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1. Introduction

Within the realm of stochastic processes that fail to be a semimartingale, the recent literature
has devoted particular attention to the Brownian semistationary (BSS) process, a process that
has originally been used in the context of turbulence modelling in [2], but has been subsequently
employed as a price process in energy markets in [11]. The BSS process in its most basic form can
be written as:

Yt =

∫ t

−∞
g(t− s)σs dWs,

for a deterministic kernel function g, a stochastic volatility process σ and a Brownian motion W.
[34] proved that BSS processes have conditional full support and thus may be used as a price
model in financial markets with transaction costs. Also, BSS processes can be used in the context
of option pricing, through the modelling of rough volatility (see [24] and [14]). In this context, [15]
present a hybrid simulation scheme used in Monte Carlo option pricing.

Its spreading use in applications has led to many theoretical questions, some of which have only
recently obtained an answer.

Still, the stochastic-analytic properties of the Brownian semistationary process are not yet
completely understood. The univariate case has been studied in detail, and in particular, numerous
papers have been published that deal with its asymptotic theory of multipower variation.

The theory of multipower variation for semimartingales was first introduced in [4] and expanded
in several subsequent papers (see [5], [6], [7], [29], [27], [31], [36]). One of the main applications of
multipower variation is the construction of robust estimators that allow to disentangle the impact
of the jump risk from the stochastic volatility risk in the price of financial assets.

Outside the semimartingale class a general theory seems to be impossible to achieve and results
have to be proved for the particular collection of processes under consideration. For the univariate
BSS process, one can see for example [10] with their study of multipower variation through Malliavin
calculus and the more recent paper [12] which deals with the multipower variation of higher order
differences of the BSS process in order to estimate its smoothness.

In the present paper, we define and work with the bivariate Brownian semistationary process.
The introduction of a second dimension greatly increases the complexity, but also allows for novel
possibilities in terms of modelling dependence. Given the importance in practical applications of
the Brownian semistationary process, the first natural result in the multivariate theory must be a
limit theorem allowing inference to be performed on the dependence between two components.

1
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In the semimartingale case, inference on the dependence can be performed through the quadratic
covariation between two processes. Applying the same ideas to this setting immediately poses
the question of whether the quadratic covariation can be successfully defined between two BSS

processes. There are very few results in the literature concerning quadratic covariation between two
non semimartingales. As an example, [23] deal with this problem, but they only consider [X,F (X)],
where X is a semimartingale and F is an absolutely continuous function with square integrable
derivative. In this case F (X) is not necessarily a semimartingale, while X always is.

We instead propose the study of [Y (1), Y (2)], when both Y (1) and Y (2) are BSS processes and
are not semimartingales. Hence the aim is to show convergence of an appropriately scaled version
of the following realised covariation process:

bntc∑
i=1

(
Y

(1)
i
n

− Y (1)
i−1
n

)(
Y

(2)
i
n

− Y (2)
i−1
n

)
. (1)

A weak law of large numbers in such a setting has recently been obtained in [25]. Here, we
tackle the arguably more difficult case of deriving a suitable central limit theorem. Central limit
theorems for processes are results which are usually hard to prove, and techniques to prove them
vary from case to case. The most celebrated result of this kind is Donsker’s theorem, which states
that an appropriately scaled, symmetric random walk converges weakly to Brownian motion (a
standard reference is [17]). The high frequency limits of semimartingales are typically processes
with a mixed Gaussian distributions, and these central limit theorem results are typically stronger
than the standard ones that only state weak convergence in the Skorokhod space, in order for
statistical inference to be performed in a feasible way. They instead involve stable convergence of
processes, which involves proving weak convergence in an extended sample space, where typically a
new Brownian motion lives, which is independent from the original processes. We will see that
such results can also be obtained in our more general non-semimartingale setting.

The methods we use in our proofs rely heavily on the powerful Fourth Moment Theorem which
was proven in [33]. Their theory was developed by combining Stein’s method with Malliavin calculus.
The most comprehensive reference on the subject is the monograph [32].

The outline of the remainder of this article is as follows. Section 2 introduces the notation and
defines the bivariate Gaussian core and the bivariate Brownian semistationary process. Moreover,
we formulate assumptions which ensure that we are outside the semimartingale setting (since the
corresponding theory is well-known in the semimartingale framework). The main contributions
of our article can be found in Sections 3 and 4, where we state the central limit theorems for a
suitably scaled version of the realised covariation of a Gaussian core and a Brownian semistationary
process, respectively. Section 5 concludes. The proof of the central limit theorem in the case of
the Gaussian core is presented in Section 6, and in the case of a Brownian semistationary process
in Section 7. A brief self-contained summary of the key concepts of Malliavin calculus and the
celebrated Fourth Moment Theorem needed for proving our results and some of the proofs of our
new results are relegated to the supplemental article [26].

2. The setting

Throughout this article we denote by (Ω,F ,Ft,P) a filtered, complete probability space and
by B(R) the class of Borel subsets of R and we consider a finite time horizon [0, T ] for some T > 0.
We will assume that (Ω,F ,Ft,P) supports two independent Ft-Brownian measures W (1),W (2)

on R, for which we briefly recall the definition.

Definition 2.1 (Brownian measure). An Ft-adapted Brownian measure W : Ω × B(R) → R
is a Gaussian stochastic measure such that, if A ∈ B(R) with E[(W (A))2] < ∞, then W (A) ∼
N(0, Leb(A)), where Leb is the Lebesgue measure. Moreover, if A ⊆ [t,+∞), then W (A) is
independent of Ft.
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Let us first define the so-called bivariate Gaussian core, which is in fact a bivariate Gaussian
moving average process with correlated components.

Definition 2.2 (The Gaussian core). Consider two Brownian measures W (1) and W (2) adapted

to Ft with dW
(1)
t dW

(2)
t = ρdt, for ρ ∈ [−1, 1]. Further take two nonnegative deterministic functions

g(1), g(2) ∈ L2((0,∞)) which are continuous on R \ {0}. Define, for j ∈ {1, 2},

G
(j)
t :=

∫ t

−∞
g(j)(t− s) dW (j)

s .

Then the vector process (Gt)t≥0 = (G
(1)
t , G

(2)
t )>t≥0 is called the (bivariate) Gaussian core.

If we add stochastic volatility to the Gaussian core, then we obtain a bivariate Brownian
semistationary (BSS) process defined as follows.

Definition 2.3 (Bivariate Brownian semistationary process). Consider two Brownian measures

W (1) and W (2) adapted to Ft with dW
(1)
t dW

(2)
t = ρdt, for ρ ∈ [−1, 1]. Further take two nonnegative

deterministic functions g(1), g(2) ∈ L2((0,∞)) which are continuous on R\{0}. Let further σ(1), σ(2)

be càdlàg , Ft-adapted stochastic processes and assume that for j ∈ {1, 2}, and for all t ∈ [0, T ]:∫ t
−∞ g(j)2(t− s)σ(j)2

s ds <∞. Define, for j ∈ {1, 2},

Y
(j)
t :=

∫ t

−∞
g(j)(t− s)σ(j)

s dW (j)
s .

Then the vector process (Yt)t≥0 = (Y
(1)
t , Y

(2)
t )>t≥0 is called a bivariate Brownian semistationary

process.

2.1. Technical assumptions

Let us now introduce a few working assumptions. Most of them are standard and already appear
in similar forms in the literature, for example in [21].

2.1.1. (Non-) semimartingale conditions

As mentioned in the introduction, we are exclusively interested in the non-semimartingale setting
since the corresponding asymptotic theory for semimartingales is well established in the literature,
see e.g. [35, 3]. It turns out that the (non-) semimartingale property of G(j) or Y (j) (for j = 1, 2)
depends on the properties of the functions g(j).

Let us for a moment suppress the superscripts and write Gt =
∫ t
−∞ g(t− s)dWs for a univariate

Gaussian core. Consider the filtration
(
FW,∞
t

)
t≥0

which is the smallest filtration with respect to

which W is an adapted Brownian measure and recall the classical result due to [30]:

Theorem 2.4 (Knight). The process (Gt)t≥0 is an FW,∞
t -semimartingale if and only if there

exists h ∈ L2(R) and α ∈ R such that: g(t) = α+
∫ t
0
h(s) ds.

In the case of a univariate Brownian semistationary (BSS) process given by

Yt =

∫ t

−∞
g(t− s)σsdWs, (2)

[2] derived the following sufficient conditions for a BSS process Y to be a semimartingale:
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Theorem 2.5. Under the assumptions that (i) g is absolutely continuous and g′ ∈ L2((0,∞)),
(ii) limx→0+ g(x) =: g(0+) <∞, (iii) the process g′(−·)σ· is square integrable, then Yt defined as

in (2) is an FW,∞
t -semimartingale. In this case Yt admits the decomposition: Yt = g(0+)Wt +∫ t

0
dl
[∫ l
−∞ g′(l − s)σs dWs

]
.

Let us now return to the bivariate case and formulate conditions which ensure that the bivariate
processes G,Y are not semimartingales. This can be achieved by relaxing the first two assumptions
in Theorem 2.5 since both assumptions are necessary for G(j) to belong to the semimartingale
class (see [13]) for j = 1, 2.

Assumption 2.1. For j ∈ {1, 2}, we assume that g(j) : R→ R+ are nonnegative functions and
continuous, except possibly at x = 0. Also, g(j)(x) = 0 for x < 0 and g(j) ∈ L2 ((0,+∞)). We

further ask that g(j) be differentiable everywhere with derivative
(
g(j)
)′ ∈ L2((ε,∞)) for all ε > 0

and
(
(g(j))′

)2
non-increasing in [b(j),∞), for some b(j) > 0. Moreover, we assume that, for any

t > 0: ∫ ∞
1

(
g(i)(s)

)2 (
σ
(i)
t−s

)2
ds <∞.

In the following we will set b = max{b(1), b(2)}, then
(
g(j)
)′ ∈ L2((b,∞)) and

(
(g(j))′

)2
is

non-increasing in [b,∞) for j = 1, 2.

It is important to note that we are not imposing that
(
g(j)
)′ ∈ L2((0,∞)) in order to be able to

exclude the semimartingale case.

