
Journal of Physics: Condensed Matter

PAPER • OPEN ACCESS

A two-phase Hessian approach improves the DFT relaxation of slabs
To cite this article: P A G Davies and W M C Foulkes 2018 J. Phys.: Condens. Matter 30 315901

 

View the article online for updates and enhancements.

This content was downloaded from IP address 129.31.250.47 on 06/07/2018 at 17:43

https://doi.org/10.1088/1361-648X/aacd79
http://oas.iop.org/5c/iopscience.iop.org/760423112/Middle/IOPP/IOPs-Mid-JPCM-pdf/IOPs-Mid-JPCM-pdf.jpg/1?


1 © 2018 IOP Publishing Ltd Printed in the UK

1. Introduction

DFT calculations are often used to find the equilibrium 
conformations of groups of atoms: the forces on the atoms 
are calculated using DFT and the atoms moved until those 
forces are within a defined tolerance of zero. Some invest
igations into ferroelectricity in slabs need precise phonon 
and polarisation calculations based on residual atomic forces 
in the range of 10−4–10−5 eV Å

−1
 [4, 8, 10, 14], which are 

difficult to attain. This applies particularly to thicker slabs 
and lower phonon frequencies. Other applications can have 
similar requirements.

When performing DFT simulations of SrTiO3, there was a 
requirement to distinguish between relative permittivities of 
300 and 500, at an applied external electric field of 1 V Å

−1
, 

equivalent to an approximate polarisation of 0.1 C m−2. This 
requires a polarisation resolution of around 1.3 ×10−4 C m−2. 
Calculations using a Bsite cation Born dynamic charge of 8 
[16], LDA (local density approximation exchange correlation 

functional) value for the bulk modulus of 220 GPa [12] and 
lattice constant of 4 Å give a nominal maximum force on any 
one atom of 3.4 ×10−4 eV Å

−1
. However, the SrTiO3 polari

sation is mainly dependent on the Ti ion movement, which 
forms part of the ‘softmode’ transverse optical phonon, for 
which the spring constant will be significantly less than indi
cated by the bulk modulus. Hence our force tolerance conv
ergence target was set to 10−4 eV Å

−1
.

This paper concerns the problems encountered when 
attempting to use conventional DFTbased approaches to relax 
the atomic positions of slabs with more than a few layers to 
very low force tolerances.

The modified Broyden quasiNewton algorithm as 
described in Johnson 1988 [5] and the BFGS (Broyden–
Fletcher–Goldfarb–Shanno) quasiNewton algorithm as mod
ified and described by Pfrommer et al 1997 [11], while good 
at relaxing bulk solids, do not work well for perovskite slabs 
more than 8 unit cells thick in a vacuum. These algorithms 
are described in detail in books such as Numerical Recipes by 
Press et al [13] and Numerical Optimization by Nocedal and 
Wright [9].

Figure 1 shows the BFGS relaxation of a layered slab with 
a first layer of 3 unit cells thickness of SrTiO3, a second layer 
of 6 unit cells thickness of SrRuO3 and a final layer of 3 unit 
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cells thickness of SrTiO3. The entire slab is surrounded by 
vacuum at both surfaces. The DFT electronic energy conv
ergence was set to 10−7 eV per atom.  ∣F∣max, the blue contin
uous line, is the maximum absolute residual force on any atom 

as a ratio of the convergence target of 0.01 eV Å
−1

. Hence a 

convergence ratio of 3 would represent a maximum atomic 

force of 3 × 10−2 eV ̊A
−1

. Vertical black lines denote the start 
of new relaxation runs.

The maximum residual atomic force convergence ratio 
shows a downward trend from iterations 61–78, and thereafter 
oscillates randomly between 8 and 1 (representing 8 × 10−2 to  
1 × 10−2 eV Å

−1
. All three parameter ratios reduce to below 

their respective convergence ratios of 1 at iteration 108. 
Meeting the convergence criterion appears to be more a matter 
of random chance than a consistent downward trend. There 
seems little chance of getting down to 10−4 eV Å

−1
 (force 

convergence ratio 10−2).
Our project required DFT relaxation of perovskite slabs 

of 12 and 14 unit cells in a vacuum down to atomic forces of 
less than 10−4 eV ̊A

−1
. Without manual intervention such low 

tolerances could not be obtained using standard DFT codes 
such as CASTEP (Cambridge Serial Total Energy Program) 
described in Clark et al 2005 [3], a planewave DFT code, 
or SIESTA (Spanish Initiative for Electronic Simulations 
with Thousands of Atoms) [1], an atomiclike orbital DFT 
code. CASTEP implements the standard DFT version of 
the Pfrommer BFGS algorithm. SIESTA uses the modified 
Broyden algorithm.

Inspection of the forces during slab relaxations indicated 
that a manual approach might succeed where the standard 
algorithms failed. After the successful manual relaxation of a 
simple slab, an automated algorithm more suited to slabs was 
defined and implemented. That is described here.

