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© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Computational Fluid Dynamics (CFD) community benefits
from a wide range of methods for solving flow problems. Currently,
nominally second-order accurate Finite Volume (FV) methods un-
derpin the majority of industrial CFD, due to their robustness, and
ability to work on unstructured meshes of complex geometries.
However, over the past three decades, significant research has
been undertaken into developing methods with increased spatial
orders-of-accuracy. These high-order methods have been shown
to offer superior accuracy to low-order methods, with the same or
lower computational cost [1,2], and have demonstrated potential
for performing scale-resolving turbulent simulations more effi-
ciently than their low order counterparts. However, issues remain,
especially in terms of industrial adoption. These include a high
memory footprint for implicit time stepping, and the challenge of
generating high-order curved element meshes [2].

Early attempts at developing high-order accurate spatial dis-
cretisations were based on finite difference and pure spectral
approaches [3,4], and were hence limited to simple geometries.
The first spatially compact high order approach suitable for un-
structured grids was the Discontinuous Galerkin (DG) formulation
by Reed and Hill [5] for simulating neutron transport. Later, it
was popularised and applied to CFD by Cockburn et al. [6,7]. DG
is formulated using the integral representation of the governing
system by combining a Finite Element type polynomial approx-
imation inside the element, and a FV type interface flux. Other
popular high-order schemes with a resemblance to nodal DG are
the Spectral Difference (SD) methods by Liu et al. [8,9], which are a
generalised version of the staggered grid Chebyshev multidomain
method by Kopriva and Kolias [10]. A more recent approach is
the Flux Reconstruction (FR) method proposed by Huynh [11]
which unifies nodal DG and SD schemes within a single framework.
When combined with explicit time stepping, all schemes in the FR
framework retain a compact stencil. This spatial locality results in
minimal communication between elements, which is of particular
importance for modern hardware platforms that are characterised
by an excess of compute capability relative to memory bandwidth.

Leveraging the full potential of modern hardware platforms
with a pressure based algorithm for solving the incompressible
Navier-Stokes equations is difficult since they exhibit significant
indirect communication during the elliptic projection stage. The
elliptic projection can be bypassed by adopting the Artificial Com-
pressibility Method (ACM) of Chorin [12], which was developed
in the late 1960s as an alternative way of solving steady incom-
pressible fluid flow problems. Rather than projecting the pressure
with a Poisson equation, a coupling pressure term is added to the
continuity equation that drives the system towards a solenoidal
velocity field in the limit of steady state. The original formulation
preserves the hyperbolic nature of the system, but destroys time
accuracy. A common procedure for recovering time accuracy is
dual time stepping [13]. In this approach, real time is discretised
with a backward difference scheme, whose solution is found by
marching the governing equation in pseudo time. In the context
of the ACM, the divergence free velocity constraint is satisfied at
each physical time step. Adopting explicit dual time stepping as
a temporal discretisation and using high-order FR in space, the
majority of operations can be cast as compute bound matrix—
matrix multiplications that are well-suited for GPUs and manycore
Processors.

There have been various attempts to apply the ACM in a high-
order context. Bassi [ 14] first succeeded in applying the approach
with DG to solve steady incompressible flow problems. Later,
Liang et al. [15] extended the method to SD schemes in 2D, pro-
viding support for unsteady flows via dual time stepping. Re-
cently, Cox et al. [16] successfully applied the method with FR in
2D, and introduced fully implicit inner iterations. In the current
study, we extend the cross-platform high-order CFD framework
PyFR (www.pyfr.org)[17,18] to include an incompressible Navier—
Stokes solver based on FR, the ACM, dual time stepping, and
P-multigrid.

The paper is structured as follows. Section 2 gives a brief
overview of the high-order FR approach for mixed element un-
structured grids. Sections 3 and 4 detail the ACM and how it can be
advanced in time using P-multigrid accelerated dual time stepping.
Section 5 describes our cross-platform implementation in the PyFR
framework, that can run on a wide range of hardware architec-
tures. Section 6 verifies the platform independence on Nvidia Tesla
P100 GPUs and Intel Xeon Phi 7210 KNL manycore processors
with a 3D Taylor-Green vortex test case. Additionally, the utility
of P-multigrid for convergence acceleration is demonstrated. In
Section 7, we apply the solver to a 3D turbulent jet problem at
Re = 10,000, which has relevance to many industrial application
areas and natural flow phenomena, such as hydrojet propulsion,
cooling systems, and seafloor plumes. Excellent agreement with
available experimental data is obtained. Finally, conclusions are
drawn in Section 8.

2. Flux reconstruction

A summary of the FR method for mixed unstructured grids is
given below. For further details see [19-21]. To begin, consider
a finite solution domain in Euclidean space @ e R with a
coordinate system X = x; € RN in Np dimensions. In this
domain, we wish to solve an advection-diffusion problem written
in conservative form as

ouy

ot +V.-f,=0, (1)
where the conservative field variables are defined as u, = u, (X, t)
and the corresponding flux is f, = f,(uy, Vu,). The subscript
o refers to a single field variable or its flux, 0 < a < N,,
where N, is the total number of field variables. A conforming
mesh comprising of a set of suitable element types ¢ defines the
discrete representation of the solution domain. Such elements are
for example line elements in Np = 1, quadrilaterals and triangles
in Np = 2, and hexahedra in Np = 3. The elements in the discrete
domain must satisfy

|| |2
ﬂ:UQe, ne=Unn, Q:ﬂﬂnnzﬂ, 2)
ece n=1 ece n=1

where the subscript e refers to all elements of a certain type and
|€2.| denotes their total count such that 0 < n < |Q,|.

