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ABSTRACT 

Protein S has an established role in the protein C anticoagulant pathway as a 

cofactor for anticoagulant protein C (APC) and has also recently been shown to 

serve as a cofactor enhancing the anticoagulant activity of tissue factor pathway 

inhibitor (TFPI). Despite its physiological role and clinical importance, the 

molecular bases of its functions are not fully understood. The aim of my thesis 

was to clarify the molecular mechanisms involved in the protein S interaction with 

APC and TFPI. More than 30 point or composite protein S variants were 

constructed and analysed during this project. These variants spanned the Gla, 

thrombin sensitive region (TSR), epidermal growth-factor1 (EGF1) and EGF2 

domains of protein S. Protein S was expressed in mammalian cells and was 

purified by chromatography, as required. Protein S was characterised by size, 

cleavage, multimerisation, γ-carboxylation of the Gla domain, binding to 

phospholipids and to domain specific monoclonal antibodies. Variants were 

evaluated for their APC and TFPI cofactor activities both by calibrated automated 

thrombography and in purified FVa inactivation or FXa inhibition assays, 

respectively. The protein S variant, protein S D95A, with substitution in EGF1 was 

found to be largely devoid of functional APC cofactor activity and I believe that 

this residue plays an important role in protein S anticoagulant function. It was γ-

carboxylated and bound phospholipids and domain specific monoclonal 

antibodies with an apparent dissociation constant similar to that of wild type 

protein S. Importantly, protein S D95A enhanced the anticoagulant activity of 

TFPI, suggesting that distinct residues in protein S mediate its APC and TFPI 

cofactor activity. Two composite mutants in the protein S EGF1 domain had 

partially reduced TFPI cofactor activity in plasma. However, none of the more 

than 30 variants spanning the Gla-TSR-EGF1-EGF2 domain of protein S 

completely disrupted the protein S cofactor activity towards TFPI. Collectively, 

these results shed light on the molecular basis of protein S cofactor function and 

suggest distinct residues in protein S are involved in the binding to APC and to 

TFPI. 
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1 INTRODUCTION 

1.1 Haemostasis 

The cardiovascular system has a vital importance in distributing nutrients and 

oxygen, while also, removing toxic metabolites. It maintains blood homeostasis by 

regulating variables such as body temperature, pH, pressure and the 

concentration of transported molecules. 

The integrity of the cardiovascular system is preserved by a highly regulated 

process called haemostasis. Under normal circumstances, circulating blood is 

maintained fluid by the physiological anticoagulants acting at the surface of 

endothelial cells and by the lack of procoagulant stimuli. In case of injury of the 

blood vessel, there are three major phases that serve to prevent blood loss and 

enable vessel repair which are all regulated both spatially and temporally, primary 

haemostasis (or platelet plug formation), secondary haemostasis (or coagulation) 

and fibrinolysis. Balanced haemostasis results in rapid occlusion of the damaged 

tissue avoiding bleeding, infiltration of pathogens in the blood and allowing 

enough time to the injured vasculature to repair. The main components regulating 

haemostasis are blood vessels, platelets and coagulation factors. These 

components cooperate, through multiple positive and negative feedback 

mechanisms, to maintain circulating blood fluid and to stop bleeding in case of 

injury. 

 

1.1.1 Primary haemostasis 

Primary haemostasis is the initial response to vascular injury. Following damage 

of the endothelial cell layer the subendothelial extracellular matrix (ECM) is 

exposed to the bloodstream. This results in the lack of the anticoagulant 

endothelial surface and exposure of the adhesive macromolecules of the ECM 

such as collagen, fibronectin, laminin, thrombospondin and vitronectin. While 

platelets are able to interact directly with the ECM, this interaction is greatly 

enhanced by von Willebrand Factor (VWF).1 VWF is a large multimeric adhesive 

glycoprotein found in plasma and is secreted by endothelial cells and activated 

platelets.2-4 When collagen is exposed to the bloodstream VWF binds to it, and 
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shear stress induces unravelling of the globular VWF, making its A1 domain 

accessible to platelets.5 Circulating platelets bind loosely to VWF through the 

receptor complex GPIb-V-IX, causing the platelets to roll along the VWF 

multimer.6 This rolling enables platelets to come into contact with exposed 

collagen and to bind to it through their GPVI receptor. Binding of collagen induces 

intracellular signalling that augments the affinity of cell surface receptors termed 

integrins for their ligands, causing adherence, aggregation and activation of 

platelets.7 Activated platelets release additional VWF resulting in a positive 

feedback loop that leads ultimately to the formation of a primary loose platelet 

plug.8 During activation, the platelet membrane composition is altered exposing 

negatively charged phospholipids, such as phosphatidylserine, that are confined 

to the inner phospholipid layer in the inactivated cell.9 This serves as a surface for 

the activation and assembly of coagulation factors. 

 

1.1.2 Secondary haemostasis 

Secondary haemostasis involves coagulation and requires activation of multiple 

zymogens to active serine proteases, as well as activation of cofactors. The 

coagulation cascade can be initiated through two different pathways, the contact 

activation pathway and the tissue factor (TF) pathway. 10 While the physiological 

relevance of the contact pathway is still debated, the TF pathway is now 

recognised as the principal physiological initiator of coagulation. The following 

paragraphs will only consider the TF pathway. Once coagulation is triggered there 

is a first stage of initiation of coagulation producing only traces of thrombin, which 

through positive feedback activation leads to propagation of coagulation resulting 

in more thrombin and the formation of an insoluble fibrin clot.10 

 

1.1.2.1 Initiation of coagulation 

The major initiator of coagulation is TF, a transmembrane protein expressed on 

the surface of cells at extravascular sites. Following vessel damage, TF is 

exposed to the blood.10 While clotting factors with an enzymatic activity usually 

circulate as inactive zymogens, a small amount (~1%) of factor VII (FVII) 

circulates in its partially active form, FVIIa.11 Both FVII and FVIIa are able to bind 
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to TF, but only the TF/FVIIa complex activates FIX and FX (Figure 1.1). In the 

absence of its cofactor, FVa, FXa converts only a small amount of prothrombin 

into thrombin.  

 

Figure 1.1 Initiation of the coagulation cascade. 
Circulating FVIIa binds to TF exposed to the bloodstream. The TF/FVIIa complex activates FX 
and FIX. FXa generates trace amounts of thrombin (FIIa). 
 
 

1.1.2.2 Feedback activation 

The small amount of thrombin that is generated during the initiation phase 

produces a positive feedback reaction by activating FVIII and FV12, the cofactors 

of FIXa and FXa, respectively (Figure 1.2). The FIXa/FVIIIa complex assembled 

upon phospholipids is also termed the tenase complex as it activates FX. This 

leads to an amplification of FXa production bypassing the requirement for 

TF/FVIIa activity. The FXa/FVa complex on phospholipids, or the prothrombinase 

complex, converts prothrombin into thrombin up to 278000 times more efficiently 

than FXa alone.13-15 Once the damaged tissue and subendothelial cells start to be 

covered by the platelet plug, it has been proposed that secondary haemostasis is 

allowed to continue by the adherence of alternatively spliced soluble TF or 

circulating microparticles containing TF to the surface of activated platelets.16-18 

This results in the propagation of both primary and secondary haemostasis. 

Assembly of the functional tenase and prothrombinase complex upon negatively 

charged phospholipids (such as those exposed on activated platelets) depends 

on domain-specific phospholipid interaction sites such as those provided by the 

Gla domain, of prothrombin, FVII, FIX, and FX or the C domains of FV and 
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FVIII.19-22 In addition to spatially confining these complexes, it also results in 

accelerated formation of the proteases FXa and thrombin.  

Once feedback activation of coagulation has taken place, sufficient thrombin is 

generated for efficiently conversion of fibrinogen into fibrin, (Figure 1.2) which is 

cross-linked by FXIIIa to form an insoluble fibrin clot.23 The fibrin clot prevents the 

loss of blood, the entrance of pathogens into the blood stream and allows the 

damaged endothelium and subendothelial layers to repair.  

Thrombin plays a central role in regulating haemostasis, acting both as a 

procoagulant enzyme by generating a feedback activation of itself, and as an 

anticoagulant enzyme by proteolytically activating protein C.24 

 
Figure 1.2 Propagation of the coagulation cascade. 
Thrombin (FIIa) generated during the initiation stage excerts a feedback mechanism activating 
FVa and FVIIIa, the cofactors of FXa and FIXa respectively. This leads to a massive generation of 
thrombin which converts fibrinogen into fibrin.  
 
 

1.1.3 Regulation of coagulation by anticoagulant pathways 

The procoagulant pathway is tightly regulated by three major anticoagulant 

pathways, the tissue factor pathway inhibitor (TFPI) pathway, the protein C 

pathway and the antithrombin (AT) pathway (Figure 1.3).25 These three pathways 

are each critical for the regulation of the haemostatic plug. Each pathway targets 

quite different components of the coagulation cascade regulating haemostasis 
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both temporally and spatially. 

TFPI is a Kunitz type serine protease inhibitor. TFPI inhibits the extrinsic 

coagulation pathway by inhibiting TF/FVIIa and FXa on the subendothelial cells 

and on the growing platelet plug. TFPI targets the initiation of coagulation, as 

once enough thrombin is formed the necessity of TF/FVIIa for generating FXa is 

by-passed by the FIXa/FVIIIa complex.26 

The activation of protein C by thrombin complexed to thrombomodulin (TM) on 

surrounding intact endothelial cells enables activated protein C (APC) to act at 

the edge of the plug formation inhibiting expansion of fibrin deposition, by 

inactivating FVa and FVIIIa. As activation of protein C requires the formation of 

thrombin, APC is probably only generated during the propagation phase.27  The 

anticoagulant activity of APC is greatly enhanced by a cofactor, protein S, the 

central focus of this thesis. 

AT is a serine protease inhibitor circulating at a plasma concentration of ~2-5 

µM.28 It inhibits multiple serine proteases in the TF pathway (thrombin, FXa, FIXa 

and FVIIa) by forming a stable 1:1 stoichiometric complex, trapping them in a 

form in which their active site is not accessible to their usual substrate.29 The 

inhibitory activity of AT is greatly enhanced by its binding to heparan sulphate on 

intact endothelial cells surrounding the tissue damage. Binding of AT to heparan 

sulphates also results in a conformational change of the former, increasing 

greatly the rate of inactivation of FXa, FIXa and FVIIa.30,31 AT efficiently inhibits all 

of the free serine proteases that escape the immediate proximity of plug 

formation, assuring the latter remains localised throughout the haemostatic 

response.32 
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Figure 1.3 Regulation of the coagulation cascade by the anticoagulant pathways. 
The coagulation cascade is tightly regulated by the three main anticoagulant pathways, TFPI, 
APC and AT. Protein S (PS) acts as a cofactor both for TFPI and APC. Protein S/TFPI inhibits 
TF/FVIIa and FXa. The protein S/APC complex inactivates FVa and FVIIIa. AT inhibits multiple 
serine proteases. For simplicity in this diagram only inhibition of thrombin (FIIa) is shown. 
 
 

1.1.4 Fibrinolysis 

Fibrinolysis, the final phase of haemostasis, is the process by which the fibrin clot 

is remodelled and dissolved once the damaged blood vessel has been repaired. 

Tissue-type plasminogen activator (t-PA) and urinary plasminogen activator (u-

PA) are the two major activators of plasminogen.33,34 Plasminogen is activated to 

plasmin, the enzyme which degrades fibrin. Under normal circumstances where 

there is no fibrin, t-PA and plasminogen circulate in the blood. As soon as fibrin is 

formed, it acts as a template bringing t-PA and plasminogen into proximity, 

enhancing plasminogen activation ~1000-fold. These proteases are 

counterbalanced by fibrinolysis inhibitors such as thrombin activatable fibrinolysis 

inhibitor (TAFI), plasminogen activator inhibitor (PAI)-1 and PAI-2.33,34 
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1.1.5 The haemostatic balance 

Haemostasis represents a fine balance with respect to procoagulant and 

anticoagulant factors. Coagulation disorders result either in haemorrhage or in 

thrombosis. Inherited deficiencies in procoagulant factors result in bleeding 

disorders, the most commonly known are von Willebrand Disease (VWF 

deficiency), haemophilia A (FVIII deficiency) and haemophilia B (FIX 

deficiency).35,36 In contrast, inherited deficiencies in anticoagulant factors result in 

an increased risk of thrombosis, the most commonly known are AT, protein C and 

protein S deficiencies as well as FV Leiden (FV resistance to inactivation by 

activated protein C).37 Because my thesis is primarily concerned with 

anticoagulant pathways, I will describe these in more detail in what follows. 

 

1.2 TFPI 

1.2.1 TFPI gene 

TFPI is expressed mainly by endothelial cells, but also by vascular smooth 

muscle cells, megakaryocytes, monocytes, mesangial cells, fibroblasts and 

cardiomyocytes.38-40 The human TFPI gene is localized on chromosome 2 where 

it spans approximately 70 kilobase (kb) and consists of 9 exons.41 The TFPI 

transcript is alternatively spliced giving origin to two isoforms, TFPI-α and TFPI-β. 

The physiological role of TFPI-β has not yet been determined and most results 

have been derived from in vitro experiments. It is, however, known that TFPI-β 

contains an alternatively spliced C-terminal domain and associates to endothelial 

cells through glycosyl phosphatidylinositol (GPI)-anchors, possibly within 

caveolae.42 Interestingly, it has been shown to still exert an anticoagulant function 

by inhibiting FXa and TF/FVIIa.43 TFPI-α is the most abundant transcript and the 

one on which my project will focus.24 TFPI-α is translated into an unprocessed 

precursor of 304 amino acids with a predicted molecular weight (MW) of 35 

kilodaltons (kDa). Cleavage of the 28 amino acid signal peptide and post-

translational modifications, result in mature full-length TFPI protein of 276 amino 

acids and a MW of 43 kDa. If not indicated otherwise in this thesis the term TFPI 

will hereafter refer to the α-isoform. 
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1.2.2 TFPI structure  

The full-length TFPI protein derived from the TFPI- α transcript has a negatively 

charged N-terminal region (amino acids 1-12), 3 Kunitz domains (K1, amino acids 

13-78; K2, amino acids 92-150; K3, amino acids 182-241) separated by 2 linker 

regions and a positively charged C-terminal region (amino acids 242-273) (Figure 

1.4).44 It is N-linked glycosylated at Asn117 and Asn167 and O-linked 

glycosylated at Ser174 and Thr175. Truncated forms of TFPI derived from the 

TFPI- α transcript are also present in plasma. Truncation usually results in TFPI 

variants lacking their C-terminal tail and often also part of their K3 domain.45 The 

physiological origin of these truncated forms is not known but it has been shown 

in vitro that TFPI can be cleaved by proteases that TFPI may encounter in vivo, 

such as thrombin, plasmin, neutrophil elastase and some matrix 

metalloproteinases.46-49 

 

 

Figure 1.4 Schematic representation of full-length TFPI. 
The N-terminal region contains negatively charged residues (yellow), while the C-terminal region 
contains positively charged residues (red). N-linked glycosylations are shown as black squares, 
O-linked glycosylations as gray circles. P1 residues in the respective Kunitz domains are indicated 
by arrows (Figure from Crawley and Lane, 2008).
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 The usually reported sequence contains a Y in 

position 115, G in position 121 and L in position 197. 

 

 

The majority of TFPI (~80%) is associated with the endothelial cell surface 

(Figure 1.5). It has been reported that the mechanism of this association is mainly 
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(~75%) through an indirect binding to GPI in the caveolae.42,50-53 As TFPI does 

not contain a GPI anchor sequence it has been hypothesised that TFPI is 

associated to the cell surface indirectly through a GPI binding protein.54 The 

remaining amount (~25%) of TFPI associated to the endothelial cell surface does 

so through a direct interaction with cell surface glycosaminoglycans (GAG) 

mediated by its C-terminal tail.55 This pool of TFPI is released following heparin 

injection augmenting 2-4-fold the amount of circulating full-length TFPI.40,56-59 

The remaining TFPI (~20%) is either located inside platelets or circulates at a 

plasma concentration of ~2.5 nM (Figure 1.5).55 The small amount (~5%) of 

plasma TFPI localised inside platelets is in storage granules that are distinct from 

α-granules.60 This TFPI can be released following dual stimulation of platelets 

with collagen and thrombin which leads to platelet activation.61-63 Of plasma TFPI, 

only ~10% is in its full-length 43 kDa form and represents the fraction of TFPI 

immediately available to counterbalance the procoagulant response. A small 

amount (~5%) of TFPI circulates as free truncated TFPI. The remaining plasma 

TFPI (~80%) is bound to lipoproteins.64,65  

 

 

Figure 1.5 Distribution of TFPI. 
Schematic representation of the distribution of TFPI in plasma and on the endothelial cell surface. 
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1.2.3 TFPI function 

TFPI binds to and directly inhibits FXa and, in a FXa-dependent way, inhibits the 

TF/FVIIa complex by forming a quaternary, inactive FXa/TFPI/TF/FVIIa 

complex.66-68 By inhibiting TF/FVIIa, TFPI inhibits the initiation phase of 

coagulation. The need for TFPI to bind and to inhibit FXa to effectively inhibit 

TF/FVIIa ensures that the TFPI pathway only regulates coagulation once it has 

started.69 

 

1.2.3.1 TFPI mediated inhibition of FXa 

FX is composed of a Gla domain responsible for its binding to phospholipids, two 

epidermal growth factor (EGF) domains required for protein-protein interaction 

and a serine protease domain responsible for the enzymatic activity of FXa. FX 

circulates as an inactive zymogen at a plasma concentration of ~136 nM and is 

activated following proteolysis by TF/FVIIa or by FVIIIa/FIXa.70 

TFPI is a slow, tight-binding competitive inhibitor. TFPI binds FXa in a 1:1 

stoichiometry, occupying its active site through its P1 residue, Arg107, in the K2 

domain.66 TFPI reversibly inhibits FXa by binding FXa in its active site. TFPI acts 

as a competitive inhibitor preventing FXa from binding to and activating 

prothrombin. It has been shown that FXa is able to hydrolyse TFPI after its P1 

residue in the K3 domain, however, the physiological significance of this still 

needs to be evaluated.71 

The kinetic mechanism of TFPI mediated inhibition of FXa is described as a two 

step reaction (Equation (Eq) 1).72 

 

The first step describes the rapid formation of a loose initial FXa/TFPI complex. 

This is followed by a slower step resulting in formation of a final tight-binding of 

the enzyme to the inhibitor (FXa/TFPI* complex). Tight-binding is characterised 

by inhibition occuring at concentrations of inhibitor close to that of the enzyme. 
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The first step is described by the inhibition constant Ki 

(Ki=[FXa]*[TFPI]/[FXa/TFPI]) and the overall reaction by the inhibition constant Ki* 

(Ki*=[FXa]*[TFPI]/([FXa/TFPI]+[FXa/TFPI*])). 

It has been shown that both phospholipids and FVa can enhance TFPI mediated 

inhibition of FXa.72,73 Phospholipids are likely to co-localise FXa and TFPI on its 

surface, as FXa binds phospholipids through its Gla domain and it has been 

suggested that the positively charged C-terminal tail of TFPI can interact with 

negatively charged phospholipid surfaces and cell surfaces.74-76 TFPI inhibition of 

FXa in the prothrombinase complex is, however, inhibited by the presence of sub-

physiological concentrations of prothrombin.73,77 It is likely that this is a result of 

prothrombin competing for the active site of FXa. 

It has been shown that TFPI truncated, either after its K3 domain (lacking the K3 

domain and the C-terminal tail) or lacking the C-terminal tail, is not as potent 

inhibitor of FXa as full-length TFPI.78-80 It has been suggested that the K3 domain 

and C-terminal tail of TFPI might interact with phospholipids and cell surfaces,74-76 

and that the C-terminal tail of TFPI might interact with the Gla domain of FXa79,80 

possibly partially explaining the reduced activity of truncated TFPI. More recently, 

it was shown that protein S acts as a cofactor towards full-length TFPI mediated 

inhibition of FXa but not towards TFPI lacking its K3 and C-terminal domain.81 

 

1.2.3.2 TFPI mediated inhibition of TF/FVIIa 

TFPI inhibits TF/FVIIa in a FXa dependent way.66-68 As described in section 

1.2.3.1 TFPI is a slow, tight-binding competitive inhibitor. It reversibly inhibits 

TF/FVIIa by binding the active site of FVIIa through its P1 residue (Lys36) in the 

K1 domain.66 It has been shown that the intact Gla domain of FXa is required for 

TFPI mediated inhibition of TF/FVIIa.82,83 One study used a plate binding assay 

and showed that FXa enhanced the binding of TFPI to phospholipids.76 It has 

been suggested that the Gla domain and EGF1 domain of FXa are important for 

interactions with the TF/FVIIa complex, potentially explaining its importance in 

TFPI mediated inhibition of TF/FVIIa.84,85 

Inhibition of TF/FVIIa is usually described as a two-step process, in which TFPI 

first binds to FXa (this being the rate-limiting step) and then inhibits TF/FVIIa by 

binding to FVIIa (Figure 1.6 left). Kinetic studies, however, favour the binding of 
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TFPI to FXa that is already bound to TF/FVIIa (Figure 1.6 right).68 The resulting 

inactive quaternary TFPI/FXa/TF/FVIIa complex leads to inhibition of the initial 

procoagulant stimuli. Although the K3 domain and C-terminal tail of TFPI are not 

absolute requirements for inhibition of FXa/TF/FVIIa, their presence appreciably 

enhances the TFPI anticoagulant activity.78,79 

 

 
Figure 1.6 TFPI binds to and inhibits FXa and TF/FVIIa. 
Inhibition of TF/FVIIa is frequently described as a two-stage process (left) in which TFPI first binds 
FXa and then the TFPI/FXa complex binds and inhibits TF/FVIIa. However, kinetic studies favour 
a model whereby TFPI binds to newly activated FX prior its release from the TF/FVIIa/FXa 
complex (right). In both cases the resulting inactive quaternary complex is TFPI/FXa/TF/FVIIa. 
 
 

1.3 Protein C/APC 

1.3.1 PROC  

Protein C is a plasma protein that is synthesised and secreted by hepatocytes. 

PROC, the gene that encodes protein C, is localised on chromosome 2 and 

contains 9 exons.86 Translation of the messanger ribonucleic acid (mRNA) results 

in an immature protein of 461 amino acids.87 Post-transcriptional modifications 

include γ-carboxylation, β-hydroxylation, glycosylation and removal of the Lys156-

Arg157 dipeptide by proteolysis which results in conversion of protein C from a 

single chain to a two-chain protein. Following removal of the pro- and pre-peptide 

protein C is secreted as a mature zymogen of 419 amino acids with a MW of 62 

kDa. 
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1.3.2 Protein C structure  

Protein C circulates as a zymogen at a plasma concentration of ~65 nM. It is 

composed of a Gla domain, two EGF domains, an activation peptide (AP) and a 

serine protease domain (Figure 1.7).88 The Gla domain (amino acids 1-45) 

contains 9 γ-carboxylated Glu (Gla) residues (Gla6, 7, 14, 16, 19, 20, 25, 26, and 

29).87,89 These are essential for coordination of Ca2+ ions and binding to 

negatively charged phospholipids surfaces.19 It has also been shown that Leu8, 

which is part of the hydrophobic ω-loop, is essential for binding to the endothelial 

protein C receptor (EPCR).90 In addition, substitution of Asp36/Leu38/Ala39 

results in a APC variant that can not be enhanced by protein S. The two EGF 

domains are predicted to be important for protein-protein interactions but no 

definitive role has so far been reported in the literature. EGF1 (amino acids 46-

92) is β-hydroxylated at Asp71 and this residue in conjunction with Asp46 and 

Asp48 coordinates a Ca2+ ion.91 A study using a Fab fragment against this region 

suggested that the EGF1 of protein C might be important for interactions with 

protein S.91 EGF2 (amino acids 93-137) is glycosylated at Asn97 and this has 

been reported to be important for effective secretion of protein C.92 The serine 

protease domain (amino acids 138-419) is composed by a catalytic triad (His211, 

Asp257 and Ser360), and contains loop 225 and loop 70 involved in Na+ and Ca2+ 

binding, respectively.93 It has been shown that binding of one ion to its loop 

increases the affinity of the other ion.93 The serine protease domain also contains 

loop 37, loop 60 and loop 148. Basic residues in loop 37, loop 70 and loop 148 are 

believed to form an exosite for binding to FVa and FVIIIa.94-98  
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Figure 1.7 Schematic structure of protein C.  
The complete model of zymogen protein C was made by combining the crystal structure of the 
Gla-domainless APC with the Gla domain modelled from the crystal structure of the TF/FVIIa 
complex.

88
 The AP was introduced by homology modelling. The serine protease domain is 

coloured in red, with the catalytic triad showed by the darker red spheres. The EGF2 is colured in 
dark blue, the EGF1 in cyan and the Gla domain in orange. The 9 Gla residues in the Gla domain 
are shown as sticks and coordinate calcium ions (yellow spheres). The Leu8 residue is shown in 
olive green and the Asp36/Leu38/Ala39 residues in the bright orange spheres. 
 
 

1.3.3 Protein C activation 

Cleavage of the negatively charged AP (Asp158-Arg169) of protein C by thrombin 

results in activation of protein C. Activated protein C is a two chain protein 

composed of a light (Gla-EGF1-EGF2) and heavy (AP and serine protease 

domain) chain connected through a disulphide bond (Cys141 and Cys277). 

Protein C is activated only once a sufficient amount of thrombin is generated. 

Thrombin that escapes the site of injury can bind to TM on intact endothelial cells 

adjacent to the site of vascular injury. TM is composed of a C-terminal 

cytoplasmic tail, a transmembrane region, a serine-threonine rich domain, 6 EGF 

domains and an N-terminal type C lectin-like domain.99 Thrombin binds TM in the 

EGF5 and EGF6 domains through its exosite I.100,101 It has also been shown that 

a chondroitin sulfate moiety of TM can interact with the exosite II of thrombin.102 
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As exosites I and II of thrombin are required for the activation of procoagulant 

factors FVa and FVIIIa,12,103-106 binding of thrombin to TM results in a loss of its 

procoagulant functions. Instead, the specificity of thrombin is altered and the 

anticoagulant properties of thrombin are enhanced. The ability of thrombin to 

activate protein C is enhanced by 2000-fold following binding to TM.107 Thrombin 

activates protein C by cleaving after Arg169 removing its AP. TM also binds the 

serine protease domain in the loops 37, 60, 70 and 148 of protein C through its 

EGF4 domain (Figure 1.8).107-109 The activation of protein C is appreciably 

enhanced (more than 5-fold) by the presence of EPCR which binds the Leu8 in 

the Gla domain of protein C localising protein C to the endothelial surface close to 

the thrombin/TM complex.90,110-113 This increases the local concentration of 

protein C available for activation. 

 

Figure 1.8 Activation of protein C.  
Thrombin (light purple) binds to EGF5 and EGF6 of TM through its excosite I domain. EPCR (dark 
purple) binds the Gla domain of protein C resulting in the alignment of protein C with the 
thrombin/TM complex. EGF4 of TM is able to interact with loops 37, 60, 70 and 148 (not shown) of 
protein C bringing the AP of protein C in proximity of the active site of thrombin. Cleavage after 
Arg169 of protein C by thrombin activates protein C. Figure modified from Dahlbäck and 
Villoutreix.

