Proof. See Proposition 2.3.4 in [5].

2.4. The multiple integral

We are ready to give the formal definition of the multiple divergence operator δp.

Definition 2.16. Let p ≥ 1 be an integer. Denote by Dom δp the subset of elements u ∈
L2(Ω,H⊗p) such that there exists a constant c satisfying:

|E [〈DpF, u〉H⊗p ]| ≤ c
√
E [F 2], (3)

for all F ∈ S .
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Condition (3) ensures that, for a fixed u ∈ Dom δp, the linear operator F 7→ E [〈DpF, u〉H⊗p ]
is continuous from S equipped with the L2(Ω) norm into R. Therefore it can be extended to a
linear operator from L2(Ω) into R. By the Riesz representation theorem, then there exists a unique
element in L2(Ω), denoted δp(u), such that: E [〈DpF, u〉H⊗p ] = E [Fδp(u)] . Thus, we can give the
following definition:

Definition 2.17 (Multiple divergence). The multiple divergence operator δp : Dom δp ⊂ L2(Ω,H⊗p)→
L2(Ω) is defined to be the adjoint operator of Dp. That means that if u ∈ Dom δp then δp(u) is
defined to be that only element of L2(Ω) such that:

E [Fδp(u)] = E [〈u,DpF 〉H⊗p ] ,

for all F ∈ S .

Finally, we define the multiple integral operator, which is the object we will need the most in
our discussion:

Definition 2.18 (Multiple integral). Let p ≥ 1 and f ∈ H�p. The p-th multiple integral of f
with respect to X is defined to be Ip(f) := δp(f).

We further write I0 := I for the identity in R.
The connection between multiple integrals and the Wiener chaos decomposition is asserted by

the following theorem:

Theorem 2.19. Let f ∈ H, with ‖f‖H = 1. Then, for any integer p ≥ 1, we have:

Hp((X(f)) = Ip
(
f⊗p

)
.

As a consequence, the linear operator Ip is an isometry from H�p onto the p−th Wiener chaos Hp

of X.

Proof. See Theorem 2.2.7 in [5].

In particular, crucially, the image of a p−th multiple integral lies in the p−th Wiener chaos of
X.

We will also make use of the following product formula:

Theorem 2.20 (Product formula for multiple integrals). Let p, q ≥ 1. If f ∈ H�p and g ∈ H�q,
then:

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f ⊗̃rg).

Proof. See [5], Theorem 2.7.10.

2.5. The Fourth Moment Theorem

With our arsenal of technical tools, we can start to prepare the statement of the fourth moment
theorem. We begin by stating another very remarkable fact. For a vector of L2-variables belonging
to a fixed Wiener chaos, joint weak convergence to the Gaussian distribution is equivalent to
marginal convergence. More precisely, we have the following theorem:
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Theorem 2.21. Let d ≥ 2 and qd, . . . , q1 ≥ 1 be some fixed integers. Consider vectors:

Fn := (F1,n, . . . , Fd,n) = (Iq1(f1,n), . . . , Iqd(fd,n)), n ≥ 1,

with fi,n ∈ H�qi . Let C ∈ Md(R) be a symmetric, nonnegative definite matrix, and let N ∼
Nd(0, C). Assume that:

lim
n→∞

E [Fr,nFs,n] = C(r, s), 1 ≤ r, s ≤ d. (4)

Then, as n→∞ the following two conditions are equivalent:

a) Fn converges in law to N.
b) For every 1 ≤ r ≤ d, Fr,n converges in law to N (0, C(r, r)).

Proof. See Theorem 6.2.3 in [5].

We can finally present the statement of the fourth moment theorem, which gives us equivalent
conditions for convergence in law when the sequence of variables belongs to a fixed Wiener chaos.

Theorem 2.22 (Fourth moment theorem). Let Fn = Iq(fn), n ≥ 1, be a sequence of random
variables belonging to the q-th chaos of X, for some fixed integer q ≥ 2 (so that fn ∈ H�q).
Assume, moreover, that E[F 2

n ]→ σ2 > 0 as n→∞. Then, as n→∞, the following assertions are
equivalent:

1. Fn
L→ N(0, σ2),

2. limn→∞ E[F 4
n ] = 3σ2,

3. ‖fn ⊗r fn‖H⊗(2q−2r) → 0, for all r = 1, . . . , q − 1.

