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Abstract

Generalized Multiple Mapping Conditioning (MMC) allows for the use of any

physical quantity to represent the required reference variable provided that

it delivers the desired behavior. The binomial Langevin model (BLM) has

been shown to predict higher statistical moments with good accuracy. How-

ever, joint–scalar modeling for many scalars becomes problematic because

scalar bounds must be specified as conditional on other scalars to preserve

elemental balances. The resulting volumes in state space become exception-

ally complex for realistic problem sizes. In the current work, this central

difficulty is avoided by using only velocity and mixture fraction statistics

from the BLM with the latter used as the MMC reference variable. The

principal advantage of this method is that the implementation of the bino-

mial Langevin mixture fraction is relatively straightforward and provides a

direct physical link to MMC. The MMC model is closed using an augmented

modified Curl’s model where the selection of particle pairs for (turbulent)
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mixing ensures proximity in reference space and a corresponding closeness in

physical space. The method is evaluated for a lifted methane jet flame un-

dergoing auto-ignition in a vitiated coflow. Most of the major features of the

flow are well reproduced and found to generally outperform other modeling

approaches, including Large Eddy Simulations using simplified treatments of

turbulence–chemistry interactions such as unsteady flamelet/progress vari-

able descriptions.
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1. Introduction1

The desire to combine improved combustion efficiency with lower emis-2

sions has led to an increased interest in combustion systems that operate near3

stability limits. Finite-rate chemistry effects (such as extinction/reignition)4

become important under such conditions and the formulation of calculation5

methods capable of reproducing such phenomena has received substantial6

interest [1, 2, 3, 4]. Time-scales covering several orders of magnitude become7

important [5] with turbulence typically interacting strongly with chemical8

kinetics. Simple models cannot capture such phenomena and transported9

probability density function (PDF) based models are typically required [6, 7].10

Predictions are more sensitive to various model components—including the11

closure for molecular mixing [8]—in such situations.12

The hybrid binomial Langevin–Multiple Mapping Conditioning (MMC)13

model [9, 10] aims to combine some of the benefits of the binomial Langevin14

model (BLM) [11], such as predictions of higher statistical moments, with the15

benefits of the MMC approach [12], while overcoming at least some of the16

deficiencies associated with each individual model component. Previously,17

the hybrid model utilized a velocity component for mapping the MMC mix-18

ture fraction. The current work replaces the velocity with a mixture fraction19

to provide a more physical basis for general flames.20

One of the difficulties with BLM is joint–scalar modeling because the21

bounds for all scalars must be specified as conditional on all other scalars to22

conserve elemental balances. A formulation of the joint velocity–scalar PDF23

that includes the joint statistics of a mixture fraction and a reaction progress24

variable has been developed [13]. The formulation provides detailed statistics25
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of velocity–scalar interactions, predicting higher moments with encouraging26

accuracy. The current hybrid model seeks to retain this ability while averting27

the central difficulty of evolving (variable) scalar bounds.28

In the MMC framework, a mathematical reference space is utilized that29

has sufficient dimensions in scalar space to describe the manifold on which30

compositions may lie [14]. This is founded on the principles of ordinary31

and doubly-conditioned Conditional Moment Closures (CMC) [15] applied32

in previous studies [16, 17, 18]. The probabilistic approach [19] (similar to33

second-order CMC) provides an alternative [20], has been implemented in a34

variety of ways [21, 22, 23], and forms the basis for the MMC component of35

the current hybrid model.36

Surrogate reference variables have been developed for MMC to avoid dif-37

ficulties in specifying model coefficients: some quantity (preferably already38

solved as part of the calculation procedure) is used as the reference variable.39

This is fundamental to the application of generalized MMC [24, 25, 26]. The40

transformation of such a quantity into a reference variable has been utilized in41

sparse Lagrangian Large Eddy Simulations (LES) by using the LES-resolved42

filtered mixture fraction field [24, 27, 28]. In the current hybrid approach, the43

mixture fraction obtained from BLM is used as the reference variable. The44

scalar mixing in the MMC component of the hybrid model is then controlled45

by specifying the fraction of particles which are to be mixed. The model46

is evaluated by simulating a fuel jet undergoing auto-ignition in a vitiated47

coflow [29].48
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2. Theory49

2.1. Binomial Langevin model50

H
◦

ulek and Lindstedt [13] developed a generalized form of BLM [11] for51

the joint-PDF of velocity and multiple scalars. The velocity transport model52

(including the turbulent dissipation ε, the return-to-isotropy of the Reynolds53

stresses and the dispersion in velocity space) for a stochastic particle p is:54

du∗p
i =

1

τu
(α1δij + α2βij)