2. Pfrommer BFGS approach

2.1. Pfrommer BFGS relaxation

In the linear regime the Pfrommer BFGS relaxation process 
for N atoms with 3N independent coordinates defines a 
Hessian matrix A as follows :

∆F = A∆X (1)

where ∆F is the set of stress tensor ∆σi and atomic force 
∆Fi component changes and ∆X is the set of strain tensor 
changes ∆εi and atomic fractional coordinate changes ∆Xi 
as in figure 2.

Figure 1. This charts the convergence of iterations of BFGS geometry relaxation across multiple CASTEP DFT runs for a slab with 
layers of SrTiO3 × 3 unit cells, SrRuO3 × 6 unit cells and SrTiO3 × 3 unit cells normal to the slab surface and surrounded by vacuum. 
The DFT SCF (selfconsistent field) step electronic energy convergence was set to 10−7 eV per atom. Three measures of convergence are 
shown.  ∣F∣max (blue, continuous line) is the maximum residual force on any atom as a ratio of the target. dE/ion (red, dashed) is the change 
in total energy per iteration, averaged per atom, and  ∣dR∣max (green, dotted) is the largest atom move between iterations, both as ratios of 
their respective targets. Vertical black lines denote the start of new relaxation runs. From iteration 78 onwards the residual forces are almost 
random just above 10−2 eV Å

−1
 (force convergence ratio of 1) with no obvious downward trend. There appears to be little chance of getting 

down to 10−4 eV Å
−1

 (force convergence ratio 10−2).

Figure 2. Change vector structures for strain/individual 
atomic displacements and stress/atomic forces. In this notation 
∆σ1 = ∆σ11, ∆σ2 = ∆σ12 and ∆σ9 = ∆σ33 etc.
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If the Hessian matrix A is known, it can be inverted to give 
a negative semidefinite inverse Hessian matrix H such that

∆X = A−1∆F = H∆F (2)

which drives the relaxation process.
Care must be exercised during the inversion. The matrix A 

can be decomposed into eigenvalues λk  and eigenvectors ek, 
and the inverse matrix would normally then be specified as

Hij =
∑

k

ek
i ek

j

λk . (3)

For a 3D bulk relaxation, up to six orthogonal eigenvectors of 
A form the basis set for translations and rotations of the entire 
structure. In an exact representation of A, the translations 
have eigenvalues of zero, as the force between atoms does not 
change on displacing the whole structure. Periodic boundary 
conditions on the DFT supercell will normally prevent rota
tions from having zero eigenvalues. The corresponding 
ek

i ek
j /λ

k  terms with zero eigenvalues must be omitted from the 
summation in (3).

Consider the effect of an set of ion displacements dei 
which are a multiple d of the ith nonzero eigenvector ei of 
A. If the atoms are perturbed from an equilibrium position 
then the restoring force must be in exactly the opposite direc
tion. Hence all the nonzero eigenvalues of H must be nega
tive. Both A and H must therefore be negative semidefinite 
matrices.

The stress tensor σ is defined in terms of the individual 
strain tensor components εij by

σij =
1
Ω

∂U
∂εij

 (4)

where U is the energy and Ω the supercell volume as in Knuth 
et al 2015 [7]

2.2. Structure of the inverse Hessian relaxation matrix

The block structure of the Pfrommer BFGS inverse Hessian 
relaxation matrix is illustrated in figure 3. The top left block 
maps stress to changes in strain tensor components. The 
bottom right block maps atomic forces to changes in indi
vidual ion fractional coordinates.

In normal bulk solids, where all bonds are of somewhat sim
ilar strength, the upper right Xi j cross terms mapping atomic 
forces to strain changes, and lower left Xi j cross terms map
ping stress to atomic displacements would typically be small, 
but may not necessarily be zero. But if a previously relaxed 

material has a plane of atoms with weak bonding on one side 
and strong bonding on the other, a uniform stretch normal to 
the plane creates nonzero net atomic forces on some atoms in 
the plane, which would introduce significant upper right and 
lower left Xi j cross terms in the inverse Hessian.

Pfrommer et  al 1997 [11] recommend a specific block
diagonal, initial inverse Hessian matrix which has 9 identical 
scalar terms on the top left diagonal relating strain and stress, 
and 3  ×  3 blocks on the bottom right diagonal relating atomic 
forces to changes in position.

Starting with this initial inverse Hessian, the n  +  1th move 
is calculated using the Pfrommer et al 1997 [11] formulae

∆Xn = HnFn (5)

Xn+1 = Xn + λ∆Xn (6)

where λ is determined by a line minimisation. Close to equi
librium, λ = 1 is the only value used most of the time.

After each step, the new values for the atomic forces are 
calculated and the inverse Hessian is modified using a formula 
given in Pfrommer et al 1997 [11].