114
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1.3.4 APC function 

APC downregulates coagulation by proteolytical inactivation of FVa and FVIIIa, 

the non-enzymatic cofactors of FXa and FIXa, respectively.27 FV and FVIII have a 

highly homologous domain structure containing an N-terminal A1 and A2 domain, 

a B domain, and a C-terminal A3 domain followed by a C1 and C2 domain. The 

C2 domains possibly also the C1 domains are responsible for FV and FVIII 

binding to phospholipids.20-22 The A2 and A3 domains of FVa and FVIIIa are 

important for the interaction with FXa and FIXa respectively.115-118 

 

1.3.4.1 APC mediated inactivation of FVa 

Activation of FV occurs by the cleavage of peptide bonds in the B domain by 

either thrombin or FXa (Figure 1.9). This leads to dissociation of the B domain 

resulting in a two-chain molecule. The heavy chain (A1-A2 amino acids 1-709) 

and the light chain (A3-C1-C2 amino acids 1546-2196) remain associated by a 

non covalent complex between the A1 and A3 domains. While the association 

between the domains was believed to be through a high affinity Ca2+ interaction 

this has recently been questioned.20 FVa can be inactivated by APC by proteloytic 

cleavage. APC can cleave FVa after Arg306, Arg506 and Arg679 (Figure 1.9).119 

 

Figure 1.9 Activation of FV by thrombin and inactivation of FVa by APC. 
Thrombin activates FV by proteolytic cleavage in its B domain. The heavy and light chains of FVa 
are associated through a high affinity binding to a calcium ion. APC inactivates FVa by proteolytic 
cleavage after Arg306, Arg506 and Arg679. Structure/figure of FV based on Kane et al. 1986, 
Kane et al. 1987, Jenny et al. and Laffan.

120-123
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While the physiological relevance of Arg679 cleavage is still being debated it is 

widely accepted that APC inactivates FVa in plasma by cleavage at Arg506 and 

Arg306. Cleavage at Arg506 is enhanced and cleavage at Arg306 dependent 

upon the presence of phospholipids, with phosphatidylserine and 

phosphatidylethanolamine both being important for the stimulation of APC 

mediated inactivation of FVa.124-128 In FVa variants created for in vitro studies 

additional cleavage sites (Lys309, Arg313, Arg316, Arg317 and Arg505) have 

been identified.129,130 However, the physiological role of these cleavage sites is 

questionable. Following cleavage after Arg506 and Arg306 the A2 domain of FVa 

dissociates resulting in complete inactivation of FVa. Inactivation of FVa is 

biphasic.128,131,132 This is a consequence of the different rates of APC cleavage 

after Arg506 and Arg306. Arg506 is the first and kinetically most favoured 

cleavage site of APC and results in an intermediate FVa form which have been 

reported to have approximately 40% of intact FVa cofactor activity.128 The second 

cleavage of FVa by APC occurs after Arg306 but is ~20-fold slower than the first 

cleavage at Arg506.128 It has been shown that cleavage after Arg506, but to a 

minor extent also cleavage after Arg306, results in a significant decrease of FVa 

affinity for FXa and prothrombin.128,133,134 It is unresolved whether complete loss 

of FVa activity occurs following Arg506 and Arg306 cleavage (before dissociation 

of the A2 domain) or only after dissociation of the A2 domain.133,135  

It is known that FVa is protected from APC mediated proteolytic inactivation 

following binding to FXa136-139 and prothrombin.140-142 It has been shown that 

binding of FXa to FVa specifically inhibits APC cleavage after Arg506 by 

approximately 20-fold137,138 and it has been recently suggested that FXa can 

stimulate APC cleavage at Arg306.137 Binding of prothrombin to FVa has been 

shown to inhibit both APC mediated cleavage at Arg306 and Arg506 of FVa, 

however prothrombin did not inhibit APC mediated inactivation of FVIIIa.141,142 

 

1.3.4.2 APC mediated inactivation of FVIIIa 

FVIII circulates in plasma bound to VWF which act as a carrier protein increasing 

the half life of FVIII.143-145 FVIII is activated following proteolytical cleavage by 

thrombin or FXa in the B domain. Only after activation FVIIIa dissociates from 

VWF.146,147 Similarly to FV activation, activation of FVIII results in a two chain 
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molecule with a light and heavy chain. However, an additional cleavage between 

the A1 and A2 domains by thrombin leads to a weak association between the A1 

and A3 domain which are linked by a Cu2+ ion.148-150 Binding to Ca2+ or Mn2+ is 

also required to yield active FVIIIa.150-152 FVIIIa is unstable and spontaneous 

dissociation of the A2 domain results in loss of activity.153,154 Incorporation of 

FVIIIa into the tenase complex stabilises FVIIIa and also protects it from APC 

mediated inactivation.155,156 APC inactivates FVIIIa by proteolytical cleavage after 

Arg336 and Arg562. Cleavage occurs preferentially at Arg336 and thereafter at 

Arg562, resulting in dissociation of the A2 domain and complete loss of function 

of FVIIIa.157,158  

 

1.4 Protein S 

1.4.1 PROS1  

Protein S is encoded by the PROS1 gene on chromosome 3 (p11.1), which spans 

more than 100 kb and gives rise to an mRNA of 3292 bases.159,160 Following 

transcription the 676 amino acid long protein is directed to the endoplasmic 

reticulum (ER) by its hydrophobic signal peptide. Here, protein S goes through 

several post-transcriptional modifications, including γ-carboxylation, glycosylation 

and β-hydroxylation. γ-carboxylation is carried out by the vitamin K-dependent γ-

carboxylase which recognises and binds to the propeptide of protein S. Prior to 

secretion both the signal peptide and propeptide are proteolytically removed 

generating a mature protein of 635 amino acids with a reported molecular weight 

of 69-77 kDa.161,162  

Protein S is synthesised and secreted into the blood stream mainly by 

hepatocytes but also by endothelial cells, megakaryocytes and vascular smooth 

muscle cells.163-166 The resulting concentration of protein S in plasma is ~0.35 

μM.167 Of plasma protein S, 60% circulates as a non-covalent, high-affinity 

complex with C4b-binding protein (C4BP) while the remaining 40% is free.168 
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1.4.2 Protein S structure  

The mature protein S is composed of an N-terminal Gla domain (amino acids 1-

46), a thrombin sensitive region (TSR, amino acids 47-75), four EGF domains 

(EGF1, amino acids 76-116; EGF2 amino acids 117-160; EGF3, amino acids 

161-202; EGF4, amino acids 203-242) and a C-terminal Sex Hormone Binding 

Globulin-like domain (SHBG) (amino acids 243-635) containing two laminin G 

(LG)-type domains (Figure 1.10).169,170 

The N-terminal Gla domain of protein S contains one disulphide bond (Cys17-

Cys22) and 11 glutamic acid residues (Glu 6, 7, 14, 16, 19, 20, 25, 26, 29, 32 and 

36) that are γ-carboxylated by the vitamin K-dependent γ-carboxylase in the 

ER.171 The resulting N-terminal Gla residues coordinate 8 calcium ions which 

induce an appropriate conformational change in protein S for activity.19,171,172 

Folding of the Gla domain enables protein S to bind to phospholipids through the 

insertion of its hydrophobic ω-loop into the membrane and ionic interactions 

between positively charged calcium ions and the negatively charged phospholipid 

surface.19,171,172 Binding of protein S to phospholipid surfaces localises protein S 

to activated endothelial cells and activated platelet surfaces and is required for 

both its anticoagulant and non-anticoagulant activity (see section 1.4.3). 

The TSR is formed by two α-helixes brought in close contact through a disulphide 

bond between Cys47 and Cys72 and is a domain unique to protein S. Its name 

derives from the observed cleavage of this region by thrombin. While cleavage at 

Arg49 and Arg70 by thrombin has been observed in vitro, this only occurs in the 

absence of Ca2+ and phospholipids, suggesting that this is not of physiological 

importance.173 FXa has also been shown to be able to cleave the TSR at Arg60. 

Recently, it was shown that the TSR domain of protein S could bind to FXa in the 

presence of phospholipids.174 Although FXa cleavage is both Ca2+ and 

phospholipid dependent, it is unlikely to occur in vivo due to its slow kinetics and 

the inability of FXa to cleave protein S when bound to its cofactor FVa or when in 

presence of prothrombin.173 It is, however, interesting to notice that cleavage of 

the TSR has been observed to inhibit the APC-dependent cofactor activity of 

protein S.175-177 The effect of cleavage upon the protein S APC-independent 

activity is still not clear, but it has been suggested that it is abolished only 
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following cleavage after both Arg49 and Arg70.176 It has been reported that 

approximately 10% of plasma protein S circulate in its cleaved form.178 

The EGF1 domain of protein S contains 3 disulphide bonds and is β-hydroxylated 

at Asp95.171 This domain has to date not been found to bind Ca2+ and β-

hydroxylation is thought not to be a requisite for protein S function.179 

The EGF2-4 domains all contain 3 disulphide bonds each and a β-

hydroxyasparagine residue (Hyn 136, Hyn 178 and Hyn 217). Each domain also 

contains a high affinity Ca2+ binding site180 (dissociation constant (Kd) nM range), 

which is thought to include the modified Asn residue. Binding of Ca2+ to these 

domains have been shown to be important for the function of protein S. In 2006 

Rezende and colleagues demonstrated that the abolition of binding of Ca2+ to 

EGF4 impaired both the structure and function of EGF1.181 It has also been 

suggested that a naturally occurring deletion mutation in EGF4 (deletion 

I203D204) alters the conformation and function of the Gla domain,182 while 

deletion or replacement of the entire EGF2 domain results in a significant loss of 

activity.183 

The C-terminal SHBG domain of protein S represents more than half of its amino 

acids and is kept in its globular state through 3 disulphide bonds. It contains 3 

potential N-linked glycans at Asn458, Asn468 and Asn489 and is also predicted 

to contain Ca2+ binding sites.184,185 As anticipated, 60% of protein S circulates as 

a non-covalent, high-affinity complex with C4BP. This interaction is mediated 

through the SHBG domain of protein S.184,186 C4BP is a 570 kDa multimeric 

protein consisting of 6 or 7 identical α-chains with one or no β-chain held together 

by disulphide bonds. It is this β-chain which contains the binding site for protein 

S.187 The net plasma concentration of C4BP is ~260 nM. Of this only ~80% (~208 

nM) has the β-chain and is able to bind to protein S with a 1:1 stoichiometry.187 

The amount of unbound or free circulating protein S is equal to the molar excess 

of protein S over β-chain containing C4BP (~145 nM) and represents the pool of 

protein S with major anticoagulant function.188 

Multimerisation of protein S has been documented in the literature. Protein S is 

generally thought to exist in plasma in its monomeric form (although some have 

reported multimeric forms of protein S in plasma) and multimerisation has been 

attributed at least in part to in vitro manipulation.189-192 
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Figure 1.10 Schematic representation of protein S and its domains. 
Protein S contains a N-terminal Gla domain that is responsible for binding to phospholipid 
surfaces. This is followed by a TSR domain, 4 EGF domains and a SHBG domain. The figure in 
the box has been created from the Gla-TSR-EGF1 model of protein S.

193
 The Gla domain is 

coloured in yellow, with the 11 Gla residues shown as sticks and the 8 calcium ions shown as 
orange spheres in the box at the right. The ω-loop of protein S can be seen underneath the 
calcium ions. The TSR is shown in green and the EGF1 domain in cyan. 
 
 

1.4.3 Protein S functions 

Protein S is a multifunctional protein involved in coagulation, the classical 

complement pathway and apoptotic clearance.194-196 It is also thought to stimulate 

vascular injury repair by acting as a mitogen towards smooth muscle cells and 

has recently been found to have a neuroprotective effect during ischemic brain 

injury in mice.197-200 

The most studied protein S function is its anticoagulant activity, which is also the 

focus of my thesis. Protein S has an important role in vivo, as is shown clinically 

by infants with complete deficiency, who suffer purpura fulminans despite 

treatment of anticoagulants, and by heterozygous carriers of PROS1 gene 

deletions and point mutations, who are at enhanced risk of venous 

thromboembolism.201-203 Hereditary protein S deficiency is an uncommon 

autosomal dominant disorder. It is classified into type I, type II and type III 
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deficiencies. Type I and type III deficiencies are defined as quantitative 

deficiencies of total and free protein S, respectively, and correspond to ~96% of 

all protein S deficiencies.202 The remaining ~4% are represented by type II 

deficiencies. This subtype is classified as a qualitative deficiency.202 Acquired 

protein S deficiencies are more common and occur as a consequence of oral 

anticoagulant therapy, oral contraception, liver disease, nephritic syndrome and 

pregnancy.202,204 Protein S deficiencies, inherited or acquired, both lead to an 

increased risk of thrombotic events.205 The importance of protein S has also been 

demonstrated in murine knockouts, which fail to survive development.206,207 

Protein S is best known for its anticoagulant activity towards APC. Protein S was 

discovered in 1977 by Richard DiScipio and was 3 years later shown to be the 

cofactor of APC.208 Protein S was, however, also suggested to have an APC-

independent activity in 1988.209 In the early 1990’s it was demonstrated that 

protein S could bind to FVa,116,210-212 FXa174,213,214 and FVIIIa215 inhibiting both the 

tenase and prothrombinase complex in an APC-independent manner. It was 

shown that the observed inhibition of the tenase and prothrombinase complex 

was due to competition of protein S multimers for binding to limiting phospholipid 

surfaces.191,192,216,217 However, it was later shown that protein S had an APC-

independent activity in plasma also when saturating amounts of phospholipids 

were present, but which could be demonstrated only at low concentrations of 

TF.218 

 

1.4.3.1 Protein S enhances the anticoagulant activity of APC 

1.4.3.1.1 Protein S enhancement of APC mediated inactivation of FVa 

Protein S enhances the APC mediated inactivation of FVa in a phospholipid 

dependent manner.124,208,219 It does so by selectively enhancing by approximately 

20-fold the slow cleavage at Arg306 of FVa.125,138 The use of FV variants FV 

R306Q/R679Q and FV R506Q/R679Q, that can be cleaved only in Arg506 and 

Arg306, respectively, has been useful to characterise the effect of protein S and 

other components on the individual cleavage sites.125,137,220 Through the use of 

such variants it has recently been suggested that protein S can also enhance ~5-

fold APC mediated cleavage at Arg506.125 
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Protein S has been proposed to enhance APC mediated inactivation of FVa in 3 

distinct ways. It has been shown to enhance APC binding to phospholipid 

surfaces, platelets and endothelial cells,127,221,222 consequently localising APC in 

close proximity to the membrane bound FVa and FVIIIa. This proposal is 

supported by the low affinity of APC for phospholipids. While the apparent 

dissociation constant (Kd(app)) of protein S for phospholipids is between 4-15 

nM182,223-225 the Kd(app) of APC for phospholipids is around 2-7 µM,226,227 which is 

well outside the range of the physiological plasma concentration of APC (~65 

nM). The second mechanism by which protein S is thought to enhance APC 

anticoagulant activity is through inducing an allosteric conformational change in 

APC.228,229 Yegneswaran et al. used fluorescence resonance energy transfer 

(FRET) and showed that the active site of APC was localised 94 Ångström (Å) 

above the membrane surface. However, in the presence of protein S the active 

site of APC was relocated to 84 Å from the membrane surface.229 It has been 

suggested that this shift in the active site of APC in the presence of protein S 

facilitates the preference of APC cleavage from Arg506 to Arg306. As described 

in section 1.3.4.1, FXa and prothrombin are able to protect FVa from APC 

mediated cleavage. The third mechanism by which protein S is thought to 

enhance APC mediated inactivation of FVa is through overcoming the protective 

effect of FVa.137,219 It is still being debated whether protein S competes with the 

binding of FXa to FVa or not.116,137,138 Depending on this, protein S could either 

act by competing with FXa binding116 to FVa. Alternatively, protein S could 

enhance cleavage of free FVa resulting in depletion of free FVa and dissociation 

of FXa/FVa complexes.137 An other study showed that the binding sites of protein 

S and FXa on FVa are distinct and that protein S is likely to enhance APC 

mediated cleavage at Arg306 of FVa even when the latter is bound to FXa.138 A 

recent paper suggests that not only protein S but also FV can act as a cofactor for 

APC mediated inactivation of FVa.230 

While it was previously thought that only free protein S could act as a cofactor for 

APC, recent work shows that protein S bound to C4BP is able to enhance 

cleavage of FVa.231 However, while cleavage after Arg306 by this complex is 

enhanced 10-fold (compared to ~20-fold by free protein S), cleavage after Arg506 

is inhibited 3-4-fold (compared to no or little influence of free protein S).231 

Consequently, bound protein S enhances APC cleavage of FVa, but is 6-8-fold 
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less effective that free protein S, potentially explaining why in prior experiments 

the addition of C4BP resulted in a decreased APC activity.  

 

1.4.3.1.2 Protein S enhancement of APC mediated inactivation of FVIIIa 

It has been shown that protein S can enhance both the slow cleavage at Arg562 

by ~3-fold and cleavage at Arg336 by ~2-fold. 232,233 However, FV cleaved at 

Arg506 also acts in synergy with protein S as a cofactor enhancing ~10-fold APC 

mediated inactivation of FVIIIa.157,233,234 Both free protein S and protein S bound 

to C4BP act as cofactors for APC mediated inactivation of FVIIIa.235 However, it 

has been reported that while free protein S acts in synergy with FV in the APC 

mediated inactivation of FVIIIa, bound protein S does not.235  

It is believed that protein S exerts its cofactor activity through increasing the 

binding of APC to phospholipid surfaces, platelets and endothelial cells, as 

described in section 1.4.3.1.1. 127,221,222 

Similar to FVa in the prothrombinase complex, when FVIIIa is assembled in the 

tenase complex cleavage is protected by FIXa. Protein S can overcome the 

protective action of FIXa by competing with its binding to FVIIIa.236  

 

1.4.3.2 Protein S enhances the anticoagulant activity of TFPI 

1.4.3.2.1 Protein S enhancement of TFPI mediated inactivation of FXa 

In 2006 Hackeng et al. showed that protein S enhances the anticoagulant activity 

of TFPI, potentially providing a molecular explanation behind the APC-

independent activity observed in plasma.81 Since it had been shown that the 

APC-independent activity of protein S was visualised only at low concentrations 

of TF,218 their investigation hypothesised that protein S had an effect on TF 

mediated activation of FX. Hackeng et al. analysed thrombin generation by 

calibrated automated thrombography (CAT). They showed that in normal plasma, 

in the presence of polyclonal antibodies against APC, antibodies against protein 

S increased thrombin generation. The same effect was, however, not observed in 

TFPI depleted plasma, suggesting the anticoagulant activity of protein S was 

dependent upon the presence of TFPI. This was confirmed by supplementing the 

plasma with TFPI. They also performed a FXa inhibition assay. This was a 
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purified assay in which FXa hydrolysis of a chromogenic substrate was measured 

over time. It was observed that protein S could potentiate the TFPI mediated 

inhibition of FXa by enhancing the formation of the initial FXa/TFPI complex (see 

section 1.2.3.1). Little effect was seen on the transition from the loose FXa/TFPI 

complex to the tightly bound FXa/TFPI* complex. The effect of protein S was 

phospholipid dependent and resulted in a 10-fold reduction of the Ki (see section 

1.2.3.1), from 4.4 nM to 0.5 nM, with little effect on the Ki*.
81 Ndonwi and Broze 

confirmed that protein S enhances TFPI inhibition of FXa.237 Hackeng et al. also 

showed that protein S was not able to enhance the activity of TFPI lacking its K3 

domain and C-terminal tail, and that protein S bound to C4BP only exerted 60% 

of the activity of free protein S.81 Ndonwi et al. recently showed that the K3 

domain of TFPI and in particular its P1 residue were necessary for protein S 

binding and cofactor activity towards TFPI.238 

Rosendaal and colleagues observed that higher plasma concentrations of protein 

S resulted in a higher anticoagulant activity of TFPI.239 Recently, it has been 

shown that the impaired protein S enhancement of TFPI is potentially an 

important component in patients with protein S deficiency.240 Interestingly, it has 

been suggested that protein S binds to TFPI in plasma and that this might 

account for the observed decrease in TFPI antigen levels in protein S deficient 

patients.241 The detailed molecular mechanisms of the TFPI-dependent protein S 

anticoagulant activity were unknown and form an important part of the 

investigation carried out in my thesis. 

Even though the APC-independent activity of protein S now has a plausible 

explanation (it acts as a cofactor of TFPI), Heeb and colleagues have reported 

that protein S also has a “direct” activity, independent of both APC and TFPI, 

exerted by direct binding to and inhibition of FXa and TF/FVIIa.189,190,242 

 

1.4.3.2.2 Protein S enhancement of TFPI mediated inactivation of TF/FVIIa 

Studying the protein S cofactor activity on TFPI mediated inactivation of TF/FVIIa 

is complicated by the difficulty in distinguishing between enhanced TF/FVIIa 

inhibition and enhanced inhibition of FXa. While it was initially suggested that 

protein S could enhance TFPI inhibition of TF/FVIIa activation of FX,81 Ndonwi 

and Broze suggested that this was not the case.237 The latter support the 
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proposal that TFPI predominantly binds to FXa already bound to TF/FVIIa, rather 

than the previously suggested two-step mechanism by which TFPI first binds FXa 

and FXa/TFPI subsequently binds TF/FVIIa (see section 1.2.3.2). Consequently, 

Ndonwi and Broze suggested the major role of protein S enhancement of TFPI 

was to down-regulate any FXa that escapes TF/FVIIa/FXa inhibition by TFPI. 

 

1.5 Domains of protein S which mediate functional interactions 

While the functions of the domains of protein S have been extensively studied, 

the APC cofactor function and the recently discovered TFPI cofactor activity of 

protein S remain poorly understood at the molecular level. A number of basic and 

clinical studies have confirmed that alteration of protein S can disrupt 

phospholipid binding and thereby impair function of protein S.182,223 Consequently, 

variants with impaired cofactor function need to be evaluated for their ability to 

bind to phospholipids and those that clearly alter phospholipid binding can be 

discounted from further investigation. A search of the literature has suggested the 

domains of protein S that are most likely involved in APC and TFPI cofactor 

activity (see sections 1.5.1 and 1.5.2 below).  

 

1.5.1 Domains of protein S reported to be important for APC cofactor 

activity 

Saller et al. prepared protein S/prothrombin chimeras and on the basis of 

functional studies supported by molecular modelling, identified a cluster of protein 

S Gla domain residues (termed Face2) which they proposed would provide an 

APC interaction site.224 Additional studies have focused on the possible role of 

TSR and EGF domains. Several studies have reported that cleavage in the TSR 

of protein S affects its APC-dependent and APC-independent cofactor activity.175-

177 Dahlbäck et al. used domain specific monoclonal antibodies directed against 

protein S and their Fab fragments and suggested that the TSR and EGF1 

domains may be involved in APC cofactor activity.243 The TSR and EGF1 domain 

of protein S have also been reported to be responsible for APC species 

specificity.244 By using EGF-like modules Stenberg et al. concluded the EGF1 

module to be crucial for interaction with APC.245 Hackeng et al. demonstrated that 
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the isolated EGF1 domain of protein S could inhibit full-length protein S 

anticoagulant enhancing function for APC: direct binding of the domain to APC 

was also demonstrated.246 Mille-Baker et al. prepared EGF2 domain deletion and 

substitution variants of protein S and demonstrated reduced APC anticoagulant 

cofactor activity, in the presence of normal phospholipid binding.183 Collectively, 

these investigators have suggested Gla, TSR, EGF1 and EGF2 domains may 

each contain recognition elements on protein S needed for APC cofactor function.  

 

1.5.2 Domains of protein S that are potentially important for TFPI cofactor 

activity 

Work presented in preliminary form at the ISTH congress in Geneva by Hackeng 

et al., who had carryied out an in silico molecular docking experiments of protein 

S and TFPI, suggested that the TSR of protein S might be involved in the 

interaction with TFPI. Recent reports suggest that free protein S, but not protein S 

bound to C4BP, form a reversible interaction with free full-length TFPI in 

plasma.241 In addition, free protein S seems to act more efficiently as a cofactor 

for TFPI than protein S in complex with C4BP.81 Collectively, these results would 

suggest that the N-terminal domains of protein S are more likely to be involved in 

an interaction with TFPI than the C-terminal domains, which can be bound to 

C4BP. 

 

1.6 Aims of my thesis 

The aims of my project were to determine the domains and residues of protein S 

involved in the interaction with both APC and TFPI. Following selection of the 

domains, over 30 point or composite variants in these domains were made. Wild 

type (WT) protein S and protein S variants were expressed in human embryonic 

kidney fibroblast (HEK) cells and purified as required. The functional cofactor 

activity of protein S variants towards APC and TFPI anticoagulant activities was 

evaluated and compared to that of WT protein S in various functional assays 

including calibrated automated thrombography (CAT), FVa inactivation assay and 

FXa inhibition assay. 
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2 METHODOLOGY 

A schematic overview of the sequence of methods used during this project and 

the sections in which they are described is shown in Figure 2.1. 

 
 
Figure 2.1 Overview of the Methodology of this thesis. 
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2.1 Generation of protein S mutant expression vectors 

2.1.1 Mammalian protein S expression vector and composite mutants 

generated 

A pcDNA6/protein S vector (Figure 2.2) containing the complimentary 

deoxyribonucleic acid (cDNA) for the WT protein S sequence had previously been 

generated in our lab by Dr S.M. Rezende (Universidade Federal de Minas Gerais, 

Brazil).247 The V5 epitope and the polyhistidine tag were excised from the 

pcDNA6/V5-HisB vector (Invitrogen) by digestion with the NheI restriction enzyme 

(New England Biolabs). The cDNA of protein S, amplified by polymerase chain 

reaction (PCR) with primers containing the restriction site for NheI, was digested 

with the restriction enzyme and ligated into the vector. The resulting 

pcDNA6/protein S vector contains the SV40 origin of replication, cytomegalovirus 

(CMV) and T7 promoters, and resistance to ampicillin and blasticidine. The 

plasmid was used as a template to produce single point mutations by PCR 

mediated site-directed mutagenesis. Newly produced cDNA with point mutations 

were subsequently used as a template to introduce additional mutations resulting 

in single and composite mutants.  

 

Figure 2.2 Protein S expression vector.  
The cDNA for protein S has been inserted into the vector through ligation of the NheI digested 
ends of the insert to the vector. The vector contains resistance to ampicillin for selection of 
transformed bacteria and the CMV promoter for expression in mammalian cells. The restriction 
sites BsmBI and BspEI are used for subcloning of the mutants generated (see section 2.1.6). bp; 
base pair. 
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2.1.2 Generation of protein S mutants by site-directed mutagenesis 

Complementary primer pairs with the desired base pair substitutions (for amino 

acid residues mutated see Table 3.1, for primer sequences see Appendix) were 

manufactured by Thermo Scientific. PCR reactions were performed using 

Stratagene’s QuickChange XL Site-Directed Mutagenesis Kit. In detail, final 

concentrations of 100 ng of protein S vector, 65 ng of forward primer, 65 ng of 

reverse primer, 0.5 μl deoxynucleoside triphosphate (dNTP) mix, 1X reaction 

buffer, 1.5 μl of QuikSolution and 1.25 U of high fidelity Pfu ultra deoxyribonucleic 

acid (DNA) polymerase were used in a final volume of 25 μl. 

Alternatively, mutagenesis was performed with the KOD hot start DNA 

polymerase (Novagen). In detail, final concentrations of 100 ng of dsDNA 

template, 0.3 μM of forward primer, 0.3 μM of reverse primer, 0.2 mM dNTPs, 0.5 

μl DMSO, 1.5 mM MgSO4, 1X reaction buffer and 0.5 U KOD hot start DNA 

polymerase were used in a final volume of 25 μl.  

Cycling parameters for Pfu ultra and KOD hot start DNA polymerase are outlined 

in Table 2.1 and Table 2.2 respectively. 

After PCR, parental dsDNA template was digested with 5 U of DpnI at 37°C for 1 

hour before transforming bacteria. 

 

Stage Phase Cycles Temperature (°C) Time 

Denaturation  1 95 2 minutes 

Amplification 

Denaturation 

18 

95 50 seconds 

Annealing 60 50 seconds 

Extension 68 
1 min/kb 
plasmid 

Final extension  1 68 7 minutes 

 
Table 2.1 PCR cycle parameters for Pfu ultra DNA polymerase.  
PCR cycle parameters used to generate protein S mutants by site-directed mutagenesis. Min; 
minute. 
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Stage Phase Cycles Temperature (°C) Time 

Denaturation  1 95 5 minutes 

Amplification 

Denaturation 

18 

94 15 seconds 

Annealing 60 30 seconds 

Extension 72 
20 sec/kb 
plasmid 

Final extension  1 72 5 minutes 

 
Table 2.2 PCR cycle parameters for KOD hot start DNA polymerase.  
PCR cycle parameters used to generate protein S mutants by site-directed mutagenesis. Sec; 
seconds. 
 