(

u∗p
j − 〈uj〉

)

dt

+(C0〈ε〉)
1/2dwi (1)

where superscript ‘∗’ represents a stochastic trajectory, k is the turbulent55

kinetic energy, the velocity time–scale is τu = 〈k〉/〈ε〉, dwi is an isotropic56

Wiener process and the Reynolds stress anisotropy tensor is57

βij =
〈u′

iu
′

j〉

〈u′

ku
′

k〉
−

δij
3

. (2)

The modeling coefficients are C0 = 2.1, α2 = 3.7 and α1 = −
(

1

2
+ 3

4
C0

)

−58

α2β
2
ll. The modeled stochastic differential equation for any scalar η is59

dη∗p =
Gη

2τη
(η∗p − 〈η〉) dt+ (Bη〈εη〉)

1/2 dwbin (3)

where the drift (Gη) and diffusion (Bη) coefficients are defined elsewhere [11,60

13], dwbin is a binomial Wiener process [11] and the mean scalar dissipation61

is modeled as 〈εη〉 ≡ 〈η′2〉 /τη, with the scalar timescale modeled using the62

timescale ratio Cφ:63

τη = τu/Cφ . (4)

Many of the physical processes that occur are simulated well by the64

model [13]. However, the presence of conditional scalar limits in Gη and65
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Bη for reacting scalars cause difficulties due to evolving scalar bounds. This66

issue has been addressed for a two–scalar formulation by ensuring transport67

along a scalar boundary for limiting cases [13]. Generally, a much larger68

number of scalars (e.g. 48 species in the current case) must be considered,69

resulting in very complex volumes in composition space. However, if the im-70

plementation is restricted to the mixture fraction alone (where the bounds71

are simple), then no difficulties arise.72

2.2. MMC model73

The current work utilizes Generalized MMC [26], so does not solve the74

standard transport equation for the reference variable (ξ∗p) [12], because the75

mixture fraction solved by the binomial Langevin model is defined to be the76

reference variable:77

ξ∗p = η∗p . (5)

Instead, the transport of the reference variable is solved by Eq. (3). The same78

particle contains information from both the BLM and MMC, so η directly79

maps to the MMC mixture fraction Z. The major benefits of this approach80

are that the reference variable does not merely map, but actually models the81

behavior of the mixture fraction; and the inhomogeneous drift term, which82

is challenging to model, does not need to be determined.83

Equation (5) is the principal difference with the previous hybrid binomial84

Langevin–MMC model [9, 10]; previously the velocity from Eq. (1) was used85

to define ξ in Eq. (5). Because η was used in the earlier work to control the86

amount of mixing, another model for the mixing needs to be implemented,87

which will be discussed later.88
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In the MMC framework, ns reactive scalars are solved with ns−1 species89

mass fractions (YI) combined with the specific enthalpy h. The stochastic90

form of the transport equations is [12]:91

dZ∗p = Sdt (6)

dY ∗p
I = (S +WI)dt (7)

dx∗p = Udt . (8)

Here, S is the mixing model, WI the chemical source term, dwl a Wiener92

process and U ≡ 〈v|ξ〉 the conditional velocity, with v the physical velocity.93

To ensure compatibility with the joint-PDF of mixture fraction and velocity94

for BLM, the BLM velocity obtained from Eq. (1) is used in Eq. (8) for the95

current hybrid model:96

U = u . (9)