In theory, in the harmonic regime, for a system of N inde
pendent atoms, after 3N moves the inverse Hessian should be 
fully developed and the structure fully relaxed.

2.3. Weaknesses of the Pfrommer BFGS approach applied 
to slabs

For both slab and bulk solid relaxations, the inverse Hessian 
matrix H must remain negative semidefinite. That is, if v is 
any nonzero vector then the scalar

s = v∗Hv (7)

must be either zero or a negative real number.
For noisefree forces, and displacements from equilibrium 

in the quadratic regime, H can be shown to be negative sem
idefinite by representing v in terms of the orthogonal eigen
vectors em of A and H as follows :

v =
∑

m

Cmem. (8)

From (3), using the fact that the eigenvectors em are orthogonal:

v∗Hv =
∑

m

(Cm)∗
(

1
λm

)
Cm

=
∑

m

(Cm)∗ Cm

λm .
 

(9)

(Cm)∗ Cm is always positive. From section 2.1 Pfrommer 
BFGS relaxation, all the eigenvalues λm of A are negative or 
zero. The eigenvectors corresponding to zero eigenvalues of A 
are not used in the construction of H. Thus for any v, which is 
a linear combination solely of such excluded eigenvectors, the 
effective eigenvalue of H is zero. Hence

v∗Hv � 0 (10)

and H is therefore negative semidefinite.
After each move, CASTEP performs an indirect check that 

H is still negative semidefinite. Although detailed checking 

H =




C1 1 . . . C1 9 X1 10 . . . X1 3N+9
... . . . ...

... . . . ...

C9 1 . . . C9 9 X9 10 . . . X9 3N+9

X10 1 . . . X10 9 H10 10 . . . H10 3N+9
... . . . ...

... . . . ...

X3N+9 1 . . . X3N+9 9 H3N+9 10 . . . H3N+9 3N+9




Figure 3. Structure of the inverse Hessian relaxation matrix.
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confirmed that CASTEP accurately implements the Pfrommer 
BFGS algorithm, for the slabs of interest, the check that H was 
negative semidefinite failed every 4 or 5 moves. This resulted 
in a reset of H to its initial values. Working closely with mem
bers of the CASTEP development team did not enable them 
to identify a potential fix for the problem. Although the exact 
cause of the failure to stay negative semidefinite is unknown, 
it may be related to noise in the forces. It is relevant to some 
of the problems in relaxing slabs discussed below.

One specific difference between relaxations of slabs and 
bulk systems is the presence of a null move. This consists 
of a change in strain normal to the slab, exactly counterbal
anced by changes to atomic fractional coordinates in the same 
direction. Although both changes are nonzero, there is no 
change to the relative position of bonded atoms, measured in 
Ångstroms (although the size of the DFT supercell vacuum 
region is no longer the same). The corresponding eigenmode 
has an eigenvalue of zero. If this is not removed during incre
mental updating of the inverse Hessian it can potentially cause 
numerical problems as the corresponding inverse Hessian 
eigenvalue diverges.

Another problem arises because average strain in a slab is 
directly caused by the movements of surface atoms, and not 
those in the interior of the slab.

For a bulk solid at equilibrium, the forces on each atom 
are zero. Applying a small tensile strain, in the direction 
of one unit cell lattice vector, will produce a proportionate 
stress. If the bulk solid consists of only one type of atom, this 
should produce no net atomic forces. If the bulk solid con
sists of multiple atomic types, and all bonds are of similar 
strength, it will produce only small net atomic forces, as 
forces from stretched bonds in one direction will mainly be 
offset by forces from stretched bonds in the opposite direc
tion. However, the stress and crystal energy will increase as 
the crystal is stretched relative to the lowest energy equilib
rium configuration. Application of the initial inverse Hessian 
to the stress tensor of the strained material defines a change in 
strain approximately equal and opposite to the original strain 
applied, leaving small local atomic forces to be relaxed away.

A slab at equilibrium does not behave the same way. A 
small tensile strain normal to the slab surface will not only 
cause a proportionate stress, but also a net force towards the 
slab centre on atoms at the slab surface. These atoms have no 
outwardfacing bonds to counterbalance the inward force due 
to the stretched inside bonds. The multiplication of the stress 
and atomic force vector by the initial inverse Hessian will 
define, not only a recommended strain change, but also super
fluous fractional coordinate moves to slab surface atoms. In 
the next iteration, the forces on the atoms in a plane are trans
mitted, diluted, to the next inward atomic plane, and so on. In 
theory the dynamic updates to the inverse Hessian will even
tually introduce cross terms between stress and atomic moves 
in fractional coordinates, and between surface atom atomic 
forces and strain. Although these should lead to an effective 
inverse Hessian for the slab, this did not happen, prevented 
by resets of the inverse Hessian, which was no longer nega
tive semidefinite after each four or five relaxation iterations, 
as discussed above.