2.1.2. Technical assumptions for the cross-correlations

We need some additional technical assumptions to control the terms arising in the covariation
between the two components of the bivariate Gaussian core and the bivariate BSS process. Such
assumptions will be formulated in terms of slowly varying functions, for which we briefly recall the
definition, see e.g. [18].

Definition 2.6 (Slowly and regularly varying function). A measurable function L : (0,∞) →
(0,∞) is called slowly varying at infinity if, for all λ > 0 we have that limx→∞

L(λx)
L(x) = 1. A

function g : (0,∞)→ (0,∞) is called regularly varying at infinity if, for x large enough, it can be
written as: g(x) = xδL(x), for a slowly varying function L. The parameter δ is called the index of
regular variation. Finally, a measurable function L : (0,∞)→ (0,∞) is called slowly varying at
zero (resp. regularly varying at zero) if x→ L

(
1
x

)
is slowly varying (resp. regularly varying) at

infinity.

For i, j ∈ {1, 2}, we write ρi,j = ρ for i 6= j and ρi,j = 1 for i = j. Also, let us introduce the
functions mapping R+ into R+, with i, j ∈ {1, 2}:

R̄(i,j)(t) := E
[(
G

(j)
t −G

(i)
0

)2]
=
∥∥∥g(i)∥∥∥2

L2
+
∥∥∥g(j)∥∥∥2

L2
− 2E

[
G

(i)
0 G

(j)
t

]
. (3)

We note that we can write R̄(i,j)(t) = Ci,j + 2ρi,j
∫∞
0

(g(j)(x) − g(j)(x + t))g(i)(x)dx, where

Ci,j :=
∥∥g(i)∥∥2

L2 +
∥∥g(j)∥∥2

L2 − 2ρi,j
∫∞
0
g(i)(x)g(j)(x)dx, where in particular Ci,i = 0. This enables

us to formulate our next assumption.

Assumption 2.2. For all t > 0, there exist functions L
(i,j)
0 (t) and L

(i,j)
2 (t) which are continuous

on (0,∞) and slowly varying at zero, such that

R̄(i,j)(t) = Ci,j + ρi,jt
δ(i)+δ(j)+1L

(i,j)
0 (t), for i, j ∈ {1, 2}, and (4)
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1

2
(R̄(i,j))′′(t) = ρi,jt

δ(i)+δ(j)−1L
(i,j)
2 (t), for i, j ∈ {1, 2},

where δ(1), δ(2) ∈
(
− 1

2 ,
1
2

)
\ {0}. Also, if we denote L̃

(i,j)
0 (t) :=

√
L
(i,i)
0 (t)L

(j,j)
0 (t), we ask that the

functions L
(i,j)
0 (t) and L

(i,j)
2 (t) are such that, for all λ > 0, there exists a H(i,j) ∈ R such that:

lim
t→0+

L
(i,j)
0 (λt)

L̃
(i,j)
0 (t)

= H(i,j) <∞, (5)

and that there exists d ∈ (0, 1), such that:

lim sup
x→0+

sup
y∈(x,xd)

∣∣∣∣∣L(i,j)
2 (y)

L̃
(i,j)
0 (x)

∣∣∣∣∣ <∞. (6)

In this situation, the restriction δ(j) ∈ (− 1
2 , 0) ∪ (0, 12 ) ensures that the process leaves the

semimartingale class.

Remark 2.7. A consequence of Assumption 2.2 is that:
√
R̄(i,i)(t)R̄(j,j)(t) = tδ

(i)+δ(j)+1L̃
(i,j)
0 (t),

where L̃
(i,j)
0 (t) is again a slowly varying function at zero which is continuous on (0,∞).

Example 2.8. In the univariate case, condition (4) reads (suppressing superscripts):

R̄(t) = t2δ+1L0(t). (7)

The so-called Gamma kernel given by g(x) = e−λxxδ1{x>0}, for λ > 0, δ > − 1
2 , has attracted

attention in applications (both to turbulence and finance), see for instance the review paper by [1].
In the case when δ ∈ (− 1

2 , 0) ∪ (0, 12 ], g satisfies Assumptions 2.1 and condition (4), see [10].

Example 2.9. Condition (5) in Assumption 2.2 is satisfied if limt→0+ L
(i,j)
0 (t) = M (i,j) < ∞

and limt→0+

√
L
(i)
0 (t)L

(j)
0 (t) = N (i,j) <∞ with M(i,j)

N(i,j) = H(i,j). In the case when i = j, we have

Hi,j = 1, so condition (5) is satisfied.

As a consequence of Assumption 2.2, we highlight a fact that will be particularly useful for our
purposes.

Lemma 2.10. Define

c(x) :=

∫ x

0

g(1)(s)g(2)(s) ds+

∫ ∞
0

(
g(1)(s+ x)− g(1)(s)

)(
g(2)(s+ x)− g(2)(s)

)
ds.

If Assumption 2.2 holds, then it is possible to show that:

c(x) = xδ
(1)+δ(2)+1L

(1,2)
4 (x), (8)

where L
(1,2)
4 is a continuous function on (0,∞) which is slowly varying at zero, and δ(1), δ(2) ∈(

− 1
2 ,

1
2

)
\ {0}. Moreover, there exists a constant |H| <∞ such that

lim
x→0+

L
(1,2)
4 (x)

L̃
(1,2)
0 (x)

= H. (9)

More precisely, H = 1
2

(
H(1,2) +H(2,1)

)
.
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Example 2.11 (Gamma Kernel). If the kernel function is the Gamma kernel g(i)(s) = sδ
(i)

e−λ
(i)s1{s≥0},

for λ(i) > 0, δ(i) ∈ (− 1
2 ,

1
2 ) \ {0}, and similarly for g(j), then one can show directly that Lemma

2.10 holds, and give an explicit expression for the constant H:

H =

(
−Γ (δ(1) + 1)Γ (−1− δ(1) − δ(2))

Γ (−δ(1))
− Γ (δ(2) + 1)Γ (−1− δ(1) − δ(2))

Γ (−δ(2))

)
21+δ

(1)+δ(2)

√
Γ ( 3

2 + δ(i))Γ ( 3
2 + δ(j))

Γ ( 1
2 − δ(i))Γ ( 1

2 − δ(j))
.

A proof of this result can be found in the supplemental article [26].

2.2. Discrete observations and scaling factor

While the stochastic processes we are going to consider are defined in continuous time, we
work under the assumption that we only observe them discretely which is the case of practical
relevance. Moreover, our asymptotic results rely on so-called in-fill asymptotics where the time
interval is fixed, but we sample more and more frequently. This is in contrast to the, in time series
more widely used, concept of long span asymptotics where the stepsize between observations stays
constant, but the number of observations grows, meaning that a bigger and bigger time interval is
considered in the asymptotic case.

Suppose that we sample our processes discretely along successive partitions of [0, T ]. A partition
Πn of [0, T ] will be a collection of times 0 = t0 < · · · < ti < ti+1 < · · · < tn = T , where, for
simplicity, we assume that the partition is equally spaced. The mesh of the partition will therefore
be ∆n = 1

n and we have limn→∞∆n = 0.
We will use the following notation for (high-frequent) increments of the stochastic processes

we are considering: For instance, for the process G(j), we denote its increment by ∆n
i G

(j) :=

G
(j)
i∆n
−G(j)

(i−1)∆n
, for j = 1, 2. A straightforward computation shows that the increments can be

represented as

∆n
i G

(j) =

∫ (i−1)∆n

−∞

(
g(j) (i∆n − s)− g(j) ((i− 1)∆n − s)

)
dW (j)

s

+

∫ i∆n

(i−1)∆n

g(j)(i∆n − s) dW (j)
s .

(10)

We define the realised covariation as

bntc∑
i=1

∆n
i G

(1)∆n
i G

(2), for n ≥ 1, t ∈ [0, T ].

We know that in the case when G is a semimartingale, then

bntc∑
i=1

∆n
i G

(1)∆n
i G

(2) u.c.p.→ [G(1), G(2)]t, as n→∞,

where the convergence is uniform on compacts in probability (u.c.p.) and the limiting process is the
quadratic covariation. However, outside the semimartingale framework, the quadratic covariation
does not necessarily exist. [25] recently considered the non-semimartingale case and showed that,
under suitable assumptions, the (possibly scaled) realised covariation converges u.c.p. to an
appropriate limit which can be viewed as the correlation between the two non-semimartingale
components. In the present work, we would like to go a step further and prove a central limit
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theorem associated with the scaled realised covariation. In order to do so, we need to define the
suitable scaling factor. It turns out that the following choice is appropriate. For j ∈ {1, 2}, set

τ (j)n :=

√
E
[(
∆n

1G
(j)
)2]

=

√∫ ∞
0

(
g(j)(s+∆n)− g(j)(s)

)2
ds+

∫ ∆n

0

(
g(j)(s)

)2
ds. (11)

The scaled realised covariation of the Gaussian core is then given by

bntc∑
i=1

∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

.

Our aim is now to derive a central limit theorem for the suitably centred and scaled realised
covariation of the Gaussian core. As soon as we have that result, we will generalise it to the case
when the underlying bivariate process is a bivariate Brownian semistationary process and, hence,
also accounts for stochastic volatility in each component.

The key component for proving the two central limit theorems is the so-called Fourth Moment
Theorem, see [32]. The supplemental article [26] gives a very brief self-contained introduction to
Malliavin calculus and reviews the Fourth Moment Theorem.

3. A central limit theorem for the realised covariation of
the Gaussian core

This section focusses on the Gaussian core G as defined in Definition 2.2; we will use the notation
from Subsection 2.2 and from the supplemental article [26] in the following.

Since G is a Gaussian process, we can apply the Hilbert-space techniques depicted above, using
the Hilbert space of L2-Gaussian variables. To this end, let H be the Hilbert space generated by
the random variables given by the scaled increments of the Gaussian core:(

∆n
i G

(j)

τ
(j)
n

)
n≥1,1≤i≤bntc,j∈{1,2}

,

equipped with the scalar product 〈·, ·〉H induced by L2(Ω,F ,P), i.e., for X,Y ∈ H, we have
〈X,Y 〉H = E [XY ].