 

2.1.3 Transformation of competent cells 

Competent cells (XL-10 gold ultracompetent cells from Stratagene, One shot 

TOP10 competent cells from Invitrogen or NEB Turbo competent cells from New 

England Biolabs) were transformed with the mutated protein S vector according 

to the manufacturer’s instructions. In detail, 45 μl of cells were thawed on ice. XL-

10 gold ultracompetent cells were incubated with 2 μl of β-mercaptoethanol for 10 

minutes, gently swirling the tube every 2 minutes. Competent cells were 

incubated with 2 μl of DpnI treated DNA; the tube was swirled and incubated on 

ice for 30 minutes. Cells were heat-pulsed in a water-bath at 42°C for 30 seconds 

and placed on ice for an additional 2 minutes. Transformed bacteria were grown 

in 0.25-0.5 ml of preheated S.O.C. medium at 37°C for 1 hour with shaking. 

Bacteria were subsequently plated out on an LB-agar (Invitrogen) plate containing 

100 μg/ml ampicillin and incubated at 37°C over night. Ampicillin-resistant clones 

were picked and grown in 5 ml LB-broth (Invitrogen) with 100 μg/ml ampicillin 

over night at 37°C with shaking. 

 

2.1.4 Generation of glycerol stocks 

Of the 5 ml of bacteria in section 2.1.3, 700 μl were mixed with 300 μl of 

autoclaved 50% glycerol solution. The resulting mix was vortexed and stored at -

80°C. This could be partially thawed when additional transformed bacteria were 
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required. The remaining 4.3 ml of bacteria were used to extract plasmid DNA by 

miniprep. 

 

2.1.5 Plasmid miniprep and sequencing 

Plasmid DNA was extracted with the Qiagen Miniprep kit according to 

instructions. Mutations were confirmed by sequencing the protein S vector with 

the T7 primer 5’-TAA TAC GAC TCA CTA TAG GG-3’ (MRC Genomics Core 

Facility). 

 

2.1.6 Subcloning of the protein S mutants into the pcDNA6/Protein S 

vector 

Prior to mammalian expression, the mutated cDNA was sequenced with 

additional primers spanning the whole cDNA of protein S to make sure no 

unwanted mutations had been introduced (see Appendix for sequencing primers). 

Alternatively, the cDNA region containing the mutation was subcloned into the 

original WT vector. To perform such subcloning, the vector with the protein S 

mutation (40 μl, ~16 μg) and the WT vector (1 μg) were digested with BsmBI 

(New England Biolabs) at 55°C for 2 hours and subsequently with BspEI (New 

England Biolabs) at 37°C for 2 hours 30 minutes in buffer 3 (New England 

Biolabs) in a total volume of respectively 50 and 25 μl (Table 2.3).  

 

 Digestion of: 

 Protein S mutant vector WT vector 

DNA 40 μl (16 μg) 0.77 μl (1μg) 

BsmBI (10 U/μl) 1 μl 0.2 μl 

BspEI (10 U/μl) 1 μl 1 μl 

Buffer 3 5 μl 2.5 μl 

Water 3 μl 20.53 μl 

Total volume 50 μl 25 μl 

 
Table 2.3 Enzymatic digestion of WT and mutated pcDNA6/PS vector.  
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Digested DNA products were run on a 1% agarose gel containing SYBRSafe in 

tris borate ethylenediaminetetraacetic acid (TBE) buffer. Samples and marker (1 

kb or 100 bp) were electrophoresed for 20-40 minutes at 80 V. The DNA bands of 

interest were excised and purified using the QIAquick Gel extraction kit (QIAGEN) 

according to the manufacturer’s instructions.  

The linearised pcDNA6/Protein S vector was dephosphorylated with 0.01 U of 

Calf Intestinal Alkaline Phosphatase (CIAP) as described in Table 2.4, according 

to the manufacturer’s instructions (Invitrogen). The reaction was performed at 

37°C for at least 1 hour and the dephosphorylated vector was subsequently 

purified using QIAquick PCR purification Kit protocol (QIAGEN).  

 

Dephosphorylation 

DNA (~0.48 pmol) 25 μl  

10X dephosphorylation buffer 4 μl 

Water 10 μl 

CIAP (0.01 U/μl) 1 μl 

Total volume 40 μl 

 
Table 2.4 Dephosphorylation of the linearised WT vector. 
 

2.1.7 DNA ligation 

Approximately 60 fmol of the DNA fragment containing the mutation were ligated 

into 20 fmol of the dephosphorylated vector (molar ratio insert:vector, 3:1) with 

0.1 U of T4 DNA ligase in a total volume of 20 μl, at 23-26°C for 1 hour as 

described in Table 2.5. 

 

Ligation reaction 

Vector 3 μl (20 fmol) 

Insert 0.5 μl (60 fmol) 

5X ligase buffer 4 μl 

T4 ligase (0.1 U/μl) 1 μl 

Water 11.5 μl 

Total volume 20 μl 

 
Table 2.5 Ligation of the mutated protein S region into the WT protein S vector. 
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2.1.8 Transformation of competent cells with subcloned mutants 

The ligation product was used to transform One shot TOP10 (Invitrogen) or NEB 

turbo chemically competent cells (New England Biolabs) according to the 

manufacturer’s instructions. Transformed bacteria were plated out on LB-

agar/ampicillin plates over night at 37°C. Ampicillin resistant-colonies were picked 

and grown in 5 ml Luria-Bertani medium (LB) broth over night. The plasmid was 

extracted with the Qiagen Miniprep kit and sequenced (for primers see Appendix) 

as outlined previously (MRC Genomics Core Facility). Clones were sequenced 

across both restriction sites to confirm correct ligation.  

 

2.1.9 DNA maxiprep/megaprep and quantification 

Bacteria containing the successfully mutated protein S vector were cultured on a 

large scale (200-500 ml) to obtain sufficient amounts of plasmid (extracted with a 

Qiagen Maxiprep or Megaprep kit) for transfection of mammalian cells.  

The DNA was quantified with the Quant-IT™ nucleic acid Assay Kit (Invitrogen) 

according to manufacturer’s instructions or with a NanoDrop spectrophotometer 

by measuring the absorbance at 260 nm. 

 

2.2 Expression of protein S 

2.2.1 Mammalian cell culture 

HEK293T and HEK293 cells (ATCC) were used respectively for transient and 

stable transfections. Cells were cultured at 37°C, 5% CO2, in complete media; 

minimum essential media (MEM, Invitrogen) supplemented with 10% foetal calf 

serum (FCS) (Biosera), 2 mM L-glutamine (Invitrogen), 50000 U penicillin/ 50000 

μg streptomycin and 1X non-essential amino acids (Invitrogen), and were 

generally grown in T175 flasks or T175 triple flasks. When confluent, cells were 

washed with phosphate buffered saline (PBS; 10 mM phosphate buffer, 2.7 mM 

potassium chloride, 137 mM sodium chloride) (5 ml/T175 flask) split 1:3 using 1 

ml trypsin/T175 flask to detach cells and grown to confluence again in 3 days. 

Vitamin K (10 μg/ml) was added to complete MEM media, at least 24 hours prior 
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expression of protein S. This allows cells to take up vitamin K which is essential 

for the γ-carboxylation of protein S. Protein S was expressed in OptiMEM I 

(Invitrogen) reduced serum-medium supplemented with 10 μg/ml vitamin K and 

100 mg/L CaCl2 for 3 days.  

 

2.2.2 Transient transfection of HEK293T cells 

Protein S was transiently expressed in HEK293T cells. Cells were cultured in 

T175 triple flasks and grown in complete media. When cells reached ~60-70% 

confluency, the media was changed and supplemented with 10 μg/ml vitamin K. 

Cells were grown in the vitamin K containing media for at least 24 hours before 

being transfected. On the day of transfection, for one T175-triple flask, 257 µl of 

linear Polyethylenimine (PEI) (Polysciences,Inc) (1 mg/ml) were diluted into 3.75 

ml of 0.15 M autoclaved NaCl. The resulting PEI solution was added drop wise to 

3.75 ml of 0.15 M autoclaved NaCl containing 114 μg DNA and the mix was 

incubated at room temperature for 15-20 minutes. The DNA-PEI solution was 

added to 75 ml OptiMEM supplemented with 10 μg/ml vitamin K and 100 mg/L 

CaCl2. Each T175-triple flask was washed with PBS and cells were grown in the 

82.5 ml of OptiMEM containing the transfection solution. Media containing the 

secreted protein S was harvested after 3 days. 

 

2.2.3 Stable transfection of HEK293 cells 

A heterogeneous stable HEK293 cell line expressing WT protein S had already 

been generated in our lab by Dr S.M. Rezende (Universidade Federal de Minas 

Gerais, Brazil). Heterogeneous stable cell lines expressing protein S variants of 

interest were produced during this project. HEK293 cells were seeded in a 6 well 

plate in complete media and were allowed to reach 85-95% confluence before 

being transfected. Ten μl of Lipofectamine 2000 (Invitrogen) was mixed with 250 

μl OptiMEM (GIBCO) and incubated for 5 minutes at room temperature. Following 

incubation, 4 μg of DNA pre-diluted into 250 μl OptiMEM were added drop-wise to 

the Lipofectamine 2000 solution. The resulting DNA-Lipofectamine 2000 mix was 

incubated for 5 minutes at room temperature before being added to the cells 

previously washed with PBS. Cells were incubated at 37°C, 5% CO2 for 4-6 
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hours, after which the media was replaced by complete MEM media. After 24-48 

hours cells were split 1:10 and seeded in complete MEM media containing 5 

μg/ml Blasticidine-HCl (Invitrogen). Stably transfected HEK293 cells were 

selected by culturing the cells in selective media at a confluence below 60% for 4 

weeks. A stable cell line expressing full-length TFPI was also set up in HEK293 

cells. These stably transfected cells were selected for with 500 μg/ml G418 as the 

expression vector for TFPI contained the neomycin resistance cassette. TFPI in 

conditioned media was concentrated, quantified (by my colleague Verity Hockey) 

and used in the plasma assay (see section 2.5.3). 

 

2.2.4 Cryopreservation of mammalian cells 

HEK293T, HEK293 and protein S stable cell lines were cryopreserved in liquid 

nitrogen. Once cells reached confluence in a T175 flask they were washed with 

PBS and trypsinised with 1 ml of trypsin. Trypsin was neutralised by adding 10-20 

ml complete media and cells were centrifuged at 1200 rpm for 5-10 minutes. The 

supernatant was discarded and cells were resuspended in 2 ml of cold complete 

media. Two ml of cold complete media with 10% dimethyl sulfoxide (DMSO) was 

added dropwise to the cells and the solution was mixed. Cells were aliquoted in 1 

ml fractions in cryovials and stored in a cryo freezing container (Nalgene) at -

80°C for a minimum of 3 hours and maximum over night prior to being transferred 

into liquid nitrogen. 

To recover cryopreserved cells, vials were transferred from the liquid nitrogen to 

ice and then thawed at 37°C. Cells were seeded into a T75 flask with 20-30 ml of 

complete media to dilute out the amount of DMSO.  

 

2.2.5 Expression and harvesting of WT and variant protein S 

Both stable and transiently transfected cells were cultured in triple T175 flasks 

containing 75 ml of OptiMEM (GIBCO) supplemented with 10 μg/ml vitamin K and 

100 mg/L CaCl2. After 3-4 days the media was harvested, centrifuged and filtered 

to remove cell debris, and concentrated using a labscale tangential flow filtration 

(TFF) system (Millipore) with 10 kDa cut off membrane. The same procedure was 
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repeated for non-transfected HEK293T cells to obtain media, not containing 

protein S, to be used as a negative control in functional assays. 

Stable cell lines were, in addition to being cultured in triple flasks, also cultured in 

CELLine adhere 1000 two-compartment bioreactors (IBS integra biosciences) 

according to the manufacturer’s instructions. The cell compartment contained 15 

ml OptiMEM, 10 μg/ml vitamin K, 100 mg/L CaCl2 and the media compartment 

contained 1 L complete MEM media supplemented with vitamin K. Media was 

changed weekly and OptiMEM from the cell compartment, containing protein S, 

was harvested. 

Media samples to be used in functional assays were dialysed with at least 3 

changes of buffer in 3-5 L of 20 mM Tris-HCl pH 7.5, 140 mM NaCl, for 1 hour 

each time at room temperature. Later during my project media samples (protein S 

variants 74A, KTK, NEDM and NNEDM) were dialysed in 20 mM Tris-HCl pH 7.5, 

140 mM NaCl, 3 mM CaCl2. Samples were concentrated by Amicon Ultra 

centrifugal filter devices with a cut off of 50 kDa (Millipore), aliquoted and stored 

at -80°C. 

 

2.3 Protein S purification 

2.3.1 Protein S purification by FPLC on an anion exchange QFF column 

and by immunoaffinity chromatography 

Protein S was purified by a two step method. Fast protein liquid chromatography 

(FPLC) was performed using an ÄKTApurifier UPC-10 (GE healthcare) and the 

Unicorn 5.1 (Build 407) software, strategy version 1.00 and consisted of a 

passage over an anion exchange Q Sepharose Fast Flow (QFF) column (section 

2.3.1.1) followed by a second passage over an immunoimmunoaffinity column 

(section 2.3.1.3). This purification procedure had previously been optimised by 

Sofia Carlsson (in Professor Björn Dahlbäck’s lab, Lund University, Malmö, 

Sweden). 
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2.3.1.1 Partial purification of protein S by FPLC on an anion exchange QFF 

column 

Concentrated and dialysed conditioned media containing protein S supplemented 

with 4 mM ethylenediaminetetraacetic acid (EDTA) was applied to an anionic 5 

mL of HiTrap QFF column (GE Healthcare) equilibrated with 20 mM Tris-HCl (pH 

7.4), 100 mM NaCl, 4 mM EDTA, and 5 mM benzamidine-HCl (Sigma-Aldrich). 

The column was washed with 20 mM Tris-HCl (pH 7.4), 100 mM NaCl, and 5 mM 

benzamidine-HCl to first elute weakly bound proteins. Protein S was eluted from 

the column with 20 mM Tris-HCl (pH 7.4), 0.5 M NaCl, and 5 mM benzamidine-

HCl. The Sepharose HiTrap™ QFF anion exchange column was stripped of more 

tightly bound proteins with 20 mM Tris-HCl, pH 7.4, 1 M NaCl and 5 mM 

Benzamidine-HCl. 

To prevent cross-contamination between protein S preparations, the column was 

cleaned with 2 M NaCl in a reversed flow direction for 15 minutes and 1 M NaOH 

for 1-2 hours. The column was then stored in 20% ethanol. 

 

2.3.1.2 Preparation of the immunoaffinity column 

An immunoaffinity column for protein S was made with 2.5 mg of monoclonal 

mouse anti-human protein S MK21 antibody.243 All monoclonal domain specific 

antibodies described in this thesis were kindly provided by Professor Björn 

Dahlbäck and Sofia Carlsson, Lund University, Malmö, Sweden and have been 

described in the literature.243 The MK21 antibody is a calcium dependent antibody 

specific for the Gla domain of protein S. The antibody was thoroughly dialysed in 

the coupling buffer (0.2 M NaHCO3, 0.5 M NaCl, pH 8.3). The antibody was 

coupled to a 1 ml HiTrap NHS-activated HP column (GE healthcare) according to 

manufacturer’s instructions and any excess active groups were deactivated with 

ethanolamine and acetate. The immunoaffinity column was stored in 20 mM Tris-

HCl pH 7.5, 150 mM NaCl, 0.1% sodium azide. 

 

2.3.1.3 Purification of protein S by FPLC on an immunoaffinity column 

To lower the ionic strength (from 500 mM NaCl to ~166 mM NaCl) and add CaCl2, 

two volumes of 7.5 mM CaCl2 were added to the elution fraction from the anion 
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exchange QFF column, before injecting the sample on the immunoaffinity column. 

The fraction eluted from the QFF column containing protein S was applied to the 

equilibrated column (equilibration buffer: 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 

mM CaCl2). After washing with 1 M NaCl, the ionic strength was lowered by 

passing 3 column volumes of equilibration buffer over the column prior to elution 

of protein S with 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 10 mM EDTA. An 

excess of CaCl2 was present in the tubes collecting the eluted protein S to 

neutralise the EDTA. The column was regenerated by stripping with 0.1 M 

glycine-HCl pH 2.7. 

Samples to be used in functional assays were dialysed and concentrated as 

described in section 2.2.5. 

 

2.3.2 Protein S purification by barium citrate precipitation and by FPLC on 

an anion exchange DEAE column 

2.3.2.1 Barium citrate precipitation of protein S 

Protein S was partially purified by barium citrate precipitation as previously 

described.248 The conditioned media containing protein S that had previously 

been concentrated to 50 ml in the TFF (see section 2.2.5) was divided into two 50 

ml tubes, each containing 25 ml media, and incubated on ice. 1.13 ml of a 0.5 M 

stock of trisodium citrate was added to each tube containing concentrated 

conditioned media and incubated on ice for 10 minutes. 1.13 ml of a 1 M stock 

BaCl2 was added to each tube and the media was vortexed and incubated on ice 

for 1 hour. The sample was centrifuged at 5000 g for 30 minutes and the pellet 

that formed was resuspended in 25 ml of 100 mM BaCl2, 100 mM NaCl and 

incubated on ice for 1 hour. The sample was spun as before and the pellet was 

resuspended in 15-50 ml of 20 mM Tris-HCl pH 7.5, 150 mM NaCl, 150 mM 

trisodium citrate.  

Barium citrate precipitated protein S was dialysed in 20 mM Tris-HCl pH 7.5, 140 

mM NaCl for at least 1 hour at room temperature before dialysing it at 4°C. 
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2.3.2.2 Purification of protein S by FPLC on an anion exchange DEAE column 

The purification of protein S on a diethylaminoethyl cellulose anion exchange 

(DEAE) column was optimised by my colleague Dr Josefin Ahnström. Briefly, a 5 

ml DEAE column (GE healthcare) was equilibrated with 20 mM Tris-HCl pH 7.5, 

150 mM NaCl. Barium citrate precipitated protein S was loaded onto the column 

at 1-1.5 ml/minute and protein S was eluted with a CaCl2 gradient from 0-20 mM. 

The anion exchange DEAE column was stripped of more tightly bound proteins 

with 20 mM Tris-HCl pH 7.5, 50 mM CaCl2, 1 M NaCl.  

The column was cleaned and stored as described for the QFF column in section 

2.3.1.1. 

 

2.4 Analysis and characterisation of protein S 

2.4.1 PNGase digestion 

To determine whether the double band observed when running protein S on 

sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

due to different glycosylation or cleavage, protein S was diluted to 8 ng/ul and a 

total of 10 µl were digested with 250 U of PNGase at 37°C over night. 

 

2.4.2 SDS-PAGE and Native PAGE 

SDS-PAGE under reducing (30% β-mercaptoethanol) and non-reducing 

conditions was performed to assess the purity of the different protein S 

preparations. Samples were heated at 70-90°C for 5-10 minutes. Electrophoresis 

was performed on 10% polyacrylamide cast gels, 4-12% or 10% precasted 

NuPAGE® Novex® Bis-Tris gels (Invitrogen) at 200 V for 30-40 minutes. 

Samples in a native state were run on NativePAGE™ Novex® 3-12% precast Bis-

Tris gels (Invitrogen), at 150 V for 90 minutes. Anode and cathode buffer were 

supplied by Invitrogen. 

Gels were washed 3 x 5 minutes with water, stained for 1 hour with blue safe 

protein stain (Thermo scientific) and then destained in ddH2O, stained by silver 

staining (see section 2.4.3) or used for Western blot analysis (see section 2.4.4). 
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2.4.3 Silver staining 

Electrophoresis was performed on SDS-PAGE gels as described in section 2.4.2. 

During all steps in the silver staining procedure (Table 2.6) volumes of 50 ml/gel 

were used and incubations were performed at RT with shaking. 

Proteins were fixed by incubating the gel for 30 minutes in 50% methanol, 10% 

glacial acetic acid (buffer A). An additional incubation in 5% methanol (buffer B) 

was performed for 15 minutes. The gel was washed with water 3 x 5 minutes and 

incubated with sodium thiosulphate (buffer C) for 2 minutes. After a second wash, 

3 x 30 seconds, the gel was stained with Silver Nitrate (buffer D). The gel was 

washed 3 x 1 minute and developed with buffer E for up to 10 minutes. The 

colour development was stopped with EDTA (buffer F). 

 

Buffer Composition 

A 50% CH3OH, 10% CH3COOH 

B 5% CH3OH 

C (made up fresh) 1.26 mM Na2S2O3*5H2O 

D 169.9 mM AgNO3 

E (per 50 ml, made up fresh) 283 mM Na2CO3, 25 μl of 37% HCOH, 1 ml solution C 

F 37.6 mM Na2EDTA 

 
Table 2.6 Composition of silver staining buffers. 
 
 

2.4.4 Western Blot 

Western blots were performed by transferring proteins separated in unstained 

polyacrylamide gels (section 2.4.2) to a Hybond-ECL nitrocellulose membrane 

(Amersham Biosciences) or a PVDF-plus membrane (Osmonics INC) for SDS-

PAGE and Native PAGE, respectively. Proteins were transferred to the hybond-

ECL nitrocellulose membrane in a transfer buffer composed of 25 mM tris base, 

190 mM glycine, 20% methanol. The PVDF-plus membrane was preincubated in 

methanol for 30 seconds, washed in water and immerged in the supplied transfer 

buffer (Invitrogen).  

The transfer, for both types of membranes, was performed at 30 V for 60-75 

minutes. Membranes were blocked with 4% milk for 40-60 minutes. Protein S was 
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detected with 20 ml of 0.588 μg/ml polyclonal rabbit anti-protein S antibody 

(DAKO) for 40-60 minutes. Following a 3 x 5 minutes wash with PBS, 0.1% 

Tween, membranes were incubated with 20 ml of 0.175 μg/ml peroxidise 

conjugated polyclonal goat anti-rabbit antibody (DAKO or Sigma Aldrich) for 40-

60 minutes. The membrane was washed 4 x 5 minutes and developed with the 

chemiluminescent horseradish peroxidise (HRP) substrate Immobilon (Millipore) 

and Amersham Hyperfilm ECL (GE healthcare). Alternatively, to detect only γ-

carboxylated protein S, 5 μg/ml (20 ml) of a monoclonal mouse antibody directed 

against γ-carboxyglutamic residues (American Diagnostica INC) was used as a 

primary antibody and 20 ml of 2.352 μg/ml polyclonal goat anti-mouse IgG HRP 

labelled antibody as a secondary antibody (DAKO). 

 

2.4.5 Quantification of total protein 

To quantify the total protein concentration in protein S preparations the 

absorbance at 280 nm was read in a NanoDrop spectrophotometer. Beer-

Lambert law for concentration c=A/ ε L with an extinction coefficient ε 1% 9.5 was 

used.161 The total protein concentration was then compared with the Enzyme-

linked immunosorbent assay (ELISA) results to determine the % purity of protein 

S. 

 

2.4.6 In-house ELISA with an in-house detection antibody  

Protein S concentrations in conditioned media were determined using an in-

house ELISA. A polyclonal rabbit anti-protein S antibody (1 µg/ml, DAKO) was 

immobilised onto 96-well Nunc Maxisorp microplates in 50 mM sodium carbonate 

buffer pH 9.6 at 4°C over night. All incubations were carried out in a plate shaker 

at 37°C for 1 hour unless stated otherwise. Washing steps were performed in 

triplicate with 250 μl PBS 0.1% Tween between each step. Wells were blocked 

with PBS containing 3% bovine serum albumin (BSA, Sigma or Santa Cruz) for 2 

hours. A standard curve, 0-2 nM protein S, was made by either diluting normal 

plasma or plasma purified protein S (Enzyme Research Laboratories). Normal 

plasma is known to contain 25 µg/ml protein S. The reported MW of protein S 

ranges from 69-77 kDa.161,162 In this thesis a MW of 69000 Da was assumed and 
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the concentration of protein S in normal plasma was calculated to be 362 nM. 

Protein S samples, 100 μl, were incubated in the wells for 1 hour. Bound protein 

S was detected by 4 nM of a mouse monoclonal antibody directed against the 

EGF3-4 domain of protein S (MK55) followed by 8 nM of an HRP-conjugated goat 

anti-mouse antibody (DAKO). PBS 0.5% BSA was used as buffer in which to 

dilute protein S and the antibodies. The plate was developed with 100 μl/well 

chromogenic substrate o-phenylenediamine dihydrochloride (OPD, Sigma), the 

enzymatic reaction was stopped with 50 μl/well 2 M H2SO4 and the absorbance 

was read at 492 nm. Data was analysed with GraphPad Prism 4.03 and data 

points were fitted to a sigmoidal dose response curve. Intra ELISA variability was 

determined by calculating the coefficient of variation (CV) between the same 

sample diluted to 2-3 different final concentrations in the same ELISA. Inter 

ELISA variability was determined by calculating the CV obtained for the same 

sample in (3-10) different ELISA. 

 

2.4.7 In-house ELISA with commercially available antibodies 

An in-house ELISA with commercially available antibodies was also developed to 

avoid dependence upon the availability of the MK55 antibody generously supplied 

by Professor Björn Dahlbäck. The assay was set up as described for the in-house 

ELISA in section 2.4.6 with the exception of 20 mM Tris-HCl pH 7.5, 140 nM 

NaCl, 3 mM CaCl2 being used as a buffer and that protein S was detected with 4 

nM of the mouse monoclonal antibody AHPS-5092 (Haematologic Technologies 

Inc). 

 

2.4.8 Preparation of phospholipid vescicles 

Activated platelets or cells exposing negatively charged phospholipids such as 

phosphatidylserine are required in vivo for coagulation to occur. In in vitro assays 

these are often replaced by phospholipid vescicles. Phospholipid vescicles were 

prepared during this project to be used as a procoagulant surface in functional 

assays and to assess protein S binding to phospholipids. 

All phospholipids were from Avanti Polar Lipids Inc. Phospholipid mixtures in 

chloroform were prepared and the chloroform evaporated under a nitrogen 
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stream. The phospholipids were resuspended in 20 mM Tris-HCl pH 7.5, 140 mM 

NaCl for the plasma and FXa inhibition assay or in 25 mM HEPES (N-2-

hydroxyethylpiperazine-N'-2-ethanesulfonic acid) pH 7.7, 150 mM NaCl (HN) for 

the FVa inactivation assays. Unilamellar phospholipids vesicles were obtained 

either by sonicating the phospholipids in an ice container at amplitude 22% for 7 

minutes or by extruding them as previously described.141 Briefly, extrusion was 

performed by passing the phospholipid mixture through a 100 nm polycarbonate 

membrane 19 times. Synthetic phospholipids 1,2-Dioleoyl-sn-glycero-3-

phosphocholine (DOPC), 1,2-Dioleoyl-sn-glycero-3-phosphoserine (DOPS), and 

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) were used in the plasma 

assay, the plate binding assay and the FXa inhibition assay. Natural 

phospholipids L-α-phosphatidylserine (PS, brain extract), L-α-

phosphatidylethanolamine (PE, egg extract) and L-α-phosphatidylcholine (PC, 

egg extract) were used in the FVa inactivation and prothrombinase assays. 

 

2.4.9 Binding of protein S to phospholipids 

As binding of protein S is a prerequisite for its function, binding of protein S and 

protein S variants to phospholipids was assessed.  