All calculations are performed in a transformed space by map-
ping each element €, into its respective standard element Q. €

RNp, represented in a coordinate system X = % € RN, The
mapping functions relating the two element spaces are defined as

% = a0, (x), (3)
X = Mpp(X). (4)
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The Jacobian matrices and determinants related to the mapping
are

aMi»l 3 Moni
-1 -1 ni
Jon = enij — a;:l ’ Jen = Jenij = 3Xj s (5)
_ 1
nl = det Jenl =, Jen = det Jop, (6)
Jen

where V = 3 /0%;. Using the expressions above, the transformed
flux and transformed gradient of the solution can be expressed as

fona (X, 1) = Jen(R)or (Mon(X)ena (Men(X), 1), (7)
(V1) s (R, £) = Jen(R) Vtlena (en(X), £). (8)
Furthermore, Eq. (1) can be written in terms of the transformed
divergence of the transformed flux as

Olleng
Jat

To proceed, consider defining a nodal solution basis within a
standard element. Take X}; to be a set of standard element solution
points associated with a given element type, where 0 < i < N,. Ex-
amples of such point distributions are Gauss-Legendre or Gauss—
Lobatto points, when N, = 1, Witherden-Vincent points [22]
for triangles, when N, = 2, and Shunn-Ham points [23] for
tetrahedra, when Np = 3. The set of solution points X;; within the
standard element 2, can be used to define a nodal basis set I ;(X) of
order P(N,) that spans a polynomial space . The nodal basis must
satisfy the property le,-(f(:‘j) = §;;. Following the conventions in [24],
we first form any modal basis L;, typically using Jacobi polynomials
that span 2, and calculate the entries in the generalised Vander-
monde matrix 7. Second, we construct the nodal basis as Ie,(i(‘e‘J) =

e,]lle] In addition to the solution points, a set of element-type-
specific flux points xf where 0 < i < Ng, must be defined on
the element boundanes Q.. Two elements sharing a boundary,
and hence a set of flux points along the interface, must have a
conforming mapping which recovers the same global location for

+ ,7971]% : ?ena =0. (9)

the paired flux points. Thus, all paired flux points, x’;m = X,y Must
satisfy
Men(RL) = Mot (R,). (10)

The first step of the FR approach involves computing the discon-
tinuous solution at the flux points from the interpolating solution
polynomial

ul Li(X.). (11)

ena — ema Lei( ]

These values can be used to find a common interface solution at
the flux points via

aly, =il = i), (12)

eina e'i'n'a eina’ “e'i’

where c(ug, up) is a scalar function, analogous to a Riemann solver
that returns the common solution, where the subscripts R and L
denote the right and left states respectively. The next step is to
compute the gradient of the solution at the solution points. For this
purpose, we form a vector correction function g’ ) which satisfies

ne - gL(X,) = 8. (13)

and subsequently define the transformed gradient of the solution
at the solution points as

(Vu)ema (ﬁ%)ej : g];j(igi){cauijna - u[;jna} + uzkna%lek(igi)» (14)
which transforms into physical space as

(Vu)ema - Jem (Vu)ema (15)

where je’mT = je_,f(f(e,-). Further, the transformed flux at the solution
points can be evaluated as

ema - ]E‘lﬂjen: fd(uemw (Vu)ema) (16)

and the normal component of the transformed flux at the flux
points as

fema = (ié,‘)flei : ?u- . (17)

ejna
Common normal fluxes at the flux point pairs are found with

a Riemann solver #(ug, Vug, u;, Vu, n). The common values are
assigned as

7afemoz - ﬂlfe’t’n’a = (u[;m’ (vu)em’ uf;’i’n” (VU) in nfin)’ (18)
where
(Vu)ema = elﬂ(xf )(vu)e]noz (19)

The normal common interface fluxes transform into the standard
element space via

%lfemoz = jgm“ﬁln%‘fema (20)

The divergence of the continuous flux can be computed with a
procedure analogous to Eq. (14), as

(7)) =[7 @t — i) + o - Tal®)] . 21

This serves as the right-hand side in Eq. (9) and the solution can be
advanced in time using a suitable time-integration method.

3. Artificial compressibility
3.1. Artificial compressibility for the Euler equations

In the ACM formulation of the Euler equations, the conservative
variables in three dimensions x = {x y z}" are

p
U= (22)
Uz
where p is the pressure and v = {vy vy v,}T are the velocity
components. The total flux is defined as f = f., where f. =
fexd +feyj + fe K,
Ly Cvy g,
2
_Ji+p ) vy ) v
fex = ety Joy = W2 +p ez =1 0, [ (23)
VUx Uz VyVz UZZ +p

¢ is the artificial compressibility relaxation factor, and 1, j and k are
unit vectors in the x, y and z directions, respectively.

This formulation of the governing equations has a hyperbolic
nature; artificial pressure waves traveling at a finite speed are
introduced. These waves distribute the pressure and disappear in
the limit of pseudo steady state. Eigenvalues of the inviscid flux
Jacobian matrices

Ofa:

Ji= Uei Viex (24)
au

are

Ai = {vi — ¢ v v; Ui-i-Ci}T Vi e x, (25)

where ¢; = ,/viz + ¢ is the pseudo speed of sound. The pseudo
speed of sound monotonically decreases with decreasing artificial
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compressibility relaxation factor ¢ which can be adjusted to reduce
the system stiffness.

The common interface flux # only contains the inviscid term
such that # = #, and the inviscid interface flux is obtained using
a Rusanov Riemann solver [25] as

1 1
Fe(ur, ug, 1) = A+ {5 (fer +Fer)} + 5 max(hn)(ur — ug), (26)

where max(iA,) = |i - V| + ¢, with ¢, = /(fi-Vv)?2+¢ the

maximum wave speed in the interface normal direction.
3.2. Artificial compressibility for the Navier-Stokes equations

In the ACM formulation of the Navier-Stokes equations, the
total flux is defined as f = f. — f,, where f, = f,,1+ fvyj + fi. Kk

0 0 0
vy vy vy
0X ay 0z
fvx =V % 7fvy =V @ ’fVZ =V % ’ (27)
9x ay 0z
v, v, v,
ax By dz

and v is the kinematic viscosity. The total normal interface flux
is now defined as ¥ = % — %, where the viscous part %, is
computed using the local discontinuous Galerkin (LDG) approach
as presented in [24],

R R 1
F(u, Vug, ug, Vug, n) = i - {(5 + B

1
+(5 — iR} + T(uy — ug). (28)

The common interface solution needed for the gradient is com-
puted with

Cuf(u L, UR) = <% - ﬁ) uL + (% + ,3) UR. (29)

The two free parameters in the expressions above, 8 and 7, control
the degree of upwinding/downwinding and the solution jump
penalisation at the interface. Common practice is to select 8 = j:%
and0 <t <1.