Denoting by Id the multiple integral of order d, acting on H�d, with values in L2(Ω), we can
write:

∆n
i G

(1)

τ
(1)
n

= I1

(
∆n
i G

(1)

τ
(1)
n

)
,

∆n
i G

(2)

τ
(2)
n

= I1

(
∆n
i G

(2)

τ
(2)
n

)
.

Recall the definition of the symmetrisation of the tensor product: x⊗̃y := 1
2 (x⊗ y + y ⊗ x). Using

the product formula (2.20) in [26], the product of two multiple integrals becomes:

∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

= I1

(
∆n
i G

(1)

τ
(1)
n

)
I1

(
∆n
i G

(2)

τ
(2)
n

)
=

1∑
r=0

r!

(
1

r

)(
1

r

)
I2−2r

(
∆n
i G

(1)

τ
(1)
n

⊗̃r
∆n
i G

(2)

τ
(2)
n

)
= I2

(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
+ E

[
∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

]
.

Rearranging, this yields:

∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

− E
[
∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

]
= I2

(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
.

Let us hence define the function f : L2(Ω)× L2(Ω)→ R given by f(X,Y ) = XY − E[XY ], and
the process:

Znt =
1√
n

bntc∑
i=1

f

(
∆n
i G

(1)

τ
(1)
n

,
∆n
i G

(2)

τ
(2)
n

)
=

1√
n

bntc∑
i=1

I2

(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
.
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3.1. A uniform bound for the covariance

We can now formulate a uniform bound for the covariance term r
(n)
i,j (k) := E

[
∆n

1G
(i)

τ
(i)
n

∆n
1+kG

(j)

τ
(j)
n

]
,

for i, j ∈ {1, 2}.

Theorem 3.1. Let ε > 0, with ε < 1− δ(i) − δ(j), for i, j ∈ {1, 2}. Define:

ri,j(k) := (k − 1)δ
(i)+δ(j)+ε−1, if k > 1,

and ri,j(0) = ri,j(1) = 1. Under Assumption 2.2, there exists a positive constant C <∞ and a
natural number n0(ε) such that: ∣∣∣r(n)i,j (k)

∣∣∣ ≤ Cri,j(k), for k ≥ 0, (12)

for all n ≥ n0(ε). Moreover, define ρ
(i,j)
ϑ (0) = ρH for i 6= j and ρ

(i,j)
ϑ (0) = 1 for i = j, and for

any i, j ∈ {1, 2} set

ρ
(i,j)
ϑ (k) =

1

2
ρi,jH

(i,j)
(
(k − 1)ϑ − 2kϑ + (k + 1)ϑ

)
, for k ≥ 1. (13)

Then it holds that:

lim
n→∞

r
(n)
i,j (k) = ρ

(i,j)

δ(i)+δ(j)+1
(k), for all k ≥ 0, i, j ∈ {1, 2}. (14)

3.2. Convergence of the finite dimensional distributions of the Gaussian
core

In order to look at the convergence of the finite-dimensional distributions, let {ak}, {bk} be two
increasing sequences of positive real numbers, with ak < bk < ak+1, and consider, for any d ∈ N
the vector: (

Znb1 − Z
n
a1 , . . . , Z

n
bd
− Znad

)>
,

whose generic k−th component is:

1√
n

bnbkc∑
i=bnakc+1

I2

(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
= I2

 1√
n

bnbkc∑
i=bnakc+1

∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

 .

Theorem 3.2 (Convergence of the finite dimensional distributions). Take a Gaussian core as
defined in Definition 2.2. Let Assumption 2.2 be satisfied and suppose that δ(1) ∈ (− 1

2 ,
1
4 )\{0}, δ(2) ∈

(− 1
2 ,

1
4 ) \ {0}. Consider f : L2(Ω)×L2(Ω)→ R given by f(X,Y ) = XY −E[XY ], and the process:

Znt =
1√
n

bntc∑
i=1

f

(
∆n
i G

(1)

τ
(1)
n

,
∆n
i G

(2)

τ
(2)
n

)
=

1√
n

bntc∑
i=1

I2

(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
.

Let {ak}, {bk} be two increasing sequences of positive real numbers, with ak < bk < ak+1, and
consider, for any d ∈ N the vector:

Znt :=
(
Znb1 − Z

n
a1 , . . . , Z

n
bd
− Znad

)>
=
(
F1,n . . . , Fd,n

)>
.

Then Znt ⇒N ∼ Nd(0,C), where Ci,j = limn→∞ E [Fi,nFj,n] , 1 ≤ i, j ≤ d. Finally, the matrix C
is diagonal, and the general j-th diagonal element is equal to C(1, 1)(bj − aj), with

C(1, 1) := 2

∞∑
k=1

(
ρ
(1,1)

2δ(1)
(k)ρ

(2,2)

2δ(2)
(k) +

(
ρ
(1,2)

δ(1)+δ(2)
(k)
)2)

+ (1 + ρ2H2) < ∞. (15)
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In order to compute C(1, 1) we remark that the definition of the terms of the form ρ
(i,j)
ϑ (k) was

given in equation (13).
The series in (15) converges absolutely, thanks to Theorem 3.1, as it is bounded by:

4

∞∑
k=1

(k − 1)
2δ(1)+2δ(2)+2ε−2

,

which converges if and only if 2δ(1) + 2δ(2) + 2ε− 2 < −1 ⇐⇒ δ(1) + δ(2) + ε < 1
2 , which is implied

by our assumption that δ(1) ∈ (− 1
2 ,

1
4 ) \ {0}, δ(2) ∈ (− 1

2 ,
1
4 ) \ {0}.

3.3. Tightness of the law of the realised covariation for the Gaussian
core

As customary when proving weak convergence, we also need a tightness result for the law of the
realised covariation process. This turns out to be a lot simpler than the convergence of the finite
dimensional distributions.

Theorem 3.3 (Tightness). Let the assumptions as in Theorem 3.2 hold. For all n ∈ N, let Pn be
the law of the process:

Zn· =
1√
n

bn·c∑
i=1

f

(
∆n
i G

(1)

τ
(1)
n

,
∆n
i G

(2)

τ
(2)
n

)
=

1√
n

bn·c∑
i=1

I2

(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
,

on the Skorokhod space D[0, T ]. Then, the sequence {Pn}n∈N is tight.

3.4. The central limit theorem for the Gaussian core

With Theorem 3.2 and 3.3 at our disposal, it is immediate to prove the fundamental theorem
stating weak convergence of the realised covariation of the Gaussian core:

Theorem 3.4 (Weak Convergence of the Gaussian Core). With the same setting and assumptions
of Theorem 3.2, we obtain: 1√

n

bntc∑
i=1

(
∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

− E
[
∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

])
t∈[0,T ]

⇒
(√

βBt

)
t∈[0,T ]

, (16)

where Bt is a Brownian motion independent of the processes G(1), G(2), β = C(1, 1) from (15) and
the convergence is in the Skorokhod space D[0, T ] equipped with the Skorokhod topology.

Remark 3.5. We remark that the above central limit theorem (Theorem 3.4) can be formulated
under more general conditions which do not require the particular integral representation we
are working with throughout the paper. I.e. consider a bivariate Gaussian stationary process

G = (G(1), G(2)>. Define for i, j ∈ {1, 2} and t > 0: R̄(i,j)(t) := E[(G
(j)
t − G

(i)
0 )2]. Suppose that

Assumption 2.2 is satisfied in this setting, where ρi,j ∈ [−1, 1] is linked to the correlation between
G(i) and G(j) and is such that ρi,j = 1 for i = j and ρi,j = 0 if G(i) and G(j) are uncorrelated,

also Cij = E
(
G

(j)2
t

)
+ E

(
G

(i)2
0

)
− 2E

(
G

(j)
0 G

(i)
0

)
.

Then Theorem 3.4 holds for β = C(1, 1), where in the definition of C(1, 1) the parameter ρ is
replaced by ρ1,2. The proof of this extended result is contained in the supplementary material to
this article, see [26, Section 4.3].
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4. A central limit theorem for the realised covariation of
the Brownian semistationary process

The weak convergence result for the Gaussian core obtained in the previous section is the
cornerstone needed to obtain the general central limit theorem for a Brownian semistationary
process Y, which includes stochastic volatility in each component, recall Definition 2.3.

We will need two additional assumptions:

Assumption 4.1. For k ∈ {1, 2}, we require that σ(k) has bounded moments of order two, that

is: supt∈(−∞,T ] E
[(
σ
(k)
t

)2]
<∞.

Example 4.1. Assumption 4.1 is easily satisfied in many cases of interests, for example, if the
stochastic volatility processes are second-order stationary.

Assumption 4.2. The stochastic volatility process σ(1) (resp. σ(2)) has α(1)-Hölder (resp. α(2))
continuous sample paths, for α(1) ∈

(
1
2 , 1
)
. Furthermore, both the kernel functions g(1) and g(2)

satisfy the following property: For j ∈ {1, 2}, write:

π(j)
n (A) :=

∫
A

(
g(j)(x+∆n)− g(j)(x)

)2
ds∫∞

0

(
g(j)(x+∆n)− g(j)(x)

)2
ds
,

and note that π
(j)
n are probability measures. We ask that there exists a constant λ(j) < −1 such

that for any εn = O(n−κ), it holds that:

π(j)
n ((εn,∞)) = O

(
nλ

(j)(1−κ)
)
.

4.1. The central limit theorem

We are now in the position to formulate our key result: the central limit theorem for the suitably
centred and scaled realised covariation of a bivariate Brownian semistationary process. We remark

that the notation
st.⇒ is used for stable convergence in law, whose definition and basic properties are

reviewed in the supplemental article [26].