Phospholipids vesicles (DOPS/DOPC/DOPE, 20:60:20), 25 μg/ml, were coated 

onto 96-well Nunc Maxisorp microplates in 50 mM sodium carbonate buffer pH 

9.6 at 4°C over night. Washing steps were performed in triplicate with 250 μl/well 

20 mM Tris-HCl pH 7.5, 140 mM NaCl, 5 mM CaCl2, 0.3% BSA between each 

step and incubations were carried out in a plate shaker at 37°C. The same buffer 

was used to dilute protein S and the antibody in. Wells were blocked with 20 mM 

Tris-HCl pH 7.5, 140 mM NaCl, 5 mM CaCl2, 3% BSA for 2 hours. Protein S or 

protein S variants, 0-120 nM, partially purified by barium citrate precipitation, were 

incubated in the wells in duplicate for 2 hours and were detected with an HRP-

conjugated anti-protein S antibody (Affinity Biologicals) for 45 minutes. Controls 

were performed by assessing binding of protein S to phospholipids in the 

presence of 10 mM EDTA and by assessing aspecific binding to the plate in the 

absence of phospholipids and presence of CaCl2. The plate was developed, 

stopped and read as previously described for the ELISA. Data was analysed with 

GraphPad Prism 4.03 and curves were fitted to a one site binding hyperbola. The 
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Kd(app) for protein S binding to the phospholipids were derived and that of protein 

S variants was compared with that of WT protein S. 

 

2.4.10 Binding of protein S to domain specific monoclonal antibodies 

To assess the correct folding of protein S variants, their binding affinity to domain 

specific monoclonal antibodies was compared to that of WT protein S.  

Domain specific monoclonal antibodies MK21 (Gla domain), MK54 (EGF1 

domain) and MK61 (SHBG domain), 1 μg/ml, were coated on 96-well Nunc 

Maxisorp microplates as described for the ELISA. Washing steps were performed 

in triplicate with 250 μl 20 mM Tris-HCl pH 7.5, 140 mM NaCl, 3 mM CaCl2, 0.1% 

Tween between each step. Incubations were carried out in a plate shaker at 37°C 

for 1 hour unless stated otherwise. Wells were blocked with 200 µl 20 mM Tris-

HCl pH 7.5, 140 mM NaCl, 3 mM CaCl2, 3% BSA for 2 hours. Protein S, 0-160 

nM was incubated in the plate for 1 hour and was detected by a rabbit polyclonal 

antibody against protein S followed by a goat anti-rabbit HRP-conjugated 

antibody. Protein S and the antibody were diluted in a Tris-HCl pH 7.5, 140 mM 

NaCl, 3 mM CaCl2, 0.5% BSA buffer. The plate was developed, stopped and read 

as previously described for the ELISA. Data was analysed with GraphPad Prism 

4.03 and data was fitted to a one site binding hyperbola. The Kd(app) for protein S 

binding to the monoclonal antibodies were derived and that of protein S variants 

was compared with that of WT protein S. 

 

2.5 CAT assay 

2.5.1 Overview of CAT 

CAT is an assay that allows measurement of thrombin generation. It was used 

during this project to evaluate the different cofactor activity of protein S and 

protein S variants toward APC and TFPI. It is a plasma-based assay in which a 

coagulant response is initiated by the addition of TF, CaCl2 and phospholipids 

and the amount of thrombin generated is measured through the cleavage of its 

fluorogenic substrate over time and quantified by reference to a standard 

calibrator. Phospholipids are added into the reaction to provide a surface on 

which coagulation can occur once triggered by TF. As the plasma is citrated and 
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most coagulation factors are calcium dependent the reaction does not start until 

calcium is added into the reaction. Calcium is added together with Z-Gly-Gly-Arg-

AMC (Bachem), a fluorogenic substrate of thrombin. Thrombin generation is 

described and quantified by the lag time (which approximates the clotting time), 

peak height (maximal velocity of thrombin generation) and the endogenous 

thrombin potential (ETP) which is the total amount of thrombin generated over 

time and corresponds to the area under the curve. 

 

2.5.2 Evaluation of the protein S-APC cofactor activity 

Protein S deficient plasma (Affinity Biologicals), 80 µL, was incubated with 65 µg 

of corn trypsin inhibitor (CTI, Haematologic Technologies Inc) per ml of plasma to 

inhibit contact activation, 50 µM phospholipid vesicles (DOPS/DOPC/DOPE, 

20:60:20), 1 pM TF (Dade Innovin; Dade Behring), 4 to 16 nM APC (Enzyme 

Research Laboratories) with 0-120 nM protein S, in a final volume of 100 µL (all 

concentrations are final). A polyclonal anti-TFPI antibody (Haematologic 

Technologies Inc), 100 nM, was used to inhibit any protein S cofactor activity 

toward TFPI. Polyclonal antibodies against protein S (1500 nM, DAKO) and 

protein C (130 nM, Sigma-Aldrich or Haematologic Technologies Inc) were used 

as further controls. All conditions were performed in duplicate and assays were 

performed at least twice. Thrombin generation was assessed using a Fluoroscan 

Ascent FL Plate Reader (Thermo Lab System) in combination with the 

Thrombinoscope software (SYNAPSE BV).  

Thrombin generation was initiated by automatic dispensation of 20 µL of 2.5 mM 

Z-GlyArg-AMC-HCl (Bachem), 2.5% Me2SO, 20 mM Tris-HCl (pH 7.5), 60 mg/mL 

BSA, 100 mM CaCl2 into each well. The reaction was performed at 37°C and 

measurements were performed with an excitation and emission wavelength of 

390 nm and 460 nm, respectively. To compare the cofactor activity of protein S 

and protein S variants towards APC, the changes in peak height and ETP were 

evaluated. 
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2.5.3 Evaluation of the protein S-TFPI cofactor activity 

To evaluate the ability of protein S to enhance the anticoagulant activity of TFPI, 

protein S deficient plasma (Affinity Biologicals, Hyphen Biomed or Enzyme 

Research Laboratories) was incubated with CTI, phospholipids, TF (as described 

in section 2.5.2), 0-10 nM TFPI (either purified, kind gift of the 

Chemoserotheraputic Institute Kaketsuken, or in concentrated conditioned media) 

and 0-120 nM protein S or protein S variants in a final volume of 100 µL (all 

concentrations are final). A polyclonal antibody against protein C (130 nM, Sigma-

Aldrich or Haematologic Technologies Inc) was included, as required, to inhibit 

protein S cofactor activity towards any protein C activated during the assay. To 

show the specificity of the system polyclonal antibodies against protein S (1500 

nM, DAKO) or polyclonal antibodies against TFPI (100 nM, Haematologic 

Technologies Inc) were used. All conditions were performed in duplicate and 

assays were performed at least twice. Thrombin generation was assessed as 

described in section 2.5.2. To compare the cofactor activity of protein S and 

protein S variants towards TFPI, the changes in peak and lag time were 

evaluated. 

 

2.6 FVa inactivation assay 

2.6.1 Overview of the FVa inactivation assay 

The FVa inactivation assay is an assay with pure components that was used 

during this project to assess the ability of protein S and protein S variants to 

enhance APC mediated FVa inactivation. FVa inactivation by APC is indirectly 

measured by performing a prothrombinase assay. The prothrombinase assay 

relies on the amount of FVa that has not been inactivated by APC and its ability to 

form a complex with FXa and activate prothrombin. The amount of thrombin 

generated is then measured by the rate at which it cleaves its chromogenic 

substrate S-2238 (Chromogenix). 
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2.6.2 FV activation 

To obtain a source of FVa to assess APC mediated FVa inactivation, FV was first 

activated. A previously prepared and reported125 double variant of FV, FV 

R506Q/R679Q, was activated with 0.5 U/ml human thrombin at 37°C for 10 

minutes. This variant can not be cleaved in Arg506 and Arg679 allowing 

evaluation of cleavage at Arg306 by APC which is the site mainly enhanced by 

protein S (see section 1.4.3.1.1). The reaction was stopped by the addition of 

hirudin (5 U/ml, final concentration). The activated FVa variant was used as a 

substrate for APC to determine the ability of protein S to enhance cleavage of 

Arg306 of FVa by APC.  

 

2.6.3 FVa inactivation 

The FVa inactivation was performed either by evaluating the cofactor activity of 

increasing amounts of protein S (0-100 nM) at 10 minutes or by evaluating the 

cofactor activity of a fixed concentration (50 nM) of protein S at different 

timepoints (0-20 minutes). 

The highly purified protein S preparations, 0-100 nM, were incubated with 0.5 nM 

APC, 25 μM phospholipids vesicles (PS/PC/PE, 10:70:20) and 0.8 nM FVa 

R506Q/R679Q in HN, 5 mM CaCl2, 5 mg/ml BSA (HNBSACa2+, only high purity 

grade BSA from Sigma A7030 was used) in a total volume of 50 μl (all 

concentrations are final). The solution was incubated at 37°C for 10 minutes and 

the reaction was stopped by performing a 1:25-fold dilution in ice cold 

HNBSACa2+. The remaining FVa activity was measured in a prothrombinase 

assay. 

Time course experiments were performed to derive the rate constant of FVa 

cleavage. APC, 0.5 and 3 nM, and 50 nM protein S were used and aliquots were 

quenched at intervals between 0-20 minutes. The remaining FVa activity was 

measured in a prothrombinase assay. Controls containing FVa R506Q/R679Q in 

the absence of APC either in the presence or absence of protein S and protein S 

variants were performed. To calculate the pseudo-first order rate constant for  
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APC mediated cleavage at Arg306, the previously reported equation (Eq2)141 was 

used: 

 

Eq2. Vat=Va0*e
-k306*t+C*Va0*(1-e-k306*t)  

 

Vat represents the cofactor activity determined at time t, Va0 is the cofactor 

activity determined at time point 0, C is the remaining procoagulant cofactor 

activity of FVa after cleavage at position 306, and k306 is the rate constant of 

cleavage at position 306. 

 

2.6.4 Prothrombinase assay 

The amount of FVa inactivated was indirectly measured by performing a 

prothrombinase assay. An aliquot, 25 μl, of the FVa inactivation reaction was 

incubated with phospholipid vesicles (PS/PC 10:90) and FXa in the presence of 

CaCl2. The reaction was initiated by the addition of prothrombin, in a final volume 

of 125 μl. The buffer contained HN and 0.5 mg/ml ovalbumin. Final 

concentrations were 50 µM PS/PC, 5 nM FXa and 0.5 µM prothrombin. The 

solution was incubated at 37°C for 2 minutes and the reaction was terminated by 

an 8-fold dilution in 50 mM Tris-HCl pH 7.9, 100 mM NaCl, 20 mM EDTA, 1% 

PEG 6000. The amount of thrombin generated was measured by cleavage of its 

chromogenic substrate S-2338 (Chromogenix) at 405 nm for 15 minutes at 30 

seconds intervals. The cofactor activity of protein S and protein S variants 

towards APC was compared. 

 

2.7 FXa inhibition assay 

2.7.1 Overview of the FXa inhibition assay 

The FXa inhibition assay was performed to assess the different cofactor activity of 

protein S and protein S variants towards TFPI mediated inhibition of FXa. In the 

FXa inhibition assay the ability of FXa to cleave its chromogenic substrate S-2765 

is measured over time. The ability of TFPI to inhibit FXa and of protein S to 

enhance the TFPI anticoagulant activity is measured as a change in the rate of 
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substrate proteolysis. The cleavage of the chromogenic substrate S-2765 was 

measured for up to 1 hour at 1 minute intervals. 

 

2.7.2 FXa inhibition assay 

Purified human FXa (final concentration of 0.5 nM; Hyphen Biomed) was added 

to wells already containing the chromogenic substrate S-2765 (200 μM; 

Chromogenix), phospholipids (10 μM), CaCl2 (5 mM), in the presence or absence 

of varying concentrations of purified TFPI (0-10 nM, kind gift of the 

Chemoserotheraputic Institute Kaketsuken) and protein S or protein S variants (0-

160 nM). The reactions were set up in a buffer containing 20 mM Tris-HCl buffer 

pH 7.5, 140 mM NaCl, 5 mg/ml BSA (only high purity grade BSA from Sigma 

A7030 was used), with a final volume/well of 100 μl. The hydrolysis of S-2765 by 

FXa was followed over time by measuring the A405 at regular intervals for up to 1 

hour at room temperature. A control was obtained by incubating FXa and S-2765 

in the absence of TFPI, in the presence or absence of WT or variant protein S. A 

blank was obtained by including TFPI and S-2765 but not FXa. All conditions 

were performed in duplicate and assays were repeated at least twice. 

 

2.7.3 Kinetic data analysis of FXa inhibition by TFPI in the presence and 

absence of protein S 

To calculate the inhibition constant of TFPI for FXa in the presence and absence 

of protein S, 0-8 nM TFPI ± 100 nM protein S were used. The assay was either 

set up as described in section 2.7.2 by starting the assay with the addition of FXa 

or, alternatively, FXa was present in the wells and the reaction was started with 

the addition of TFPI and S-2765. 

Data was fitted with the previously described equation (Eq3):249 

 

Eq3. At = A0 + Vst + (V0 – Vs){1-exp(-kobst)}/kobs 

 

Where t represents time, At represents the absorbance at time point t, A0 the 

absorbance at time zero, V0 the initial velocity, Vs the final steady state velocity of 
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S-2765 conversion and kobs the apparent rate constant for the transition from V0 

to Vs. 

The maximum initial velocity Vmax (FXa conversion of S-2765 in the absence of 

TFPI) was divided by the initial velocities at each time point and the resulting 

Vmax/V0 value was plotted against the concentration of TFPI. Values were fitted 

with a linear regression and the x intercept was used to calculate the Ki value with 

the following formula (Eq4): 

 

Eq4. Ki = -xintercept/(1+[S]/Km) 

 

Where [S] represent the concentration of the chromogenic substrate and Km, the 

Michaelis-Menten constant, the concentration of substrate that results in half 

maximal cleavage by FXa. 
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3 RESULTS 

The results of this thesis are divided into 4 sections. The first (section 3.1) 

describes the mutagenesis, expression and purification of protein S. The protein 

S obtained either in concentrated conditioned media or purified was then 

quantified by ELISA and analysed for multimeric content and cleavage (section 

3.2). In the final two sections, 3.3 and 3.4, the cofactor activity of protein S and 

protein S variants towards APC and TFPI respectively are evaluated. 

 

3.1 Mutagenesis, expression and purification of protein S 

3.1.1 Selection and generation of protein S variants 

Based on the domains of protein S known from the literature to be important for 

APC and TFPI cofactor activity (outlined in section 1.5.1 and 1.5.2) protein S 

variants with substitutions in the Gla, TSR, EGF1 and EGF2 were produced. 

Composite variants in these N-terminal domains produced during this thesis 

were; protein S Face1, Face2, Gla1, TSR, NEDM, NNEDM and KTK. Twelve 

additional alanine point variants in the EGF1 domain and 12 alanine point 

variants in the EGF2 domain of protein S were made available through 

collaboration with Dr S.M. Rezende (Universidade Federal de Minas Gerais, 

Brazil). Additional point variants expressed during this project are protein S N74A, 

D78A, Q79A and D95N resulting in a total of 35 variants covering 49 amino acid 

residues of protein S.  

Table 3.1 lists the variants produced during this project and indicates in which 

domain the substitutions have been introduced. Single point variants were named 

according to the residue that was mutated. The name given to the composite 

variant is shown in Table 3.1.  

Table 3.2 shows the N-terminal amino acid residues of protein S highlighting 

those that have been mutated during this project. Variants were tested both for 

their APC cofactor activity and their TFPI cofactor activity.  
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Domain Name of variant Residues mutated 

Gla Face1 N33S/P35T/E36A/Y39V 

Gla Face2 
L21T/ 
N23S/K24Y/R28F/D34S/Y41W/L45T 

Gla/EGF1 Gla1 D38N/V46G/K97Q 

TSR/EGF1 TSR R49Q/R60Q/D68N/R70Q/D78N 

TSR  N74A 

EGF1 NEDM N86A/E87Q/D88A/M91A 

EGF1 NNEDM N74A/N86A/E87Q/D88A/M91A 

EGF1 KTK K94A/T103A/K105A 

EGF1  
(from Dr S.M. Rezende) 

 
K94,D95,K97,S99,T101,T103, 
K105,P106,W108,Q109,E111,K112 

EGF1  D78A,Q79A,D95N 

EGF2  
(from Dr S.M. Rezende) 

 
D135,N136,T137,Y141,H142,S144, 
K146,S153,N154,K155,K156,D157 

 
Table 3.1 Protein S variants produced during this thesis. 
Single or point variants of protein S were produced by site-directed mutagenesis targeting 
residues located in the Gla domain, TSR domain, EGF1 or EGF2 domain. 
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Table 3.2 N-terminal amino acid sequence of protein S, prothrombin and protein S variants.  
Amino acid residues of the Gla domain of protein S that are not conserved in prothrombin were swapped for those of prothrombin in the composite variants 
Face1 and Face2. No mutations in the first 20 amino acid residues of protein S were made in an attempt to not disrupt phospholipids binding. Gla1 and 
NEDM were made by mutating residues into similar non charged residues. TSR was created by substituting charged residues in the TSR domain with polar 
residues. KTK and all EGF1 and 2 point variants were mutated to alanine. NNEDM (not shown) were made by introducing the N74A substitution into NEDM. 
Domains are labelled below the Aa nr. Amino acids in the TSR and EGF2 domain are in italics in WT protein S. Aa nr, amino acid number; Proth, 
prothrombin; pm, point variants. 

7
0
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Protein S Face1 and Face2 variants, previously evaluated for their APC cofactor 

activity by Saller et al.224 are chimeras of the human protein S Gla domain and 

the human prothrombin Gla domain. These were produced in our lab by Ms Y. Yu 

by inverse PCR (KOD Hot Start DNA Polymerase Kit, Novagen) and site-directed 

mutagenesis (QuikChange site-directed mutagenesis Kit, Stratagene). 

To identify residues in the Gla and EGF1 domain that might interact with APC or 

TFPI, these domains were aligned with homologous domains of other coagulation 

factors. Non conserved amino acids were selected and clusters of amino acids 

with surface exposed R groups were selected. This was done by using the 

structural protein S model spanning the Gla domain to the EGF1 domain created 

by Villoutreix et al..193  

As the TSR is unique to protein S, no swap substitutions could be made. Hence, 

charged residues in the TSR were substituted with the most similar non-charged 

amino acid (R to Q and D to N), to minimize the risk of adverse conformational 

changes, resulting in the generation of the TSR variant.  

Dr S.M. Rezende (Universidade Federal de Minas Gerais, Brazil) mutated 

residues between the third/fourth and fifth/sixth Cys residues of EGF1 and EGF2 

as these regions on the EGF-like domains are likely to be involved in protein 

interaction as suggested by (i) the highly divergent sequence of the B region; (ii) 

the association of dysfunctional proteins with natural PROS1 mutations in these 

regions and (iii) the location of many mutations in these regions associated with 

dysfunctional proteins in genes coding for other EGF-containing coagulation 

proteins, such as FVII, FIX and protein C.202,250 

All mutations were confirmed by sequencing. Subcloned fragments were also 

sequenced across the ligation sites to confirm correct insertion. 

 

3.1.2 Expression of protein S 

Protein S was expressed by transient or stable transfection of HEK293T or 

HEK293 cells, respectively. The amount of protein S harvested from HEK293 

cells over time did not result in a decreased expression according to ELISA 

results, suggesting that all cells were stably transfected after the initial 4 weeks 

selection with blasticidine. 
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WT protein S expressed approximately at 1.5-2 µg/ml, as determined by ELISA, 

in triple flasks and on average at 60 µg/ml in the CELLine adhere 1000 two-

compartment bioreactor, with expression levels increasing over time in the latter. 

The high concentration obtained in the bioreactor is a consequence of harvesting 

the media after a week rather than after 3 days and of the bioreactor 

concentrating protein S in the cell compartment. Expression levels of the variants 

were not formally assessed against that of WT protein S in a dedicated 

experiment where number of cells and transfection efficiency were taken into 

account. However, the great majority of variant protein S preparations expressed 

well (1-2 µg/ml), with the notable exceptions of protein S T108A and protein S 

N136A, which expressed at lower than 0.5 µg/ml. Protein S expressed from 

transient transfections yielded up to 10 times less than protein S expressed from 

a stable cell line. Harvested protein S media was either dialysed, concentrated 

and assayed directly, or purified by FPLC. 

 

3.1.3 Purification of protein S by FPLC on an anion exchange QFF column 

and immunoaffinity column  

Harvested and concentrated media was supplemented with EDTA and protein S 

was partially purified on a Sepharose HiTrap QFF anion exchange column 

(elution buffer: 20 mM Tris-HCl pH 7.4, 0.5 M NaCl, 5 mM Benzamidine). Figure 

3.1A (left chromatogram) illustrates this purification step on WT protein S with the 

milli absorbance unit (mAU) at 280 nm displayed against the volume of liquid 

flowing through the column. As expected, it shows that large amounts of protein 

(mAU values of ~260) are present in the flowthrough, although these are diluted 

in a large volume (~20 ml in this representative chromatogram). A high and 

narrow elution peak was obtained, while very small washing and stripping peaks 

could be observed. Fractions of the flowthrough, washing, elution and stripping 

peaks from the anion exchange chromatography were analysed by SDS-PAGE. 

Proteins in the respective fractions were stained with Blue Safe protein stain 

(Figure 3.1B). Protein S was specifically detected by an anti-protein S antibody on 

a Western blot (Figure 3.1C). The stained SDS-PAGE gel shows a large amount 

of protein is present both in the flowthrough and elution fraction (Figure 3.1, Panel 

B, first 4 lanes after the marker). The bands of protein in the flowthrough fraction 
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are quite faint as proteins were diluted into a large volume (flowthrough volume of 

~20 ml). A large protein band is present in the elution fraction that migrates with 

the same mobility as commercially available plasma purified protein S (last lane 

of gel, labelled as Ctrl). Western blot analysis (Figure 3.1, Panel C, first 4 lanes) 

confirmed that protein S was present in the elution fraction. A faint band of higher 

molecular weight was also present in the elution fractions. A higher MW band was 

sometimes visualised on gels when high amounts of purified protein S was 

loaded and is likely to correspond to aspecific binding of the secondary antibody. 

Protein S was also detected in the flowthrough of the QFF anion exchange 

column using Western Blot (Figure 3.1C). According to ELISA results, the amount 

of protein S lost in the flowthrough and washing peak varied from batch to batch 

but was generally between 5-15%, while the majority of protein S (~80%) was 

found in the elution fraction. This is compatible with what can be seen in the 

elution fraction of the Western blot (Figure 3.1C). Protein S content and total 

amount of protein in the elution peak were measured, respectively, by ELISA and 

total protein assay and suggested a mean purity of ~25%.  

To obtain high purity protein S the elution fraction from the Sepharose HiTrap 

QFF anion exchange column was applied on an immunoaffinity column (elution 

buffer: 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 10 mM EDTA). A representative 

chromatogram is shown in Figure 3.1A (right chromatogram). Fractions were 

collected and the flowthrough, washing peak, elution peak and stripping peak 

were analysed by SDS-PAGE. The proteins were visualised by Blue Safe protein 

staining (Figure 3.1B, lane 5-8 after the marker); protein S was specifically 

detected by polyclonal anti-protein S antibodies following Western blot (Figure 

3.1C, last four lanes). The elution fraction from the immunoaffinity column in the 

stained SDS-PAGE gel (Figure 3.1B) shows a single band migrating with the 

same mobility as plasma purified protein S (last lane of gel, labelled as Ctrl). 

Western blot analysis (Figure 3.1C) confirms that this is protein S, suggesting 

pure protein S could successfully be isolated following this two step purification 

procedure. It is observed that the majority of contaminants visualised in the 

elution fraction of the QFF anion exchange column (Figure 3.1B) are present in 

the flowthrough of the immunoaffinity column. Protein S was, however, also 

present in the flowthrough fraction and washing fraction of the immunoaffinity 

column (Figure 3.1C). It should be noted that ten fold more in terms of volume of 
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the washing fraction was loaded in comparison with the other fractions to 

determine whether this contained any protein S. The high amount of protein S in 

the flowthrough fraction partially explains why the absorbance on the 

chromatogram of this fraction is so high in comparison with that of the elution 

fraction (considering ~25% of the proteins loaded onto the immunoaffinity column 

should be protein S). However, the high absorbance in the flowthrough in 

comparison to the elution peak is also due to the presence of Benzamidine in the 

loaded sample (see section 2.3.1.1) as this absorbs at 280 nm. Benzamidine is, 

on the other hand, not present in the elution buffer.  

 
Figure 3.1 Purification of WT protein S by FPLC on a Sepharose HiTrap QFF anion 
exchange column followed by an immunoaffinity column and analysis of elution fractions.  
(A) Purification of protein S on sepharose QFF anion exchange purification (left chromatogram) 
followed by immunoaffinity purification (right chromatogram). The 280 nm absorbance (blue line) 
is plotted against the elution volume. The vertical green lines represent a change of buffer. Total 
protein content in the fractions was detected by Blue safe protein stain of an SDS-PAGE (B) and 
protein S was specifically detected with a polyclonal antibody against protein S (C). F, 
flowthrough; W, washing; E, elution; S, stripping. 
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To evaluate why so much protein S was present in the flowthrough fraction from 

the immunoaffinity column, γ-carboxylation of protein S was firstly assessed as 

the monoclonal MK21 antibody used for the purification recognises the Gla 

domain of protein S. Importantly, when fractions from the Sepharose HiTrap QFF 

anion exchange column were analysed by Western blot with a monoclonal anti-

Gla antibody (recognising only γ-carboxylated protein S), only protein S in the 

elution fraction was recognised by both antibodies (compare Figure 3.2, detection 

with monoclonal anti-Gla antibody with Figure 3.1C, detection with polyclonal 

antibody). This suggests that, non γ-carboxylated protein S is in the flowthrough, 

indicating that this method selectively purifies γ-carboxylated protein S. This was 

thought to be of considerable importance, as only γ-carboxylated protein S is 

functional. A consequence of this is that all protein S loaded onto the 

immunoaffinity column was γ-carboxylated. The finding that protein S in the 

elution and flowthrough fractions from the immunoaffinity column was γ-

carboxylated was confirmed by recognition by the monoclonal anti-Gla antibody 

(Figure 3.1C, detection with polyclonal antibody and Figure 3.2, detection with 

monoclonal anti-Gla antibody). Ten fold more of the washing fraction was loaded 

in the gel where protein S was detected with the polyclonal antibody in 

comparison with the one in which it was detected with the monoclonal antibody 

recognising only γ-carboxylated Gla domain. However, when ten fold more of the 

washing fraction was loaded (not shown) the washing fraction was recognised by 

the anti-Gla antibody. 

 

Figure 3.2 Western blot analysis of protein S in the fractions obtained during purification 
on the Sepharose HiTrap QFF and on the immunoaffinity column.  
Flowthrough (F), washing (W), elution (E) and stripping (S) peaks of, respectively, Sepharose 
HiTrap™ QFF purification (lane 1-4) and affinity purification (lane 5-8) were blotted with a 
monoclonal anti-Gla antibody recognising only γ-carboxylated Gla domains. 
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The finding of a single band in the elution fraction of the immunoaffinity column 

(Figure 3.1B), together with its identification as protein S by Western blot (Figure 

3.1C), demonstrates that pure protein S could successfully be isolated using this 

two-step purification method. The results of Figure 3.2 indicate that this purified 

protein S was γ-carboxylated. However, a large part of γ-carboxylated protein S 

was also present in the flowthrough of the immunoaffinity column. To investigate 

this further, a similar sample containing protein S was applied to the 

immunoaffinity column continuously over night at a greatly reduced flow rate of 

0.5 ml/minute to increase contact time. However, this did not appreciably increase 

the amount of protein S in the elution fraction. When the flowthrough fraction was 

reapplied to the immunoaffinity column, additional protein S could be purified and 

eluted with EDTA (results not shown), suggesting the protein S in the first 

flowthrough was more likely associated with low binding capacity of the 

immunoaffinity column. Consequently, the flowthrough was reapplied to the 

column until all protein S was purified and was no longer in the flowthrough. All 

fractions from the elution peak from the immunoaffinity column containing protein 

S were pooled, dialysed and concentrated on spin columns. This purification 

procedure was used during the early part of my work to purify WT protein S, 

protein S D95A, protein S Face2 and protein S TSR. 

 

3.1.4 Purification of protein S by barium citrate precipitation and by FPLC 

on an anion exchange DEAE column 

Due to the low binding capacity of the immunoaffinity column, an alternative 

purification method for protein S was developed. WT protein S and protein S 

N74A, protein S KTK, protein S NNEDM variants and some additional protein S 

D95A were purified according to this alternative protocol. 