The conventional model for the diffusion coefficient B was used97

B =
〈εη〉

2

〈

(

∂Z

∂ξ

)2
〉

−1

, (10)

with the derivative obtained by subdividing the reference space and perform-98

ing least-squares curve fits in each section [30].99

The Modified Curl’s (MC) model [31, 32] was applied for the mixing term100

(S). What distinguishes MMC from MC is that pairs of particles are not ran-101

domly paired, which could cause interaction across a diffusion layer (which102

would only happen in extremely high turbulence). Instead pairs of particles103

are selected to be close in reference space, modeling the behavior that par-104

ticles are physically close together (at a subgrid scale) because the mapping105

process requires the reference variable to change across a diffusion layer in106
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a similar way to the mixture fraction. Particles are considered available for107

pairing according to [10, 30]108

|∆ξ∗pq| ≤ (2B∆t)1/2 (11)

where ∆ξ∗pq = ξ∗q − ξ∗p. This mimics the effect of the diffusive term of a109

stochastic differential equation [i.e. the last term of Eq. (1) or Eq. (3)], where110

the average distance particles diffuse is (2B∆t)1/2 and the particles interact111

at the new location. To reduce the chances of Eq. (11) being violated, p112

is selected so that |ξ∗p| is in descending order. If no q can be found to113

satisfy Eq. (11), then q is selected to minimize |∆ξ∗pq| and any violation will114

occur for outliers, which are in the low-probability region. In common with115

all other PDF-based approaches where particles mix by sharing information116

with a small number of particles (usually one other), if ∆t is too small or the117

number of particles is insufficient (i.e. if np∆t → 0, where np is the number118

of particles in a physical cell), then the model fails (〈Z ′2〉 does not decay in119

the mixing substep).120

Particles are paired with a nearby particle, not the neighboring parti-121

cle. The reason for this is that smaller values of np∆t are possible without122

changing the result. Those MMC methods which pair neighboring particles,123

e.g. [33, 21], rely on sufficiently-high values of np∆t to reorder the particles124

so particles do not uniquely pair with the same particle repeatedly. Such125

behavior is also observed in the stranding behavior of EMST if it is imple-126

mented without the aging function, which causes many of the particles to be127

unavailable for interactions. Arguably, the low np∆t limit of MMC behaves128

worse than EMST in terms of stranding: MMC is restricted to isolated pairs129

of particles, whereas in EMST interactions can occur between multiple par-130
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ticles. The method used here and in related work [9, 10, 20, 30] guarantees131

dissipation in the mixing process for smaller values of np∆t than methods132

that pair neighboring particles. Because the distance between particles in133

reference space is consequentially greater for individual particles than if they134

were neighboring, the amount of dissipation per mixing interaction and the135

number of paired particles must also be different.136

To close the model for S, the MC model [31, 32] was used. The process of137

choosing the degree of mixing differs from the previous model because η is not138

available for controlling this process. For those particles selected for mixing,139

the amount of mixing was 50% [30] of that specified in the original Curl’s140

model. The number of particles selected for mixing remains an unclosed141

parameter. In the current work, 6% of particles at any physical location142

were mixed per time step; on average, this amounted to 24 particles. It is143

likely that this value of 6% is not general and future work will focus on a144

general approach to selecting the number of particles to mix.145

The method of mixing follows the same procedure as standard MC.146

Firstly, the method for choosing pairs must be decided. In MC, particles are147

randomly chosen from the available set of particles (normally those within a148

computational cell, so the particles are moderately close in physical space).149

In the current method, the pair for a particle is chosen at random from150

the subset of particles within the computational cell that are also close in151

reference space. Secondly, the distribution of the mixing amount must be152

chosen. A uniform distribution is common for MC (the amount of mixing153

is a uniformly-distributed random variable between no mixing and complete154

mixing). The current method specifies a single value that provides the same155
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mean amount of mixing [30]; modifying this to a random value affects the156

conditional means [30]. Finally, the fraction of particles to be mixed must157

be determined. In MC, this is governed by the distribution of the mixing158

amount and the rate of decay of scalar variance. A fixed value is used here159

for simplicity, but this can be replaced to allow variations.160

3. Results161

3.1. Simulated experiment162

The experiment [29] studied here is a methane-air jet (CH4 33% v.v.) with163

a velocity of 100 m/s and pipe diameter of 4.57 mm (jet Re = 28, 000). The164

coflow was air vitiated with H2 (lean: Φ = 0.40) and burned prior to being165

released as coflow at 5.4 m/s and 1350 K. The typical behavior of this setup166

is a lifted flame where the liftoff height is very sensitive to the inflow speeds167

and temperature. This case is challenging for models because predicting the168

liftoff behavior accurately requires suitable treatment of extinction/reignition169

behavior.170

The model was implemented into a parabolic code used successfully in171

a previous study of the current vitiated flow [34]. In each simulation, there172

were 80 cells in the radial direction, with the width of the domain increasing173

as the entrained region grew. There was also variable spacing in the axial174

direction, with ∆z/d = 1.5×10−3 initially, linearly increasing to ∆z/d = 0.05175

at z/d = 10, then subsequently linearly increasing up to ∆z/d = 0.11 in the176

range 30 < z/d < 60. On average, 400 particles were used in each cell, with177

an ensemble of 10 simulations. Direct integration of the chemistry was used178

in order to eliminate interpolation errors. The reduced chemical mechanism179
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comprises 48 species (28 in steady-state) and 300 reactions [7].180