4. Dual time stepping
4.1. Overview

A dual time stepping formulation for the artificial compressibil-
ity Euler/Navier-Stokes equations can be written as
M ivif=o (30)
ar ot o
where the first term is a pseudo time derivative which is marched
towards zero, resulting in a pseudo steady state. A cancellation ma-
trix I = diag{0 1 1 1} is employed as a coefficient for the physical
time derivative to eliminate it from the continuity equation. This
ensures that the solution is driven towards a solenoidal velocity
field, since at the pseudo steady state the continuity equation with
a fixed ¢ yields

v, v, o,
lim[v—i—vy—i— v]:. (31)

When the solution is integrated with respect to pseudo time,
the real time derivative can be considered as a source term for
the right-hand side that is updated at every physical time step.

Table 1
Coefficients for the BDFs.
By By By By
Backward-Euler 1 -1 - -
3 1
BDF2 3 -2 3 _
11 1 1
BDF3 5 -3 3 -1

Defining & = R — I.S;, where R = —V - fand S; = 2, Eq. (30)
can be expressed as

ou

— =R =R—-1L5;. (32)
at

Discretising the real time derivative with an M-stage BDF, and
the pseudo time derivative with a ky.x-stage explicit multistage
scheme, we can write a single pseudo iteration as

un+1,m+1.0 — un+1,m ,
un+l,m+1,k — un+1,m+1,0 + (XkA‘L'ﬂ{n+l"n+l’k_l
fork=1... knax , (33)
un+1,m+l — un+1.m+1,kmax’

where the superscripts n and m denote real and pseudo time levels,
k is the stage index and « is the stage coefficient. Different real
time levels are needed for the BDF expansion in the right hand side
computation according to

gL 1 I:Rn+1,m+1,k71 _ ICS?H’"'H’O] (34)

Qapp

1

- Rn+1,m+l,k—1
op|

M
IC n+1,m+1,0 n—o
— E (Bou + ZBU-HU s

o=0

where B, are the coefficients of the BDFs as listed in Table 1. In
this study, the leading term in the BDF is expressed at the first RK
stage, which is a common practice in so-called point implicit source
term treatment. The treatment results in a scaling coefficient ap; =
1+ ayAtBy/ At which limits At if At > At. Being explicit in the
pseudo time, the coefficient was found to have no advantage, and
in this study we default to ap; = 1.

The subiteration procedure defined by Eq. (32) is repeated until
the solution is deemed to have converged. Specific stopping cri-
teria include the following: residuals being driven to a prescribed
tolerance, or a fixed number of pseudo iterations being reached.
Subsequently, the pseudo steady-state solution is stored as the
physical solution and assigned as the initial value for the next time
level u"*20 = y™*1, Furthermore, the remaining terms in S; are
updated accordingly, u"~“*V = y"~° for ¢ = 1...M. Algorithm 1
illustrates the dual time stepping approach with a BDF2 expansion.

while t < ty, do

while unconverged do

| Solve Equation 32

end

Return u™*!

un—l —u"

u' = un+1

t=t+ At
end

Algorithm 1: Dual Time Stepping with BDF2.
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Fig. 1. The structure of the PyFR framework.

4.2. P-Multigrid

The efficiency of the dual time stepping algorithm depends on
fast convergence of the pseudo steady-state process. The disadvan-
tage of using explicit schemes in pseudo time is that their stability
region is limited by the CFL number making them inefficient at
eliminating low frequency error modes on fine grids [26]. The issue
can be addressed by adopting implicit schemes to allow much
larger pseudo time steps [ 16]. However, the trade-off with implicit
schemes is that their storage requirements are significantly higher
due to the size of the flux Jacobian matrices which so far appears
to have prohibited their use in large scale 3D applications at high
orders. Moreover, many methods for solving the resulting linear
system, such as LU-SGS or ILU-GMRES, are not scale invariant
and increasing the amount of parallelism reduces the numerical
effectiveness of the preconditioner.

The P-multigrid technique (perhaps better referred to as multi-
P) attempts to circumvent the CFL condition by correcting the
solution at different polynomial levels. Without altering the com-
putational grid, low order representations of the solution, which
exhibit a less restrictive CFL limit, can be used to propagate in-
formation with a larger At. Another quality of P-multigrid is that
when the solution is projected to a lower order space, the low
frequency error modes appear as higher frequencies respective to
the resolution, which allows explicit steppers to eliminate them
more effectively.

In the P-multigrid pseudo time formulation, the following
equation is solved

e 35
0r R (35)

where r; is a multigrid source term arising from lower order repre-
sentations of the solution and the subscript denotes a P-multigrid
level [ corresponding to any polynomial order between 0 and P.
At the highest P-multigrid level | = P, the source term r; = 0.
Following the methodologies in [15] and [26], a single P-multigrid
V-cycle can be formulated according to Algorithm 2. In contrast
to [15], our formulation performs the residual defect restriction
and P-multigrid source evaluation only on the divergence term
R and the real-time derivative term is only accounted for during
the smoothing iterations. This was found to modestly accelerate
convergence with respect to wall-time, since for each restriction
operation it reduces the number of pointwise kernel calls by two.