Proof. This is a simplified version of Theorem 5.2.7 in [5].

3. Some remarks on stable convergence

In the central limit theorem, we use the notion of stable convergence. Here we briefly recall its
definition and key properties. In this section we take definitions and results from [1] and from the
survey on uses and properties of stable convergence in [8].

Definition 3.1 (Stable convergence). Let a probability space (Ω,F ,P) be fixed. Suppose the
sequence of variables Y (n) converges weakly to Y , denoted by:

Y (n) ⇒ Y.

We say that Y (n) converges stably to Y and write Y (n) st.⇒ Y if, for any F−measurable set B, we
have:

lim
n→∞

P
(
{Y (n) ≤ x} ∩B

)
= P ({Y ≤ x} ∩B) ,

for a countable, dense set of points x.

It is easy to see that Y (n) st.⇒ Y , if and only if for any f bounded Borel function, and for any
F−measurable fixed variable Z:

lim
n→∞

E
[
f
(
Y (n)

)
Z
]

= E [f(Y )Z] .

Yet another characterisation is the following:

Y (n) st.⇒ Y ⇐⇒ (Y (n), Z)⇒ (Y, Z),

for any F−measurable fixed variable Z.
An obvious consequence of the previous characterisation is the following continuous mapping

theorem for stable convergence:



7

Theorem 3.2 (Continuous mapping theorem). Suppose that Yn
st.⇒ Y , that σ is any fixed F -

measurable random variable and that g(x, y) is a continuous function of two variables. Then:

g(Yn, σ)
st.⇒ g(Y, σ).

When the limiting variable Y can be taken to be independent of F , we say that the stable
convergence is mixing, and we write:

Y (n) ⇒ T (mixing).

Finally, there is a useful criterion that can be used to establish mixing convergence:

Proposition 3.3. Suppose that Y (n) ⇒ Y . Then the following are equivalent:

1. Y (n) ⇒ Y (mixing),
2. For all fixed k ∈ N and B ∈ σ

(
Y (1) . . . , Y (k)

)
such that P(B) > 0,

lim
n→∞

P
(
Y (n) ≤ x

∣∣∣B) = FY (x).

Proof. See Proposition 2 in [1].

4. Proofs

4.1. Proofs for Section 2

4.1.1. Proof of Lemma 2.10

We start off by proving the very useful Lemma 2.10.

Proof of Lemma 2.10. Note that we can express c(x) as follows:

c(x) =

∫ x

0

g(1)(s)g(2)(s) ds+

∫ ∞
0

g(1)(s+ x)g(2)(s+ x) ds

−
∫ ∞
0

g(1)(s)g(2)(s+ x) ds−
∫ ∞
0

g(1)(s+ x)g(2)(s) ds+

∫ ∞
0

g(1)(s)g(2)(s) ds.

After a change of variable, we can write the second integral as:
∫∞
x
g(1)(s)g(2)(s) ds, and therefore

we can simplify the expression as:

c(x) = 2

∫ ∞
0

g(1)(s)g(2)(s) ds−
∫ ∞
0

g(1)(s)g(2)(s+ x) ds−
∫ ∞
0

g(1)(s+ x)g(2)(s) ds

=

∫ ∞
0

g(1)(s)(g(2)(s)− g(2)(s+ x)) ds+

∫ ∞
0

g(2)(s)(g(1)(s)− g(1)(s+ x)) ds.

(5)

Assumption 2.2 implies that

c(x) = xδ
(1)+δ(2)+1 1

2

(
L
(1,2)
0 (x) + L

(2,1)
0 (x)

)
.

Note that L
(1,2)
4 (x) := 1

2

(
L
(1,2)
0 (x) + L

(2,1)
0 (x)

)
is itself a slowly varying function and the constant

H = 1
2

(
H(1,2) +H(2,1)

)
.
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4.1.2. Proof of Example 2.11

Let us next provide the details of the computation of H for the case of two Gamma kernels, as
discussed in Example 2.11.

Proof of Example 2.11. We start with the expression for c(x) given in (5):

c(x) = 2

∫ ∞
0

g(1)(s)g(2)(s) ds−
∫ ∞
0

g(1)(s)g(2)(s+ x) ds−
∫ ∞
0

g(1)(s+ x)g(2)(s) ds.