3.2. Mean statistics181

The mean statistics were averaged over a spatial resolution of ∆z/d = 0.5,182

with no spatial averaging in the radial direction, then averaged over the183

ensemble. The ensemble standard deviation is computed from the Favre184

mean from each of the 10 simulations in the ensemble. The centerline mean185

mixture fraction (Fig. 1) and temperature (Fig. 2) show good agreement186

for most of the domain, generally reproducing the behavior near the outlet187

and the axial stabilization point of the lifted flame. From the small ensemble188

standard deviation in all the results, 400 particles/cell appears to be sufficient189

to resolve the flow. The centerline rms mixture fraction (Fig. 3) tends to be190

under-predicted downstream, which is likely due to excessive mixing in this191

region, but the location and magnitude of the maximum is reproduced. The192

temperature rms (Fig. 4) is well reproduced for z/d < 70, which accounts193

for most of the important features of the flow. The temperature rms is194

predicted significantly better than other models [29]. The species centerline195

distributions are all generally well predicted, with the O2, OH and CO profiles196

shown in Fig. 5. Further species are included in the Supplemental Material.197

The radial profiles of mean mixture fraction (Fig. 6) and mean tempera-198

ture (Fig. 7) generally agree with the experimental data. The radial locations199

of the local maxima in the temperature around the base of the lifted flame200

(40 ≤ z/d ≤ 50) are predicted well, as is the edge of the coflow. Like the cen-201

terline results, the standard deviations tend to be modestly underpredicted.202

Most results presented so far are similar to those obtained using the MC203

model [34]. The exception is the centerline temperature rms, where the au-204
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Figure 1: Centerline Favre-average mixture fraction. Hybrid model: ensemble mean, —;

ensemble std either side of ensemble mean, – –. Experiment [29], ◦.

0 20 40 60 80 100
0

1000

2000

3000

Figure 2: Centerline Favre-average temperature. As per Fig. 1.

thors have not found a RANS simulation that can correctly predict the loca-205

tions of both the rise at z/d ≃ 40 and the decrease at z/d ≃ 60. Of the LES206

simulations that report the temperature rms, some cannot simultaneously207

predict both these locations [35, 36]. Others that do predict the centerline208

temperature rms cannot predict a local maxima in the radial profile of mean209

0 20 40 60 80 100
0

0.04

0.08

0.12

Figure 3: Centerline rms mixture fraction. As per Fig. 1.
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Figure 4: Centerline rms temperature. As per Fig. 1.
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Figure 5: Centerline Favre-average mass fractions. (a) O2; (b) OH; (c) CO. As per Fig. 1.

temperature at z/d = 40 [37, 38].210

3.3. Conditional statistics211

To properly understand the conditional statistics, the mixture fraction212

PDF is reported in Fig. 8. The general shape of the experiment is repro-213

duced; the δ-function at f = 0 shows that the coflow is resolved through-214

out the domain; while the maximum mixture fraction decays with distance215
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Figure 6: Radial mixture fraction at different axial locations. Hybrid model: mean, —;

rms, – –. Experiment [29]: mean, ◦; rms, �.

downstream somewhat faster than the experiment, which causes the slight216

underprediction of the standard deviation.217

The scatter plots of temperature with respect to mixture fraction (Fig. 9)218

show that there is broad agreement with the experimental data. The results219

presented here are qualitatively similar to the corresponding MC results [34].220

The major difference is that by localizing the mixing, the particles tend to221

be richer for the same temperature, in closer agreement with experiment.222
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Figure 7: Radial temperature at different axial locations. As per Fig. 6.