Restriction and prolongation operations can be performed in
several ways. In our work, the restriction operator is constructed
using the generalised Vandermonde matrix as

L= o iy T, (36)

forl e {P, ..., s+ 1} do
fori € {0, ..., Niters;} do

| Smooth according to Equation 35
end
Calculate residual defect d; = r; — R(u;)
Restrict solution u) ; = I(x) and store it
Restrict defect di_; = 1:(d;)
Evaluate source r;_; = R(u?q) +d_1.
end
for! € {lp, ..., P} do
fori € {0, ..., Niters;} do

| Smooth according to Equation 40
end

Calculate correction A; = u? —u
Prolongate correction Ajq = Ip(4;)
Add correction ;1 = U1 + A
end
fori e {0, ..., Niters;,,,.} do

| Post-smoothing at the highest level according to Equation 35
end
Algorithm 2: A single P-multigrid V-cycle between polynomial
levels P and I, where Niters; denotes the number of smoothing
iterations at level L

where T is an non-square matrix of zeros, except on its main
diagonal, where it has entries of one. The approach corresponds
to transforming the nodal solution into a modal representation,
removing the highest order mode and transforming back to a nodal
basis. Prolongation is simply performed as Lagrangian interpola-
tion according to

[p = Il,ei(f(lJrLej)- (37)

5. Implementation
5.1. PyER overview

PyFR is a cross-platform framework for solving advection-
diffusion problems using the FR approach. One of the main ad-
vantages of PyFR is that it produces platform portable code with
a single implementation using Python and Mako. Fig. 1 provides
an overview of the framework. PL is the hardware independent
Python layer which constitutes the main body of the framework.
PL initialises the data layout, precomputes all necessary matrices,
and defines the chain of kernel calls that drive the simulation. Dis-
tributed memory parallelism and input/output are also handled by
PL. Mesh partitioning, when required, is outsourced to METIS [27].
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Fig. 2. The class hierarchy of the artificial compressibility systems.

BaseAdvectionDiffusionElements):

nonce):

backend.pointwise.register(’pyfr.solvers.acnavstokes.kernels.tflux’)

float))

backend.kernel (

dims=[self.nupts, self.neles],

smats=self.smat_at( upts’),

1 class ACNavierStokesElements(BaseACFluidElements,

2

3 def set_backend(self, backend, nscalupts,

4 super ().set_backend(backend, nscalupts, nonce)
5

6

7

8 tplargs = dict(ndims=self.ndims, nvars=self.nvars,
9 c=self.cfg.items_as(’constants’,
10

11 self.kernels[’tdisf’] = lambda:

12 "tflux’, tplargs=tplargs,

13 u=self.scal_upts_inb,

14 f=self. _vect_upts

15 )

Hg.3.RegsmﬂngthetfluxPK,whkhcompumsthedsconnnuousﬂux?ﬂtotheACNavierStokesElementsPLchs&

The kernels called by PL can be divided into matrix multiplica-
tion kernels MK and pointwise kernels PK. The MK are used for all
operations where a time-wise constant operator matrix multiplies
a large state matrix, such as interpolation, extrapolation, and anti-
aliasing. An example is interpolation of field variables from the
solution points onto the flux points, which is performed for a given
element type via

U, = MU, , (38)
where

(Ug )jtna) = Ugjng » M(Ug) = Ne x Ny Q| (39)
(Witna) = sy, M(U) = N x N, || (40)
(MO)itne) = (X)) , M(M?) = N, x Ne. (41)

All MK are off-loaded to GEMM (GEneral Matrix Multiply) sub-
routines from vendor supplied BLAS (Basic Linear Algebra Sub-
programs) libraries or bespoke GiMMIK [28] and LIBXSMM [29]
kernels. The latter two kernel libraries leverage the a priori known
structure/sparsity of the operator matrices and can considerably
reduce wall-clock time in certain circumstances [28].

PK are used for operations that require pointwise calcula-
tions, such as computing the non-linear fluxes, Riemann solves,
and boundary conditions. They are built at runtime by passing
platform-unified Mako kernel templates to a Mako derived tem-
plating engine that produces low level platform specific source
code. The low level code is then compiled as shared libraries and
linked to the PL at runtime. The templating engine automati-
cally generates appropriate indexing for vectorisation and efficient
memory accesses which vary across platforms.

5.2. Artificial compressibility solvers

Fig. 2 illustrates the structure of the ACM solvers at the PL,
which were implemented as separate modules in the pyfi/solvers/
directory. In Fig. 2 and discussion below, the class names are uni-
fied, representing both ACEuler and ACNavierStokes solvers. At the
top of the ACM solver class hierarchy is the ACSystem class which
inherits a pipeline of kernel calls to perform FR discretisation of an

arbitrary advection—diffusion equation as described in Section 2. To
complete the discretisation for the ACM equations, ACSystemalso
binds four subclasses: ACElements, ACInternalInt, ACMPIInt
and ACBoundaryInt that set the state vector u and register all PK
for computing the ACM fluxes. .
The ACElements class registers the PKs for computing fluxes f
at internal solution points. The common interface flux treatment

fff is divided into MPI-rank-local PKs and message passing PKs,
which are registered in Internal and MPIInt, respectively. This
approach allows the data exchange and rank-local computation
to happen simultaneously. The third interface class BoundaryInt
registers all boundary condition PKs. Additionally, kernels for com-
puting the common interface solution cu’ are needed for all inter-
face classes that require the viscous flux calculation.

Fig. 3 demonstrates a two step procedure for registering a PK
to the PL. As an example, we only consider a PK for computing the
discontinuous flux f that is registered to the ACNavierStoke-
sElements PL class. All other classes in Fig. 2 are built using an
analogous approach. First, the kernel must be registered to the
backend by providing the location of the Mako template, which is
done on line 6. Second, the kernel must be added to the pointwise
kernels dictionary as a lambda function, which is done on line
11. The lambda function must specify keyword arguments for all
variables that are passed from PL to PK, which include pointers to
the input and output matrices, u (state), smats (mapping), £(flux),
and auxiliary constant variables to facilitate templating tplargs,
dims.