Theorem 4.2 (Central limit theorem). Let G be the sigma algebra generated by the Gaussian
core G, and let σ(1) and σ(2) be G−measurable. For the bivariate BSS process, provided that
Assumptions 2.1, 2.2, 4.1 and 4.2 are satisfied with δ(1), δ(2) ∈ (− 1

2 ,
1
4 ) \ {0}, the following G -stable

convergence holds: 1√
n

bntc∑
i=1

∆n
i Y

(1)

τ
(1)
n

∆n
i Y

(2)

τ
(2)
n

−
√
nE

[
∆n

1G
(1)

τ
(1)
n

∆n
1G

(2)

τ
(2)
n

] ∫ t

0

σ(1)
s σ(2)

s ds


t∈[0,T ]

st.
=⇒
n→∞

(√
β

∫ t

0

σ(1)
s σ(2)

s dBs

)
t∈[0,T ]

, (17)

in the Skorokhod space D[0, T ], where β = C(1, 1), see equation (15). Also, B is Brownian motion,
independent of F and defined on an extension of the filtered probability space (Ω,F ,Ft,P).

We note that the central limit theorem implies a weak law of large numbers, which we present
next, cf. also [25].
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Proposition 4.3. Assume that the conditions of Theorem 4.2 hold. Then

∆n

c(∆n)

bntc∑
i=1

∆n
i Y

(1)∆n
i Y

(2) P→ ρ

∫ t

0

σ(1)
s σ(2)

s ds, as n→∞.

So Theorem 4.2 implies a weak law of large numbers. It is to be stressed though, that the law of
large numbers can be formulated in a more general way, modulo some different assumptions on the
volatility processes. We refer to the discussion in [25] for the details. In particular, for the weak
law of large numbers to hold, we do not need the restriction that δ(1), δ(2) ∈

(
− 1

2 ,
1
4

)
\ {0}, but we

can have the whole range δ(1), δ(2) ∈
(
− 1

2 ,
1
2

)
\ {0}. On the other hand, we remark that the weak

law of large numbers formulated in [25] required the kernel functions to be decreasing, and we do
not have such a restriction for the central limit theorem.

5. Conclusion

In this article we have employed techniques that were successfully used in the univariate case
for the power, multipower, and bipower variation of the BSS process and of Gaussian processes,
(as appearing in [10], [8], [9], [21]) to show a central limit theorem for the realised covariation of
the bivariate Gaussian core and the BSS process.

This result, apart from being interesting from a purely mathematical point of view, can be
viewed as the starting point of the use of multivariate BSS processes in stochastic modelling.
The central limit theorem unlocks inference on the dependence parameter for the multivariate
BSS process. There are still parts of such a multivariate theory that need to be developed in
the future. For instance, one interesting aspect would be to allow for the correlation coefficient
to be stochastic. Another direction of future research would include extending our results from
the realised covariation to more general functionals, obtaining a fully multidimensional theory of
multipower variation of the BSS process. Also, one could investigate whether similar results can be
obtained for other forms of volatility modulated Gaussian processes outside the semimartingale
setting.

6. Proofs for the Gaussian core

The proofs of Lemma 2.10 and Example 2.11 are relegated to the supplemental article [26].

6.1. Proof of Theorem 3.1

The uniform bound on the covariances r
(n)
i,j (k) that we prove on Theorem 3.1 is a fundamental

analytical result that allows us to sit within the reach of some powerful results of Malliavin calculus.
In this section we give the proof of that theorem. Let us start off with an elementary result.

Lemma 6.1. For a C2 function u, and h > 0:

u(x+ h)− 2u(x) + u(x− h) = h2u′′(ζ),

where ζ ∈ (x− h, x+ h).

The proof of Lemma 6.1 is given in the supplemental article [26]. We have now the tools to
tackle the proof of Theorem 3.1.

Proof of Theorem 3.1. The objective in the section is to show that we can bound:

|r(n)i,j (k)| ≤ ri,j(k), (18)
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uniformly in n, for all choices of i, j. In order to do so, recall the functions mapping R+ into

R+, with i, j ∈ {1, 2}: R̄(i,j)(t) := E
[(
G

(j)
t −G

(i)
0

)2]
. We need to show that this function is well

defined. More generally, note that for the Gaussian core, we have for any u ∈ R:

E
[(
G

(j)
u+t −G(i)

u

)2]
=

∫ ∞
0

(
g(j)(y)

)2
dy +

∫ ∞
0

(
g(i)(y)

)2
dy − 2

∫ ∞
0

g(i)(y)g(j)(y + t)ρi,j dy

=
∥∥∥g(i)∥∥∥2

L2
+
∥∥∥g(j)∥∥∥2

L2
− 2E

[
G

(i)
0 G

(j)
t

]
,

which is indeed a function of t only. It is straightforward to find the connection between r
(n)
i,j (k)

and R̄(i,j)(k), when k ∈ N:

r
(n)
i,j (k) = E

[
∆n

1G
(i)

τ
(i)
n

∆n
1+kG

(j)

τ
(j)
n

]

=
1

τ
(i)
n τ

(j)
n

(
−R̄(i,j)

(
k

n

)
+

1

2
R̄(i,j)

(
k − 1

n

)
+

1

2
R̄(i,j)

(
k + 1

n

))
(19)

=
1

2n2τ
(i)
n τ

(j)
n

(
R̄(i,j)

)′′(k
n

+
ϑnk
n

)
, (20)

for some |ϑnk | < 1, thanks to the elementary result stated in Lemma 6.1.

The connection between r
(n)
i,j and R̄(i,j)(t) was derived in (19) and (20):

r
(n)
i,j (k) =

−2R̄(i,j)( kn ) + R̄(i,j)(k+1
n ) + R̄(i,j)(k−1n )

2
√
R̄(i,i)( 1

n )R̄(j,j)( 1
n )

=
1

2n2τ
(i)
n τ

(j)
n

(
R̄(i,j)

)′′(k
n

+
ϑnk
n

)
, (21)

as well as:

τ (i)n =

√
R̄(i,i)

(
1

n

)
=

√
E
[(
G

(i)
1
n

−G(i)
0

)2]
=

(
1

n

) 1
2 (2δ(i)+1)

√
L
(i)
0

(
1

n

)
.

Let us now show the uniform bound (12) and the limit result for the case when k ∈ N. For
k ∈ N, we go back to the second equality in (21), and deduce that:

|r(n)i,j (k)| =

∣∣∣∣∣∣ρi,j
(k + ϑnk )

δ(i)+δ(j)−1
L
(i,j)
2

(
k
n +

ϑn
k

n

)
L̃
(i,j)
0 ( 1

n )

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
(k + ϑnk )

δ(i)+δ(j)−1
L
(i,j)
2

(
k
n +

ϑn
k

n

)
L̃
(i,j)
0 ( 1

n )

∣∣∣∣∣∣ .
Note that for k > 1, we deduce from ϑnk ∈ (−1, 1) and δ(i) + δ(j) − 1 < −ε < 0 that

(k + ϑnk )
δ(i)+δ(j)−1 ≤ (k − 1)δ

(i)+δ(j)−1.

Now, if 2 ≤ k < bn1−dc, then k
n +

ϑn
k

n ∈
(

2
n +

ϑn
k

n ,
bn1−dc−1

n +
ϑn
k

n

)
⊂
(

1
n ,
bn1−dc
n

)
⊂
(
1
n ,

1
nd

)
and

hence, the bound (6) in Assumption 2.2 applies and we obtain that

L
(i,j)
2

(
k
n +

ϑn
k

n

)
L̃
(i,j)
0 ( 1

n )

is bounded close to the origin for n big enough.
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If instead bn1−dc ≤ k ≤ n, then, for all ε > 0, and any δ < ε(1 − d) there exists a constant
C(δ) > 0 such that

|r(n)i,j (k + 1)| =

∣∣∣∣∣∣∣
(
k + 1 + ϑnk+1

)δ(i)+δ(j)−1
L
(i,j)
2

(
k+1
n +

ϑn
k+1

n

)
L̃
(i,j)
0 ( 1

n )

∣∣∣∣∣∣∣
≤ C(δ)

kδ
(i)+δ(j)−1+ε−δ

nε(1−d)−δ
1

L̃
(i,j)
0 ( 1

n )
.

(22)

We used the fact that for any δ, t > 0, there exists a constant C depending on δ (and t) only such
that |L2(x)| ≤ C(δ)x−δ, in a neighborhood x ∈ (0, t].

Observe now that M (i,j)(n) := 1

L̃
(i,j)
0 ( 1

n )
is a slowly varying function at ∞. Indeed, for any λ > 0:

lim
n→∞

M (i,j)(λn)

M (i,j)(n)
= lim
n→∞

L̃
(i,j)
0 ( 1

λn )

L̃
(i,j)
0 ( 1

n )
= 1.

But since M (i,j) is slowly varying, there exists a constant C̃ such that, by Potter’s bound:

M(n) ≤ C̃n−ε(1−d)+δ ⇐⇒ 1

nε(1−d)−δL̃
(i,j)
0 ( 1

n )
≤ C̃,

that gives us

|r(n)i,j (k + 1)| ≤ C̃C(δ)kδ
(i)+δ(j)−1+ε.

As δ is arbitrary, set C1 = C̃C(δ) for any δ > 0.
Next, let us prove the limit result. To this end, we will use the first equality in (21) to show the

convergence in (14). Using the expression (4) from Assumptions 2.2, we get for k ∈ N:

r
(n)
i,j (k) (23)

= ρi,j
−2kδ

(i)+δ(j)+1L
(i,j)
0 ( kn ) + (k − 1)δ

(i)+δ(j)+1L
(i,j)
0 (k−1n ) + (k + 1)δ

(i)+δ(j)+1L
(i,j)
0 (k+1

n )

2L̃
(i,j)
0 ( 1

n )
.

Because of (5), we get in the limit:

lim
n→∞

r
(n)
i,j (k) = ρi,jH

(i,j)

(
−2kδ

(i)+δ(j)+1 + (k − 1)δ
(i)+δ(j)+1 + (k + 1)δ

(i)+δ(j)+1
)

2
.