If we plug in the explicit expression for the Gamma kernel, we obtain:

c(x) = 2

∫ ∞
0

sδ
(1)+δ(2)e−(λ

(1)+λ(2))s ds−
∫ ∞
0

(sδ
(1)

e−λ
(1)s(s+ x)δ

(2)

e−λ
(2)(s+x) ds

−
∫ ∞
0

(s+ x)δ
(1)

e−λ
(1)(s+x)sδ

(2)

e−λ
(2)s ds. (6)

The first integral can be easily evaluated:

2

∫ ∞
0

g(1)(s)g(2)(s) ds = 2
Γ (δ(1) + δ(2) + 1)

(λ(1) + λ(2))δ(1)+δ(2)+1
.

The other two integrals can be computed analytically in terms of a power series using formula (12)

in [3][p. 234]. We will use the notation: (a)n = a(a+ 1) . . . (a+ n− 1) :=
∏n−1
k=0(a+ k) = Γ (a+n)

Γ (a) ,

with (a)0 := 1.
For the first one of the two, for example, the final result is:

K
(1)
1 e−λ

(2)txδ
(1)+δ(2)+1

∞∑
k=0

(1 + δ(1))k
(δ(1) + δ(2) + 2)k

(
(λ(1) + λ(2))x

)k
k!

+K2e
−λ(2)x

∞∑
k=0

(δ(2))k
(δ(1) + δ(2))k

((λ(i) + λ(j))x)k

k!
, (7)

for constants K
(1)
1 ,K2:

K
(1)
1 =

Γ (δ(1) + 1)Γ (−1− δ(1) − δ(2))
Γ (−δ(1))

, K2 =
Γ (δ(1) + δ(2) + 1)

(λ(1) + λ(2))δ(1)+δ(2)+1
.

Swapping the variables δ(1), δ(2), we obtain the result for the second integral. Summing up, we
conclude that (6) equals:

c(x) = 2K2 − xδ
(1)+δ(2)+1

(
K

(1)
1 e−λ

(1)xf (1)(x) +K
(2)
1 e−λ

(2)xf (2)(x)
)

−K2

(
e−λ

(1)xf (3)(x) + e−λ
(2)xf (4)(x)

)
,

where f (1), f (2) are power series such that limx→0 f
(1)(x) = limx→0 f

(2)(x) = 1, while:

f (3)(x) =

∞∑
k=0

(δ(1))k
(δ(1) + δ(2))k

(
(λ(1) + λ(2))x

)k
k!

, f (4)(x) =

∞∑
k=0

(δ(2))k
(δ(1) + δ(2))k

(
(λ(1) + λ(2))x

)k
k!

.

Using the Taylor expansion: e−λ
(i)x = 1− λ(i)x+ o(x), some of the terms simplify to give:

c(x) = −xδ
(1)+δ(2)+1

(
K

(1)
1 e−λ

(1)xf (1)(x) +K
(2)
1 e−λ

(2)xf (2)(x)
)

+O(x2)

= xδ
(1)+δ(2)+1

(
−K(1)

1 e−λ
(1)xf (1)(x)−K(2)

1 e−λ
(2)xf (2)(x) + f (5)(x)

)
,
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and we know that f (5)(x) = O
(
x1−δ

(1)−δ(2)
)

. If we call L
(1,2)
4 (x) = −K(1)

1 e−λ
(1)xf (1)(x) −

K
(2)
1 e−λ

(2)xf (2)(x) + f (5)(x), then L
(1,2)
4 (x) is continuous and we also have:

lim
x→0+

L
(1,2)
4 (x) = −K(1)

1 −K(2)
1 ,

which in particular implies that L
(1,2)
4 (x) is slowly varying at zero.

We know by [2] that:

lim
x→0+

L
(i,i)
0 (x) = 2−1−2δ

(i) Γ
(
1
2 − δ

(i)
)

Γ
(
3
2 + δ(i)

) ,
and so:

lim
x→0+

L̃
(1,2)
0 (x) = K0 := 2−1−δ

(1)−δ(2)
√
Γ ( 1

2 − δ(i))Γ ( 1
2 − δ(j))

Γ ( 3
2 + δ(i))Γ ( 3

2 + δ(j))
.