For this, protein S was first partially purified from concentrated conditioned media 

by barium citrate precipitation. This favours precipitation of protein S that is γ-

carboxylated and allows removal of any non γ-carboxylated protein S.248 

Following barium citrate precipitation, protein S was then further purified by FPLC 

on a DEAE anion exchange column. This was optimised during the last year of 

my work by my colleague Dr Josefin Ahnström. A representative chromatogram is 
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shown in Figure 3.3A where WT protein S was eluted with a calcium gradient of 

0-20 mM CaCl2. Conditioned media, barium citrate precipitated protein S and the 

various fractions eluted from the DEAE anion exchange column were run on 

SDS-PAGE and analysed by silver staining or by Western blot (Figure 3.3B and 

C, respectively). The silver stained gel shows that barium citrate precipitation 

removes most of the contaminants present in the concentrated conditioned media 

(Figure 3.3B). The purity of the barium citrate precipitated protein S, however, 

varied. Protein S expressed in high amounts from stably expressed cells was 

relatively pure following barium citrate precipitation (as can be seen in Figure 

3.3B), while barium citrate precipitated protein S from transiently transfected cells 

contained more contaminants (results not shown). The lower band contaminant 

seen in the silver stain in the barium citrate precipitated material is partially 

removed following passage on the DEAE anion exchange column and can be 

seen in the flowthrough fraction (Figure 3.3B). The higher band in the barium 

citrate precipitated sample and the main band in the elution fractions were 

identified as protein S on the Western blot (Figure 3.3C). Fractions from the 

elution peak that contained protein S and trace amounts of contaminants were 

pooled, concentrated and used in functional assays. An overall yield, as 

determined by ELISA, after barium citrate precipitation and purification on a 

DEAE anion exchange column, of 10-30% was obtained. 
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Figure 3.3 Purification of barium citrate precipitated WT protein S on an anion exchange 
DEAE column and analysis by SDS-PAGE.  
(A) The 280 nm absorbance (blue line) is plotted against the ml of liquid passing through the 
column. The green lines represent a change of buffer; equilibration buffer (20 mM Tris-HCl pH 7.5, 
150 mM NaCl), elution buffer (20 mM Tris HCl pH 7.5, 150 mM NaCl, 0-20 mM CaCl2) and 
stripping buffer (20 mM Tris HCl pH 7.5, 1 M NaCl, 50 mM CaCl2). Peaks were collected and 
analysed. Total protein was detected by silver staining (B) and protein S was detected by a 
polyclonal antibody (C). Small fractions from the elution peak were collected separately and run 
on the gel. CM; conditioned media, bcp; barium citrate precipitated protein S, F; flowthrough, S; 
stripping. 
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3.2 Characterisation of recombinant protein S 

3.2.1 Quantification of protein S by ELISA 

The concentrations of purified protein S and protein S in conditioned media were 

determined by ELISA. A standard curve of 0-2 nM protein S was fitted to a 

sigmoidal dose-response curve and samples were diluted to ensure they fell in 

the linear part of the curve (generally between 0.25-1.5 nM protein S). The 

plasma purified protein S gave a higher absorbance reading than the 

corresponding concentration of protein S in normal plasma when detected with 

the monoclonal antibodies (Figure 3.4). This could potentially be due to slightly 

different amounts of protein S in the two standard preparations, to plasma protein 

S being monomeric and purified protein S multimeric (see section 3.2.3) or due to 

the fact that ~60% of plasma protein S is bound to C4BP and is less recognised 

by the monoclonal antibody. 

 

Figure 3.4 Standard curves of protein S used in the ELISA.  
Plasma purified protein S or protein S in normal plasma were used as a standard curve (0-2 nM) 
and were detected either with the MK55 monoclonal antibody (A) or with the commercially 
available monoclonal antibody AHPS 9052 (B). 
 
 

When protein S in normal plasma (362 nM) was analysed by Western blot 

alongside plasma purified protein S and detected by a polyclonal antibody, bands 

of similar intensity were obtained suggesting that the reason behind the difference 

in absorbance observed between plasma purified protein S and protein S in 

media was not due to different concentrations of protein S. When my quantified 
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recombinant protein S preparations (pure or in conditioned media) were analysed 

by Western blot, bands of equal intensity of purified protein S and protein S in 

conditioned media were only obtained if the concentration of pure protein S was 

determined with the plasma purified protein S standard and if protein S in 

conditioned media was determined with the normal plasma standard (results not 

shown). Since the monoclonal antibody MK55 recognises the EGF3-4 domains 

and the difference in detection of plasma protein S and purified plasma protein S 

by the monoclonal antibody AHPS 9052 is not 60% (difference between total and 

free protein S) it is unlikely that the differences in detection are due to the fraction 

of bound protein S in plasma. Multimerisation was analysed in section 3.2.3 and 

might account for the differences in detection between plasma protein S and 

purified protein S. 

The concentration of purified protein S was, therefore, determined with the 

plasma purified protein S standard curve; that of protein S in conditioned media 

was determined with the normal plasma standard curve. Intra and inter ELISA 

variability varied, with purified protein S preparations giving higher CV values than 

protein S in conditioned media. Generally, the intra-assay CV was less than 10% 

for purified protein S and less than 5% for protein S in media. The mean inter-

assay CV was 11% with samples being assessed by ELISA a minimum of 3 

times. 

 

3.2.2 Analysis of the purity of protein S 

SDS-PAGE and silver staining of purified protein S preparations were performed 

to assess purity. WT protein S and protein S variants analysed under non-

reducing conditions, irrespective of the purification method, migrated 

predominantly as a single band (Figure 3.5) of identical size to commercially 

available plasma purified protein S (see Figure 3.1B). A band of lower molecular 

weight than protein S was observed in some gels. This was, however, very faint 

in comparison with the protein S band and could only be visualised following long 

development of the silver stain. The concentration of purified protein S samples 

was assessed by absorbance at 280 nm, which corroborated the concentrations 

obtained by ELISA, suggesting that the protein S preparations were suitably pure 

for the in vitro experiments used in this project. 
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Figure 3.5 Silver staining of purified protein S samples.  
WT and variant protein S samples (100 ng/well) were stained by silver staining. WT1; WT protein 
S purified by QFF anion exchange chromatography followed by immunoaffinity chromatography. 
WT2; WT protein S purified by barium citrate precipitation followed by DEAE anion exchange 
chromatography.  
 
 

3.2.3 Multimerisation of protein S 

Multimerisation of protein S has been well documented in the literature and it has 

been reported that multimeric protein S binds to phospholipids with higher affinity 

than monomeric protein S.189-192,251 

To assess multimer formation of WT protein S, a Western blot was performed on 

a native PAGE gel. Protein S in dialysed concentrated conditioned media 

appeared to be monomeric (Figure 3.6A,B). Protein S partially purified by QFF 

anion exchange chromatography was mainly monomeric but also contained some 

dimers (Figure 3.6A). However, protein S partially purified by barium citrate 

precipitation (Figure 3.6B), fully purified protein S (Figure 3.6A) and plasma 

purified protein S (Figure 3.6B) all exhibited appreciable multimerisation. These 

results are consistent with previous reports.191,192 It was difficult to obtain high 

quality Western blots showing protein S multimers. Nevertheless, no major 

difference in multimer formation between barium citrate precipitated protein S, 

fully purified protein S (independently of the purification protocol) and plasma 

purified protein S was observed. 

To allow for potential differences in activity between monomeric and multimeric 

protein S, both protein S in concentrated conditioned media (monomeric) and 

purified protein S (multimeric) was used, where possible, in the functional assays.  
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Figure 3.6 Western blot of a native PAGE analysis to identify multimer formation occurring 
during the purification.  
Protein S in dialysed concentrated conditioned media (lanes 1 and 4) is predominantely 
monomeric (A,B). Protein S partially purified by QFF anion exchange column (2) exhibited some 
dimers while its subsequent passage over the immunoaffinity column lead to multimerisation (3) 
(A). Barium citrate precipitated protein S (5) and plasma purified protein S (6) were both 
multimeric (B). 
 
 

3.2.4 Cleavage of protein S 

Cleavage of protein S has previously been reported to occur after one or more of 

the 3 arginine residues (Arg49, Arg60, Arg70) in the TSR domain. Once cleaved, 

the disulphide bond between Cys47 and Cys72 keeps the Gla domain and the 

EGF1 domain together. However, under reducing conditions the disulphide bond 

is broken and the protein S fragment spanning from the cleavage site in the TSR 

to the SHBG domain is observed below the band of full-length protein S. The 

effect of protein S cleavage upon protein S function remains to be fully 

defined.175-177 

When partially purified protein S was analysed by Western blot under reducing 

conditions a doublet was observed. To investigate whether the two closely 

migrating bands were due to variable glycosylation or cleavage of protein S, 

partially purified protein S samples were incubated with or without PNGase. 

Western blot analysis (Figure 3.7) was performed both with a polyclonal anti 

protein S antibody (Panel A) and a monoclonal anti-Gla antibody (Panel B) under 

reducing conditions. Results in Panel A show that the double band was 

conserved after WT protein S and protein S Face2 are digested with PNGase, 
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suggesting that the difference in size is not due to differences in glycosylation. 

Protein S TSR was present only as one band in the blot revealed using a 

polyclonal antibody. Protein S TSR has all the arginines (after which protein S is 

cleaved) substituted to Gln. When protein S was detected with the anti-Gla 

antibody (Panel B) only one band was present. According to the MW, this band 

corresponds to the higher band of the duplets detected for WT and Face2 with 

the polyclonal antibody. The isolated Gla domain is not detected by the 

antibodies, probably because too small (~4.5 kDa) and present in too low 

amounts. This is consistent with previously reported results in the literature.252 

Together, these results suggest the doublet band observed under reducing 

conditions is due to cleavage of protein S in the TSR domain rather than variable 

glycosylation. Blots of protein S in conditioned media suggests that cleavage 

occurs during the course of protein S expression (results not shown). 

To account for any differences in activity due to cleavage of protein S, regular 

checks on every preparation of interest were made to ensure cleavage of the 

protein S variants was no more than that of WT protein S. 

 

Figure 3.7 Analysis of protein S cleavage.  
Protein S incubated (+) and not incubated (-) with PNGase was analysed by SDS-PAGE under 
reducing conditions and detected either by a polyclonal anti-protein S antibody (A) or a 
monoclonal anti-Gla antibody (B). 
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3.3 Evaluation of APC cofactor activity of protein S 

3.3.1 Preliminary experiments in protein S deficient plasma 

Before analysing the APC and TFPI dependent cofactor activity of protein S in 

plasma, TF concentration was titrated in the CAT assay for optimal analysis of the 

activity of endogenous protein C and TFPI in the plasma. Protein S deficient 

plasma is more procoagulant than normal plasma and it has been reported that 

only low amounts of TF (~1.4 pM) allow visualisation of the TFPI cofactor activity 

of protein S.218 To establish the concentration of TF to use, I performed a titration 

of TF from 0.0625 to 1 pM (Figure 3.8). This resulted in a prolongation of the lag 

time but thrombin peak height and ETP did not vary significantly. However, 

variability between the replicates (not showed) increased at lower TF 

concentration. TF concentration at 1 pM was chosen to trigger coagulation in all 

my plasma assays (unless otherwise stated) as duplicates were good and this is 

compatible with what is currently in use in the literature to trigger coagulation in 

plasma.240,241,253,254 The stock concentration of recombinant TF in Innovin was 

considered to be 6000 pM, as estimated by P. Giesen in the Thrombogram guide 

of Synapse b.v. Hence, a 1:6000 dilution of the TF stock was performed to obtain 

1 pM final concentration in the assay. 

 

 

Figure 3.8 TF initiation of coagulation in protein S deficient plasma. 
A titration of TF (0.0625-1 pM) was performed in protein S deficient plasma from Affinity 
Biologicals supplemented with 50 µM phospholipids and 65 µg CTI per ml plasma in a final 
volume of 100 µl to assess the amount of thrombin generated. 
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To evaluate the activity of both endogenous protein C and TFPI in the protein S 

deficient plasma, polyclonal antibodies against APC (150 nM) and polyclonal 

antibodies against TFPI (100 nM) were used. When these were added to the 

plasma, no change in thrombin generation was observed (Figure 3.9). Addition of 

120 nM plasma purified protein S to protein S deficient plasma had no effect on 

thrombin generation (Figure 3.9). Results suggest that APC and TFPI in protein S 

deficient plasma under these experimental conditions do not appreciably regulate 

thrombin generation, either in the presence or absence of protein S. The lack of 

APC influence is not surprising, considering that protein C does not circulate in its 

active form and that EPCR and TM (absent in these experiments) are important 

for physiological activation of protein C by thrombin. The lack of influence of TFPI 

was attributed to co-depletion of protein S and TFPI from the plasma during its 

preparation by the manufacturer (see section 3.4.1). Consequently, APC or TFPI 

were supplemented to the plasma preparations to evaluate cofactor activities of 

protein S. APC from Enzyme Research Laboratories was used unless otherwise 

stated. 

 

 

Figure 3.9 Activity of endogenous APC and TFPI in protein S deficient plasma.  
Thrombin generation was performed in protein S deficient plasma in the presence and absence of 
130 nM polyclonal antibodies against protein C (Sigma-Aldrich), 100 nM polyclonal antibodies 
against TFPI (Haematologic Technologies Inc) and in the presence of 120 nM protein S. Ab; 
antibody. PC, protein C. 
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3.3.2 Evaluation of APC cofactor activity of protein S by CAT 

To assess the APC cofactor activity of protein S, thrombin generation was 

measured by CAT using protein S deficient plasma from Affinity Biologicals 

supplemented with recombinant WT protein S and its variants in conditioned 

media. Under the conditions of the assay, in the absence of added protein S, 

APC (0-10 nM) did not influence thrombin peak height, ETP, lag time or time to 

peak, in protein S deficient plasma (Figure 3.10, Panel A). When (0-120 nM) WT 

protein S was introduced into the assay in the presence of APC, dose-dependent 

changes were observed, primarily on reduction of the peak height and of ETP 

values (Figure 3.10, Panel B). The extent of inhibition of peak height and ETP 

was dependent both on the concentration of APC and protein S. For example, the 

higher the APC concentration, the less protein S was necessary to completely 

inhibit thrombin generation. Under these experimental conditions, 10 nM APC and 

120 nM protein S reduced both the peak height and ETP by ~84%. To verify that 

those effects were a direct consequence of APC cofactor activity of protein S, 

polyclonal antibodies against either protein S (Figure 3.10, Panel C) or protein C 

(Figure 3.10, Panel D) were used. As seen in Figure 3.10 these completely 

inhibited the anticoagulant APC-protein S activity.  
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Figure 3.10 APC and protein S anticoagulant activity in plasma.  
Thrombin generation was performed in protein S deficient plasma containing 100 nM inhibitory 
antibodies against TFPI. Up to 10 nM APC had no effect on thrombin generation in the absence of 
protein S; all concentrations generate lines that are superimposable (A). Following addition of 120 
nM protein S (at 0-10 nM APC) an APC dose-dependent effect was observed (B). The upper 
single line represents 0-10 nM APC in the absence of protein S. Protein S in the presence of no or 
2.5 nM APC generated lines that were superimposable. Conditions used are noted adjacent to the 
peak heights to which they refer. The anticoagulant activity of 10 nM APC and 120 nM protein S 
was inhibited by polyclonal antibodies against protein S (1.5 μM, DAKO) (□) (C) or against protein 
C (130 nM, Sigma-Aldrich) (x) (D). PS, protein S; PC, protein C. Representative experiments are 
shown (n=3).  
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To compare the anticoagulant activity of recombinant WT protein S in 

concentrated conditioned media with that of protein S purified by different 

techniques, the former was compared to protein S purified first by anion 

exchange chromatography and thereafter by immunoaffinity chromatography, or 

alternatively by barium citrate precipitation followed by anion exchange 

chromatography (see sections 2.3.1 and 2.3.2). All protein S preparations showed 

a similar inhibition of thrombin generation as can be seen in Figure 3.11. As 

protein S in concentrated conditioned media showed a similar activity to purified 

protein S, and furthermore also considering that protein S in media is essentially 

monomeric, conditioned media samples rather than fully purified protein S 

samples were preferably used to evaluate thrombin generation by CAT. In some 

experiments where purified protein S was used to assess APC cofactor activity, 

these preparations were purified by anion exchange chromatography followed by 

immunoaffinity chromatography. 

 

Figure 3.11 APC cofactor activity of different preparations of protein S in plasma. 
The anticoagulant activity of protein S in conditioned media was compared with that of protein S 
purified either by anion exchange chromatography followed by affinity purification (purified protein 
S 1, dotted lines) or protein S purified by barium citrate precipitation followed by anion exchange 
chromatography (purified protein S 2, dashed lines), 90 nM, in the presence of 4 nM APC (Xigris). 
APC from Xigris was used in this experiment and was more active than the commercial APC 
preparation mostly used in this thesis (Enzyme Research Laboratories). 
 
 

Having optimised the CAT assay for APC-dependent protein S cofactor activity, I 

then aimed to screen my panel of protein S variants to identify those with a 

functional deficit. The screening of the protein S variants for their APC cofactor 

activity was performed at a high concentration of APC (16 nM) to achieve almost 

complete inhibition of thrombin generation in the presence of 100 nM WT protein 
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S (Figure 3.12). Figure 3.12 shows the % peak height obtained for each protein S 

variant in comparison with the peak height obtained in the absence of protein S. 

When % ETP values were plotted instead of % peak height a very similar graph 

was obtained (result not shown). In total, 28 variants were screened for their APC 

cofactor activity. As previously reported,224 the cofactor activities of Face1 and of 

Face2 for APC were reduced. Importantly, these screening experiments identified 

a single point variant in EGF1 of protein S, D95A, which had a severely impaired 

APC cofactor activity that had not previously been implicated in protein S 

function. Under all conditions used (4, 9 or 16 nM APC, 60, 90 or 100 nM protein 

S), the reduction in APC cofactor activity of protein S D95A was greater than that 

observed for the previously reported variant with 7 amino acids exchanged 

(prothrombin residue swap), Face2. 

 
Figure 3.12 Screening of protein S variants for APC cofactor activity.  
The APC cofactor activity of protein S was evaluated at 16 nM APC and 100 nM protein S by 
CAT. The peak height in the absence of protein S was set to 100%. A high concentration of APC, 
leading to almost complete inhibition of thrombin generation with 100 nM WT protein S, was 
chosen specifically for screening purposes as this allows widening of the assay window at which 
variants with reduced APC cofactor activity are visualised.  
 
 

As Saller et al.225 did not investigate the APC cofactor activity of protein S Face1 

and Face2 variants in the CAT assay, I titrated both variants alongside WT 

protein S (0-120 nM) in the presence of 16 nM APC (Figure 3.13). Protein S 

Face1 (Panel B) had almost completely abolished APC cofactor activity while the 
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cofactor activity of Face2 (Panel C) was partially reduced (Figure 3.13). These 

results from the CAT assay, corroborate the results obtained by Saller et al.225 

using clotting assays. Saller et al., however, showed a 9-fold reduction in protein 

S Face1 binding to phospholipids. They could therefore not conclude whether the 

residues comprising the variant were important or not for a cofactor interaction 

with APC. Protein S Face2, however, bound phospholipids and domain specific 

monoclonal antibodies with similar Kd(app) values to those of WT protein S.224 

 
Figure 3.13 APC cofactor activity in plasma of WT protein S, Face1 and Face2 variants. 
Thrombin generation was measured in protein S deficient plasma supplemented with 16 nM APC, 
and 0-120 nM WT protein S (A), protein S Face1 (B) or protein S Face2 (C). Legends are 
positioned adjacent to the peak heights to which they refer.  
 
 

To further evaluate the APC cofactor activity of protein S D95A, a titration (0-120 

nM) of the variant (Figure 3.14, Panel B) was performed alongside WT protein S 

(Figure 3.14, Panel A), using 9 nM APC. Protein S D95A had a severely impaired 

APC cofactor activity, a finding replicated when a different concentration of APC 
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(4 nM) was used. The severely impaired APC cofactor function of protein S D95A 

was also confirmed in protein S deficient plasma supplied by Hyphen Biomed to 

ensure that these effects were not plasma specific (n=1, results not shown). While 

the cofactor activity of WT protein S is highly dependent upon the APC 

concentration used (see Figure 3.10, Panel B) that of protein S D95A is not, 

explaining the difference in fold activity between WT protein S and protein S 

D95A in Figure 3.12 and Figure 3.14. 

Using 9 nM APC, (Figure 3.14, Panel A and B), 120 nM of WT protein S reduced 

peak height and ETP by ~80%, while 120 nM of protein S D95A only reduced 

peak height and ETP by ~10%.  

Protein S is susceptible to proteolysis in the TSR domain and this may impair its 

APC cofactor function.175-177 To ensure that any difference in activity between WT 

protein S and protein S D95A was not due to difference in TSR proteolytical 

cleavage, samples were analysed by Western blot under reducing conditions. No 

cleavage was observed either in WT protein S or in the D95A variant, showing 

that the different APC cofactor activity was not a result of different cleavage of the 

two preparations (results not shown). 

Asp95 in protein S is β-hydroxylated and while it has not been shown to bind 

calcium, it is part of a partially conserved calcium binding motif. To ensure 

disruption of β-hydroxylation or loss of coordination of a calcium ion was not the 

reason behind the impaired APC cofactor activity of protein S D95A, Asp95 was 

also substituted with Asn, rather than Ala. Asn is structurally more similar to Asp 

than Ala and it can also be β-hydroxylated and potentially coordinate a calcium 

ion. When the protein S D95N variant was titrated, it was observed that it also 

had severely reduced APC cofactor activity (Figure 3.14, Panel C), with 120 nM 

of the D95N variant inhibiting peak height and ETP by only ~20%. 

All results in Figure 3.14A-C were conducted with protein S and its variants in 

concentrated conditioned media. Concentrated conditioned media from cells not 

expressing protein S was used as a control and had no influence on thrombin 

generation (results not shown). The % change in peak is represented in Figure 

3.14, Panel F. To confirm that the differences in APC cofactor activity I observed 

arose from protein S rather than the media, WT protein S and the protein S D95A 

variant were purified to homogeneity using anion exchange and immunoaffinity 

chromatography (see section 2.3.1). Figure 3.14D shows SDS-PAGE gel 
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visualised with silver staining which suggests that the protein S preparations were 

essentialy pure. Addition of 90 nM of purified WT protein S to protein S deficient 

plasma in the presence of 9 nM of APC, appreciably attenuated thrombin 

generation (Figure 3.14, Panel D), replicating the findings with WT protein S in 

conditioned media. When 90 nM purified protein S D95A was used, only a 

minimal effect on thrombin generation was seen (Figure 3.14, Panel D) 

corroborating the results from the experiments using concentrated conditioned 

media.  

Inspection of a model of Gla-TSR-EGF1 domains of protein S193 suggested that 

two residues with solvent exposed R groups, Asp78 and Gln79, are in close 

proximity to that of Asp95. These residues were not included in the first round of 

screening (shown in Figure 3.12). These were therefore mutated to alanine and 

expressed in HEK293T cells as described in sections 2.1.2 and 2.2.2. When 

protein S D78A and Q79A in concentrated conditioned media were analysed in 

the thrombin generation assay alongside WT protein S, a severely reduced APC 

cofactor activity was also observed for both (Figure 3.14, Panel E). The proximity 

of these residues to Asp95 suggests these three residues could form a possible 

cluster of residues involved in APC cofactor activity of protein S. 
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Figure 3.14 APC cofactor activity in plasma of WT protein S, protein S D95A, D95N, D78A 
and Q79A variants.  
Thrombin generation was measured in protein S deficient plasma supplemented with 9 nM APC, 
100 nM antibodies against TFPI and 0-120 nM WT protein S (A), protein S D95A (B), protein S 
D95N (C) or 90 nM purified WT (dashed line) or purified protein S D95A (dotted line) (D). Protein 
S concentrations are positioned adjacent to the peak heights they refer to. The cofactor activity of 
60 nM WT protein S and protein S variants D95A (▼), D78A (◊) and Q79A (○) was compared at 9 
nM APC (E). Typical experiments are shown (n=3). Dose response data from titrations with WT 
protein S, protein S D95A, and protein S D95N in the presence of 9 nM APC are shown in Panel F 
(data is expressed as mean ± SD of two independent experiments performed in duplicate). Inset 
in Panel B shows recognition of WT protein S and protein S D95A in media by polyclonal 
antibodies (pAb) and a monoclonal antibody recognising only γ-carboxylated Gla domains (α-Gla). 
Inset in Panel D shows the See Blue prestained marker, plasma purified protein S from Enzyme 
Research Laboratories (ERL, lane 1), purified recombinant WT protein S (lane 2) and purified 
protein S D95A (lane 3) visualised with silver staining. 
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3.3.3 Binding of protein S to phospholipid surfaces 

As phospholipid binding is a prerequisite for protein S function, the binding of WT 

protein S and of protein S D95A to phospholipids was evaluated. Partially purified 

(using barium citrate precipitation) protein S, 0-120 nM, was incubated for 2 hours 

on a plate coated with 25 µg/ml phospholipids and bound protein S was detected 

by an HRP-conjugated antibody against protein S. As shown in Figure 3.15, both 

WT protein S and protein S D95A were able to bind phospholipids, with Kd(app) of 

5.7 ± 1.2 and 9.5 ± 2.3 nM (n=3), respectively (Table 3.3). 

Kd(app) values were analysed by the Mann Whitney test and were found not to be 

statistically different (p>0.05). Binding was observed in the presence of Ca2+, but 

not in the presence of EDTA or in the absence of phospholipids, as expected, 

confirming the specificity of the assay. These findings are broadly consistent with 

previously reported Kd(app) values for protein S binding to phospholipid 

surfaces.182,190,223-225 My results suggest the loss of APC cofactor activity 

observed for protein S D95A is not due to reduction or loss of binding to 

phospholipid surfaces. 

 

 
Figure 3.15 Binding of protein S to phospholipid surfaces.  
Protein S (0-120 nM) was incubated in a plate coated with 25 µg/ml phospholipids. Bound protein 
S was detected with an HRP-conjugated polyclonal antibody against protein S. A representative 
experiment is shown. The Kd(app) values, 5.69 ± 1.24 and 9.54 ± 2.26 nM for WT protein S and 
protein S D95A, respectively, were obtained by calculating the mean ± SD of three independent 
experiments performed in duplicate for each concentration of protein S. 
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3.3.4 Binding of protein S to domain specific monoclonal antibodies  

Substituting residues in a domain can sometimes affect the overall folding of the 

protein, the structure of the domain in which the substitution has been introduced 

or the structure of adjacent domains. To assess the integrity of the domain 

structure and folding of protein S variants, binding of protein S to conformational 

domain specific antibodies was evaluated. Protein S in concentrated conditioned 

media was incubated in a plate coated with monoclonal antibodies recognising 

either the Gla domain (MK21), the EGF1 domain (MK54) or the C-terminal SHBG 

domain (MK61). Bound protein S was detected with polyclonal antibodies as 

described in the Methodology. Binding curves were fitted with a one site binding 

equation and the Kd(app) values were obtained. 

Table 3.3 represents the mean ± SD Kd(app) values of three independent 

experiments performed in duplicate. Kd(app) values were analysed by the Mann 

Whitney test and were found not to be statistically different (p>0.05). The results 

suggest that substitution of Asp95 does not result in a significant change in the 

domain structure of protein S. 

 

 
DOPS/DOPC/DOPE 

vesicles 
MK21 
(Gla) 

MK54 
(EGF1) 

MK61 
(SHBG) 

WT protein S 5.69 ± 1.24 2.18 ± 0.97 0.81 ± 0.11 5.31 ± 1.11 

Asp95 protein 
S variant  

9.54 ± 2.26 2.53 ± 1.06 0.83 ± 0.03 5.39 ± 0.54 

 
Table 3.3 Binding of protein S to phospholipids and domain specific monoclonal 
antibodies.  
Kd(app) values (nM) of WT protein S and the Asp95 protein S variant for phospholipid vesicles and 
domain specific monoclonal antibodies are expressed as mean ± SD of three independent 
experiments performed in duplicate. Binding of WT protein S and the Asp95 variant to 
phospholipids and domain specific monoclonal antibodies was analysed by Mann Whitney test 
and the differences were found not to be statistically significant (p>0.05). 
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3.3.5 Protein S enhancement of APC mediated cleavage of FVa at Arg306  

Protein S cofactor function towards APC was initially assessed in the CAT assay 

(described above), which assesses thrombin generation in plasma. To more 

precisely measure and quantify the influence of protein S variants on APC 

cofactor function, a purified system was used that examines cleavage of FVa. 