Suppressing changes to supercell lattice constants to switch 
off the processing of stress and strain also fails. Strainlike 
distortions of the whole slab, would be present, for example, 
if the lattice parameter normal to the surface were incorrect. 
These must then be relaxed by motions of individual atoms, 
related to the atomic forces via the lower righthand block of 
the inverse Hessian matrix. Unfortunately, the only large net 
atomic forces present in a strained slab are those on the sur
face layers; the bonds inside the slab are stretched too, but 
bulk atoms have similar forces in opposite directions which 
mainly offset each other to leave a much smaller net force. To 
correct the larger forces on only the surface atoms requires 
correlated moves of at least (N − 1)/2 atoms before the BFGS 
inverse Hessian is fully developed. When there is significant 
noise in the DFT forces, to develop such a correlated move 
from the initial inverse Hessian is difficult. The relaxation of 
a stretched slab produces waves of atomic moves towards the 
centre, decaying as they propagate.

As the relaxation proceeds, and the atomic forces reduce, 
the finerresolution updates to the inverse Hessian matrix take 
place at decreasing force signaltonoise ratios, also making 
optimum convergence less likely.

A slab can be viewed as a system for which, applying the 
usual DFT periodic boundary conditions, the bond via the 
vacuum between the two slab surfaces is just extremely weak. 
Other systems contain both weak and strong bonds, such as an 
array of molecules bonded together by Van der Waals forces. 
Therefore, for these systems, similar problems are expected 
to arise and the standard Pfrommer BFGS algorithm may not 
be effective.

3. Modified Broyden relaxation

Johnson 1988 [5] developed a modified version of the 
Broyden 1965, quasiNewton minimisation method [2] for 
coupled systems of nonlinear equations. This combined 
Srivastava’s 1984 [17] modifications to the Broyden method, 
which minimised use of memory, with Vanderbilt and Louie’s 
1984 [18] process and convergence improvements. Although 
emphasising the application of the modified Broyden method 
to electronicstructure energy minimisation, Johnson notes 
that it can also be used for moleculardynamics simulations.

Johnson defines the modified Broyden algorithm using a 
Jacobian matrix, whereas Pfrommer [11] defines enhance
ments to BFGS using a Hessian. However, a Hessian is the 
Jacobian of a gradient, and the Jacobian of a force vector 
is equivalent to the Hessian of an energy scalar, so, while 
differing in detail, the two methods are based on similar 
constructs.

The reasons why modified Broyden relaxation failed for 
our slabs were not investigated in detail. However, due to the 
similarities between the methods, the reasons for failure of 
modified Broyden to relax thick slabs sufficiently are likely to 
be similar to those causing Pfrommer BFGS to fail. Both the 
presence of a null move, causing divergence, and the interfer
ence of surface atom forces and positions with standard stress 
and strain processing, are likely to contribute to the failure to 
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relax slabs sufficiently, as described in section 2.3 Weaknesses 
of the Pfrommer BFGS approach applied to slabs.

4. The two-phase Hessian approach

A more robust approach to high precision relaxation of a slab 
in a vacuum is to completely determine the inverse Hessian 
matrix at a relatively large force signaltonoise ratio before 
using it to drive the relaxation of the structure in a second, 
separate phase. The better force signaltonoise ratio results 
in a more accurate inverse Hessian than one built dynami
cally during relaxation, allowing convergence to a lower force 
tolerance.

The stress/strain mapping is dropped from the inverse 
Hessian. In its place, the algorithm relies on sufficient precision 
in the formation of the Hessian matrix to identify relaxation 
modes involving moves of most of the atoms in the structure. 
This enables the algorithm to respond to stresses induced by a 
pure strain without incorporating an explicit strain/stress map
ping. Hence the process uses a fixed supercell lattice vector 
in the direction normal to the slab surface. This approach is 
suitable only for slabs and not for bulk materials, for which 
the stress/strain processing is relatively independent of that 
for atomic forces and fractional coordinate positions.

An effective twophase automatic method of performing 
1D relaxations in the direction perpendicular to the surface of 
the slab is as follows:

Phase 1—Hessian discovery and processing

 1.  A DFT run is performed for a base configuration with 
fractional coordinates Xbase, producing forces Fbase. 
For the ith independent atomic coordinate the positions 
and forces are Xbase

i  and Fbase
i . Each atomic coordinate 

specifies the position along the axis normal to the slab 
of one atom or a set of atoms constrained to the same 
coordinate.