Let us now consider the case when k = 0. We need to show that limn→∞ r
(n)
i,j (0) = ρH for

i 6= j and limn→∞ r
(n)
i,j (0) = 1 for i = j. First, suppose that i = j. Then r

(n)
i,j (0) = 1, and hence

limn→∞ r
(n)
i,j (0) = 1. Next, assume that i 6= j. Then

r
(n)
i,j (0) = ρ

ζn
ξn
,

where

ζn =

∫ ∆n

0

g(1)(s)g(2)(s) ds+

∫ ∞
0

(
g(1)(s+∆n)− g(1)(s)

)(
g(2)(s+∆n)− g(2)(s)

)
ds,

ξn =

[(∫ ∆n

0

(
g(1)(s)

)2
ds+

∫ ∞
0

(
g(1)(s+∆n)− g(1)(s)

)2
ds

)

·

(∫ ∆n

0

(
g(2)(s)

)2
ds+

∫ ∞
0

(
g(2)(s+∆n)− g(2)(s)

)2
ds

)]1/2
.

(24)
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Using Lemma 2.10, we get:

ζn = ∆δ(1)+δ(2)+1
n L

(1,2)
4 (∆n).

Also, Remark 2.7 implies that

ξn = ∆δ(1)+δ(2)+1
n

√
L
(1)
0 (∆n)L

(2)
0 (∆n) = ∆δ(1)+δ(2)+1

n L̃
(1,2)
0 (∆n).

Then equation (9) in Lemma 2.10 ensures that limn→∞ ζn/ξn = H and hence limn→∞ rni,j(0) = ρH

for i 6= j. Finally, we remark that since r
(n)
i,j (0) converges, there exists a positive constant C2 such

that |r(n)i,j (0)| ≤ C2 for all n ∈ N. So, we can conclude that (12) holds with C = max{1, C1, C2}.

6.2. Limiting covariance

Our strategy for proving the central limit theorem for the Gaussian core relies on the Fourth
Moment Theorem reviewed in Theorem 2.21 in the supplemental article [26], which gives us the
fundamental tool for proving convergence in distribution to a Gaussian variable in this setting.

In order to be able to apply the Fourth Moment Theorem to prove the central limit theorem later
on, we must first compute the limiting covariance: i.e. we need to compute limn→∞ E [I2(fr,n)I2(fs,n)],
where:

fr,n :=
1√
n

bnbrc∑
i=bnarc+1

∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

.

We start with the case r 6= s:

E [I2(fr,n)I2(fs,n)] = 2〈fr,n, fs,n〉H⊗2

= 2

〈
1√
n

bnbrc∑
i=bnarc+1

∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

,
1√
n

bnbsc∑
j=bnasc+1

∆n
jG

(1)

τ
(1)
n

⊗̃
∆n
jG

(2)

τ
(2)
n

〉
H⊗2

. (25)

Without loss of generality, we will choose r = 1, s = 2, a1 = 0, b1 = a2 = 1, b2 = 2, obtaining:

2

n

〈
n∑
i=1

∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

,
2n∑

j=n+1

∆n
jG

(1)

τ
(1)
n

⊗̃
∆n
jG

(2)

τ
(2)
n

〉
H⊗2

. (26)

Now, let k = j− i. Also recall the definition r
(n)
a,b (k) := E

[
∆n

1G
(a)

τ
(a)
n

∆n
1+kG

(b)

τ
(b)
n

]
. Then, the single scalar

product equals:〈
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

,
∆n
jG

(1)

τ
(1)
n

⊗̃
∆n
jG

(2)

τ
(2)
n

〉
H⊗2

=
1

4

〈
∆n
i G

(1)

τ
(1)
n

⊗ ∆n
i G

(2)

τ
(2)
n

+
∆n
i G

(2)

τ
(2)
n

⊗ ∆n
i G

(1)

τ
(1)
n

,
∆n
jG

(1)

τ
(1)
n

⊗
∆n
jG

(2)

τ
(2)
n

+
∆n
jG

(2)

τ
(2)
n

⊗
∆n
jG

(1)

τ
(1)
n

〉
H⊗2

+
1

4
E

[
∆n
i G

(1)

τ
(1)
n

∆n
jG

(2)

τ
(2)
n

]
E

[
∆n
i G

(2)

τ
(2)
n

∆n
jG

(1)

τ
(1)
n

]
+

1

4
E

[
∆n
i G

(2)

τ
(2)
n

∆n
jG

(2)

τ
(2)
n

]
E

[
∆n
i G

(1)

τ
(1)
n

∆n
jG

(1)

τ
(1)
n

]

=
1

2
r
(n)
1,1 (k)r

(n)
2,2 (k) +

1

2
r
(n)
2,1 (k)r

(n)
1,2 (k).

Thus, we have that expression (26) becomes:



15

1

n

n∑
k=1

k
(
r
(n)
1,1 (k)r

(n)
2,2 (k) + r

(n)
2,1 (k)r

(n)
1,2 (k)

)
+

1

n

2n−1∑
k=n+1

(2n− k)
(
r
(n)
1,1 (k)r

(n)
2,2 (k) + r

(n)
2,1 (k)r

(n)
1,2 (k)

)
. (27)

By Cesaro’s theorem, if:

lim
k→∞

k
(
r
(n)
1,1 (k)r

(n)
2,2 (k) + r

(n)
2,1 (k)r

(n)
1,2 (k)

)
= 0, (28)

then the first sum in (27) will converge to zero. Theorem 3.1 gives us:∣∣∣r(n)1,1 (k)r
(n)
2,2 (k) + r

(n)
2,1 (k)r

(n)
1,2 (k)

∣∣∣ ≤ 2(k − 1)2(δ
(1)+δ(2))+2ε−2. (29)

Hence, we have the limit in (28) provided that

2(δ(1) + δ(2)) + 2ε− 2 < −1 ⇐⇒ (δ(1) + δ(2)) + ε− 1 < −1

2
⇐⇒ ε <

1

2
− (δ(1) + δ(2)),

which, in order for ε > 0 to hold, implies that we must ask:

δ(1) + δ(2) <
1

2
. (30)

Applying Theorem 3.1 again shows that the absolute value of the second sum in (27) can be
bounded by:

1

n

2n−1∑
k=n+1

(2n− k)2(k − 1)2δ
(1)+2δ(2)+2ε−2

= 4

2n−2∑
k=n

k2δ
(1)+2δ(2)+2ε−2 − 2

n

2n−2∑
k=n

k2δ
(1)+2δ(2)+2ε−1 − 2

n

2n−2∑
k=n

k2δ
(1)+2δ(2)+2ε−2

≤ 4

2n−2∑
k=n

k2δ
(1)+2δ(2)+2ε−2 +

4

n

2n−2∑
k=n

k2δ
(1)+2δ(2)+2ε−1.

The first sum goes to zero whenever the summand is summable, thus we get δ(1) + δ(2) < 1,
which is clearly satisfied under condition (30). For the second sum, we have in particular that
k < 2n ⇐⇒ 1

n <
2
k , so we can write:

4

n

2n−2∑
k=n

k2δ
(i)+2δ(j)+2ε−1 < 8

2n−2∑
k=n

k2δ
(i)+2δ(j)+2ε−2.

Condition (30) again ensures convergence to zero.

6.3. Limiting variance

Now we consider the case when r = s in (4) in Theorem 2.21 in the supplemental article [26], as
we have to find the limiting variance. Again, take, by simplicity, r = s = 1, a1 = 0, b1 = 1, and this
time, k = |i− j|:

E [I2 (f1,n) I2 (f1,n)] = 2 ‖f1,n‖2H⊗2

= 2〈 1√
n

n∑
i=1

∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

,
1√
n

n∑
j=1

∆n
jG

(1)

τ
(1)
n

⊗̃
∆n
jG

(2)

τ
(2)
n

〉

=
1

n

n∑
i=1

n∑
j=1

(
r
(n)
1,1 (k)r

(n)
2,2 (k) + r

(n)
2,1 (k)r

(n)
1,2 (k)

)
.

(31)
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Now write r
(n)
1,1 (k)r

(n)
2,2 (k) + r

(n)
2,1 (k)r

(n)
1,2 (k) = pn(|i− j|) (note that, if j < i, r

(n)
a,b (j− i) = r

(n)
b,a (i− j)),

so that:

1

n

n∑
i=1

n∑
j=1

pn(|i− j|) =
2

n

n∑
i=1

i−1∑
j=1

pn(i− j) +
1

n

n∑
i=1

pn(0)

= 2

n−1∑
k=1

(
1− k

n

)
pn(k) + pn(0).

(32)

Thanks to (14), we see that, for k ≥ 1:

pn(k) = r
(n)
1,1 (k)r

(n)
2,2 (k) + r

(n)
2,1 (k)r

(n)
1,2 (k)→ ρ

(1,1)

2β(1)(k)ρ
(2,2)

2β(2)(k) +
(
ρ
(1,2)

β(1)+β(2)(k)
)2
,

In the case when k = 0, we have

pn(0) = 1 +
1

(τ
(1)
n τ

(2)
n )2

(
E
[
∆n

1G
(1)∆n

1G
(2)
])2

1 + ρ2
(
ζn
ξn

)2

,

where ζn and ξn are defined as in (24). As above, using Assumption 2.2 and Lemma 2.10, ensures
that limn→∞ ζn/ξn = H2 and hence limn→∞ pn(0) = 1 + ρ2H2.

By the bound (12) in Theorem 3.1 and the bounded convergence theorem, (32) converges to

C(1, 1) := lim
n→∞

E [I2 (f1,n) I2 (f1,n)]

= 2

∞∑
k=1

(
ρ
(1,1)

2β(1)(k)ρ
(2,2)

2β(2)(k) +
(
ρ
(1,2)

β(1)+β(2)(k)
)2)

+ (1 + ρ2H2) <∞. (33)

6.4. Proof of Theorem 3.2

Since the proof of Theorem 3.2 is rather long, we have moved it to the supplemental material
[26].

6.5. Proof of Theorem 3.3

Proof of Theorem 3.3.