Comparing to other computational results [29], for z/d ≤ 40 there are223

frozen particles across most of the range of mixture fraction, in line with224

the experiments. At z/d = 30, no particles are close to equilibrium, un-225

like other studies. There is notable divergence between experimental data226

and all previous studies at z/d = 40. The current results and past MC re-227

sults [29, 34] appear similar at z/d = 50 and reproduce the band of particles228

at stoichiometric-to-rich mixture fractions which span the frozen and equi-229
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 z/d

Figure 8: Mixture fraction PDFs. Hybrid model, – –; experiment [29], —. z/d = 30, —;

40, —; 50, —; 70, —.

librium limits. However, unlike the MC results [29, 34], local extinction is230

limited at z/d = 70, resulting in better agreement with the experimental231

data.232

Conditional averaging of these results (Fig. 10) shows that the current233

approach predicts the near-frozen nature of the flow at z/d = 30, while234

repeating the MC model behaviour [29] of the conditional mean being the235

equilibrium temperature for a large portion of the lean part of the domain236

further downstream. The lean portion (the stoichiometric mixture fraction237

is 0.177 [29]) is predicted well by the current model, while other studies over-238

predict the temperature in this region [29]. Following this trend, the current239

results under-predict the conditional temperature for the rich region (partic-240

ularly at z/d = 50) in contrast to other studies [29]. The behavior of MMC241

in the rich region can be attributed to the lower centerline mixture fraction242

rms. Ironically, the latter creates a good prediction at z/d = 70, where243

the MMC results slightly over-predict the experiment for the entire range of244

mixture fractions. Conditional statistics for some species are included in the245

Supplemental Material and tend to mirror the predictions of temperature.246
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Figure 9: Scatter plots of temperature versus mixture fraction for the hybrid model (left)

and experiment [29] (right). There are 2500 randomly-selected data points shown for each

axial location. Equilibrium (upper) and frozen (lower) limits, and stoichiometric mixture

fraction (vertical line): —.

3.4. Flame liftoff height247

The flame liftoff height was calculated by averaging the axial locations248

where the mole fraction of C2H4 reached 100 ppm and C2H2 reached 2 ppm [29].249

For the base conditions, the liftoff height was found to be H/D = 42, some-250

what larger than the experimental value of 35 [29]. Similar to previous re-251

sults [29], there is little sensitivity to coflow velocity (Fig. 11), although the252
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Figure 10: Temperature conditioned on mixture fraction. Hybrid model: z/d = 30, —;

40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦; 40, ◦; 50, △; 70, �. Equilibrium

(upper) and frozen (lower) limits: —.
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Figure 11: Liftoff height as function of jet velocity. Coflow velocity: 4.2 m/s,♦; 5.3 m/s,�;

6.5 m/s, ◦. Hybrid model: open symbols with linear curve-fit of all results, – –. Experi-

ment [29]: closed symbols with linear curve-fit of each coflow velocity, —.

current results predict a much larger liftoff height. The general trend of a253

monotonic decrease in liftoff height with increasing coflow temperature is254

reproduced (Fig. 12), with a lower sensitivity of liftoff height to coflow tem-255

perature, consistent with the MC model results using the same code [34].256

The insensitivity to coflow conditions could be caused by the mixing model257

and future improvements may contribute to a greater sensitivity to coflow258

conditions.259
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Figure 12: Liftoff height as function of coflow temperature. Hybrid model, +. Experi-

ment [29], ◦.

4. Conclusions260

A modified version of the hybrid binomial Langevin–Multiple Mapping261

Conditioning model has been proposed with the reference variable modeled262

by the mixture fraction from BLM. This approach promises to improve upon263

the applicability of the previous formulation [9, 10], while resulting in a264

simpler implementation. The development of a universal methodology that265

imposes a physical condition on the fraction of particles to be mixed remains266

desirable. However, it appears that the current augmented MC model, which267

imposes local mixing of particles in reference space, removes the tendency of268

the standard MC model to over-predict local extinction. The model was269

evaluated for a lifted jet flame [29], with the results generally comparing270

favorably with experimental data and previous modeling efforts.271
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Figure Captions336