 2.  A series of DFT runs is performed, equal in number 
to N, the number of independent atomic coordinates, 
during each of which only a single independent coor
dinate is temporarily displaced from the base atomic 
coordinates by a displacement h, chosen as described 
below. The nth run uses atomic fractional coordinates 
Xn of which the ith coordinate is Xn

i  where :

Xn
i =Xbase

i (i �= n)

Xn
n =Xbase

n + h
 

(11)

  and results in forces Fn.
 3.  The changes in all atomic forces for each displacement 

are calculated using :

∆Fn
i = Fn

i − Fbase
i . (12)

 4.  The Hessian matrix A is defined by

Ani = ∆Fn
i /h. (13)

 5.  The Hessian matrix A is decomposed into normalised 
eigenvectors ek each with eigenvalue λk .

 6.  The eigenvectors representing translations (and zero
eigenvalue rotations if there are any) are dropped as 
described in section 2 Pfrommer BFGS approach 
above. They can be identified as described below. The 
null movement mode referred to earlier (where indi
vidual atomic moves exactly counteract a change in 
strain) is not present because the Hessian and inverse 
Hessian do not explicitly include elements relating to 
strain and stress.

 7.  All other eigenvalues and eigenvectors are used to 
build the inverse Hessian H using

Hij =
∑

k

ek
i ek

j

λk

 (14)

  from (3) above. This inverse Hessian is never changed 
during the phase 2 slab relaxation below.

Phase 2—Slab relaxation

 8.  The atomic positions within the slab are now relaxed 
iteratively using

Xr+1 = Xr + HFr
 (15)

  where r is the relaxation iteration number, X0 = Xbase 
and F0 = Fbase, until the largest residual error is within 
a factor of 10 of the noise expected in each element.

 9.  The atomic positions within the slab are now relaxed 
iteratively using a lower proportion, 0.3, of the calcu
lated move:

Xr+1 = Xr + 0.3 × HFr, (16)

  until either the desired force convergence tolerance has 
been reached, or the DFT steps show no systematic 
reduction in residual force. 0.3 is just a factor which 
works well across later relaxation steps, because it 
reduces the impact of a large coordinate change solely 
due to a random, high level of force noise.

 10. I f the desired force convergence tolerance has not been 
reached, consider reducing the force noise in each step 
by one or both of:

 •  increasing the energy cut off
 •  applying specific DFT code eggbox removal tech

niques (discussed below).
 and then performing further relaxation steps.

If the desired residual force threshold is not reached in a 
reasonable number of phase 2 relaxation iterations then the 
process is now repeated from the first phase 1 step using the 
atomic configuration with the lowest maximum residual force 
as the new base configuration.

4.1. Phase 1—Hessian discovery and processing

The Hessian discovery step size h needs to be chosen to be 
sufficiently large to give a good force signaltonoise ratio 
(recommended to be in the range of 30–100) for the largest 
force change on any atom in each phase 1 Hessian discovery 
step. It must also be sufficiently small to stay within the linear 
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displacement/force region around equilibrium, if the initial 
atomic starting positions permit this. Values for h were typi
cally chosen to result in temporary displacements of 3 × 10−3 
Å. The step size, h, was kept constant for all atomic coordinate 
changes during the Hessian discovery phase.

Using a constant step size h in all phase 1 discovery steps 
results in a varying force signaltonoise ratio across discovery 
steps. A temporary displacement h of certain single atomic 
coordinates results in a bigger maximum force change on 
any atom than is produced by the same displacement of other 
single atomic coordinates. For the second and subsequent 
times through the two phase process, for each discovery step, 
h could be varied inversely with the maximum force change 
produced on any atom for that step the first time through. This 
would result in similar absolute values for the largest resulting 
atomic force change for every discovery step, and provide a 
consistent maximum force signaltonoise ratio across steps. 
This enhancement was not implemented.

In the 1D case the single translational eigenvector to be 
removed from inverse Hessian construction should have an 
eigenvalue close to zero. It will also have similar values for 
each eigenvector element.

In the 3D case there will be three orthogonal translational 
eigenvectors, all with eigenvalues close to zero. The transla
tional eigenvectors’ separate x, y and z components should 
independently have nearly constant elements within that 
comp onent. Periodic boundary conditions should ensure that 
rotations within a DFT supercell have nonzero eigenvalues.

Figure 4 shows the Hessian eigenvectors for a 1D triple
layer slab relaxation using the twophase Hessian approach. 
The inplane x and y coordinates of the atomic positions are 
fixed. In the z dimension the first layer is 4 unit cells thickness 
of PbTiO3, with a second layer of 6 unit cells thickness of 
SrRuO3 and a final layer of 4 unit cells thickness of PbTiO3. In 
the z dimension both slab surfaces are surrounded by vacuum.

Each eigenvector coefficient is plotted on the chart yaxis 
against the z fractional coordinates of the atom corresponding 
to that eigenvector element. The two different atomic types 
in each atomic plane have similar z coordinates but different 
eigenvector element values. The lines are smoothed using 
splines with no markers on the points. This produces a clear 
chart, but also multiple values for some fractional coordinates, 
where multiple atoms in the same plane have similar fractional 
coordinates but different eigenvector coefficients.