Finally, we can then find an expression for H:

H =
−K(1)

1 −K(2)
1

K0
=

(
−Γ (δ(1) + 1)Γ (−1− δ(1) − δ(2))

Γ (−δ(1))
− Γ (δ(2) + 1)Γ (−1− δ(1) − δ(2))

Γ (−δ(2))

)
× 21+δ

(1)+δ(2)

√
Γ ( 3

2 + δ(i))Γ ( 3
2 + δ(j))

Γ ( 1
2 − δ(i))Γ ( 1

2 − δ(j))
.

4.2. Proofs for Section 6

4.2.1. Proof of Lemma 6.1

Proof of Lemma 6.1. Simply write Taylor’s formula twice, with Lagrange remainder:{
u(x+ h) = u(x) + hu′(x) + 1

2h
2u′′(ζ+), ζ+ ∈ (x, x+ h),

u(x− h) = u(x)− hu′(x) + 1
2h

2u′′(ζ−), ζ− ∈ (x− h, x).

Adding the two equations:

u(x+ h)− 2u(x) + u(x− h) = h2
(
u′′(ζ+) + u′′(ζ−)

2

)
.

By continuity of u′′ and the intermediate value theorem:

u′′(ζ+) + u′′(ζ−)

2
∈ u′′

(
(ζ−, ζ+)) ⊆ u′′ ((x− h, x+ h)

)
,

which implies the result.

4.2.2. Proof of Theorem 3.2

Proof of Theorem 3.2. We start from the last statement of the theorem, i.e. the limiting
covariance matrix. The limit: limn→∞ E [Fi,nFj,n] has been computed in the last few sections,
where we picked intervals [ak, bk] of length 1 and showed that the matrix is diagonal, with diagonal
elements all equal to C(1, 1). It is straightforward to change the summation indices in (31) from∑n
i=1 to

∑bnbkc
i=bnakc+1. Since limn→∞

bnbkc−bnakc
n = limn→∞

nbk−{nbk}−nak+{nak}
n = bk− ak, we get

the limit as in the statement.
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The weak convergence is now implied by an application of Theorem 2.21. In order to show that
condition (b) there is satisfied, we need to check one of the equivalent conditions provided by
Theorem 2.22. Employing condition 3 in our case accounts to verifying that, for 1 ≤ k ≤ d:∥∥∥∥∥∥

 1√
n

bnbkc∑
i=bnakc+1

∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

⊗1

 1√
n

bnbkc∑
i=bnakc+1

∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

∥∥∥∥∥∥
H⊗2

→ 0.

Without loss of generality, we look at d = 1 and assume a1 = 0, b1 = 1:

1

n

∥∥∥∥∥∥
n∑

i,j=1

(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
⊗1

(
∆n
jG

(1)

τ
(1)
n

⊗̃
∆n
jG

(2)

τ
(2)
n

)∥∥∥∥∥∥
H⊗2

.

Let us examine the following:(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
⊗1

(
∆n
jG

(1)

τ
(1)
n

⊗̃
∆n
jG

(2)

τ
(2)
n

)

=

(
1

2

∆n
i G

(1)

τ
(1)
n

⊗∆
n
i G

(2)

τ
(2)
n

+
1

2

∆n
i G

(2)

τ
(2)
n

⊗∆
n
i G

(1)

τ
(1)
n

)
⊗1

(
1

2

∆n
jG

(1)

τ
(1)
n

⊗
∆n
jG

(2)

τ
(2)
n

+
1

2

∆n
jG

(2)

τ
(2)
n

⊗
∆n
jG

(1)

τ
(1)
n

)

=
1

4
E

[
∆n
i G

(1)

τ
(1)
n

∆n
jG

(1)

τ
(1)
n

]
∆n
i G

(2)

τ
(2)
n

⊗
∆n
jG

(2)

τ
(2)
n

+
1

4
E

[
∆n
i G

(1)

τ
(1)
n

∆n
jG

(2)

τ
(2)
n

]
∆n
i G

(2)

τ
(2)
n

⊗
∆n
jG

(1)

τ
(1)
n

+
1

4
E

[
∆n
i G

(2)