The FVa variant, R506Q/R679Q, was used to evaluate protein S enhancement of 

APC mediated cleavage at Arg306 in FVa. FVa inactivation was performed in the 

presence or absence of 0.5 nM APC and a titration of purified protein S (0-100 

nM) was performed as described in the Methodology (section 2.6.3). After 10 

minutes the remaining FVa activity was measured using a prothrombinase assay. 

Using this approach, WT protein S efficiently enhanced APC mediated cleavage 

at Arg306 of FVa, in contrast to protein S D95A and protein S Face2 which 

showed almost no enhancement of APC activity (Figure 3.16, Panel A). 

To quantify the rate of cleavage at FVa Arg306 in the presence and absence of 

protein S, time course experiments were performed. In the absence of protein S, 

or in the presence of protein S D95A or protein S Face2, 3 nM APC was used 

and aliquots were quenched at different time points (0-20 min). In the presence of 

WT protein S the APC concentration was lowered to 0.5 nM, as APC is efficiently 

enhanced by WT protein S. The remaining FVa activity at all time points was 

measured in the prothrombinase assay (Figure 3.16, Panel B). It is observed that 

approximately 6-fold more APC is needed in the presence of protein S D95A and 

protein S Face2 to obtain a similar amount of APC-mediated FVa R506Q/R679Q 

inactivation as with WT protein S. Using the FVa inactivation curves obtained, the 

apparent pseudo-first order rate constants were calculated (see section 2.6.3) 

and corrected for the APC concentrations used. Rate constants for APC, 

APC+WT protein S, APC+protein S D95A and APC+protein S Face2 were 

respectively 6.1±1.2•105, 8.3±1.6•106, 1.1±0.2•106 and 2.0±0.3•106 and were 

broadly consistent with those previously reported in the same laboratory.141 Under 

these experimental conditions, APC mediated cleavage at FVa Arg306 was 

enhanced by WT protein S by 13.9 ± 3.6-fold, while protein S D95A was only able 

to enhance APC by 1.8 ± 0.4-fold and protein S Face2 by 3.3 ± 0.3-fold. 

Accordingly, protein S D95A had 12.9% and protein S Face2 30.3% of the activity 
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of WT protein S. Protein S had no effect on FVa activity in the absence of APC 

(not shown). 

 
Figure 3.16 Protein S enhancement of APC mediated cleavage of FVa at Arg306.  
Protein S (0-120 nM) in the presence of 0.5 nM APC was incubated with 0.8 nM FVa 
R306Q/R679Q in the presence of phospholipids for 10 minutes. The remaining FVa activity was 
measured with a prothrombinase assay. Results are plotted as mean ± SD from three 
independent experiments performed in duplicate (A). A time course experiment was performed to 
calculate the apparent pseudo-first-order rate constants of WT protein S, protein S D95A and 
protein S Face2 (B).  
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3.3.6 Discussion 

Initially, 28 protein S variants with substitutions in the Gla, TSR, EGF1 and EGF2 

domains were constructed and expressed. I evaluated their ability to enhance 

APC mediated anticoagulant activity in plasma. The anticoagulant function of 

these 28 variants, and the subsequently expressed variants protein S D78A, 

D79A and D95N, was assessed by a thrombin generation assay, the specificity of 

which was demonstrated by utilising polyclonal antibodies both against protein S 

and protein C that completely inhibited the anticoagulant response observed 

when adding protein S in the presence of APC. The advantage of the thrombin 

generation assay conducted in plasma is that it shows very clearly how APC is 

heavily dependent upon protein S.218 In the absence of protein S, 10 nM APC has 

no effect on thrombin generation. In contrast, in the presence of protein S, 

maximal anticoagulant activities with near ablation of thrombin generation are 

obtained with APC concentrations of around 10 nM. 

My initial screening results identified three protein S variants with appreciable 

reduction in APC cofactor function. These were the already reported protein S 

Face1 and Face2 variants (a 4 and a 7 residue composite variant in the Gla 

domain, respectively) and the novel protein S D95A point variant in the EGF1 

domain. The Face2 variant, in the report by Saller et al., retained binding to 

phospholipids and yet had appreciably reduced APC cofactor activity, while 

Face1 was shown to have an approximate 9-fold reduced phospholipid binding.224 

It is suggested that the 7 residues substituted in the protein S Face2 variant 

collectively present a face of the Gla domain to APC and form a potential contact 

region. This variant was selected for investigation here, because it is a well-

characterised protein S variant with substantially reduced APC cofactor activity 

and could therefore act as a representative control for a dysfunctional protein S. 

Saller et al., however, did not assess protein S Face2 and Face1 APC cofactor 

activity in the CAT assay. I confirmed a reduction in APC cofactor activity in 

plasma, assessed by CAT.  

The natural protein S variants T103N255 and K155E256,257 have been reported to 

have reduced APC cofactor activity. I could not observe any significant reduction 

in APC cofactor activity of protein S T103A in the CAT assay. It is, however, 

important to point out that defective APC cofactor activity of protein S T103N was 
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not observed in the APC mediated inactivation of WT FVa.255 In addition, at 

higher concentrations of APC (8 nM) no difference was observed between WT 

protein S and protein S T103N in the FVIIIa degradation assay.255 Protein S 

Tokushima (K155E) has been described in the literature to have a cofactor 

activity towards APC of 31% 256 and 58% 257 of that of WT protein S. I did observe 

a decrease in protein S K155A cofactor activity towards APC, although this was 

quite moderate under conditions used in my screening assay. However, as this 

reduction was appreciably less than that for protein S D95A, it was not further 

analysis during my PhD project. 

Considering pooled results from multiple assays (n=3), protein S S99A and 

N154A seem to be the variants that have most enhanced APC cofactor activity. It 

would also be interesting to further analyse these variants. A full titration in the 

CAT assay would allow an assessment of the extent of increased activity. It would 

be interesting to elucidate their importance in APC cofactor activity by assessing 

their activity in a purified assay and their ability to bind phospholipids.  

The substitution of Asn136 in protein S abolishes the calcium binding site in the 

EGF2 domain of protein S.258 I did not observe a reduction in APC cofactor 

activity. However, it was secreted in significantly lower levels than WT protein S 

and all other protein S variants from stably transfected cells (see section 3.2.1). 

As APC cofactor activity appeared normal I did not further investigate the 

expression of protein S N136A, but it is likely that mutating Asn136 to Ala 

influences the structure of protein S leading to intracellular retention of incorrectly 

folded protein S.  

Protein S variants R49Q and Q52R in the TSR domain of protein S and protein S 

variants K97Q and P106S in the EGF1 domain were assessed in Dahlbäck’s 

laboratory (He et al.),244 and found to be important for species specificity towards 

APC. Following substitution of the human protein S residues into the 

corresponding residues of bovine protein S, an increased cofactor activity 

towards human APC was observed. They were also shown to specifically 

increase the activity of human protein S towards bovine APC. During my project I 

did not mutate Gln52 and as the substitution R49Q was part of the composite 

variant TSR it is not possible to directly compare my results with those previously 

reported. My protein S P106A variant had slightly increased activity in comparison 

with WT protein S, in accordance with previous results.244 Protein S K97A, 
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however, had decreased activity in comparison with WT protein S. This is in 

discrepancy with the results of the K97Q variant of He et al. but is likely to depend 

on the different substitution, to alanine or glutamine. It is interesting that residues 

previously found to be important for species specificity (residues Arg49, Gln52, 

Lys97, Pro106) are spatially located in close proximity to residues Asp95, Asp78 

and Gln79 here shown to be important for APC cofactor activity (Figure 3.17). 

 

 

Figure 3.17 Location of residues important for species specificity in relation to Asp95, 
Asp78 and Gln79. 
Residues Arg49, Gln52 in the TSR domain of protein S and residues Lys97 and Pro106 in the 
EGF1 domain of protein S have been reported to be important for species specificity

244
 and are 

here highlighted in cyan. Residues Asp95, Asp78 and Gln79 important for APC cofactor activity 
are highlighted in green. This N-terminal model of the Gla-TSR-EGF1 domains of protein S is 
adapted from the model of Villoutreix et al..

193
 

 

 

Analysis of protein S function can be complicated due to its propensity to 

multimerise upon purification.191,192 Accordingly, I have performed APC cofactor 

assays with unpurified protein S in concentrated conditioned media as well as 

with fully purified preparations. My results were consistent between protein S 

preparations. Both forms of the protein S D95A variant, purified or in concentrated 

conditioned media, had an appreciable reduction in APC cofactor activity when 

compared to the respective WT protein S preparation. In all comparison 

experiments carried out, the protein S D95A variant had less APC cofactor than 

the protein S Face2 variant. This suggests that Asp95 in protein S may occupy a 

pivotal position with respect to its interaction with APC. The importance of Asp95 

in APC cofactor activity was further confirmed by the severely reduced activity 
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observed when mutating to alanine the two residues in close proximity to Asp95, 

Asp78 and Gln79. Asp78, Gln79 and Asp95 are conserved across species with 

the exception of Asp78 that is replaced by the structurally similar Asn78 in birds 

(Figure 3.18). Using a working model of the Gla-TSR-EGF1 domains of protein S, 

I demonstrate the likely proximal spatial location of these three residues, see 

Figure 3.19, and their relationship to protein S Face2 residues. 

 

 

Figure 3.18 Conservation of Asp78, Gln79 and Asp95 across species. 
The sequence of human protein S between amino acid residue 76 and 114 is shown. Asp95 (in 
red), and Gln79 (in purple) are conserved throughout species. Asp78 (in blue) is conserved 
across species with the exception of birds where Asp78 is replaced by the structurally similar 
Asn78. 

 

 

Figure 3.19 Location of Asp78, Gln79, Asp95 and Face2 within the protein S Gla-TSR-EGF1 
model. 
Domains are labelled on the right hand side cartoon model. Residues mutated in the protein S 
Face2 variant, Asp78, Gln79 and Asp95 are in light gray in the left hand side surface model. 
Residues Asp78, Gln79 and Asp95 are highlighted by the box to show their proximal spatial 
location. The model is that of Villoutreix et al..

193
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I have investigated the mechanism of reduction of activity of protein S Asp95 

variants. Asn136, in the EGF2 domain, Asn178 in the EGF3 domain and Asn217 

in the EGF4 domain are all β-hydroxylated. These and other residues that are 

part of the calcium binding sequence motif in the respective domains have all 

been shown to coordinate a calcium ion with high affinity (Figure 3.20).258 The 

EGF1 domain of protein S has not been shown to contain a calcium binding 

site.258 The calcium binding motif in EGF1 is only partially conserved and 

according to the protein S Gla-TSR-EGF1 model of Villotreux et al.193 residues of 

the calcium binding sequence motif before the first Cys residue and between the 

third and fourth Cys residues are localised on opposite sides of the EGF1 

domain. However, to be sure that substitution of Asp95 to Ala did not result in 

disruption of a potential calcium binding site, I substituted Asp95 to Asn rather 

than Ala. Asn is structurally similar to Asp, can be β-hydroxylated and is able to 

coordinate a calcium ion (as has been observed in EGF2, 3 and 4).  

 

Figure 3.20 EGF domains of protein S and binding to calcium. 
β-hydroxylated residues in the EGF domains of protein S are highlighted in yellow. The Kd values 
of each domain for calcium is shown above each domain. Kd values were taken and the EGF 
diagram modified from Stenflo et al..

258
 The calcium binding sequence motif is shown in the box, 

in the red squares in the sequence alignment of the EGF domains of protein S and the specific 
residues are circled in red in the EGF diagram. 
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However, as the protein S D95N variant also had reduced activity, it is unlikely 

that disruption of a calcium binding site is responsible for this effect as this variant 

would be predicted to bind calcium normally. Furthermore, while Asp95 is known 

to be β-hydroxylated it has previously been shown that β-hydroxylation itself is 

not a requirement for anticoagulant activity of protein S.179 My work favours a 

direct effect of Asp95 in APC cofactor activity. However, I can not discount the 

possibility that the dramatic effect on protein S activity of the Asp95 residue 

substitution could be through a conformational repositioning of other functional 

domains. To assess this I performed binding to phospholipids, as this property 

underpins all protein S function. Plate binding assays, however, indicated no 

major functional defect on phospholipid binding. Furthermore, domain specific 

monoclonal antibody binding to WT and variant protein S (against the Gla 

domain, the EGF1 domain and the C-terminal SHBG domain) was also normal, 

suggesting that substitution of Asp95 does not reduced APC cofactor function by 

disrupting adjacent domain structure.  

A current view of protein S enhanced APC cofactor activity suggests a functional 

repositioning of the APC cleavage site away from FVa Arg506 towards FVa 

Arg306.228 I therefore performed a FVa inactivation assay using a FVa variant, 

FVa R506Q/R679Q, that cannot be cleaved at position 506 and 679. This allowed 

me to specifically analyse cleavage at Arg306 by APC. This is the APC cleavage 

site in FVa that is mainly enhanced by protein S. Using both concentration 

dependent and time course assays, I was able to confirm reduced cleavage of 

this variant by APC in the presence of protein S D95A or protein S Face2. 

Importantly, the single point variant protein S D95A had more impaired cofactor 

activity towards APC mediated cleavage of FVa R506Q/R679Q than the 

previously described 7 amino acid prothrombin swap variant Face2. 

The available results therefore suggest that Asp95 of protein S may play an 

important and a direct role in APC recognition, resulting in enhanced APC 

function. This is compatible with the study performed by Hackeng et al.,246 who 

used the isolated EGF1 domain of protein S to functionally disrupt the protein S 

and APC interaction. They showed a direct binding of EGF1 to APC suggesting 

EGF1 as a potentially important APC contact site on protein S. My results 

suggest that Asp95 constitutes a critical residue within EGF1 mediating the APC 
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cofactor function. Together with Asp78 and Gln79, Asp95 could form an important 

functional interaction site for APC. 

The importance of residues in protein S Face2 should be further investigated. 

Phospholipid binding and binding to monoclonal antibodies were not evaluated in 

my thesis but should also be reassessed. Saller et al. found no significant 

difference in binding to monoclonal antibodies, however, binding of protein S 

Face2 to the monoclonal antibody MK54 against the EGF1 domain had a slightly 

higher Kd(app) value (5.0 ± 1.7 nM) in comparison with that of WT protein S (1.6 ± 

0.3 nM).224 It is possible that protein S Face2 has reduced APC cofactor activity 

primarily because so many residues have been substituted: this may cause a 

conformational change in regions important for direct interaction with APC. In all 

my experiments the APC cofactor activity of the single point variant protein S 

Asp95 was more pronounced than that of the 7 residue prothrombin swap in 

protein S Face2. Thus, to identify the mechanism of reduced APC cofactor 

activity of Face2 binding to monoclonal antibodies should be repeated and point 

variants of the 7 amino acids substituted in protein S Face2 should be made and 

evaluated in functional assays. 

Face1 had previously been shown not to bind phospholipids.224 Interestingly, 

when protein S Face1 was evaluated for its binding to phospholipids surfaces, I 

found that it was able to bind phospholipids with a similar affinity to WT protein S 

(n=1). Analysis of protein S Face1 to phospholipids (n=3) has been subsequently 

further evaluated by my colleague Dr Josefin Ahnstöm, who found no statistical 

difference between WT protein S and protein S Face1 in binding to phospholipids. 

To identify which residue(s) in the composite variant protein S Face1 is important 

for APC cofactor activity she made the individual point variants contained in 

protein S Face1; protein S N33S, protein S P35T, protein S E36A and protein S 

Y39V. Analysis by CAT showed that variants protein S P35T and E36A were 

those with most reduced APC cofactor activity (similar to the reduced activity of 

protein S Face1) (as these are results of Dr Josefin Ahnstöm, I have not shown 

them). As proline is known to be important for protein folding and stability, only 

protein S E36A was further investigated (Dr Josefin Ahnstöm). Protein S E36A 

bound phospholipids with a Kd(app) similar to that of WT protein S. The binding of 

protein S Face1 and protein S E36A to domain specific monoclonal antibodies 

against the Gla domain (MK21 and MK47) and the TSR domain (MK67) was also 
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evaluated by my colleague Dr Josefin Ahnström. No difference between protein S 

Face1, protein S E36A and WT protein S was found. When she analysed the 

cofactor activity of protein S E36A in the FVa inactivation assay she found that it 

had only 11.3% of the cofactor activity of WT protein S (n=4). This reduction in 

protein S cofactor activity towards APC mediated cleavage in Arg306 of FVa was 

similar to that of protein S D95A (12.9%) and both were more pronounced than 

that of protein S Face2 (30.3%).  

Residues Asp95, Asp78, Gln79 (red), Gla36 (green) and residues in Face2 (blue) 

are highlighted in the working model of the Gla-TSR-EGF1 domains of protein S 

showing their likely spatial location (Figure 3.21). 

 
Figure 3.21 Location of residues found to have reduced APC cofactor activity. 
The novel residues found to have reduced APC cofactor activity in my project Asp95, Asp78 and 
Gln79 in EGF1 are highlighted in red. Residues in the previously reported protein S Face2 variant 
are shown in blue. The novel residue identified by my colleague Dr Josefin Ahnström, Gla36, is 
highlighted in green. The model is taken from Villoutreix et al..

193
 

 

 

These results suggests that Gla36 of protein S seems to be equally important as 

is Asp95 for APC cofactor function, suggesting that possibly both the Gla and 

EGF1 domains of protein S are important for APC cofactor activity. 

Collectively, our results suggest that Asp95 and Glu36 constitute critical residues 

within the EGF1 and Gla domain of protein S mediating the APC cofactor 

function. 
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3.4 Evaluation of TFPI cofactor activity of protein S 

3.4.1 Evaluation of TFPI cofactor activity of protein S by CAT 

From preliminary results described in section 3.3.1, I decided to use 1 pM TF to 

trigger coagulation in all my plasma assays and to supplement TFPI in the protein 

S deficient plasma. Hence, TFPI cofactor activity of protein S was assayed by 

CAT in protein S deficient plasma supplemented with recombinant TFPI and 

protein S. When 0-5 nM TFPI and 0-120 nM protein S were supplemented in 

protein S deficient plasma from Affinity Biologicals only a very small prolongation 

of lag time and reduction in peak height were observed. I therefore evaluated the 

protein S enhancement of TFPI in protein S deficient plasma supplied by two 

different companies, Affinity Biologicals and Hyphen Biomed. I observed that the 

effect on thrombin generation of TFPI (3 nM) with or without protein S (120 nM) 

varied depending on the source of plasma (Figure 3.22), with a more pronounced 

protein S/TFPI anticoagulant activity being observed in plasma supplied from 

Hyphen Biomed (Panel B) in comparison with that from Affinity Biologicals (Panel 

A). As can be seen in Figure 3.22, while the total protein S/TFPI anticoagulant 

activity in plasma from Affinity Biologicals prolonged the lag time by ~210% and 

reduced the peak height by ~20%, in plasma from Hyphen Biomed the lag time 

was prolonged by ~340% and the peak height reduced by ~65% (Figure 3.22). To 

investigate the difference between the two different sources of plasma my 

colleague, Verity Hockey, determined the amount of total TFPI in an in-house 

ELISA (n=1). This suggested that protein S deficient plasma from Affinity 

Biologicals contained approximately 25%, and Hyphen Biomed approximately 

50%, of the amount of total TFPI present in normal plasma. During the course of 

this thesis it was shown by Castoldi et al. that TFPI can be co-depleted when 

protein S is immunodepleted from normal plasma in the production of protein S 

deficient plasma.241 They also analysed the amount of TFPI in protein S deficient 

plasma from Affinity Biological and found it contained 25.5% of normal TFPI 

antigens levels which is in accordance with our findings. In subsequent 

experiments, protein S deficient plasma supplied by Hyphen Biomed was used, 

as it allowed better visualisation of the protein S/TFPI anticoagulant activity. 

However, to ensure that the effect observed in protein S deficient plasma from 
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Hyphen Biomed was not unique to this plasma, protein S deficient plasma 

supplied from Enzyme Research Laboratories was also tested. Both plasma from 

Hyphen Biomed and Enzyme Research Laboratories showed a similar 

prolongation of the lag time and reduction of the peak height following addition of 

TFPI in the presence and absence of protein S (results not shown). 

In my initial experiments, I used TFPI in concentrated conditioned media that I 

had expressed from a stable cell line in our lab. This was quantified by a 

preliminary ELISA by my colleague Verity Hockey. Later in my project, purified 

TFPI (kind gift of the Chemoserotheraputic Institute Kaketsuken) was used. 

Unless specifically stated, protein S in concentrated conditioned media was used 

in all experiments. 

 

 
Figure 3.22 TFPI anticoagulant activity in the presence or absence of protein S in plasma. 
Purified TFPI (3 nM) was incubated in the presence or absence of protein S (120 nM) in protein S 
deficient plasma from Affinity Biologicals (A) and Hyphen Biomed (B), in the presence of 50 µM 
phospholipids, 65 µg CTI per ml plasma and 1 pM TF. 
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The specificity of the anticoagulant activity seen when supplementing TFPI in the 

plasma in the presence or absence of protein S was confirmed by performing 

CAT assays in presence or absence of inhibitory polyclonal antibodies. Polyclonal 

antibodies against TFPI (100 nM, Figure 3.23, Panel A) or polyclonal antibodies 

against protein S (1.5 µM, Figure 3.23, Panel B) were used. These completely 

inhibited the effect seen when supplementing TFPI and protein S in concentrated 

conditioned media to the plasma. Concentrated conditioned mock media not 

containing protein S and TFPI had no effect on thrombin generation (results not 

shown). 

 

 
Figure 3.23 Influence on thrombin generation of polyclonal antibodies against TFPI and 
against protein S. 
TFPI (2.5 nM) in concentrated conditioned media was incubated in the presence or absence of 
protein S (60 nM) in protein S deficient plasma from Hyphen Biomed. The activity observed by 
supplementing the plasma with TFPI and protein S was reversed by use of 100 nM polyclonal 
antibodies against TFPI (A) or 1.5 µM polyclonal antibodies against protein S (B). 
 
 



 109 

While protein C does not circulate in its activated form, there remained a 

possibility that endogenous protein C might be activated in low levels by thrombin 

generated during the assay. To eliminate this possibility, TFPI and protein S were 

supplemented in the protein S deficient plasma in the presence or absence of 130 

nM polyclonal antibodies against protein C (Figure 3.24). The polyclonal 

antibodies had previously been shown to be inhibitory against APC (see Figure 

3.10). No difference in thrombin generation was observed following addition of 

inhibitory antibodies against protein C. This demonstrated that the thrombin 

generated during these assay conditions (i.e. in the absence of TM and EPCR) 

was unable to significantly activate protein C. Any anticoagulant activity of protein 

S was therefore independent of its APC cofactor function. 

 
Figure 3.24 TFPI and protein S anticoagulant activity in plasma in the presence and 
absence of polyclonal antibodies against protein C. 
The effect of TFPI in concentrated conditioned media (2.5 nM) in the absence (Panel A) and 
presence (Panel B) of protein S (60 nM) was assessed in the presence and absence of 130 nM 
polyclonal antibodies against protein C (PC). A representative experiment is shown. The results of 
addition of antibodies against protein C in the presence of TFPI and protein S was confirmed in 
additional experiments (n=3). 
 
 

Once the assay conditions had been set up to guarantee the visualisation and 

specificity of the protein S enhancement of TFPI, I wanted to ensure that my 

different WT protein S preparations all enhanced TFPI to a similar extent. Thus, 

the activity of WT protein S in concentrated conditioned media in the presence of 

TFPI was compared with that of WT protein S purified by either purification 

protocol (see Methodology, section 2.3). Results (n=3) were analysed by a paired 

Wilcoxon test and no statistical difference in terms of thrombin peak height or lag 
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time was observed between the different preparations. Consequently, and 

because of its ready availability, monomeric protein S in concentrated conditioned 

media was preferentially used.  

The TFPI cofactor activity of WT protein S in concentrated conditioned media was 

evaluated by titrating protein S (0-120 nM) in the presence of 3 nM TFPI. As can 

be seen in Panel A of Figure 3.25, WT protein S enhanced TFPI in a dose-

dependent manner. To evaluate whether residues in protein S variants with 

reduced APC cofactor activity (see section 3.3.2) were also important for TFPI 

cofactor activity, protein S Face2 (Panel B), protein S D95A (Panel C), protein S 

D95N (Panel D), protein S D78A (Panel E) and protein S Q79A (Panel F) were 

titrated alongside WT protein S to evaluate their TFPI cofactor activity (Figure 

3.25). To more easily visualise the difference in peak height and lag time between 

the variants and WT protein S, the results were plotted as % change in lag time 

and peak height in comparison with the control (Figure 3.26). Interestingly, Figure 

3.25 and Figure 3.26 show that all variants were able to enhance TFPI 

anticoagulant function. However, protein S variants D95A, D78A and Q79A were 

somewhat less efficient than WT protein S. They all had a reduced lag time (by 

~10-20%) and increased peak height (by ~5-20%) in comparison with WT protein 

S. Protein S D95N had a similar lag time to WT protein S, but an increased peak 

height (by ~10-25%). While protein S Face2 had a reduced effect on the lag time 

(by ~10-20%) compared to WT protein S, its effect on the peak height was 

enhanced (by up to 60%). The titration of WT protein S and protein S D95A was 

performed twice but the percentage effect on peak height and lag time could not 

be expressed as mean ± SD due to the different assay conditions (3 nM vs 2.5 

nM TFPI). The TFPI cofactor activities of protein S variants D95A, D95N, D78A 

and Q79A were in addition evaluated using single protein S concentrations (n=3), 

which confirmed the results obtained from the titration. When the cofactor activity 

of protein S Face2 was reassessed, however, it was generally similar to that of 

WT protein S in terms of lag time, while the effect on peak height was more 

pronounced, suggesting that this variant has enhanced TFPI cofactor activity. To 

further assess the TFPI cofactor activity of protein S Face2 and protein S D95A 

these variants were purified and assessed in the FXa inhibition assay (see 

section 3.4.2.2). 
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Figure 3.25 Thrombin generation in the presence of TFPI and WT protein S, protein S 
Face2, D95A, D95N, D78A or Q79A. 
Thrombin generation was assessed at 3 nM TFPI in concentrated conditioned media in the 
presence of 0-120 nM WT protein S (A), protein S Face2 (B), protein S D95A (C), protein S D95N 
(D), protein S D78A (E) or protein S Q79A (F). Protein S D95N, protein S D78A and protein S 
Q79A could not be evaluated at higher concentrations than those described here due to their 
stock concentrations. 
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Figure 3.26 Change (%) in peak height and lag time of WT protein S, protein S Face2, D95A, 
D95N, D78A and Q79A in comparison with the control. 
The effects of TFPI and protein S on peak height and lag time from Figure 3.26 were expressed 
as a % change in comparison with the control. The % change of WT protein S, protein S D95A, 
protein S D95N and protein S Face2 on lag time and peak height is shown in Panel A and B 
respectively. The % change of WT protein S, protein S D78A and protein S Q79N on lag time and 
peak height is shown in Panel C and D, respectively. 
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Additional experiments were performed with the EGF1 and EGF2 protein S point 

variants produced by my collaborator Dr S.M Rezende (Universidade Federal de 

Minas Gerais, Brazil). These were screened at 90 nM using 2.5 nM TFPI (Figure 

3.27 and Figure 3.28). The TFPI cofactor activity of protein S T108A, protein S 

N136A, protein S S153A and protein S K155A could not be evaluated due to lack 

of material. As can be seen, observing the lag times and peak heights in Figure 

3.27 and Figure 3.28, most protein S variants had a similar cofactor activity 

towards TFPI to that of WT protein S. Several protein S variants showed a slightly 

enhanced prolongation of the lag time and reduction in the peak height, however, 

none of the 19 variants tested, exhibited greatly reduced TFPI cofactor activity. 