E
[
(Znt − Zns )2

]
= E

[
(Znt−s)

2
]

= E

 1

n

I2
bntc−bnsc∑

i=1

∆n
i G

(1)

τ
(1)
n

⊗ ∆n
i G

(2)

τ
(2)
n

2


=
1

n

〈bntc−bnsc∑
i=1

∆n
i G

(1)

τ
(1)
n

⊗ ∆n
i G

(2)

τ
(2)
n

,

bntc−bnsc∑
j=1

∆n
jG

(1)

τ
(1)
n

⊗
∆n
jG

(2)

τ
(2)
n

〉
H⊗2

=
1

2n

bntc−bnsc∑
i=1

bntc−bnsc∑
j=1

(
r
(n)
1,1 (|i− j|)r(n)2,2 (|i− j|) +

1

2
r
(n)
2,1 (|i− j|)r(n)1,2 (|i− j|)

)
.

Multiplying and dividing by bntc − bnsc yields:

bntc − bnsc
n

 1

bntc − bnsc

bntc−bnsc−1∑
k=1

(
1− k

n

)
pn(k) + pn(0)

 ,

thanks to the same arguments as in equation (32). We now know that the quantity in brackets is
convergent, hence bounded. Tightness now follows as in the proof of Theorem 7 in [19], invoking the
criterion of Theorem 13.5 in [17]. The criterion applies thanks to the hypercontractivity property of
multiple integrals: inside a fixed Wiener chaos, all Lq(Ω) norms are equivalent (see [32], Theorem
2.7.2).
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6.6. Proof of Theorem 3.4

Proof of Theorem 3.4. The fact that the finite dimensional distributions of the realised covari-
ation converge to those of Brownian motion is the content of Theorem 3.2: the limiting finite
dimensional distributions we had there coincide with those on the right hand side of (16). The fact
that the limiting Brownian motion Bt is independent of G(1) and G(2) follows from the fact that(

G
(1)
bk
−G(1)

ak , G
(2)
bk
−G(2)

ak ,
1√
n

∑bnbkc
i=bnakc+1

(
∆n

i G
(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

− E
[
∆n

i G
(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

]))
n∈N

converges to a multivariate Gaussian, and, for all n ∈ N the third component is orthogonal to the
first two, as it belongs to a different Wiener chaos. Given the tightness result in Theorem 3.3, an
application of Theorem 13.1 in [17] allows to conclude.

7. Proofs for the Brownian semistationary process

7.1. Strategy and outline of the proof

In order to prove the central limit theorem for the bivariate Brownian semistationary process
we will introduce a blocking technique, see [16], whereby, alongside the original time-grid indexed
by n, we introduce a coarser grid with a new index l ≤ n, and we freeze the volatility processes at
the start of each l−interval. Heuristically, letting n go to infinity, for a fixed l, allows us invoke the
weak convergence of the Gaussian core we have proven in the previous section, as the volatilities are
“frozen”. A further limit in l gives us the final result where the volatilities are integrated against
the limiting Brownian motion.

Let us now show how the blocking technique will be introduced. We define

µn := r
(n)
1,2 (0) = E

[
∆n

1G
(1)

τ
(1)
n

∆n
1G

(2)

τ
(2)
n

]
,

which is bounded by 1, and also

I(l,n)(j) =

{
i

∣∣∣∣∣ in ∈
(
j − 1

l
,
j

l

]}
.

We note here that #
(
I(l,n)(j)

)
∈
{
bnl c, b

n
l c+ 1

}
, so that we can write:

#
(
I(l,n)(j)

)
=
n

l
+ e(n,l)(j), with e(n,l)(j) ∈ (−1, 1], for all 1 ≤ l ≤ n, j ≥ 1. (34)

For any l ≤ n we have the decomposition:

1√
n

bntc∑
i=1

∆n
i Y

(1)

τ
(1)
n

∆n
i Y

(2)

τ
(2)
n

−
√
nµn

∫ t

0

σ(1)
s σ(2)

s ds

=
1√
n

bntc∑
i=1

(
∆n
i Y

(1)

τ
(1)
n

∆n
i Y

(2)

τ
(2)
n

− σ(1)
(i−1)∆n

σ
(2)
(i−1)∆n

∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

)
︸ ︷︷ ︸

An
t

+
1√
n

bntc∑
i=1

σ
(1)
(i−1)∆n

σ
(2)
(i−1)∆n

∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

− 1√
n

bltc∑
j=1

σ
(1)
(j−1)∆lσ

(2)
(j−1)∆l

∑
i∈I(l,n)(j)

∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n︸ ︷︷ ︸

A
′n,l
t
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+

√
n

l
µn

bltc∑
j=1

σ
(1)
(j−1)∆l

σ
(2)
(j−1)∆l

− 1√
n
µn

bntc∑
j=1

σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n︸ ︷︷ ︸

A
′′n,l
t

+
1√
n

bltc∑
j=1

σ
(1)
(j−1)∆l

σ
(2)
(j−1)∆l

∑
i∈I(l,n)(j)

∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

−
√
n

l
µn

bltc∑
j=1

σ
(1)
(j−1)∆l

σ
(2)
(j−1)∆l︸ ︷︷ ︸

Cn,l
t

+
1√
n
µn

bntc∑
j=1

σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n

−
√
nµn

∫ t

0

σ(1)
s σ(2)

s ds︸ ︷︷ ︸
Dn

t

.

The term denoted by Cn,lt will give us the stable convergence to a non-zero limit, while the terms

Ant , A
′′′n,l
t := A

′n,l
t +A

′′n,l
t , Dn

t will converge to zero (in a way that will be made precise below.)
We will divide the proof into four parts, each one dealing separately with one of the terms.

7.2. Convergence of the term An
t

Proposition 7.1. Assume that the assumptions of Theorem 4.2 hold. Then Ant given by

Ant =
1√
n

bntc∑
i=1

(
∆n
i Y

(1)

τ
(1)
n

∆n
i Y

(2)

τ
(2)
n

− σ(1)
(i−1)∆n

σ
(2)
(i−1)∆n

∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

)
converges to zero uniformly on compacts in probability (u.c.p.).

Proof of Proposition 7.1. Let us call:

Jnt =
1√
n

(
∆n
i Y

(1)

τ
(1)
n

∆n
i Y

(2)

τ
(2)
n

− σ(1)
(i−1)∆n

σ
(2)
(i−1)∆n

∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

)
.

For the claim of the proposition to be true, it is sufficient to prove that, for all t ∈ [0, T ], we have:

limn→∞ E
[∑bntc

i=1 |Jnt |
]

= 0. Indeed, this implies that convergence also holds in probability. For

each n,
∑bntc
i=1 |Jnt | is increasing with t, and 0 (the limit in probability) is also increasing and it is

continuous. This means that we get convergence to 0 u.c.p. in [0, T ] (see for example (2.2.16) in
[28]). This easily implies the required convergence.

Let us use the following notation, for k ∈ {1, 2}:

∆n
i g

(k)
s := g(k)(i∆n − s)− g(k) ((i− 1)∆n − s) .

We write:

∆n
i Y

(1)

τ
(1)
n

∆n
i Y

(2)

τ
(2)
n

=
1

τ
(1)
n τ

(2)
n

(∫ i∆n

(i−1)∆n

g(1)(i∆n − s)σ(1)
s dW (1)

s +

∫ (i−1)∆n

−∞
∆n
i g

(1)
s σ(1)

s dW (1)
s

)

×

(∫ i∆n

(i−1)∆n

g(2)(i∆n − s)σ(2)
s dW (2)

s +

∫ (i−1)∆n

−∞
∆n
i g

(2)
s σ(2)

s dW (2)
s

)
. (35)
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We also have the corresponding 4 terms for
∆n

i G
(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

. We start by showing that:

1
√
nτ

(1)
n τ

(2)
n

bntc∑
i=1

[∫ i∆n

(i−1)∆n

g(1)(i∆n − s)σ(1)
s dW (1)

s

∫ i∆n

(i−1)∆n

g(2)(i∆n − s)σ(2)
s dW (2)

s −

σ
(1)
(i−1)∆n

σ
(2)
(i−1)∆n

∫ i∆n

(i−1)∆n

g(1)(i∆n − s) dW (1)
s

∫ i∆n

(i−1)∆n

g(2)(i∆n − s) dW (2)
s

]
(36)

goes to zero.

Adding and subtracting σ
(1)
(i−1)∆n

∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)σ(2)

s dW
(2)
s ,

we get:

1
√
nτ

(1)
n τ

(2)
n

bntc∑
i=1

∫ i∆n

(i−1)∆n

g(2)(i∆n − s)σ(2)
s dW (2)

s

×

[∫ i∆n

(i−1)∆n

g(1)(i∆n − s)
(
σ(1)
s − σ

(1)
(i−1)∆n

)
dW (1)

s

]

+
1

√
nτ

(1)
n τ

(2)
n

bntc∑
i=1

σ
(1)
(i−1)∆n

∫ i∆n

(i−1)∆n

g(1)(i∆n − s) dW (1)
s

×

[∫ i∆n

(i−1)∆n

g(2)(i∆n − s)
(
σ(2)
s − σ

(2)
(i−1)∆n

)
dW (2)

s

]
.

(37)

We can now start to prove the L1 convergence that we need. To prove it, we will invoke some
results as appearing in [10]. In particular, we will use by-products of the proof of Theorem 4 of that
paper. Before we can apply the conclusions of the theorem, we need to verify that we satisfy its
assumption called CLT, as stated on pages 1167-1168. This is easily done by combining Theorem
3.1 with Assumption 4.2.

If we take the first term of (37), we need to show convergence of:

1
√
nτ

(1)
n τ

(2)
n

bntc∑
i=1

E

∣∣∣∣∣
∫ i∆n

(i−1)∆n

g(2)(i∆n − s)σ(2)
s dW (2)

s

×

[∫ i∆n

(i−1)∆n

g(1)(i∆n − s)
(
σ(1)
s − σ

(1)
(i−1)∆n

)
dW (1)

s

]∣∣∣∣∣ .
By Cauchy-Schwarz E[|XY |] ≤

√
E[X2]

√
E[Y 2]. Now:√∫ i∆n

(i−1)∆n

(
g(2)(i∆n − s)

)2 E[σ
(2)
s ] ds =

√∫ ∆n

0

(
g(2)(s)

)2 E [(σ(2)
i∆n−s

)2]
ds,

since σ is càdlàg, it is bounded on compact intervals, so we get the bound:

K

√∫∆n

0

(
g(2)(s)

)2
ds

τ
(2)
n

× 1
√
nτ

(1)
n

bntc∑
i=1

√√√√√E

(∫ i∆n

(i−1)∆n

g(1)(i∆n − s)(σ(1)
s − σ(1)

(i−1)∆n−s) dW
(1)
s

)2
,

for some constant K. Now, the first term is bounded by K, and the second one goes to zero since
σ(1) is Hölder continuous in mean square, as implied by Assumption 4.2.