Fig. 4 shows the templated implementation of the discontin-
uous flux kernel tflux that we register to PL in Fig. 3. Input
and output arguments on lines 5 to 6 correspond to the keyword
arguments in the lambda function. The template consists of in-
viscid_flux and viscous_flux_add macro functions on the
lines 21 and 36, which work as individual building blocks for the
template. These macro functions, which form the expression for
the inviscid and viscous fluxes, are expanded on lines 10 and 11.
Within the macros, the flux expression is unrolled using a Python-
like loop syntax which has direct access to the templating variables
passed from Python, such as tplargs and dims. The ${} tags
denote a placeholder for variable substitution.
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1 <%inherit file=’base’/>
2 <%namespace module='pyfr.backends.base.makoutil’ name=’pyfr’/>
3
4 <%pyfr:kernel name=’tflux’ ndim=’2’
5 u="in fpdtype_t[${str(nvars)}]’
6 smats="in fpdtype_t[${str(ndims)}I[${str(ndims)}]’
7 f="inout fpdtype_-t[${str(ndims)}]I[${str(nvars)}]>
8 // Compute the flux (F = Fi + Fv)
9 fpdtype_t ftemp[${ndims}]I[${nvars}];
10 ${pyfr.expand(’inviscid_flux’, ’u’, ’ftemp’)};
11 ${pyfr.expand(’viscous_flux_add’, ’'u’, ’f’, ’'ftemp’)};
12
13 // Transform the fluxes
14 % for i, j in pyfr.ndrange(ndims, nvars):
15 FL${i}I08{i}] = ${° + ’.join(C smats[{0}1[{1}]*ftemp[{1}1[{2}]"
16 .format(i, k, j)
17 for k in range(ndims))};
18 % endfor
19 </%pyfr:kernel>
20
21 <%yfr:macro name=’inviscid_flux’ params='s, f>
22 fpdtype_t v[] = ${pyfr.array(’s[{i}]’, i=(1l, ndims + 1))};
23 fpdtype_-t p = s[0];
24
25 // Mass flux
26 % for i in range(ndims):
27 fL${i}100] = ${c[’ac-zeta’1}*v[${i}];
28 % endfor
29
30 // Momentum fluxes
31 % for i, j in pyfr.ndrange(ndims, ndims):
32 FIS{i}108{] + 1}1 = vI[S{i}1*vI${j}18{" + p’ if i == j else ’''};
33 % endfor
34 </%pyfr:macro>
35
36 <%pyfr:macro name=’viscous_flux_add’ params=’uin, grad_uin, fout™
37 % for i, j in pyfr.ndrange(ndims, ndims):
38 fout [${i}I[${j+1}] += -${c[’nu’l}*grad_uin[${i}I[${j+1}];
39 % endfor
40 </%pyfr:macro>
Fig. 4. The Mako template to generate the tf1lux PK.
5.3. Boundary conditions A no-slip wall is imposed via ghost states defined as
ey = 0% — v 20Y — vy 20Y — g )T, 48
All boundary conditions were implemented as separate bound- DG o wx y wa r Y et ) (48)
ary PKs. These PKs impose the boundary conditions via ghost states su={pL vy v, v}, (49)
for the underlying pseudo time system, which converge to physical 3PCvVy = Vu, (50)

boundary conditions in the limit of pseudo steady-state. Specif-
ically, three ghost states per boundary condition are required.
In the Riemann solver, an inviscid ghost state s%€u replaces the
right-hand-side solution state ug. In the LDG approach, a viscous
ghost state 3Py replaces right-hand-side solution state ug, and a
solution gradient ghost state 3'°¢ Vu replaces the right-hand-side
gradient Vug.

The following boundary conditions are available for the ACM
solvers. A velocity inlet condition is imposed via ghost states de-
fined as

ey = {p, v} vf WyT, (42)
FDCy — gRiey (43)
#PCvy =0, (44)

where the superscript b denotes a user-specified free-stream value
and the subscript L denotes the domain-side state. A pressure
outlet condition is imposed via ghost states defined as

Rie

BU = {pb UxL UyL sz}Tv (45)
BPCu = gy, (46)
3PCvu = 0. (47)

where the superscript w denotes the wall-velocities which are zero
for stationary wall. A slip-wall is imposed via ghost states defined
as

By = {pL v — 200,V Uy — 2ﬁyVnL V7L — ZﬁanL}Tv (51)
@LDGU — Q;Rieu’ (52)

#P¢Vu = 0. (53)

5.4. P-multigrid accelerated dual time stepping

Dual time stepping was implemented as a new Duallnte-
grator composite class that comprises of DualController (DC),
DualPseudoStepper (DPS),DualStepper (DS)and MultiP (MP)
subclasses as per Fig. 5. To begin, the DualIntegrator/MultiP
class launches an instance of a systemcls for each polynomial
order in the P-Multigrid cycle, which have the ability to compute
the divergence of the flux R. Without P-multigrid acceleration,
a single instance at the solution order P is created. In case of
multiple systems, only one instance can be active at a time. The
active system is a MultiP class property which returns a system
corresponding to a class variable self.level. For example, the
system ACSystem, is activated by changing self.level = 1.
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‘type(DualIntegrator, (DC, DPS, DS, MP))‘

step()
‘ ACSystems H ACSystemy H ACSystem H ACSystemg ‘
> —

restrict(11,12) prolongate(11,12)

Fig. 5. The structure of the P-Multigrid implementation consisting of an DualIn-
tegrator composite class that launches several instances (levels) of an ACSystem
class with different polynomial orders.