 
 

 

Figure 3.27 Thrombin generation in the presence of TFPI and WT protein S and protein S 
EGF1 and EGF2 point variants.  
Thrombin generation was assessed in protein S deficient plasma supplemented with 2.5 nM TFPI 
in concentrated conditioned media. The cofactor activity of protein S variants, 90 nM, towards 
TFPI was assessed.  
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Figure 3.28 Thrombin generation in the presence of TFPI and WT protein S and protein S 
EGF1 and EGF2 point variants. 
Thrombin generation was assessed in protein S deficient plasma supplemented with 2.5 nM TFPI 
in concentrated conditioned media. The cofactor activity of protein S variants, 90 nM, towards 
TFPI was assessed.  
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As stated in section 3.4.1, two different sources of TFPI were available, TFPI in 

concentrated conditioned media and purified TFPI. When 90 nM WT protein S 

was evaluated for its TFPI cofactor activity towards 2.5 nM purified TFPI (Figure 

3.29, Panel A), a more pronounced anticoagulant activity was observed both in 

terms of prolongation of the lag time and reduction of the peak heights to that 

previously observed when using TFPI in concentrated conditioned media. When 

the anticoagulant activity of TFPI in concentrated conditioned media was 

compared with that of purified TFPI, a difference was observed both in the 

absence and presence of protein S (Figure 3.29, Panel B).  

 
Figure 3.29 Thrombin generation in the presence of purified TFPI and TFPI in concentrated 
conditioned media in the presence and absence of protein S. 
Thrombin generation in protein S deficient plasma was analysed in the presence of 2.5 nM 
purified TFPI in the presence or absence of 60 nM protein S (A). The anticoagulant activity of 
purified TFPI in the presence or absence of protein S was compared to that of TFPI in 
concentrated conditioned media (B). 
 
 

To determine the reason for this discrepancy, I assessed how dependent the total 

anticoagulant activity of TFPI/protein S is upon the concentration of TFPI. 

Consequently, purified TFPI was titrated (2.5, 5 and 7.5 nM) in the presence or 

absence of 60 nM protein S (Figure 3.30). I observed that a small difference, in 

terms of anticoagulant activity, between 2.5, 5 and 7.5 nM TFPI in the absence of 

protein S translated into a large difference in the presence of protein S. Previous 

results (Figure 3.25), in which a titration of protein S was performed at a fixed 

concentration of TFPI, showed only small changes in cofactor activity between 30 

nM increments in concentration of protein S. Taken together, these results 

(Figure 3.25 and Figure 3.30) suggest that the total TFPI anticoagulant activity in 
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the presence of protein S is more dependent upon the TFPI concentration than 

upon the protein S concentration.  

The different anticoagulant activities of TFPI in concentrated conditioned media or 

in fully purified TFPI is likely attributable to inaccuracies in determination of the 

concentration of TFPI in concentrated conditioned media, as this and the initial 

experiments were performed prior to complete optimisation of our in-house TFPI 

ELISA. As TFPI in conditioned media was expressed in HEK293 cells and my 

purified TFPI was expressed in Chinese hamster ovary cells, the glycosylation will 

be different. However, this is unlikely to be the reason behind the discrepancy, as 

the purified TFPI from the Chemoserotheraputic Institute Kaketsuken was shown 

to have the same activity as plasma purified TFPI,259 and the glycosylation from 

human HEK293 cells is likely to be broadly similar to that of plasma TFPI. In 

addition, Huang et al. evaluated the inactivation of FXa both by bacterial and 

mammalian expressed TFPI and found no significant difference, suggesting post-

translational modifications do not play a major role.72 To determine the reason 

behind the discrepancies between the two different sources of TFPI, I believe that 

the ELISA should be repeated in future studies and the TFPI from HEK293 cells 

purified and assessed alongside TFPI from the Chemoserotheraputic Institute 

Kaketsuken in functional assays. 

 
Figure 3.30 Protein S enhancement of TFPI at different concentrations of TFPI.  
Thrombin generation in the presence of different concentrations of TFPI (2.5, 5 and 7.5 nM) was 
assessed in the absence (A) and presence (B) of 60 nM protein S. 
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To ascertain whether the different assay conditions (i.e. source of TFPI and TFPI 

concentration) influenced the outcome of the initial screenings (Figure 3.25, 

Figure 3.27 and Figure 3.28), the activity of some of the protein S variants (60 

nM) was reassessed using 5 nM purified TFPI. Protein S variants Face2, D95N, 

Q79A, T103A and K112A, previously assayed in the presence of 2.5 nM TFPI in 

conditioned media (Figure 3.25 and Figure 3.28) were reassessed using 5 nM 

purified TFPI (Figure 3.31B,C,D). The results obtained with these protein S 

variants were consistent with earlier results, showing that protein S D95N and 

Q79A had somewhat reduced TFPI cofactor activity, while protein S Face2, 

T103A, K112A had slightly enhanced TFPI cofactor activity. This suggests that 

while the total effect of protein S in the presence of TFPI varies between different 

assay conditions, variants with reduced, normal or enhanced TFPI cofactor 

activity in comparison with WT protein S are reproducibly visualised in both assay 

conditions. Protein S variants Face1, Gla1 and TSR, that had not previously been 

assessed for TFPI cofactor activity, were also analysed (Figure 3.31A,C). Of the 

newly screened variants, protein S Gla1 had a similar TFPI cofactor activity to 

that of WT protein S, protein S Face1 had reduced cofactor activity and protein S 

TSR an increased TFPI cofactor activity (Figure 3.31). To further assess protein S 

variants with altered TFPI cofactor activity, protein S TSR, in addition to protein S 

D95A and protein S Face2, were purified and evaluated in the FXa inhibition 

assay. Protein S Face1 has been investigated by my colleague Dr Josefin 

Ahnström.  
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Figure 3.31 Thrombin generation in the presence of TFPI and WT protein S and protein S 
variants.  
Thrombin generation was assessed in protein S deficient plasma supplemented with 5 nM purified 
TFPI. The cofactor activity of protein S variants towards TFPI was assessed at 60 nM.  
 
 

Of the variants screened up to this point for their TFPI cofactor activity in the CAT 

assay, none had completely impaired cofactor activity, in terms of both impaired 

prolongation of the lag time and an impaired reduction of the peak height. In a 

further attempt to identify residues of protein S important for TFPI cofactor 

activity, additional variants in the Gla-TSR-EGF1 domains were made. The Gla-

TSR-EGF1 model193 was used to identify potential new residues to substitute. 

However, not many residues were left to mutate in the Gla domain once those 

close to the ω-loop, γ-carboxylated residues, alanine residues, cysteine residues, 

residues with a buried side chain and those already substituted, were excluded. 

All charged residues in the TSR had already been substituted and had been 
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incorporated into the protein S TSR variant. Polar residue Asn74 in the TSR was, 

however, chosen to create an additional point substitution, protein S N74A, as it is 

in close proximity of the partially conserved calcium binding motif in the EGF1. A 

small cluster of amino acid residues with an exposed R group, not conserved in 

the EGF1 domains of other coagulation factors, were identified on one side of 

EGF1. These were substituted to create the composite variant, protein S NEDM 

(N86A/E87Q/D88A/M91A). Asn74 was also incorporated in this composite variant 

creating composite variant protein S NNEDM. As single point variants might not 

be enough to disrupt protein S cofactor activity towards TFPI, a composite variant 

composed of the previously examined point substitutions K94A, T103A and 

K105A was also made, generating the variant protein S KTK. These residues 

were selected as T103N is a natural protein S variant in which reduction in APC 

cofactor activity could not be fully explained using purified FVa and FVIIIa 

inactivation assays.255 Residues Lys94 and Lys105 were selected as they were 

charged and in close proximity to Thr103, and these three residues formed a 

cluster on a separate side to that of NEDM.  

The new variants were screened by CAT at 60 nM in the presence of 2.5 nM 

purified TFPI (Figure 3.32, Panel A and B). The protein S variants were also 

simultaneously evaluated for their APC cofactor activity as this had not been done 

previously (Figure 3.32, Panel C and D). Protein S N74A had a normal APC 

cofactor activity (Panel C) and a slightly enhanced TFPI cofactor activity (Panel 

A). Composite variants protein S NEDM and protein S KTK had normal APC 

cofactor activity (Panel C), but reduced TFPI cofactor activity (Panel A). The 

addition of the N74A substitution to protein S NEDM, creating protein S NNEDM, 

resulted in a variant with both reduced APC cofactor activity (Panel D) and TFPI 

cofactor activity (Panel B). As can be seen in Figure 3.32 protein S NNEDM has 

reduced APC cofactor activity in comparison with protein S NEDM, however both 

variants have a similar TFPI cofactor activity. To further analyse these variants, 

protein S N74A, KTK, NEDM and NNEDM were purified to assess them in the 

FXa inhibition assay. Purification of protein S NEDM was not successful and it 

could not be re-expressed and purified, due to the time constraints of writing up 

this thesis. Protein S N74A, protein S KTK and protein S NNEDM were, however, 

successfully purified and further analysed in the FXa inhibition assay (see section 

3.4.2.2). 
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Figure 3.32 WT protein S, protein S N74A, KTK, NEDM and NNEDM studied by thrombin 
generation in the presence of TFPI or APC. 
Thrombin generation was assessed in protein S deficient plasma supplemented with protein S 
either in the presence of 2.5 nM TFPI (A, B) or 4 nM APC (Xigris) (C, D). Protein S was used at 60 
nM to evaluate TFPI cofactor activity and 90 nM to evaluate APC cofactor activity. Protein S 
N74A, KTK and NEDM all had normal APC cofactor activity (C). Addition of substitution N74A to 
protein S NEDM creating protein S NNEDM resulted in a partial loss of APC cofactor activity (D). 
Protein S N74A had an increased TFPI cofactor activity, while the cofactor activity of protein S 
KTK and NEDM towards TFPI was reduced (A). Addition of substitution N74A to protein S NEDM 
did not affect its cofactor activity towards TFPI (Panel B in comparison with Panel A). Note that 
APC from Xigris was used in this experiment and was more active than the commercial APC 
preparation mostly used in this thesis (Enzyme Research Laboratories). 

 

3.4.2 Evaluation of TFPI cofactor activity of protein S in the FXa inhibition 

assays 

3.4.2.1 Evaluation of FXa inhibition by WT purified TFPI and protein S 

The FXa inhibition assay was optimised with purified TFPI (Chemoserotheraputic 

Institute, Kaketsuken) and purified plasma protein S (Enzyme Research 

Laboratories). Importantly, a recent paper by Mori et al., (from the 
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Chemoserotheraputic Institute Kaketsuken) showed that the protease inhibitior 

activity of the recombinant purified TFPI towards FXa and TF/FVIIa was identical 

to that of plasma purified TFPI.259 Protein S in media could not be used as an 

unknown protease in both this preparation and the mock media (without protein 

S) was able to cleave the FXa substrate in a dose-dependent manner (results not 

shown). 

To assess the specificity of FXa inhibition by TFPI, purified TFPI (0-8 nM) was 

titrated and was shown to inhibit FXa in a dose-dependent manner (Figure 3.33). 

To assess the cofactor activity of protein S, low concentrations of TFPI (0.5-2 nM) 

were used to maximise the detection of the enhancing effect in the presence of 

protein S. Purified plasma protein S (0-160 nM) was titrated in the presence of 1.5 

nM TFPI (Figure 3.34). A dose-dependent enhancement of TFPI was observed 

suggesting that the activity of TFPI was specifically enhanced by protein S. 

Importantly, protein S did not affect FXa activity in the absence of TFPI (as shown 

in subsequent figures), confirming the high specificity of the assay. 

 
Figure 3.33 Dose-dependent inhibition of FXa by TFPI.  
TFPI (0-8 nM) was incubated with phospholipids (10 µM), CaCl2 (5 mM) and the FXa chromogenic 
substrate S-2765 (200 µM) in a 20 mM Tris-HCl, 140 mM NaCl, 5 mg/ml BSA buffer. The assay 
was started by the addition of FXa (0.5 nM) and the absorbance at 405 nm was read over time. 
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Figure 3.34 Dose-dependent enhancement of TFPI activity by protein S. 
TFPI (1.5 nM) was incubated with 0-160 nM protein S, phospholipids, CaCl2 and the FXa 
chromogenic substrate S-2765. The assay was started by the addition of FXa and the absorbance 
at 405 nm was read over time. 
 

 

As previously reported, the TFPI cofactor activity of protein S was phospholipid 

dependent (Figure 3.35).81 In accordance with the literature,72 TFPI mediated 

inhibition of FXa did not require phospholipids although its activity was 

moderately enhanced by their presence (see effect of TFPI on FXa inhibition in 

Panel A and B of Figure 3.35). This could be due to co-localisation of FXa and 

TFPI on the phospholipid surfaces. FXa binds phospholipids through its Gla 

domain and it has been suggested that the positively charged C-terminal tail of 

TFPI may interact with negatively charged phospholipid surfaces and cell 

surfaces74-76 and FXa79,80. No difference in TFPI inhibition of FXa and protein S 

cofactor activity towards TFPI was observed between 10 and 50 µM 

phospholipids suggesting that saturating amounts of phospholipids were present 

at 10 µM phospholipids. This is potentially important, as protein S has previously 

been shown to have a protein S direct activity (independent of APC and TFPI) 

due to competition for phospholipid surfaces when these are present in limiting 

amounts.189,190,242 
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Figure 3.35 Inhibition of FXa by TFPI and protein S in the absence and presence of 
phospholipids. 
TFPI (1.5 nM) and protein S (20 nM) were incubated with CaCl2, S-2765 with no phospholipids 
(A), 10 µM phospholipid vescicles (B) or 50 µM phospholipid vescicles (C). The assay was started 
by the addition of FXa and the absorbance at 405 nm was measured over time. TFPI inhibition of 
FXa cleavage of S-2765 was observed in the absence of phospholipids (Panel A) but was 
enhanced by their presence (Panel B and C). Protein S enhanced the TFPI mediated inhibiton of 
FXa in the presence (Panel B and C) but not in the absence (Panel A) of phospholipids. Protein S 
did not affect FXa cleavage of S-2765 in the absence of TFPI in any of the experimental 
conditions. 
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3.4.2.2 Evaluation of domains and amino acids of protein S involved in TFPI 

cofactor activity by use of domain specific monoclonal antibodies and 

protein S variants 

In an attempt to identify the domains of protein S important for TFPI cofactor 

activity, monoclonal domain specific antibodies against protein S (kind gift of 

Professor Björn Dahlbäck and Sofia Carlsson, University of Lund, Sweden) were 

used to inhibit protein S enhancement of TFPI. Protein S (20 nM) was 

preincubated in the presence or absence of monoclonal antibody (200-400 nM) in 

the presence of CaCl2 (as some of the antibodies are calcium dependent, the 

final concentration of CaCl2 in the well was 5 mM) for up to 30 minutes. 

Phospholipids and the FXa chromogenic substrate were subsequently added and 

the reaction was started by addition of 0.5 nM FXa (Figure 3.36). None of the 

monoclonal antibodies tested completely inhibited protein S enhancement of 

TFPI. The antibodies against the Gla domain of protein S, MK21 and MK47, 

showed the most inhibition of protein S cofactor activity. However, these 

monoclonal antibodies have previously been reported to inhibit phospholipid 

binding, which is a prerequisite for protein S function.243 It was therefore not 

possible to conclude whether the Gla domain of protein S is involved in an 

interaction with TFPI. Monoclonal antibodies against the TSR domain, the EGF1 

domain, the EGF3-4 domain and the SHBG domain had no or little effect upon 

protein S enhancement of TFPI (Figure 3.36). While this would suggest that the 

epitopes recognised by these antibodies are not involved in an interaction with 

TFPI, it is possible that other amino acid residues within the respective domains 

may be involved and remain accessible. Interestingly, the epitope of the 

monoclonal antibody MK54 against the EGF1 domain of protein S includes 

residue Lys97.260 It is therefore likely that this antibody would inhibit a potential 

interaction involving Asp95 in protein S with TFPI. No monoclonal antibody 

directed against the EGF2 domain was available. 
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Figure 3.36 Inhibition of protein S cofactor activity towards TFPI by monoclonal domain 
specific antibodies. 
Protein S (20 nM) was preincubated in the presence or absence of 200-400 nM of the domain 
specific monoclonal antibody against protein S in the presence of CaCl2 for up to 30 minutes. 
TFPI (1.5 nM), S-2765 and phospholipids were subsequently added and the reaction was started 
by addition of FXa. Monoclonal antibodies against the Gla domain, TSR domain and the EGF1 
domain are shown in Panel A. Monoclonal antibodies directed against the EGF3-4 domain and 
the SHBG domain are shown in Panel B. All data point were normalised against the control. 
Results represents the mean from two different experiments performed in duplicate. The labelling 
TFPI + protein S has been omitted in the presence of the antibody. The domain against which the 
antibody is directed precedes the name of each antibody. 
 
 

Of the over 30 protein S variants screened for their TFPI cofactor activity in 

plasma (section 3.4.1), those of interest were purified and assessed in the FXa 

inhibition assay. Protein S Face2 and protein S TSR had been purified by anion 

exchange chromatography followed by immunoaffinity chromatography and were 

compared with WT protein S purified using the same method. Figure 3.37 shows 
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the protein S Face2 and protein S TSR cofactor enhancing activity in the FXa 

assay compared with that of WT protein S (20 nM) using 1.5 nM TFPI. Both 

protein S Face2 and protein S TSR showed a similar TFPI cofactor activity to that 

of WT protein S. The same results were observed over a range of TFPI (0.75-2 

nM) and protein S (5-40 nM) concentrations (not shown) suggesting residues 

mutated in these variants are not critical for TFPI cofactor activity. This is in 

agreement with the results obtained in the plasma assay. 

 

 
Figure 3.37 TFPI inhibition of FXa in the presence and absence of WT protein S, protein S 
Face2 and protein S TSR. 
TFPI (1.5 nM) was incubated with 20 nM protein S, phospholipids, CaCl2 and the FXa 
chromogenic substrate S-2765. The assay was started by the addition of FXa and the absorbance 
at 405 nm was read over time. 
 
 

When protein S D95A (purified by anion exchange chromatography followed by 

immunoaffinity chromatography) was tested in the FXa inhibition assay, it 

appeared to have a reduced cofactor activity for TFPI. Due to lack of material, 

protein S D95A in conditioned media was re-purified by barium citrate 

precipitation followed by anion exchange chromatography alongside WT protein 

S, protein S N74A, KTK and NNEDM. Protein S variants (20 nM) were screened 

for their TFPI cofactor activity at 1.5 nM TFPI and were compared with WT 

protein S purified in the same way. Protein S KTK and protein S N74A had TFPI 

cofactor activities similar to that of WT protein S, as can be seen in Figure 3.38. 

The cofactor activities of protein S D95A and protein S NNEDM were, however, 

reduced in comparison with that of WT protein S (Figure 3.38). These results are 
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in agreement with those obtained in plasma, with the exception of protein S KTK 

which exhibited reduced cofactor activity in plasma. 

None of the protein S preparations affected FXa cleavage of S-2765 in the 

absence of TFPI (results not shown). To further investigate the protein S cofactor 

activity for TFPI, kinetic assays were performed to allow determination of the Ki 

values and, consequently, to quantify the difference between WT protein S and 

protein S variants. 

 

 
Figure 3.38 TFPI inhibition of FXa in the presence and absence of WT protein S, protein S 
D95A, protein S N74A, protein S KTK and protein S NNEDM. 
TFPI (1.5 nM) was incubated with 20 nM protein S, phospholipids, CaCl2 and the FXa 
chromogenic substrate S-2765. The assay was started by the addition of FXa and the absorbance 
at 405 nm was read over time. 
 
 

3.4.2.3 Kinetic analysis of TFPI mediated inhibition of FXa in the presence and 

absence of protein S 

To calculate the inhibition constant, Ki, of TFPI for FXa, the Km for the hydrolysis 

of the chromogenic substrate S-2765 by FXa was first determined. The FXa 

inhibition assay was performed as described in section 2.7 but in the absence of 

TFPI and protein S and at a fixed concentration of FXa (0.5 nM). The substrate 

was titrated (0-1200 µM) and the initial velocity V0 was plotted against the 

substrate concentration (Figure 3.39). Curve fitting of the initial velocities allowed 

determination of the Km. A Km of 46.3 ± 11.7 µM was obtained from four different 

experiments performed in duplicate. This is compatible with the Km of 42.6 ± 2.3 

µM reported by Broze and colleagues.72 
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Figure 3.39 Determination of the Km of FXa for the chromogenic substrate S-2765. 
The Km of the hydrolysis of S-2765 by FXa was determined by titrating the substrate over the 
range 0-1200 µM in the presence of phospholipids and CaCl2 and in the absence of TFPI and 
protein S. A representative experiment is shown (A). The mean ± SD of the V0 from four 
independent experiments performed in duplicate was plotted against the concentration of the 
substrate (B). A Km of 46.3 ± 11.7 µM was obtained.  
 

 

When the FXa inactivation assay was started either by the addition of FXa (as 

described by Ndonwi et al.238) or substrate and TFPI (similar to what was 

described by Hackeng et al.81), a difference in the V0 was observed in the 

presence of TFPI and protein S. While the respective absorbance values at 30 

minutes were similar, the shapes of the curves were appreciably different. When 

the assay was started with FXa, the data points describing the protein S 

enhancement of TFPI formed a distinctive curve with a high V0 (Figure 3.40, 

Panel A). However, when the assay was started with the addition of substrate and 

TFPI, the protein S enhancement of TFPI was more linear and resulted in a lower 

V0 (Figure 3.40, Panel B). These differences can be more easily visualised by 

looking at the first 5 minutes of the assay (Figure 3.40 C and D). An explanation 

for these discrepancies is not yet available.  
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Figure 3.40 FXa inhibition assay started by the addition of FXa or by the addition of TFPI 
and S-2765. 
Protein S (100 nM) enhancement of TFPI (0-4 nM) was evaluated. The assay was started either 
by addition of FXa (A) or addition of TFPI and S-2765 (B). Panels C and D shows the first 5 
minutes of the results shown in Panel, A and B, respectively. Representative graphs are shown. 
 
 

As the Ki of TFPI for FXa is dependent upon calculation of the V0, the FXa 

inhibition assay was started with TFPI and S-2765 where a change in V0 is more 

readily seen. The Ki values of TFPI in the presence or absence of protein S 

determined in the literature were derived by starting the FXa inhibition assay with 

FXa and then, after approximately 5 minutes, dispensing TFPI.81 To determine 

the Ki, the timepoint at which TFPI was added was considered to be timepoint 

zero. As no dispenser was available for my experiments, the Ki values of TFPI in 

the presence or absence of protein S were determined by starting the FXa 

inhibition assay with a mix of substrate and TFPI. Titration of 0-8 nM TFPI was 

performed in the absence of protein S. As protein S efficiently enhances TFPI, the 

concentration of TFPI was lowered to 0-4 nM when using 100 nM protein S. 

Figure 3.41 shows the activity of TFPI in the absence (Panel A) and presence of 
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WT protein S purified by anion exchange chromatography followed by 

immunoaffinity chromatography (Panel B) or of WT protein S purified by barium 

citrate precipitation followed by anion exchange chromatography (Panel C). This 

is expressed in Figure 3.41, Panel D as a change in V0 at increasing 

concentrations of TFPI in the presence or absence of protein S. The V0, derived 

from the fitted equations in PanelA-C, has been expressed as a percentage of 

Vmax (which corresponds to the V0 obtained in the absence of TFPI). The results 

in Panel D represent the mean ± SD of three independent experiments. As can 

be seen in Panel D of Figure 3.41 both WT preparations enhanced TFPI to a 

similar extent. 

 

Figure 3.41 FXa inhibition by TFPI in the presence and absence of WT protein S. 
TFPI (0-8 nM) was titrated in the absence (A) or presence of 100 nM WT protein S purified by 
anion exchange chromatography followed by immunoaffinity chromatography (B), or by barium 
citrate precipitation followed by anion exchange chromatography (C). The change in V0 at 
increasing concentrations of TFPI in the presence or absence of WT protein S is shown in Panel 
D as mean ± SD from three independent assays. Anion chr, purified by barium citrate precipitation 
followed by anion chromatography; Affinity chr, purified by anion exchange chromatography 
followed by immunoaffinity chromatography. 
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Protein S D95A and protein S Face2 previously found to be critical for APC 

cofactor activity and protein S NNEDM, which had reduced TFPI and APC 

cofactor activity in the plasma assay, were assessed at 100 nM, at increasing 

concentrations of TFPI (0-4 nM). Protein S KTK was also assessed. Protein S 

KTK had normal APC cofactor activity. While plasma assays suggested it had 

reduced TFPI cofactor activity, its activity in the FXa inhibition assay seemed 

normal. The change in V0 in the presence or absence of the protein S variants in 

comparison with WT protein S purified in the same way is shown in Figure 3.42. 

Protein S Face2 (Panel A), protein S KTK (Panel B) and protein S D95A (Panel 

C) all showed similar dose-dependent changes in V0 to that of WT protein S. 

Protein S NNEDM (Panel D), however, had a reduced cofactor activity towards 

TFPI, visualised as a smaller reduction in V0. 

 

 
Figure 3.42 Change in V0 at increasing concentrations of TFPI in the presence or absence 
of protein S.  
TFPI (0-8 nM) was titrated in the presence or absence of 100 nM protein S. The graphs show the 
change in V0 at increasing concentrations of TFPI in the presence or absence of protein S Face2 
(A), protein S KTK (B), protein S D95A (C) and protein S NNEDM (D). Data points are expressed 
as the mean ± SD from three independent experiments. Anion chr, purified by barium citrate 
precipitation followed by anion exchange chromatography; Affinity chr, purified by anion exchange 
chromatography followed by immunoaffinity chromatography. 
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To quantify the difference between WT protein S and the protein S variants, the Ki 

values were determined. This was done by plotting the Vmax/V0 against the 

concentration of TFPI. The x intercept was then used to calculate the Ki, as 

described in section 2.7.3. Differences in Ki values obtained were analysed using 

an unpaired t-test. 

There was no significant difference between the Ki values obtained with WT 

protein S purified by anion exchange chromatography followed by immunoaffinity 

chromatography (Ki= 0.13 ± 0.03 nM) or WT protein S purified by barium citrate 

precipitation followed by anion exchange chromatography (Ki= 0.19 ± 0.04 nM) 

(Table 3.4).  

When protein S variants were compared to WT protein S purified using the same 

method, there was no significant difference between protein S Face2 and WT 

protein S in terms of Ki values (Table 3.4). This is in agreement with what I had 

seen in the single concentration screening assay (Figure 3.37). Confirming what 

was observed in the single concentration screening assay (Figure 3.38), protein S 

KTK enhancement of TFPI inhibition of FXa was not significantly different from 

WT protein S (Table 3.4). Interestingly, while protein S D95A seemed to have 

reduced cofactor activity towards TFPI at 20 nM in the screening assays (Figure 

3.38), no difference was observed at 100 nM protein S which was used to 

determine the Ki of TFPI activity (Table 3.4). Importantly, my experiments with 

protein S NNEDM confirmed results obtained in the screening assay (Table 3.4).  

Protein S NNEDM had reduced TFPI cofactor activity (Ki = 0.91 ± 0.35 nM) in 

comparison with WT protein S (Ki = 0.19 ± 0.04 nM). While some of the residues 

in protein S NNEDM might be important for cofactor activity towards TFPI 

mediated inhibition of FXa, this variant also had reduced APC cofactor activity. 