We can repeat the reasoning for the second term of (37). Let’s take another term now:
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1
√
nτ

(1)
n τ

(2)
n

bntc∑
i=1

[∫ (i−1)∆n

−∞
∆n
i g

(1)
s σ(1)

s dW (1)
s

∫ (i−1)∆n

−∞
∆n
i g

(2)
s σ(2)

s dW (2)
s

− σ(1)
(i−1)∆n

σ
(2)
(i−1)∆n

∫ (i−1)∆n

−∞
∆n
i g

(1)
s dW (1)

s

∫ (i−1)∆n

−∞
∆n
i g

(2)
s dW (2)

s

]
. (38)

Adding and subtracting σ
(1)
(i−1)∆n

∫ (i−1)∆n

−∞ ∆n
i g

(1)
s dW

(1)
s

∫ (i−1)∆n

−∞ ∆n
i g

(2)
s σ

(2)
s dW

(2)
s , we get as the

first term:

1√
n

bntc∑
i=1

∫ (i−1)∆n

−∞ ∆n
i g

(2)
s σ

(2)
s dW

(2)
s

τ
(2)
n︸ ︷︷ ︸
(1)

[∫ (i−1)∆n

−∞ ∆n
i g

(1)
s σ

(1)
s dW

(1)
s − σ(1)

(i−1)∆n

∫ (i−1)∆n

−∞ ∆n
i g

(1)
s dW

(1)
s

]
τ
(1)
n︸ ︷︷ ︸
(2)

We can use the same arguments as above. The only difference is the expectation of (1) over the
infinite interval:√

E
[(∫ (i−1)∆n

−∞ ∆n
i g

(2)
s σ

(2)
s dW

(2)
s

)2]
τ
(2)
n

=

√∫∞
0

(
g(2)(s+∆n)− g(2)(s)

)2 E [(σ(2)
(i−1)∆n−s

)2]
ds

τ
(2)
n

Assumption 4.1 allows to conclude that this quantity is bounded. The remaining term (2) is equal

to the sum B
n,ε(1)n
i +

∑l
j=1 C

n,ε(j)n ,ε(j+1)
n

i from the proof of Theorem 4 in [10] and goes to zero in L2

by the same arguments.
Now we consider the cross term

1√
n

bntc∑
i=1

(∫ i∆n

(i−1)∆n

g(1)(i∆n − s)σ(1)
s dW (1)

s

∫ (i−1)∆n

−∞
∆n
i g

(2)
s σ(2)

s dW (2)
s

− σ(1)
(i−1)∆n

σ
(2)
(i−1)∆n

∫ i∆n

(i−1)∆n

g(1)(i∆n − s) dW (1)
s

∫ (i−1)∆n

−∞
∆n
i g

(2)
s dW (2)

s

)
. (39)

We add and subtract: σ
(1)
(i−1)∆n

∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ t
−∞∆n

i g
(2)
s σ

(2)
s dW

(2)
s .

1√
n

bntc∑
i=1

∫ (i−1)∆n

−∞
∆n
i g

(2)
s σ(2)

s dW (2)
s

(∫ i∆n

(i−1)∆n

g(1)(i∆n − s)(σ(1)
s − σ

(1)
(i−1)∆n

) dW (1)
s

)

+
1√
n

bntc∑
i=1

σ
(1)
(i−1)∆n

∫ i∆n

(i−1)∆n

g(1)(i∆n − s) dW (1)
s

(∫ (i−1)∆n

−∞
∆n
i g

(2)
s

(
σ(2)
s − σ

(2)
(i−1)∆n

)
dW (2)

s

)
.

(40)

We can proceed exactly as above, and convergence to zero is proved.

7.3. Convergence of the term A
′′′n,l
t = A

′n,l
t + A

′′n,l
t

It is worth mentioning at this point that proofs that terms similar to the one we called A
′′′n,l
t

converge to zero in the univariate case have had a tormented history in the literature. Indeed,
a mistake appeared in the proof of a similar result in [20] in the context of power variation for
integral processes. The application of the mean value theorem on page 724 of that paper is invalid.

The mistake was not simple to correct. Years later, the paper [22] was published, which highlighted
the techniques from fractional integration that were needed to correct the proof. As it turns out,
in our multivariate setting it is sufficient to invoke that univariate result to obtain the required
convergence. This section contains the details of the proof.
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Proposition 7.2. Assume that the assumptions of Theorem 4.2 hold. Then

P− lim
l→∞

lim sup
n→∞

sup
t∈[0,T ]

∣∣∣A′′′n,lt

∣∣∣ = 0.

Proof of Proposition 7.2. We need to set the following notation:

ξi,m =
1√
m

(
∆m
i G

(1)

τ
(1)
m

∆m
1 G

(2)

τ
(2)
m

− E
[
∆m
i G

(1)

τ
(1)
m

∆m
1 G

(2)

τ
(2)
m

])
,

and f(ti) = σ
(1)
(i−1)∆n

σ
(2)
(i−1)∆n

. We will be using Remark 1.1 in the paper [22]. We know that:

bmtc∑
i=1

ξi,m ⇒
√
βWt.

Convergence (4) in the paper reads:

P− lim
n→∞

lim sup
m→∞

sup
t∈[0,T ]

∣∣∣∣∣∣
bntc∑
j=1

∑
i∈In(j)

(f(ti)− f(uj−1)) ξi,m

∣∣∣∣∣∣ = 0, (41)

which in our setting and with our notation becomes:

P− lim
l→∞

lim sup
n→∞

sup
t∈[0,T ]

∣∣∣∣∣
bltc+1∑
j=1

∑
i∈I(l,n)(j)

(
σ
(1)
(i−1)∆n

σ
(2)
(i−1)∆n

− σ(1)
(j−1)∆l

σ
(1)
(j−1)∆l

)

× 1√
n

(
∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

− µn
)

︸ ︷︷ ︸
(1)

∣∣∣∣∣ = 0.

Expanding the bracket in (1) above, the first term gives us exactly term A
′n,l
t . The second term

from the bracket (1) is:

µn√
n

bltc+1∑
j=1

∑
i∈I(l,n)(j)

σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n

− µn√
n

bltc+1∑
j=1

∑
i∈I(l,n)(j)

σ
(1)
(i−1)∆n

σ
(2)
(i−1)∆n

=
µn√
n

bltc+1∑
j=1

#
(
I(l,n)(j)

)
σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n

− µn√
n

bntc∑
j=1

σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n

.

If we use (34), we get:

µn√
n

bltc+1∑
j=1

(n
l

+ e(n,l)(j)
)
σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n

− µn√
n

bntc∑
j=1

σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n

=A
′′n,l
t +

µn√
n

bltc+1∑
j=1

e(n,l)(j)σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n

.

We can then conclude that (41) implies:

P− lim
l→∞

lim sup
n→∞

sup
t∈[0,T ]

∣∣∣∣∣∣A′n,lt +A
′′n,l
t +

µn√
n

bltc+1∑
j=1

e(n,l)(j)σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n

∣∣∣∣∣∣ = 0.
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Now, we can write:

∣∣∣A′′′n,lt

∣∣∣ =

∣∣∣∣∣∣A′n,lt +A
′′n,l
t +

µn√
n

bltc+1∑
j=1

e(n,l)(j)σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n

− µn√
n

bltc+1∑
j=1

e(n,l)(j)σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n

∣∣∣∣∣∣
≤

∣∣∣∣∣∣A′n,lt +A
′′n,l
t +

µn√
n

bltc+1∑
j=1

e(n,l)(j)σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n

∣∣∣∣∣∣+

∣∣∣∣∣∣ µn√n
bltc+1∑
j=1

e(n,l)(j)σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n

∣∣∣∣∣∣ ,
but since

∣∣e(n,l)(j)∣∣ ≤ 1, the last term goes to zero a.s. for any fixed l, uniformly for t in [0, T ], so
we can conclude that:

P− lim
l→∞

lim sup
n→∞

sup
t∈[0,T ]

∣∣∣A′′′n,lt

∣∣∣ = 0.

7.4. Convergence of the term Cn,l
t

The term Cn,lt is the one that will give us the stable convergence we seek.

Proposition 7.3. Assume that the assumptions of Theorem 4.2 hold. Then(
G

(1)
t , G

(2)
t , 1√

n

∑bntc
i=1

(
∆n

i G
(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

− µn
))

t∈[0,T ]

converges weakly to (
G

(1)
t , G

(2)
t ,
√
βBt

)
t∈[0,T ]

.

Proof of Proposition 7.3. We split the proof into two parts: First, we prove tightness and then
convergence of the finite dimensional distributions.
Tightness: Theorem 13.2 in [17] gives two necessary and sufficient conditions for a sequence of
measures Pn to be tight. Our probability measures Pn live in D

(
[0, T ];R3

)
, the space of càdlàg

functions with values in R3, equipped with the Skorokhod topology. The norm in this space is
defined as:

‖f‖D([0,T ];R3) = sup
t∈[0,T ]

‖f‖R3 ,

and hence the two conditions in the theorem only depend on the norm in R3. It is then sufficient
to show them component-wise. The first two components trivially satisfy them, as the sequences
reduce to only one measure per component. The fact that the third component satisfies them both
is a consequence of Theorem 3.3.
Convergence of the finite dimensional distributions: We need to show that for any choice
of positive numbers ak < bk, k ∈ {1, . . . , D}, the sequence of matrix variables:(

G
(1)
bk
−G(1)

ak , G
(2)
bk
−G(2)

ak ,
1√
n

∑bnbkc
i=bnakc+1

(
∆n

i G
(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

− µn
))

1≤k≤D

converges in law, as n→∞, to:(
G

(1)
bk
−G(1)

ak , G
(2)
bk
−G(2)

ak ,
√
β (Bbk −Bak)

)
1≤k≤D

. (42)

This we know already, as pointed out in the proof of Theorem 3.4, as marginal convergence
of sequence of variables within fixed Wiener chaoses implies joint convergence. The first two
components lie in the first chaos, the third one lies in the second chaos. The statement of Theorem
3.4 allows to conclude.
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Proposition 7.4. Assume that the assumptions of Theorem 4.2 hold. Then Cnt converges stably

in law to
√
β
∫ t
0
σ
(1)
s σ

(2)
s dBs in the Skorokhod space D[0, T ], where β = C(1, 1), see equation (15),

and where first n→∞ for fixed l and then l→∞. Also, B is Brownian motion, independent of
F and defined on an extension of the filtered probability space (Ω,F ,Ft,P).