Additionally, MultiP pre-computes and stores the prolongation
and restriction operators. The MultiP implementation also sup-
ports having different GEMM providers (vendor BLAS, GIMMIK,
LIBXSMM) and anti-aliasing options across P-multigrid levels.

System activation and time-integration are managed by the
DualController subclass. Specifically, it advances the solution
to an arbitrary physical time by calling a sequence of step(),
restrict(11l, 12) and prolongate(1l1, 12) methods, which
form the multigrid cycle. The arguments 11/12 are the multigrid
levels before/after application of the operator. The cycle can be ar-
bitrary between the levels P and 0, and it is repeated until the solu-
tion has converged. The convergence is monitored using platform
specific reduction kernels. These kernels were implemented inde-
pendently for each backend, allowing efficient per-field-variable
reduction in the context of an AoSoA (Array of Structures of Arrays)
data layout.

The step () method, which sets the explicit smoother scheme,
is defined in the DualPseudoStepper subclass. Current options
are the forward-Euler, TVD-RK3 and RK4 schemes. The physical
time discretisation method is defined in the DualStepper class.
The BDF source term is automatically added to appropriate entries
of the right-hand-side state matrix during the step () call. Options
for the physical time discretisations are backward-Euler, BDF2 and
BDF3. Both stepper subclasses were structured to facilitate the
addition of further schemes using simple Python syntax.

wl
1.4 15 1.6

1.2 1.3 1.7 1.8 19 2

(a)

6. 3D Taylor-Green vortex at Re = 1600
6.1. Overview

A 3D Taylor-Green vortex test case at a Reynolds number Re =
1600 (based on the diameter and peak velocity of the initial vor-
tices) was studied to verify platform independence and investigate
the effect of P-multigrid acceleration on performance. In the test
case, a set of large vortices interact with each other, transition
to turbulence, and finally decay via viscosity. Initial conditions
defining vortices with a diameter of 1.0 and a peak velocity of 1.0
were prescribed as

vy = sin(x) cos(y) cos(z) , (54)
vy, = — sin(x) cos(y) cos(z), (55)
v, =0, (56)
p=1+ % [cos(2x) + cos(2y)] [cos(2z) + 21, (57)

in a periodic domain —7 < x,y,z < m. Fig. 6 shows volume
renderings of the vorticity magnitude for the initial condition and
during the enstrophy peak att = 8.

A total of three double precision simulations were performed
on two state-of-the-art platforms. First, the case was run with the
CUDA backend on two Nvidia Tesla P100 GPUs with and with-
out P-multigrid. Additionally, the multigrid accelerated simulation
was repeated with the OpenMP backend on two Intel Xeon Phi
7210 KNL manycore processors. All simulations were launched
with an optimal kernel configuration which was found a priori by
systematically studying the effect of GiIMMIiK and LIBXSMM cut-
off parameters on the performance. On P100 GPUs, the optimal
performance was achieved by offloading all matrix multiplications
with number-of-non-zero elements less than 1800 to GiMMIiK,
which means that only the restriction and prolongation operator
between P = 4 and P = 3 were computed by cuBLAS. On
Intel Xeon Phi 7210 KNLs, LIBXSMM outperformed any combina-
tion of MKL and GiMMiK and was thereby globally enforced by
setting its cut-off based on matrix size to 100,000. Moreover, to
achieve optimal performance, the MCDRAM of the Intel Xeon Phi
7210 KNL processor was configured to work in flat mode, and an

wl

(b)

Fig. 6. Vorticity magnitude for the Taylor-Green vortex simulation at (a) t = 0 and (b) t = 8.
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Table 2
Summary of Taylor-Green vortex simulations.
P-Multigrid Iterations Backend Platform
Case 1 Off 75 RK4 CUDA P100
Case 2 On 3 cycles CUDA P100
Case 3 On 3 cycles OpenMP KNL

OpenMP/MPI approach with two ranks per node to was used to
saturate the interconnects.

All simulations were performed on a hexahedral mesh of 52 x
52 x 52 equisized elements using PyFR v1.7.5. The solution poly-
nomial order used in this study was P = 4 with a Gauss-
Legendre solution point distribution. No subgrid-scale turbulence
model or spatial filtering was applied, and the simulation can be
considered as implicit LES or under-resolved DNS. The physical
time was integrated using a BDF2 scheme with a time step size
At = 0.006. The classical RK4 scheme was used as the pseudo time
scheme/smoother in all simulations, and the artificial compress-
ibility factor was fixed as § = 3. To ensure impartial comparison
of the P-multigrid and the single-level simulation, all simulations
where performed with a pseudo-time step size At = 0.0014 that
was optimised for the single level case. The optimal At was found
by studying the rate of convergence with a constant number of RK4
iterations at the enstrophy peak t = 8 via a bisection approach. A
5-level cycle 1-1-1-1-2-1-1-1-3 with the RK4 smoother corre-
sponding to polynomial orders 4-3-2-1-0-1-2-3-4 was used in the
P-multigrid accelerated simulations, and the pseudo time step
sizes at lower levels were increased according to Aty = 1.85%'Az.
To exclude the effects of convergence monitoring on the measured
wall-times, all simulations were performed with a fixed number of
pseudo-iterations per physical time step, specifically three cycles
for the P-multigrid accelerated cases, and 75 RK4 iterations for
the single-level case. These values were selected heuristically to
ensure both the P-multigrid and single-level cases achieved similar
levels of convergence in velocity field divergence, which is directly
proportional to the pressure residual. Furthermore, it was verified
a posteriori that the velocity field divergence was on average 1.25
times lower for the P-multigrid accelerated cases compared with
the single level case, leading to conservative estimates for any P-
multigrid speed-up.

Table 2 shows a summary of the simulations. The mesh and
input files are provided as Electronic Supplementary Material to
this paper.