τ
(2)
n

∆n
jG

(1)

τ
(1)
n

]
∆n
i G

(1)

τ
(1)
n

⊗
∆n
jG

(2)

τ
(2)
n

+
1

4
E

[
∆n
i G

(2)

τ
(2)
n

∆n
jG

(2)

τ
(2)
n

]
∆n
i G

(1)

τ
(1)
n

⊗
∆n
jG

(1)

τ
(1)
n

=
1

4

∑
{a,a′}={1,2}
{b,b′}={1,2}

r
(n)
a,b (j − i)∆

n
i G

(a′)

τ
(a′)
n

⊗
∆n
jG

(b′)

τ
(b′)
n

.

We hence obtain:

1

n2

∥∥∥∥∥∥
n∑

i,j=1

(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
⊗1

(
∆n
jG

(1)

τ
(1)
n

⊗̃
∆n
jG

(2)

τ
(2)
n

)∥∥∥∥∥∥
2

H⊗2

=
1

16n2

∥∥∥∥∥∥∥∥∥
n∑

i,j=1

 ∑
{a,a′}={1,2}
{b,b′}={1,2}

r
(n)
a,b (j − i)∆

n
i G

(a′)

τ
(a′)
n

⊗
∆n
jG

(b′)

τ
(b′)
n


∥∥∥∥∥∥∥∥∥
2

H⊗2

=
1

16n2

n∑
i,j,i′,j′=1

〈 ∑
{a,a′}={1,2}
{b,b′}={1,2}

r
(n)
a,b (j − i)∆

n
i G

(a′)

τ
(a′)
n

⊗
∆n
jG

(b′)

τ
(b′)
n

, (8)

∑
{α,α′}={1,2}
{β,β′}={1,2}

r
(n)
α,β(j′ − i′)∆

n
i′G

(α′)

τ
(α′)
n

⊗
∆n
j′G

(β′)

τ
(β′)
n

〉
H⊗2

=
1

16n2

∑
{a,a′}={1,2}
{b,b′}={1,2}
{α,α′}={1,2}
{β,β′}={1,2}

n∑
i,j,i′,j′=1

r
(n)
a,b (j − i)r(n)α,β(j′ − i′)

〈
∆n
i G

(a′)

τ
(a′)
n

⊗
∆n
jG

(b′)

τ
(b′)
n

,
∆n
i′G

(α′)

τ
(α′)
n

⊗
∆n
j′G

(β′)

τ
(β′)
n

〉
H⊗2
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=
1

16n2

∑
{a,a′}={1,2}
{b,b′}={1,2}
{α,α′}={1,2}
{β,β′}={1,2}

n∑
i,j,i′,j′=1

r
(n)
a,b (j − i)r(n)α,β(j′ − i′)r(n)a′,α′(i

′ − i)r(n)b′,β′(j
′ − j). (9)

We need to show that the quantity in (9) converges to zero. It is sufficient to show that the sum of
the absolute values converges to zero. If we apply Hölder inequality, we get:

1

16n2

∑
{a,a′}={1,2}
{b,b′}={1,2}
{α,α′}={1,2}
{β,β′}={1,2}

n∑
i,j,i′,j′=1

∣∣∣r(n)a,b (j − i)r(n)α,β(j′ − i′)r(n)a′,α′(i
′ − i)r(n)b′,β′(j

′ − j)
∣∣∣

≤ 1

16n2

∑
{a,a′}={1,2}
{b,b′}={1,2}
{α,α′}={1,2}
{β,β′}={1,2}

n∑
i,j,i′,j′=1

∣∣∣∣r(n)a,b (j − i)r(n)a′,α′(i
′ − i)

[(
r
(n)
α,β(j′ − i′)

)2
+
(
r
(n)
b′,β′(j

′ − i′)
)2]∣∣∣∣ .

So we can split the sum into two components. Let us perform the substitution

(i, j, i′, j′)→ (i, j, i′, l) := (i, j, i′, i′ − j′).