Proof of Proposition 7.4. The joint weak convergence in (42) paired with the asymptotic
independence of the limit B and G(1), G(2) and an application of Proposition 3.3 in [26] ensure
that:

1√
n

bntc∑
i=1

(
∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

− µn
)
⇒
√
βBt (mixing).

Applying the continuous mapping Theorem 3.2 in [26] with the sigma-algebra G , σ
(1)
(j−1)∆l

σ
(2)
(j−1)∆l

as the measurable variable σ, 1√
n

∑
i∈I(l,n)(j)

(
∆n

i G
(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

− µn
)

as Yn and g(x, y) = xy, since

Yn
st.⇒
√
β
(
Bj∆l

−B(j−1)∆l

)
, we have the following G -stable convergence for fixed l as n→∞:

σ
(1)
(j−1)∆l

σ
(2)
(j−1)∆l

1√
n

∑
i∈I(l,n)(j)

(
∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

− µn
)
st.⇒ σ

(1)
(j−1)∆l

σ
(2)
(j−1)∆l

√
β
(
Bj∆l

−B(j−1)∆l

)
.

Finally we have that

P− lim
l→∞

bltc∑
j=1

σ
(1)
(j−1)∆l

σ
(2)
(j−1)∆l

√
β
(
Bj∆l

−B(j−1)∆l

)
=
√
β

∫ t

0

σ(1)
s σ(2)

s dBs,

because the integrand is càdlàg. Modulo another term of the form µn√
n

∑bltc+1
j=1 σ

(1)
(j−1)∆n

σ
(2)
(j−1)∆n

,

which goes to zero a.s. as n → ∞, we have proven stable convergence of the term Cn,lt in our
decomposition.

7.5. Convergence of the term Dn
t

Proposition 7.5. Assume that the assumptions of Theorem 4.2 hold. Then supt∈[0,T ]|Dn
t | → 0

almost surely.

Proof of Proposition 7.5. Note that Dn
t is given by

1√
n
µn

bntc∑
j=1

σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n

−
√
nµn

∫ t

0

σ(1)
s σ(2)

s ds.

Recall that α(i) denotes the Hölder continuity index of σ(i). Rewriting the integral:∫ t

0

σ(1)
s σ(2)

s ds =

bntc∑
j=1

∫ j∆n

(j−1)∆n

σ(1)
s σ(2)

s ds+

∫ t

bntc∆n

σ(1)
s σ(2)

s ds,

and using the mean value theorem, we get:

|Dn
t | ≤

1√
n
µn

bntc∑
j=1

|σ(1)
(j−1)∆n

σ
(2)
(j−1)∆n

− σ(1)
sj σ

(2)
sj |

+
1√
n
µn

∥∥∥σ(1)
sj σ

(2)
sj

∥∥∥
∞

≤ 1√
n
µn

bntc∑
j=1

|(j − 1)∆n − sj |min(α(1),α(2))|σ(1)
(j−1)∆n

+ σ(2)
sj |

+
1√
n
µn

∥∥∥σ(1)
sj σ

(2)
sj

∥∥∥
∞

≤C 1√
n
µn∆n

min(α(1),α(2))nT l +
1√
n
µn

∥∥∥σ(1)
sj σ

(2)
sj

∥∥∥
∞

=C
√
nµn∆n

min(α(1),α(2))T +
1√
n
µn

∥∥∥σ(1)
sj σ

(2)
sj

∥∥∥
∞
.
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Hence, supt∈[0,T ]|Dn
t | → 0 almost surely, since min(α(1), α(2)) > 1

2 .

7.6. Proofs of Theorem 4.2 and Proposition 4.3

Proof of Theorem 4.2. The statement of Theorem 4.2 is a consequence of Propositions 7.1, 7.2,
7.4, 7.5, noting that they imply that, for any ε > 0,

lim
l→∞

lim sup
n→∞

P

(
sup
t∈[0,T ]

∣∣∣Ant +A
′n,l
t +A

′′n,l
t +Dn

t

∣∣∣ ≥ ε) = 0.

It is now sufficient to apply Theorem 3.2 in [17] to conclude.

Finally we provide the proof of the weak law of large numbers.

Proof of Proposition 4.3. We note that, for each fixed t ∈ [0, T ], (17) implies that:√n
 1

n

bntc∑
i=1

∆n
i Y

(1)

τ
(1)
n

∆n
i Y

(2)

τ
(2)
n

− E
[
∆n

1G
(1)

τ
(1)
n

∆n
1G

(2)

τ
(2)
n

] ∫ t

0

σ(1)
s σ(2)

s ds


n∈N

converges weakly, hence, by Prohorov’s theorem, it is a tight sequence. It then follows that:

1

n

bntc∑
i=1

∆n
i Y

(1)

τ
(1)
n

∆n
i Y

(2)

τ
(2)
n

− E
[
∆n

1G
(1)

τ
(1)
n

∆n
1G

(2)

τ
(2)
n

] ∫ t

0

σ(1)
s σ(2)

s ds
P→ 0.

Now:

E
[
∆n

1G
(1)

τ
(1)
n

∆n
1G

(2)

τ
(2)
n

]
=

∫∆n

0
g(1)(s)g(2)(s)ρ ds+

∫∞
0

(
g(1)(s+∆n)− g(1)(s)

) (
g(2)(s+∆n)− g(2)(s)

)
ρ ds

τ
(1)
n τ

(2)
n

= ρ
c(∆n)

τ
(1)
n τ

(2)
n

.

Hence:

∆n

bntc∑
i=1

∆n
i Y

(1)

τ
(1)
n

∆n
i Y

(2)

τ
(2)
n

− ρ c(∆n)

τ
(1)
n τ

(2)
n

∫ t

0

σ(1)
s σ(2)

s ds
P→ 0,

which is equivalent to:

∆n

bntc∑
i=1

∆n
i Y

(1)∆n
i Y

(2) − ρc(∆n)

∫ t

0

σ(1)
s σ(2)

s ds
P→ 0,

or indeed to:

∆n

c(∆n)

bntc∑
i=1

∆n
i Y

(1)∆n
i Y

(2) P→ ρ

∫ t

0

σ(1)
s σ(2)

s ds.

Supplementary Material

Supplement to “A central limit theorem for the realised covariation of a bivariate
Brownian semistationary process”
(; .pdf). We collect technical details and proofs in the supplementary article, which should be read
in conjunction with the present paper.



25

Acknowledgement

We wish to thank Damiano Brigo, Dan Crisan, Mikko Pakkanen, Mark Podolskij and Riccardo
Passeggeri for helpful discussions and the editor and referee for very constructive comments. AG
is grateful to the Department of Mathematics of Imperial College for his PhD scholarship which
supported this research. AEDV acknowledges financial support by a Marie Curie FP7 Integration
Grant within the 7th European Union Framework Programme (grant agreement number PCIG11-
GA-2012-321707).

References

[1] O. E. Barndorff-Nielsen. Gamma kernels and BSS/LSS processes, pages 41–61. Springer
Proceedings in Mathematics & Statistics Volume 189. Springer, 2016.

[2] O. E. Barndorff-Nielsen and J. Schmiegel. Brownian semistationary processes and volatil-
ity/intermittency. In H. Albrecher, W. Rungaldier, and W. Schachermeyer, editors, Advanced
Financial Modelling, Radon Series on Computational and Applied Mathematics 8, pages 1–26,
Berlin, 2009. W. de Gruyter.

[3] O. E. Barndorff-Nielsen and N. Shephard. Econometric analysis of realized covariation: High
frequency based covariance, regression, and correlation in financial economics. Econometrica,
72(3):885–925, 2004.

[4] O. E. Barndorff-Nielsen and N. Shephard. Power and bipower variation with stochastic
volatility and jumps. Journal of Financial Econometrics, 2(1):1–37, 2004.

[5] O. E. Barndorff-Nielsen and N. Shephard. Econometrics of testing for jumps in financial
economics using bipower variation. Journal of financial Econometrics, 4(1):1–30, 2006.

[6] O. E. Barndorff-Nielsen, S. E. Graversen, J. Jacod, M. Podolskij, and N. Shephard. A central
limit theorem for realised power and bipower variations of continuous semimartingales. In
From stochastic calculus to mathematical finance, pages 33–68. Springer, 2006.

[7] O. E. Barndorff-Nielsen, N. Shephard, and M. Winkel. Limit theorems for multipower variation
in the presence of jumps. Stochastic processes and their applications, 116(5):796–806, 2006.

[8] O. E. Barndorff-Nielsen, J. M. Corcuera, and M. Podolskij. Power variation for gaussian
processes with stationary increments. Stochastic Processes and Their Applications, 119(6):
1845–1865, 2009.

[9] O. E. Barndorff-Nielsen, J. M. Corcuera, M. Podolskij, and J. Woerner. Bipower variation for
gaussian processes with stationary increments. Journal of Applied Probability, 46(1):132–150,
2009.

[10] O. E. Barndorff-Nielsen, J. M. Corcuera, and M. Podolskij. Multipower variation for brownian
semistationary processes. Bernoulli, 17(4):1159–1194, 2011.

[11] O. E. Barndorff-Nielsen, F. E. Benth, and A. E. D. Veraart. Modelling energy spot prices by
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