6.2. Results

Fig. 7 plots the temporal evolution of D, the solution-point-wise
L2 norm of the velocity field divergence evaluated at the end of
each physical time step, for Cases 1 and 2. It was found that D
was on average 1.25 times lower for the P-multigrid accelerated
cases compared with the single level case. It can also be seen that
the effectiveness of P-multigrid is most apparent at the beginning
of the simulation, when lengths scales are larger, due to more
effective low wave number smoothing. When the large vortices
break into smaller structures near the enstrophy peak at t = 8, the
low wave number smoothing associated with P-multigrid becomes
less important, and both Case 1 and Case 2 converge to the same
level.

Fig. 8 shows the dissipation of the total kinetic energy

E 1 .
_dE 4/ T V-Vix . (58)
a a2l ), 2

and the temporal evolution of enstrophy

1 .
£ = —/ 2 9 ix, (59)
121 Jo 2

10722
: — Case 2

- — Casel
1073+

1074
107') ’E

1075

0 5 10 15 20
t

Fig. 7. The temporal evolution of the solution-point-wise L2 norm of the velocity
field divergence D evaluated at the end of each physical time step.

Table 3
Wall-times of Taylor-Green vortex simulations.
Case 1 Case 2 Case 3
Wall-time (hh:mm:ss) 12:45:44 03:38:12 09:07:14

where w is the vorticity vector. The volume integrals were com-
puted using quadrature rules, the quadrature nodes being the 4th
order Gauss-Legendre solution points. Fig. 8 also includes refer-
ence results from van Rees et al. [30] who used an incompressible
pseudo-spectral code with 5123 degrees of freedom, and com-
pressible PyFR results at Ma = 0.1 from Vermeire et al. [1] with
identical resolution to the current setup. Three observations can be
made. First, results of Case 2 and Case 3 are identical which verifies
the platform and backend independence. Second, the P-multigrid
accelerated Case 2 produces slightly more accurate results than
Case 1, which is in line with the better convergence observed in
Fig. 7. Third, the P-multigrid accelerated Case 2 results are more
accurate than the low-Mach compressible solution from Vermeire
et al. [1] at the enstrophy peak at t = 8, and homogeneous
turbulence decay phase t > 15, which suggest that the ACM
formulation captures the incompressible physics better than a low-
Mach approach.

Table 3 shows the wall-time for each case. The results confirm
that P-multigrid yields an over 3.5 times speed-up compared to
single level pseudo time stepping, while maintaining slightly bet-
ter solution accuracy and convergence. The results also show that
the OpenMP backend on Intel Xeon Phi 7210 KNLs is approximately
2.5 times slower than the CUDA backend on Nvidia Tesla P100s.
To put the wall-times in context, the compressible Ma = 0.1
simulation of Vermeire et al. was repeated on the same Nvidia
Tesla P100 hardware as Cases 1 and 2, using the configuration file
provided in the Electronic Supplementary Material of [ 1]. The wall-
time of the compressible Ma = 0.1 simulation with P = 4 and
adaptive explicit RK45 time stepping was 05:44:02 on two Nvidia
Tesla P100 GPUs. This is 1.6 times longer than the time required
for Case 2 to complete, further demonstrating the utility of an ACM
approach with P-multigrid convergence acceleration.

7. Incompressible jet at Re = 10,000
7.1. Overview

An incompressible 3D turbulent jet test case at a Reynolds
number Re = 10,000 (based on the diameter and peak velocity
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Fig. 8. The temporal evolution of (a) kinetic energy dissipation and (b) enstrophy.

of the jet) was studied to validate the solver, and to assess strong
scalability on massively parallel systems. The test case was chosen
since experimental data are available for comparison [31], and it
has relevance to many industrial application areas and natural flow
phenomena, such as hydrojet propulsion, cooling systems, and
seafloor plumes. Influential experiments and a general theory of
incompressible turbulent round jets are discussed in the review of
Lipari and Standsby [32]. Round jets at various Reynolds numbers
have also been studied numerically: closest to our setup being DNS
by Boersma [33] at Re = 5000 and explicitly filtered LES by Bogey
and Bailly [34] at Re = 11,000. However, both of these studies have
been performed with compressible codes at higher Mach numbers,
0.6 and 0.9, respectively.

Fig. 9 shows the computational grid in the y — z plane at
x = 0 together with a schematic of the simulation setup in the
y — x plane at z = 0. The diameter of the jet was 0.5. The origin
was located at the center of the jet as it enters the domain. A
two dimensional unstructured circular grid of diameter 24 was
extruded in x for a distance of 50 in 250 equally sized steps. The
resulting 3D mesh contained 247,250 hexahedral elements in the
center of the domain 0 < r < 2.5, where r = /y? +z2, and
596,500 prismatic elements elsewhere. The virtual origin is located
at (x0,0,0), which is the starting point of the self-similar region
associated with a linear velocity decay and spreading rate [32].

The jet inflow profile with a peak velocity of 1.0 was imposed
as

Viet(r) = 0.5 — 0.5 tanh [20 (r — 0.25)]. (60)

A no-slip condition was applied at the boundary surrounding the
jet inflow zone, a slip-wall condition was applied at the cylindrical
far-field boundary, and a pressure of 10 was imposed at the outlet.
A sponge layer was found to be necessary to dissipate the jet before
itimpinged on the outlet. Specifically, it was imposed via a spatially
dependent source term S defined as

S = (u — u®)[0.5 + 0.5 tanh (0.5 (x — 45))], (61)

where u®t = {10 0 0 0}.The mesh and input files are provided
as Electronic Supplementary Material to this paper.