We have:

1

16n2

∑
{a,a′}={1,2}
{b,b′}={1,2}
{α,α′}={1,2}
{β,β′}={1,2}

n∑
i,j,i′,j′=1

∣∣∣r(n)a,b (j − i)r(n)a′,α′(i
′ − i)

∣∣∣ (r(n)α,β(j′ − i′)
)2

=
1

16n2

∑
{a,a′}={1,2}
{b,b′}={1,2}
{α,α′}={1,2}
{β,β′}={1,2}

n∑
i,j,i′=1

∑
|l|<n

∣∣∣r(n)a,b (j − i)r(n)a′,α′(i
′ − i)

∣∣∣ (r(n)α,β(l)
)2

≤ 1

16n2

∑
{a,a′}={1,2}
{b,b′}={1,2}
{α,α′}={1,2}
{β,β′}={1,2}

∑
l∈Z

(
r
(n)
α,β(l)

)2 n∑
i,j,i′=1

∣∣∣r(n)a,b (j − i)r(n)a′,α′(i
′ − i)

∣∣∣

=
1

16n2

∑
{a,a′}={1,2}
{b,b′}={1,2}
{α,α′}={1,2}
{β,β′}={1,2}

∑
l∈Z

(
r
(n)
α,β(l)

)2
n
∑
|i|<n

∣∣∣r(n)a,b (i)
∣∣∣ ∑
|j|<n

∣∣∣r(n)a′,α′(j)
∣∣∣

=
1

16n

∑
{a,a′}={1,2}
{b,b′}={1,2}
{α,α′}={1,2}
{β,β′}={1,2}

∑
l∈Z

(
r
(n)
α,β(l)

)2 ∑
|i|<n

∣∣∣r(n)a,b (i)
∣∣∣ ∑
|j|<n

∣∣∣r(n)a′,α′(j)
∣∣∣

=
1

16

∑
{a,a′}={1,2}
{b,b′}={1,2}
{α,α′}={1,2}
{β,β′}={1,2}

∑
k∈Z

(
r
(n)
α,β(k)

)2  1√
n

∑
|i|<n

∣∣∣r(n)a,b (i)
∣∣∣
 1√

n

∑
|j|<n

∣∣∣r(n)a′,α′(j)
∣∣∣
 .
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Now, fix δ > 0 :

1√
n

∑
|i|<n

∣∣∣r(n)a,b (i)
∣∣∣ =

1√
n

∑
|i|≤bnδc

∣∣∣r(n)a,b (i)
∣∣∣+

1√
n

∑
bnδc<|i|<n

∣∣∣r(n)a,b (i)
∣∣∣ .

Thanks to Hölder’s inequality, the first term is bounded by:

1√
n

√
2bnδc+ 1

√∑
i∈Z

∣∣∣r(n)a,b (i)
∣∣∣2,

and the second one by:
1√
n

√
2(n− bnδc − 1)

∑
bnδc<|i|<n

∣∣∣r(n)a,b (i)
∣∣∣2 .

For a fixed δ, the second one converges to 0 as n tends to infinity. The first one is bounded by
K
√
δ (for a positive constant K <∞), thus letting δ → 0 we have:

lim
n→∞

1√
n

∑
|i|<n

∣∣∣r(n)a,b (i)
∣∣∣ = lim

δ→0
lim
n→∞

1√
n

∑
|i|<n

∣∣∣r(n)a,b (i)
∣∣∣ = 0,

provided that the following series∑
i∈Z

(
r
(n)
α,β(i)

)2
,

∑
i∈Z

(
r
(n)
a,b (i)

)2
,

∑
i∈Z

(
r
(n)
a′,b′(i)

)2
,

converge. In a completely analogous way, we can show that the second component of the original

sum converges to zero, provided that also
∑
i∈Z

(
r
(n)
b′,β′(i)

)2
is finite. But since from Theorem 3.1

we have: ∣∣∣r(n)i,j (k)
∣∣∣2 ≤ C(k − 1)2δ

(i)+2δ(j)+2ε−2, for k ≥ 2,

it is sufficient to ask that δ(i) + δ(j) < 1
2 for all possible choices of i, j. Explicitly, it is sufficient to

ask that: δ(1) < 1
4 and δ(2) < 1

4 .
The statement of the theorem is proved.