The six eigenvectors of the 1D Hessian with the least nega
tive lowest eigenvalues are displayed. The single translational 
mode, represented by the flat, dark blue line, has an eigen
value of 0.68—close to zero as expected. The cosinusoidal 
modes on the chart represent negative Hessian eigenvalues 
whose eigenvector elements average to zero. Their spatial fre
quencies increase monotonically as the eigenvalues become 
more negative.

The twophase Hessian approach can succeed without 
incorporating the explicit relationship between stress and 
strain into the inverse Hessian because the relaxation process 
is now accurate enough to generate automatically the set of 
atomic moves required to eliminate linear stress and strain.

If the base structure starts too far from equilibrium then the 
change in forces used to build the Hessian may not be linear 
with the additional displacements and the residual force conv
ergence target may not be reached. Further, the noise in the 
forces in the Hessian discovery steps can magnify particular 
crossterms in the Hessian, shifting Hessian eigenvalues, 
which ought to be negative, closer to zero.

The quality of the discovered Hessian can be evaluated 
by examination of its eigenvalues and eigenvectors, and the 
matrix should be symmetric. For eigenvectors which should 
not be discarded, eigenvalues which are positive or too close to 
zero are signs that the inverse Hessian quality will not be good 
enough to relax to a tight residual force tolerance. However, in 

Figure 4. This chart represents the 1D relaxation of a slab with layers PbTiO3 × 4, SrRuO3 × 6 and PbTiO3 × 4 unit cells surrounded 
by vacuum using the twophase Hessian approach. The inplane x and y coordinates of the atomic positions are fixed. For the six 
eigenvectors of the 1D Hessian with the least negative eigenvalues, the eigenvector coefficient is plotted against the z fractional coordinate 
of the atom represented by that eigenvector element. The flat eigenvector with eigenvalue 0.68 represents the single 1D translation. All 
other eigenvectors approximate to cosine waves whose spatial frequencies (proportional to the number of crossings of zero) increase 
monotonically with more negative eigenvalues. The lines are smoothed using splines with no markers on the points. This produces a clear 
chart, but also multiple values, where the two atom types in the same plane have similar z fractional coordinates but different eigenvector 
element values.
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1D relaxations, using the phase 1 inverse Hessian in a phase 2 
relaxation always lowered the residual forces somewhat, even 
if the discovered Hessian was not ideal. The partiallyrelaxed 
atomic configuration with the lowest residual forces was then 
selected as the new base atomic configuration and the entire 
procedure repeated.

Eigensystem decomposition instead of SVD (singular value 
decomposition) was used in an exploratory manual relaxation 
of a slab and use continued by default in the automated two
phase Hessian relaxation process. It helped build an intuitive 
understanding of the quality of the Hessian.

4.2. Phase 2—Slab relaxation

In theory, if the forces are perfectly linear with the displace
ment from equilibrium, a single application of H to the forces 
in the base configuration DFT step will completely relax 
the forces to zero. However, although the complete inverse 
Hessian H has a lower signaltonoise ratio than an inverse 
Hessian generated dynamically using the Pfrommer BFGS 
algorithm, it is still not perfect. Further, the residual forces to 
which H is applied also contain noise. Hence multiple itera
tions are necessary.

Problems were encountered iteratively applying H to low 
residual forces, just above the convergence tolerance. Hence, 
from that point, a fraction 0.3 of the calculated move was 
applied, until the target residual force was reached, or there 
was no further reduction in residual forces. Using a ball and 
spring model with Gaussian force noise applied, invest igations 
showed that it is best to allow the initial relaxation steps to 
use the full move, changing to a fraction of 0.3 only once the 
maximum residual force on any atom reduces to an order of 
magnitude larger than the estimate of residual force noise.

4.2.1. Reducing force noise. During the later relaxation steps 
the residual forces become lower and the relaxation less effec
tive because the force signaltonoise ratio also reduces. At 
this point the force signaltonoise ratio can be improved in 
various ways.

Increasing the energy cut off will directly reduce the force 
noise, as it increases the resolution of the DFT realspace 
grid(s). Increasing the energy cut off partway through phase 
2 relaxation temporarily increases the residual forces because 
the equilibrium atomic configuration also changes slightly. 
However, after a few relaxation steps the residual force will 
be reduced below that before the increase of energy cut off. 
See figure 5 on page 14.

In DFT codes small changes in nuclear positions with 
respect to the realspace integration grid cause significant 
energy changes—the eggbox effect described in Junquera’s 
slides [6] and in RuizSessano et  al 2012 [15]. Apart from 
increasing the energy cut off, specific DFT codes have specific 
ways of reducing the impact of the eggbox effect.