Figure 1: Centerline Favre-average mixture fraction. Hybrid model: en-337

semble mean, —; ensemble std either side of ensemble mean, – –. Experi-338

ment [29], ◦.339

Figure 2: Centerline Favre-average temperature. As per Fig. 1.340

Figure 3: Centerline rms mixture fraction. As per Fig. 1.341

Figure 4: Centerline rms temperature. As per Fig. 1.342

Figure 5: Centerline Favre-average mass fractions. (a) O2; (b) OH;343

(c) CO. As per Fig. 1.344

Figure 6: Radial mixture fraction at different axial locations. Hybrid345

model: mean, —; rms, – –. Experiment [29]: mean, ◦; rms, �.346

Figure 7: Radial temperature at different axial locations. As per Fig. 6.347

Figure 8: Mixture fraction PDFs. Hybrid model, – –; experiment [29], —.348

z/d = 30, —; 40, —; 50, —; 70, —.349

Figure 9: Scatter plots of temperature versus mixture fraction for the350

hybrid model (left) and experiment [29] (right). There are 2500 randomly-351

selected data points shown for each axial location. Equilibrium (upper) and352

frozen (lower) limits, and stoichiometric mixture fraction (vertical line): —.353

Figure 10: Temperature conditioned on mixture fraction. Hybrid model:354

z/d = 30, —; 40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦; 40, ◦;355

50, △; 70, �. Equilibrium (upper) and frozen (lower) limits: —.356

Figure 11: Liftoff height as function of jet velocity. Coflow velocity:357

4.2 m/s, ♦; 5.3 m/s, �; 6.5 m/s, ◦. Hybrid model: open symbols with linear358

curve-fit of all results, – –. Experiment [29]: closed symbols with linear359

curve-fit of each coflow velocity, —.360
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Figure 12: Liftoff height as function of coflow temperature. Hybrid361

model, +. Experiment [29], ◦.362
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List of Supplemental Material363

Figure S1: Centerline Favre-average CO2 mass fraction. Hybrid model:364

ensemble mean, —; ensemble std either side of ensemble mean, – –. Experi-365

ment [29], ◦.366

Figure S2: Centerline Favre-average CH4 mass fraction. Hybrid model:367

ensemble mean, —; ensemble std either side of ensemble mean, – –. Experi-368

ment [29], ◦.369

Figure S3: Centerline Favre-average H2 mass fraction. Hybrid model:370

ensemble mean, —; ensemble std either side of ensemble mean, – –. Experi-371

ment [29], ◦.372

Figure S4: Centerline Favre-average H2O mass fraction. Hybrid model:373

ensemble mean, —; ensemble std either side of ensemble mean, – –. Experi-374

ment [29], ◦.375

Figure S5: Scatter plots of temperature versus mixture fraction (2500376

randomly-selected data points shown for each axial location). Equilibrium377

(upper) and frozen (lower) limits, and stoichiometric mixture fraction (ver-378

tical line): —.379

Figure S6: Temperature conditioned on mixture fraction. Hybrid model:380

z/d = 30, —; 40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦; 40, ◦;381

50, △; 70, �. Equilibrium (upper) and frozen (lower) limits: —.382

Figure S7: Rms of conditional temperature. Hybrid model: z/d = 30, —;383

40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦; 40, ◦; 50, △; 70, �.384

Figure S8: Scatter plots of O2 mass fraction versus mixture fraction385

for the hybrid model (left) and experiment [29] (right). There are 2500386

randomly-selected data points shown for each axial location. Equilibrium387
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(lower) and frozen (upper) limits, and stoichiometric mixture fraction (ver-388

tical line): —.389

Figure S9: O2 mass fraction conditioned on mixture fraction. Hybrid390

model: z/d = 30, —; 40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦;391

40, ◦; 50, △; 70, �. Equilibrium (lower) and frozen (upper) limits: —.392

Figure S10: Rms of conditional O2 mass fraction. Hybrid model: z/d =393

30, —; 40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦; 40, ◦; 50, △;394

70, �.395

Figure S11: Scatter plots of OH mass fraction versus mixture fraction396

for the hybrid model (left) and experiment [29] (right). There are 2500397

randomly-selected data points shown for each axial location. Equilibrium,398

and stoichiometric mixture fraction (vertical line): —.399

Figure S12: OH mass fraction conditioned on mixture fraction. Hybrid400

model: z/d = 30, —; 40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦;401

40, ◦; 50, △; 70, �. Equilibrium: —.402

Figure S13: Rms of conditional OH mass fraction. Hybrid model: z/d =403

30, —; 40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦; 40, ◦; 50, △;404

70, �.405
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