4.3. Extending the CLT for the Gaussian core to bivariate stationary
processes

As already mentioned in Remark 3.5 in the main article, we note that the central limit theorem
for the Gaussian core, see Theorem 3.4, can be formulated under more general conditions which
do not require the particular integral representation we are working with throughout the paper1:
Consider a bivariate Gaussian stationary process G = (G(1), G(2)>. Define for i, j ∈ {1, 2} and

t > 0: R̄(i,j)(t) := E[(G
(j)
t −G

(i)
0 )2]. We note that, due the stationarity of the process, we can write

R̄(i,j)(t) = E(G
(j)2
t ) + E(G

(i)2
0 )− 2E(G

(j)
0 G

(i)
0 )︸ ︷︷ ︸

=:Cij

−2E[(G
(j)
t −G

(j)
0 )G

(i)
0 ],

where only the last term depends on t. That means that Assumption 2.2 is effectively an assumption

on the asymptotic behaviour of E[(G
(j)
t −G

(j)
0 )G

(i)
0 ]. More precisely, if we assume that G satisfies

Assumption 2.2, it implies in particular that

−2E[(G
(j)
t −G

(j)
0 )G

(i)
0 ] = ρi,jt

δ(i)+δ(j)+1L
(i,j)
0 (t),

1We thank the referee for pointing this out.
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where ρi,j ∈ [−1, 1] is linked to the correlation between G(i) and G(j) and is such that ρi,j = 1 for
i = j and ρi,j = 0 if G(i) and G(j) are uncorrelated.

Under Assumption 2.2, one can easily show that an adapted version of Lemma 2.10 holds,
where the function c (denoted by c̃ now to avoid confusion) in that lemma is now defined as

c̃(t) = −
(
E[(G

(2)
t −G

(2)
0 )G

(1)
0 ] + E[(G

(1)
t −G

(1)
0 )G

(2)
0 ]
)

. In particular,

c̃(t) = −
(
E[(G

(2)
t −G

(2)
0 )G

(1)
0 ] + E[(G

(1)
t −G

(1)
0 )G

(2)
0 ]
)

(10)

= ρ1,2t
δ(1)+δ(2)+1 1

2

(
L
(1,2)
0 (t) + L

(2,1)
0 (t)

)
︸ ︷︷ ︸

=L
(1,2)
4 (t)

= ρ1,2t
δ(1)+δ(2)+1L

(1,2)
4 (t), (11)

where all the slowly varying functions are chosen as before. I.e. c̃(t) = ρ1,2c(t).
We observe that Theorem 3.1 carries over for the general setting as well: We remark that

ρ
(i,j)
ϑ (0) = ρi,jH for i 6= j, ρ

(i,j)
ϑ (0) = 1 for i = j in that theorem and all the other quantities are

defined as before. To see this, note that when going through the steps of the proof of Theorem 3.1,

we notice that the only quantity we need to consider specifically is r
(n)
i,j (0) for i 6= j. In that case,

we have

r
(n)
i,j (0) = E

[
∆n

1G
(i)

τ
(i)
n

∆n
1G

(j)

τ
(j)
n

]
= − 1

τ
(i)
n τ

(j)
n

(
E[(G

(j)
t −G

(j)
0 )G

(i)
0 ] + E[(G

(i)
t −G

(i)
0 )G

(j)
0 ]
)
.

Hence, using the adapted version of Lemma 2.10, see equation (10), we have r
(n)
1,2 (0) = r

(n)
2,1 (0) =

c̃(∆n)
ξn

. Then we can continue as in the proof of Theorem 3.1 to conclude that

r
(n)
1,2 (0) = r

(n)
2,1 (0) =

c̃(∆n)

ξn
=
ρ12∆

δ(1)+δ(2)+1
n L

(1,2)
4 (∆n)

∆δ(1)+δ(2)+1
n L̃

(1,2)
0 (∆n)

→ ρ1,2H, as n→∞.

Also, Theorem 3.2 carries over to the general setting (with ρ being replaced by ρ1,2): When we
consider the proof of that theorem. We observe that the integral representation was actually not
used in that theorem so the core of the proof goes through one-to-one and then in the final step we
use our adapted version of Theorem 3.1 to conclude.

Similarly, we can then conclude that also Theorems 3.3 and 3.4 can be extended to a setting of
a bivariate Gaussian process using the adapted versions of Lemma 2.10 and Theorem 3.1.
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