In SIESTA, eggbox noise can be reduced by specifying a 
set of realspace grid fractional offsets with regular spacing 
at which forces are recalculated. Taking the average of the 
results across all fractional offsets often reduces the force 
noise by one or two orders of magnitude, though sometimes 
this is not effective unless the energy cut off is also increased. 
CASTEP and other plane wave codes use a realspace fine 
grid with a resolution which can be altered independently, 
both of the energy cut off, and of the standard grid scale used 
for the reciprocalspace grid. Increasing the realspace fine 
grid resolution reduces eggbox force noise.

SIESTA provides the total of forces along each lattice 
vector direction for each DFT step—referred to below as the 
‘total force discrepancy from zero’. Physically the total should 

Figure 5. This chart shows two slab relaxations. The red, two dots, three dashes line is the magnitude of the atomic force vector for all 
atoms, and the blue, solid line is the maximum force on any one atom for a 1D, twophase Hessian, SIESTA relaxation of an SrTiO3 × 4 
(unit cells)/SrRuO3 × 6/SrTiO3 × 4, 72 atom slab, with an external applied electric field of 1 V Å

−1
. The green, two dots, one dash line 

is for the CASTEP BFGS relaxation of a shorter SrTiO3 × 3/SrRuO3 × 6/SrTiO3 × 3, 62 atom slab with no field. Both use a DFT SCF 
(selfconsistent field) energy convergence of 10−9 eV/atom. The twophase Hessian relaxation iteration number shown is for the second, 
relaxation phase, before which, all 59 phase 1 discovery steps were run. The twophase Hessian slab converged down to a maximum 
force on any atom of 1.2 × 10−5 eV Å

−1
 after parameters affecting the force noise were changed twice. The number of offsets from each 

grid point at which forces are calculated and averaged was doubled from 40 to 80 at iteration 15, which did not disrupt the relaxation. 
The energy cutoff, which also determines the realspace grid spacing, was changed from 1600 eV to 6400 eV at iteration 31, causing 
an immediate increase in the residual force after which the downward movement resumed. The BFGS relaxation shows much slower 
convergence, similar to the same slab in figure 1 which was performed with a higher DFT SCF energy convergence of 10−7 eV/atom.
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be zero but in a SIESTA DFT step it often is not. However, 
when relaxing a centred atomic configuration showing inver
sion symmetry, the total force discrepancy from zero in each 
lattice vector direction can be zero or very low. This does not 
necessarily indicate low force noise, just that most force noise 
on one atom is not random and is equal and in the opposite 
direction to the force noise on its inversionsymmetric partner 
atom, as eggbox effect force noise would be. A similar effect 
was seen in CASTEP during DFT runs to analyse force noise. 
Displacing the entire atomic configuration slightly from the 
centre may expose a higher total force discrepancy from zero.

The techniques above enable most of the processing, 
including Hessian discovery, to be performed efficiently at 
higher absolute force noise, but, by using an appropriate dis
covery step size h, still with large force signaltonoise ratios. 
More expensive, lowernoise steps are required only towards 
the end of the relaxation, optimising overall efficiency.

4.3. Number of DFT steps

The number of DFT job steps for phase 1 Hessian discovery is 
the number of independent atomic coordinates plus one. For 
a well formed inverse Hessian the number of phase 2 relax
ation steps should be independent of the number of atoms. 
Typically 30 to 50 relaxation steps sufficed for perovskite 
slabs of 42–72 atoms.

The number of SCF (DFT self consistent field) iterations 
per job step (each job step resulting in one set of atomic 
moves) is greatest for the initial base run. Thereafter, reuse 
of wave function or density output files as input to subse
quent steps reduces the number of SCF iterations. The phase 
1 (Hessian discovery) second and subsequent DFT steps take 
approximately the same time. However, each fractional real
space grid offset contributing towards the average of forces, 
as described in section 4.2 above, requires a similar time to an 
SCF iteration.

Although relaxation steps take less time as the phase 2 
relaxation proceeds, the constant processing time for the force 
calculation at multiple fractional offsets starts to dominate the 
reducing number of SCF iterations per DFT relaxation step. If 
higher energy cut offs and/or more realspace grid offsets are 
used to reduce force noise in the later DFT relaxation steps, 
each subsequent step will be considerably slower than earlier 
steps. The number of steps cannot readily be compared with 
those of Pfrommer BFGS (CASTEP) or modified Broyden 
(SIESTA) as neither of these provided the desired conv ergence 
for perovskite slabs without manual intervention.

5. Results

The convergence of the relaxation for an SrTiO3 × 4 (unit 
cells)/SrRuO3 × 6/SrTiO3 × 4, 72 atom slab with external 
applied field of 1 V Å

−1
; is shown in figure 5. Compared to 

the results obtained using the initial parameters, parameter 
changes to reduce the noise in the forces restored the down
wards convergence, enabling a reduction in residual forces of 
a further two orders of magnitude.