7.2. Strong scaling

A strong scaling study for the jet test case was undertaken
to demonstrate the scalability of the solver and to find optimal
runtime parameters for the full physics run. The solution poly-
nomial order was selected as P = 4, and the physical time was
advanced using BDF2 with At = 0.005. A 5-level P-multigrid
with an RK4 smoother cycle 1-1-1-1-2-1-1-1-3 was identified to
yield good performance in pseudo time. Additionally, due to small
and highly curved elements near the center of the domain, flux
divergence anti-aliasing of orders between 7 and 4 (7-7-6-5-4-
5-6-7-7) was added to increase the stability of the smoothing
iterations. The time step sizes between the P-multigrid levels were
varied with Aty = 1.7*'At, where At = 0.0007, and the
artificial compressibility parameter was kept constant at § = 2.5.
The simulation was performed with three P-multigrid cycles per
physical time step, leading to D ~ 8 x 10~ as the simulation pro-
gressed. The GiMMiK number-of-non-zero cut-off parameter was
specified as 3560, which outsourced the restriction/prolongation
between levels P = 3 and P = 4 to cuBLAS, while the rest of
the matrix multiplications were performed by GiIMMIK. In addi-
tion, strong scaling was studied without P-multigrid acceleration
using single level P = 4 pseudo time stepping using 75 itera-
tions, but an otherwise identical setup. Double precision was used
throughout.

Fig. 10 shows strong scaling from 9 through 144 Nvidia P100
GPUs with and without P-multigrid acceleration. Strong scaling
in both cases is almost linear up to 36 Nvidia P100 GPUs after
which both cases start to tail off. The P-multigrid accelerated
case experiences quicker decline due to the presence of low-order
iterations with fewer degrees of freedom. For example, on 144
Nvidia P100 GPUs, there are only 1.64 P = 0 solution points per
CUDA core, whereas the corresponding number at P = 4 is over
146. Nevertheless, P-multigrid still improves the time to solution
on 144 Nvidia P100 GPUs by over a factor of 2.5 compared to single
level pseudo time stepping.

7.3. Results

The full turbulent jet case was simulated using PyFR v.1.7.5 with
P-multigrid acceleration and the runtime parameters described in
Section 7.2 on 96 Nvidia Tesla P100 GPUs with double precision.
The simulation was performed as implicit LES so that no subgrid-
scale model or spatial filtering was applied. The simulation was
first run to t = 750, at which time spurious transients were
observed to have been dissipated by the sponge region. Subse-
quently, the simulation was restarted and turbulent statistics were
gathered until t = 1800, when the time-averaged quantities were
found to be visually converged.
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Fig. 9. Computational grid in the y — z plane at x = 0 together with a schematic of the simulation setup in the y — x plane at z = 0. The virtual origin is located at (xo,0,0).
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Fig. 10. Strong scaling of the incompressible jet on Nvidia Tesla P100 GPUs with P-
multigrid (P-MG) and without P-multigrid (RK4). The red line indicates ideal strong
scaling.

Fig. 11 shows the volumetrically rendered instantaneous veloc-
ity magnitude field at t = 750, illustrating the shape of the jet and
the resolution of the turbulent scales. In addition, we can see that
the outlet sponge region does not have noticeable adverse effects
on the jet development.

Figs. 12 and 13 provide a comparison between the computa-
tional results and experimental data at Re = 11,000 from Pancha-
pakesan and Lumley [31]. Fig. 12a shows 1/v. as a function of a
shifted coordinate x — xo, where v, is the time-averaged stream-
wise midline velocity and xg is set as 2.5 to allow comparison with
the experimental data. Fig. 12b shows vy /v, as a function of the

self-similarity coordinate n defined as
r

n = : (62)

X —Xo
where vy is the stream-wise velocity averaged both in time, and
over conical planes of constant » in the region 10 < x < 30. The
profiles are in very good agreement with the experimental data and
demonstrate that the correct average decay rate is achieved not
only in the midline but also elsewhere in the jet. Fig. 13 shows v} /v,
and v/ /v as a function of n, where v} and v] are the stream-wise
and radial root-mean-square velocity fluctuations, respectively,
averaged over conical planes of constant 7 in the region 10 < x <
30. Again, the simulation results show very good agreement with
experimental data. These results demonstrate that the ACM solver
is able to simulate fully turbulent incompressible flows at scale on
massively parallel systems.

8. Conclusions

A high-order cross-platform incompressible Navier-Stokes
solver has been implemented in the PyFR framework using the
ACM and P-multigrid accelerated dual time stepping. The extensi-
bility of the cross-platform templating framework defined within
PyFR has been clearly demonstrated. Platform independence was
verified on Nvidia Tesla P100 GPUs and Intel Xeon Phi 7210 KNL
manycore processors with a 3D Taylor-Green vortex test case. Ad-
ditionally, the utility of P-multigrid for convergence acceleration
was demonstrated; reducing time-to-solution by a factor of 3.5
compared to single level pseudo time stepping. Finally, the solver
was applied to a 3D round jet test case at Re = 10,000, and
excellent agreement with experimental data was obtained.

The new software constitutes the first high-order accurate
cross-platform implementation of an incompressible Navier-—
Stokes solver via the ACM and P-multigrid accelerated dual time
stepping to be published in the literature. The technology has

Fig. 11. Instantaneous velocity magnitude field of the incompressible jet at t = 1500.
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Fig. 12. Plot of (a) 1/v. as a function of a shifted coordinate x — xo, where v, is the time-averaged stream-wise midline velocity and x is set as 2.5. Plot of (b) y/v. as a
function of the self-similarity coordinate n, where vy is the stream-wise velocity averaged both in time, and over conical planes of constant » in the region 10 < x < 30.
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Fig. 13. Plot of (a) v}/v, as a function of n, where v}, is the root-mean-square stream-wise velocity fluctuation averaged over conical planes of constant 7 in the region
10 < x < 30. Plot of (b) v/ /v, as a function of 5, where v/ is the root-mean-square radial velocity fluctuation averaged over conical planes of constant 7 in the region

10 < x < 30.

applications in a range of sectors, including the maritime and
automotive industries. Moreover, due to its cross-platform nature,
the technology is well placed to remain relevant in an era of rapidly
evolving hardware architectures.
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