Using the twophase Hessian algorithm the slabs of interest 
were relaxed to well below the target of 10−4 eV Å

−1
 using 

SIESTA 4.1b3. Typically, multiple twophase Hessian runs 
were required. This compared favourably with those few 
SIESTA relaxation runs using the modified Broyden method 
which came close to a higher atomic force convergence target 
of 2 × 10−4. But, in those cases, the slab had to be manually 
(de)strained multiple times to remove obvious stress before 
this target could be reached.

A BFGS 1D relaxation of an SrTiO3 × 3 (unit cells)/
SrRuO3 × 6/SrTiO×3 slab, with no applied field, is also shown 
on the chart (maximum force on any one atom shown by the 
green, two dot, one dash line). The convergence of this is very 
slow. This slab is slightly shorter than those in the SIESTA, 
twophase Hessian relaxation, and there is no applied electric 
field (allowing imposed symmetry). Both of these are reasons 
why the BFGS relaxation would be expected to be easier and 
quicker than the twophase Hessian relaxation.

A comparable SIESTA, modifiedBroyden relaxation was 
not possible, as SIESTA does not allow only one supercell lat
tice vector to be varied to perform a 1D relaxation.

5.1. 1D simple ball and spring model results

To provide further insight the Pfrommer BFGS and twophase 
Hessian relaxation algorithms were tested on a simple 1D 
ball and spring relaxation model. This model is described in 
more detail in the supplementary materials (stacks.iop.org/
JPhysCM/30/315901/mmedia).

The system studied consisted of a chain of 15 atoms joined 
by harmonic springs with arbitrary, nonregular, initial spacing 
and with both random force noise with a Gaussian distribu
tion and eggbox force noise, described in section 4.2.1. The 
eggbox force noise is sawtoothshaped, varying periodically 
with atomic position offset from the nearest grid line of a 
randomlypositioned grid. The zeroes of the sawtooth occur 
when an atomic position coincides with a grid line.

For a 15atom chain, the ball and spring model force conv
ergence reached for each algorithm is shown in table 1.

The ball and spring model was run 100 times each with 
Gaussian force noise, eggbox noise, or a mixture of the two. 
Each run consisted of 100 iterations, and the lowest value 
for the maximum residual force on any individual atom was 
noted. The higher the fraction of eggbox noise relative to 
random Gaussian noise, the worse the Pfrommer BFGS algo
rithm performed relative to the twophase Hessian algorithm. 
However, the minimum residual force was highly dependent 
on the exact resolution and offset of the nominal grid, relative 
to the expected equilibrium atomic positions. Thus the values 
in table 1 should be regarded as indicative only.

In the presence of eggbox noise, the Pfrommer BFGS 
algorithm performed worse. There were also significantly 
more numerical problems than with the twophase Hessian 
approach, caused by breaches of the requirement that the 
inverse Hessian remains negative semidefinite.

The twophase Hessian approach gave maximum ben
efits close to the noise level when only 0.3 of the calculated 
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displacement was applied in the following iteration. This tech
nique enabled convergence to lower residual forces than either 
the Pfrommer BFGS approach or the twophase Hessian 
approach when the full calculated displacement was always 
used.

The twophase Hessian approach appeared to perform 
similarly in real DFT runs and in ball and spring model runs. 
However, the Pfrommer BFGS relaxation performed worse in 
real DFT runs than in ball and spring model runs, for reasons 
which we do not understand.

6. Conclusions

The twophase Hessian approach works well for slabs not 
successfully relaxed by the modified Broyden or Pfrommer 
BFGS algorithms. It could also be useful for bulk materials 
where very low residual forces are more important than run 
time. The inverse Hessian matrix derived using individual 
atom moves is constructed from forces with high (30–100) 
signaltonoise ratios. In the standard Pfrommer BFGS algo
rithm the residual forces (i.e. signal), used to dynamically 
update the inverse Hessian, reduce as the relaxation proceeds, 
whereas the force noise remains constant. The reduced signal
tonoise ratio degrades dynamic updates applied to the inverse 
Hessian during the later relaxation steps.

If the twophase Hessian algorithm is operating in the 
linear force regime, it is more robust and relaxes to lower 
residual forces than standard Pfrommer BFGS. If outside the 
linear force regime, the full twophase Hessian process needs 
to be repeated.

The twophase Hessian procedure allows for increasing the 
force signaltonoise ratio towards the end of the relaxation, by 

increasing the energy cutoff and/or taking additional measures 
to counter eggbox effects. This can reduce the residual forces 
efficiently, incurring the overhead of increased calculation 
only when necessary. In principle this could also be imple
mented in the Pfrommer BFGS algorithm, but care would be 
necessary to avoid updating the dynamic inverse Hessian for 
the step during which a higher energy cut off was first used, 
as the forces would change purely because of a new equilib
rium atomic configuration caused by the higher energy cut off. 
This would cause a bad inverse Hessian update for that step. 
Similar considerations apply to modified Broyden.

The supplementary materials contain implementation 
details for the twophase Hessian process and further details 
of the 1D ball and spring model.
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