Evaluation of protein S NEDM, which had normal APC cofactor activity might 

therefore provide interesting results in future experiments.  
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 Ki (nM) 

TFPI 3.49 ± 0.96 

WT protein S (anion chr) 0.19 ± 0.04 

Protein S 95A 0.21 ± 0.06 

Protein S KTK 0.24 ± 0.05 

Protein S NNEDM 0.91 ± 0.35 

WT protein S (affinity chr) 0.13 ± 0.03 

Protein S Face2 0.12 ± 0.02 

 
Table 3.4 Inhibition constants for TFPI inhibition of FXa in the presence or absence of 
protein S. 
Ki values (nM) for WT protein S and protein S variants were determined from the x intercept 
obtained by plotting the Vmax/V0 values against TFPI concentration. Results are expressed as the 
mean ± SD from three independent experiments. WT protein S (anion chr) is protein S purified by 
barium citrate precipitation followed by anion exchange chromatography. WT protein S (affinity 
chr) is protein S purified by anion exchange chromatography followed by immunoaffinity 
chromatography. 
 
 

3.4.3 Discussion 

The CAT assay to assess protein S cofactor activity towards TFPI was initially set 

up. This assay allows evaluation of the cofactor activity of protein S towards TFPI 

in a plasma milieu, potentially representing a more physiological environment 

than purified systems. When I began my thesis, a method to evaluate protein S 

cofactor activity towards TFPI by CAT in protein S deficient plasma had not been 

published. However, recently Maurissen et al. were able to reproducibly study the 

TFPI/protein S anticoagulant activity by CAT in normal plasma.240 This was 

achieved by using inhibitory polyclonal antibodies against TFPI and protein S. 

During my thesis, I noticed differences in the anticoagulant activity of TFPI and 

protein S supplemented to protein S deficient plasma from different suppliers. 

Generally, as can be seen by the different peak heights (Figure 3.22), the protein 

S deficient plasma from Hyphen Biomed was less procoagulant that that of 

Affinity Biologicals. This is likely to influence the total TFPI/protein S anticoagulant 

activity as the latter has been shown to be dependent upon TF concentrations, 

and therefore the procoagulant environment.218 Alternatively, the reported 
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difference in the concentration of endogenous TFPI between the different plasma 

preparations might be important. Co-depletion of full-length TFPI following 

removal of protein S during the production of protein S deficient plasma has 

recently been shown by Castoldi et al..241 However, differences in endogenous 

TFPI concentrations alone, are unlikely to explain the differences I observed 

between the different plasma preparations. Firstly, because the exogenous full-

length TFPI (~2.5 nM) supplemented to the protein S deficient plasma exceeds 

by far the endogenous full-length TFPI (~0.25 nM) the total amount of TFPI in the 

two different plasma preparations were fairly similar. Secondly, the anticoagulant 

activity of 5 nM TFPI and protein S in plasma from Affinity Biomed was less than 

that observed using 2.5 nM TFPI and protein S in plasma from Hyphen Biomed 

(results not shown). Therefore, it is possible that co-depletion of other coagulation 

factors might account for the differences observed between the two plasma 

preparations, Affinity Biological and Hyphen Biomed. 

It is interesting to note that the protein S/TFPI anticoagulant activity influences 

both the peak height, ETP and the lag time. This is in contrast with what is 

observed in the presence of APC, where protein S cofactor enhancement results 

mainly in an effect on peak height and ETP. Compatibly with my results, Hackeng 

and Rosing observed both a reduction in peak height and prolongation of the lag 

time following addition of TFPI to TFPI depleted plasma.261 Other studies 

evaluating protein S enhancement of TFPI anticoagulant activity have been 

carried out in normal plasma. When Brodin et al. evaluated the effect of addition 

of recombinant TFPI to normal plasma, they noticed a prolongation of the lag time 

but saw no effect on the ETP.253 Similarly, when they inhibited endogenous TFPI 

with antibodies, a shortening in the lag time but no effect on the ETP was 

observed. Previous reports have also shown that protein S, in the absence of 

APC, affects the lag time but not the ETP.262 This study, however, combined 

protein S deficient plasma with different percentages of normal plasma, thus 

potentially confounding any effect of differences in other coagulation factors 

between the two plasma preparations. In contrast, when I supplemented TFPI to 

normal plasma (results not shown) I observed both an effect on the peak height 

and a prolongation of the lag time. Maurissen et al. assessed TFPI anticoagulant 

activity and its enhancement by protein S in normal plasma using inhibitory 

antibodies and showed a change in peak height, but not in lag time.240 The 
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discrepancies between results from different protein S deficient plasma 

preparations and between protein S deficient plasma and normal plasma do not 

have a coherent explanation. It is possible that co-depletion of other coagulation 

factors contribute to the different TFPI/protein S anticoagulant activity observed 

between different plasma preparations. Considering that plasma levels of FV 

have been shown to correlate with full-length TFPI plasma levels, that TFPI and 

FV potentially form a complex in vivo,263 that depletion of full-length TFPI results 

in co-depletion of FVa,241 together with the observation that FV levels have been 

shown to influence the lag time in the CAT assay,262 it should be evaluated if 

differences in FV level could contribute to the differences observed between 

normal and protein S depleted plasma. 

To decrease intra-assay variability, variability between different sources of 

plasma and variabilities between different laboratories, parameters such as 

supplier of the plasma, potential differences between lyophilised and frozen 

plasma, batch variability of the plasma, source of TF, source of phospholipids, 

preincubation of additional components to the plasma, plasma dilution and 

temperature should all be carefully considered.218,262,264,265 

In this thesis, the TFPI anticoagulant activity in the presence or absence of 

protein S was evaluated in protein S deficient plasma from Hyphen Biomed and 

the specificity of the assay was demonstrated with inhibitory antibodies against 

TFPI, protein S or protein C. As observed for APC (section 3.3.2), no significant 

difference in TFPI cofactor activity was observed between protein S in 

concentrated conditioned media and purified protein S. The assay developed 

during this thesis allowed visualisation of a clear TFPI effect and its enhancement 

by protein S. I also showed that the protein S activity in the presence of TFPI is 

highly dependent on the TFPI concentration and its anticoagulant activity. This is 

compatible with results of Hackeng and Rosing in their recent review paper in 

which TFPI depleted plasma was supplemented with TFPI in the presence or 

absence of inhibitory antibodies against protein S.261 The dependence of the 

protein S/TFPI anticoagulant activity upon the TFPI concentration might be 

partially explained by the fact that the normal concentration of protein S present in 

plasma (free ~145 nM, total ~362 nM) is in vast excess over that of free full-length 

TFPI (~0.25 nM).  
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The inter-assay variability was quite large making it difficult to pool data from 

multiple assays. The CAT assay used in this thesis was, however, an efficient 

screening tool to identify protein S variants with reduced, normal or enhanced 

TFPI cofactor activity in comparison to WT protein S. Protein S variants in 

concentrated conditioned media were evaluated both for their ability to reduce the 

peak height of thrombin generated and to prolong the lag time. Of the 31 protein 

S variants screened for their TFPI cofactor activity by CAT none had completely 

ablated activity. Twenty-three protein S variants had normal to enhanced activity 

in comparison with WT protein S (Table 3.5). The protein S variants previously 

found to have reduced APC cofactor activity protein S D95A, D95N, D78A and 

Q79A had approximately 80% of WT protein S cofactor activity towards TFPI 

(Figure 3.25). Interestingly, protein S Face2, which had decreased APC cofactor 

activity, reduced the peak height of thrombin to approximately half of that of WT 

protein S (at 90-120 nM) in the presence of TFPI (Figure 3.25 and Figure 3.31). 

Protein S KTK, NEDM, NNEDM and Face1 (Table 3.5) showed reduced cofactor 

activity towards TFPI in comparison with WT protein S when screened by CAT 

(Figure 3.31 and Figure 3.32). This was visualised mainly as a change in lag time 

rather than in a change of peak height in comparison to WT protein S.  

 

TFPI cofactor activity 
compared to WT protein S 

Protein S variants 

Normal to enhanced 
Gla1, Face2, TSR, N74A, K94A, K97A, S99A, T101A, T103A, 

K105A, P106A, Q109A, E111A, K112A, D135A, T137A, 
Y141A, H142A, S144A, K146A, N154A, K156A, D157A 

Reduced Face1, KTK, NEDM, NNEDM, D78A, Q79A, D95A, D95N 

 
Table 3.5 TFPI cofactor activity of protein S variants in comparison with WT protein S in 
plasma studied by CAT assay.  
Any variant which in the CAT assay had shorter lag time or increased peak in comparison with 
WT protein S was classified in this table as having reduced activity compared to WT protein S. 
 

 

Protein S variants Face2 and D95A, found to be important for APC cofactor 

activity, were purified and evaluated for their TFPI cofactor activity in the FXa 
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inhibition assay. Protein S KTK and NNEDM which had reduced TFPI cofactor 

activity in plasma were also purified and assessed in the FXa inhibition assay. 

Protein S N74A and TSR which had normal APC cofactor activity and normal to 

enhanced TFPI cofactor activity in plasma were also analysed in the FXa 

inhibition assay. 

The FXa inhibition assay has the advantage of being a well established assay 

and allows specific evaluation of TFPI mediated inhibition of FXa without the 

complexity associated with normal plasma assays.68,72,78,81,237 Importantly, 

purified protein S alone does not affect FXa cleavage of the chromogenic 

substrate S-2765 in the absence of TFPI ensuring the assay specifically assesses 

TFPI cofactor activity of protein S. A screening assay using 1.5 nM purified TFPI 

and 20 nM purified protein S was performed. Results from the screening assay 

showed that protein S variants Face2, TSR, KTK and N74A all had similar TFPI 

cofactor activity to that of WT protein S. Protein S D95A and protein S NNEDM, 

however, had a reduced TFPI cofactor. My colleague Dr Josefin Anhnström 

evaluated the cofactor activity of protein S E36A (a substitution present in the 

Face1 variant that had reduced APC cofactor activity, see section 3.3.6) and 

found it enhanced TFPI mediated inhibition of FXa to the same extent as WT 

protein S. 

To more accurately quantify the differences between WT protein S and protein S 

variants, I derived the Ki values for TFPI inhibition of FXa in the presence of 

protein S. WT protein S reduced the Ki of TFPI in the absence of protein S from 

3.49 nM to 0.13-0.19 nM, enhancing TFPI inhibition of FXa by 18-27-fold. The Ki 

values of protein S Face2, D95A, KTK and NNEDM were determined. No 

statistical difference between the Ki obtained in the presence of protein S Face2, 

D95A, KTK with that of WT protein S was found. Protein S NNEDM, however, 

enhanced TFPI inhibition of FXa only by ~3.8-fold in contrast to the ~18-fold of 

WT protein S. These kinetic results were in agreement with results from the 

screening in the FXa inhibition assay, with the exception of protein S D95A. While 

protein S D95A had reduced TFPI cofactor activity in the screening experiment in 

the FXa inhibition assay, the Ki value obtained with 100 nM protein S was not 

statistically different from that of WT protein S. It is possible that while at lower 

protein S concentrations protein S D95A is not as efficient as WT protein S, this is 

overcome at saturating concentrations of protein S. Overall, results from the FXa 
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inhibition assay correlate relatively well with those from the plasma assay, 

considering the intrinsic differences of the two assays. The main exception is 

protein S KTK, which had reduced TFPI cofactor activity in plasma and normal 

TFPI cofactor activity for the inhibition of FXa. The reason for this discrepancy still 

needs to be evaluated. 

Importantly, results from the plasma based assay and the purified FXa inhibition 

assay suggest that protein S D95A, protein S Face2 and protein S E36A (result of 

Dr Josefin Anhnström, not shown) were able to enhance TFPI mediated inhibition 

of FXa to a similar extent as WT protein S. This is of considerable importance as 

it suggests distinct residues in protein S interact with APC and TFPI.  

Further work has to be done to identify residues in protein S involved in TFPI 

cofactor activity. Experiments with protein S KTK should be repeated to evaluate 

if there are any significant differences between the plasma based assay and the 

purified assay, and if so to determine the reason for any discrepancy. Protein S 

NNEDM had reduced TFPI cofactor but also reduced APC cofactor activity. 

Importantly, protein S NEDM had reduced TFPI cofactor activity and normal APC 

cofactor activity. Protein S NEDM should be purified and analysed in the FXa 

inhibition assay. 

Further work also needs to be done in order to fully optimise the plasma based 

assay and potentially also the FXa inhibition assay. In the first instance the inter-

assay variability of the plasma based assay has to be improved. Secondly, the 

different effect on V0 in the FXa inhibition assay according to how the assay is 

started (Figure 3.40) has to be rationalised. While the reason for this is not clear, 

it might explain why Ndonwi et al.238 quantifies the protein S enhancement of 

TFPI as a change in Vs determining the EC50 and Hackeng et al.81 as a change in 

V0 determining the Ki. To get accurate V0 results a dispenser should also be 

used. Protein S enhancement of TFPI mediated inhibition of TF/FVIIa should also 

be assessed as this potentially represents a mechanism that occurs in plasma. 

Results obtained during my thesis would suggest that substitution of a single 

residue of protein S is not enough to disrupt its cofactor activity towards TFPI. 

Even if protein S and TFPI interact through multiple interaction sites it is unlikely 

that residues substituted in my thesis and found to have normal to enhanced 

TFPI cofactor activity are involved in a critical way in the interaction with TFPI. 

Figure 3.43 shows the residues in protein S substituted in the Gla-TSR-EGF1 



 139 

domain and analysed in this thesis (blue). Red residues in Figure 3.43 represent 

amino acids potentially involved in phospholipid binding, alanine residues or 

cysteine residues and are therefore not good candidates to substitute. Similarly, 

yellow residues represent residues which are predicted to have their R group 

buried inside the protein S structure. This leaves only few clusters of residues in 

these domains, of which only two charged residues, that have not been mutated 

during this thesis (gray) and could be evaluated alongside protein S KTK and 

NEDM. Alternatively, the interaction site between protein S and TFPI is not 

located at the sites and domains evaluated in this thesis. 

 

 

Figure 3.43 Residue substitutions in the Gla-TSR-EGF1 domains made during this project. 
Residues substituted during this project, either as single or composite variants, are coloured in 
blue. Residues in red and yellow were not mutated because their likely involvement in 
phospholipid binding, because they are alanine or cysteine residues or because their R group is 
buried within the protein S structure. Protein S model from Villoutreix et al..

193
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4 CONCLUDING REMARKS 

It is well established that protein S acts as a cofactor for APC. Recently, different 

groups have shown that protein S is also able to act as a cofactor for TFPI.81,237 

The aim of my project was to elucidate the molecular mechanism behind these 

interactions by identifying the residues in protein S involved in APC and TFPI 

cofactor activity. To address this aim, more than 30 protein S variants were 

created by site-directed mutagenesis, expressed and characterised for their 

cofactor activities towards both APC and TFPI. In this concluding chapter, I will 

attempt to put into context the results achieved during my PhD with what is 

already known in the literature. I will first address the issue of protein S cleavage, 

multimerisation and binding to phospholipids. I will postulate an interaction 

mechanism between protein S and APC, I will discuss the potential interaction 

and mechanisms regulating TFPI cofactor activity of protein S, and I will 

speculate on the regulation of protein S cofactor activity in vivo based on the 

novel results in this thesis and on recent results from the literature. 

 

4.1 Protein S cleavage, multimerisation and its binding to 

phospholipids 

It has been shown that 10-15% of plasma protein S circulates in a cleaved 

form.178 The protease responsible for this cleavage in vivo is still not known and 

the effect of cleavage upon APC-dependent and APC-independent cofactor 

activity of protein S is still under debate.175-177 It has been suggested that 

cleavage at both Arg49 and Arg70 affects protein S binding to phospholipids.176 

During this thesis cleavage of protein S was sometimes observed in processed 

concentrated conditioned media. Because of this, cleavage of protein S was 

minimised by keeping the time of processing of protein S as short as possible. 

Because of the issue of cleavage, I preferred using protein S in concentrated 

conditioned media rather than purified samples. I also aliquoted protein S to avoid 

extensive freeze thawing. Cleavage of protein S variants was formally assessed 

by performing SDS-PAGE under reducing conditions. WT protein S, protein S 

D95A and protein S Face2 in concentrated conditioned media were all analysed 
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by Western blot and this confirmed that no cleavage products were present. 

Purified WT protein S, protein S D95A and protein S Face2 were analysed by 

silver staining to make sure they were not more cleaved than WT protein S. 

These precautions suggest that reduced APC cofactor activity of these variants 

was not a consequence of increased cleavage. 

The formation of protein S multimers is well documented in the literature.189-192 It 

is not yet clear what causes multimer formation or how to prevent it. While some 

reports suggest that protein S multimers already exists in the blood,189,190 others 

claim it is a consequence of in vitro manipulation.191,192 It has been hypothesised 

that it is a result of 1) purification, 2) removal of Ca2+ ions, 3) concentration, or 4) 

spontaneously occurs over time. The effect of multimers on the ability of protein S 

to bind to phospholipids and to act as a cofactor for APC or TFPI is still being 

debated.189-192 It has been shown that multimeric protein S is able to bind to 

phospholipids with a higher affinity than monomeric protein S.191 APC- and TFPI-

independent activities of purified multimeric protein S due to competition for 

phospholipids have also been documented at limiting amounts of 

phospholipids.191,192,216,217 

Multimer formation was analysed during my work using Western blot of protein S 

from native gels. Protein S in concentrated conditioned media and plasma protein 

S both appeared monomeric. Partial purification on the anion exchange QFF 

column by FPLC resulted in protein S preparations that were largely monomeric 

with trace amounts of dimers being present. Purification by immunoaffinity 

chromatography or by barium citrate precipitation of protein S, however, definitely 

lead to multimer formation. Commercial plasma purified protein S from Enzyme 

Research Laboratories also appeared multimeric using this technique. 

Accordingly, functional assays to assess protein S cofactor activity towards APC 

and TFPI were carried out both with monomeric protein S in concentrated 

conditioned media (where assay conditions permitted this) as well as with 

multimeric purified protein S. Saturating amounts of phospholipids are also used 

in all assays. 

Protein S is a plasma protein whose functionality is dependent upon its ability to 

bind to phospholipid surfaces through its Gla domain. Binding to phospholipids 

requires post transcriptional γ-carboxylation of the glutamic acid residues in the 

Gla domain of protein S by the vitamin K-dependent γ-carboxylase.171 Variations 
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in the efficiency of γ-carboxylation of protein S variants secreted from HEK293 

cells can therefore potentially influence the cofactor activity of protein S measured 

in the functional assays. Variants of interest in concentrated conditioned media 

were analysed by Western blot and protein S was detected either by a polyclonal 

antibody or an antibody recognising only γ-carboxylated protein S. No difference 

in band intensity with the latter antibodies were observed between WT protein S 

and protein S D95A, suggesting both preparations contained a similar amount of 

γ-carboxylated protein S. γ-carboxylation was also controlled for by purifying WT 

protein S and the variants of interest by methods that selectively removes non γ-

carboxylated protein S. Lastly, protein S was assessed for its ability to bind to 

phospholipids in a plate binding assay. My recombinant barium citrate 

precipitated WT protein S bound to phospholipids with a Kd(app) similar to that 

reported in the literature.182,223-225 Importantly, my colleague Dr Josefin Ahnström 

also confirmed that there was no difference in binding to phospholipid between 

partially and fully purified protein S (results not shown). Protein S D95A was 

assessed for its binding to phospholipid surfaces and there was no significant 

difference in Kd(app) compared to WT protein S. While not formally assessed in this 

thesis, when protein S in concentrated conditioned media was evaluated for its 

ability to bind phospholipid surfaces, a much lower affinity was observed.  

In summary, my results are compatible with those published studies showing that 

monomeric and multimeric protein S have different affinities for phospholipids, 

that protein S circulates in plasma as a monomer and that multimerisation is a 

result of in vitro manipulation.191,192 

 

4.2 APC cofactor activity of protein S; interaction sites and a 

suggested mechanism 

Protein S has been suggested to act as a cofactor for APC in three distinct ways; 

by increasing the affinity of APC to phospholipid surfaces, by relocating the active 

site of APC and by overcoming the protective effect of FVa following binding to 

FXa.127,137,221,228,229  

Protein S circulates in plasma as a monomer and consequently its affinity for 

phospholipids is reduced compared to that reported in the literature for multimeric 
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protein S. The reported affinity of monomeric protein S for phospholipids (Kd(app) 

=250 nM)191 is, however, higher than that of APC (2-7 µM)226,227 suggesting 

protein S enhancement of APC binding to phospholipids might have a 

physiological relevance.  

It is well accepted that protein S enhances mainly the APC mediated cleavage at 

Arg306 of FVa. It has been shown that binding of protein S to APC results in 

relocalisation of the active site of APC closer to the membrane surface.228,229,266 

This relocalisation was proposed to be the mechanism behind protein S induced 

preferential cleavage at Arg306. Binding of protein S might cause a major 

conformational change in APC, resulting in the relocalisation of its active site. A 

recent paper using a FVa variant R306Q/R506Q/R679Q, identified additional 

APC cleavage sites in FVa (in close proximity to Arg306 or Arg506). Protein S 

equally enhanced the cleavage of all these residues (Lys309, Arg313, Arg316, 

Arg317 and Arg505).130 While this does not contradict protein S mediated 

relocalisation of the active site of APC, it argues against the suggestion that this 

relocalisation is how protein S changes the preferential cleavage site of APC from 

Arg506 to Arg306. Tran et al. suggest their results argue against the hypothesis 

that Arg306 and Arg506 are located at different heights above the phospholipid 

surface. Relocalisation of the active site of APC closer to the membrane surface 

has also been observed following construction of APC chimeras containing the 

Gla domain of either FX or prothrombin.228,267 In contrast to WT APC, protein S 

was not able to enhance the APC anticoagulant activity of these chimeras. 

Because cleavage at Arg506 of FVa by APC does not require phospholipids, the 

affinity between the two proteins may be sufficiently high for them to bind to each 

other in the absence of membrane surfaces. It is possible that following cleavage 

at Arg506 the affinity of APC for FVa decreases. It has been shown that protein S 

binds with high affinity (Kd ~ 40 nM) to the 493-506 peptide of FV.116 

Consequently, protein S could also act as an APC cofactor by stabilising the 

APC/FVa complex on the phospholipid membrane (through binding to both APC 

and FVa), thereby allowing cleavage at Arg306. 

The third mechanism by which protein S has been reported to enhance APC 

anticoagulant activity is by overcoming the protective effect of FXa on FVa 

cleavage.219 One proposed hypothesis is that this is due to competitive binding of 

protein S and FXa for FVa.116 If a competitive binding between protein S and FXa 
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for FVa exsists, I believe it is unlikely to play a physiological role in vivo, 

considering that binding of protein S to FVa is likely reduced once FVa is 

incorporated in the prothrombinase complex with its physiological substrate 

prothrombin. Prothrombin (1.39 μM) is also available in much higher 

concentrations than protein S (free protein S ~145 nM, total protein S ~362 nM). 

The alternative mechanism proposed was that protein S enhanced APC mediated 

cleavage of free FVa, thereby potentially affecting the equilibrium between free 

FXa and FVa, and the FXa/FVa complex.137 This would cause FVa to dissociate 

from the complex, consequently being more susceptible to cleavage by APC. This 

proposed mechanism seems to me more likely to occur in vivo, as protein S is 

known to enhance APC mediated cleavage of FVa. In addition, considering that 

the plasma concentration of FV (~30 nM) is less than that of FX (~136 nM), the 

available FVa is likely to influence the equilibrium between free FVa and FVa 

bound to FXa. It has also been proposed that FXa only protects Arg506 cleavage 

and that protein S enhances APC mediated cleavage at Arg306 even when FVa 

is bound to FXa.138 This proposed mechanism could occur in vivo, however, it is 

likely that it is reduced once the prothrombinase complex binds to its substrate 

prothrombin. 

Three residues in the Gla domain of APC, Asp36/Leu38/Ala39, have been 

reported to be essential for cofactor activity of protein S.90 When point 

substitutions of these residues in APC were analysed, Leu38 was shown to be 

the most critical residue for protein S cofactor activity.268 One study used Fab 

fragments against APC and suggested the EGF1 domain of APC was important 

for protein S cofactor activity.91 During this thesis, I identified Asp95, Asp78 and 

Gln79 in the EGF1 domain of protein S and my colleague Dr Josefin Ahnström 

identified Gla36 in the Gla domain of protein S as residues essential for APC 

cofactor activity. When residues Asn33, Pro35 and Tyr39 in protein S were 

substituted and evaluated by my colleague Dr Josefin Ahnström in the CAT 

assay, a reduced APC cofactor activity was also observed. This suggests amino 

acids in close proximity to Gla36 in protein S are also likely to contribute either 

directly or indirectly to APC cofactor function of protein S. I aligned the Gla and 

EGF1 domains of protein S and protein C (Figure 4.1A). Interestingly, residues of 

APC shown to be important for enhancement of its anticoagulant activity by 

protein S align with the residues of protein S identified as crucial for APC cofactor 
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activity. Similarly, when I highlighted these residues in the respective models of 

the proteins, they are predicted to be located at a similar distance from the N-

terminal residues comprising the ω-loop involved in binding to the phospholipid 

membrane (Figure 4.1, B and C). It is likely that the pronounced APC cofactor 

activity of protein S depends on the formation of a functional complex between 

the two proteins. Protein interactions are usually mediated through multiple 

residue reciprocal contacts and can involve distinct interaction sites. However, it 

is unlikely, because of charge considerations, that the identified residues of 

negative charge in the respective domains (Asp95 and Gla36 in protein S and 

Asp71 and Asp36 in APC) interact directly with each other. The possibility that 

Leu38 of APC in conjunction with surrounding residues (such as Asp36 and 

Ala39), interact with a cluster of residues in protein S composed in part by 

residues such as Asn33, Pro35, Gla36 and Tyr39 (see arrow Figure 4.1) needs to 

be further investigated. While a monoclonal antibody directed against the EGF1 

of APC, with Asp71 being part of its epitope, inhibited protein S enhancement of 

the anticoagulant activity of APC,91 Asp71 is not necessarily involved in an 

interaction with protein S. However, it is interesting that Asp71 in APC 

coordinates a calcium ion91 and that Asp95 in protein S is part of a partially 

conserved calcium binding site. It is possible that the calcium ion in EGF1 of 

protein C masks part of the negative charges in this region. It is difficult for me to 

predict how these residues (Asp95 in the EGF1 domain of protein S and Asp71 in 

the EGF1 domain of APC) might interact, and I suggest that further studies on 

these EGF domains of APC and protein S are required before a plausible model 

can be proposed. Nevertheless, it is worth noting that at least two distinct 

domains, Gla and EGF1, have been implicated in both APC and protein S 

mediated APC cofactor activity. Co-operative multidomain interactions could form 

the basis of further investigation.  

To further assess protein S interaction with APC and relocation of the active site 

of APC by protein S, my colleague Dr Josefin Ahnström is planning to perform 

FRET analysis with WT protein S, protein S D95A, protein S E36A, WT APC and 

APC D36A/L38D/A39V. 
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Figure 4.1 Location of residues in protein S and protein C shown to be important for APC 
cofactor activity of protein S. 
The alignment of the Gla domains and EGF1 domains of protein S and protein C is shown in A. 
The model of protein S

193
 (B) and APC

88
 (C) show the Gla domains in yellow, the TSR domain of 

protein S in light green and the EGF1 domains in cyan. Residues found to be important for APC 
cofactor activity of protein S are shown as red sticks. Arrows indicate potential interaction sites 
between protein S and APC. 
 

 

4.3 TFPI cofactor activity of protein S; possible interaction sites 

and mechanism 

Hackeng et al. showed that the anticoagulant activity of truncated TFPI, lacking 

its K3 domain and its C-terminal tail, was not enhanced by protein S.81 In our lab, 

we have shown that protein S is able to enhance TFPI lacking its C-terminal tail to 

the same extent as full-length TFPI (unpublished results of my colleague Verity 

Hockey) suggesting the C-terminal tail is not directly involved in the interaction 

with protein S. Recently, it was demonstrated that the K3 domain of TFPI is 

essential for protein S cofactor activity.238 Within the K3 domain the P1 residue, 
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Arg199, was reported to play an important role.238 Direct binding of protein S to 

the K3 domain was also shown.238 Verity Hockey has constructed composite 

variants of charged residues in the K3 domain of full-length TFPI. These were 

shown inhibit FXa to the same extent as WT TFPI, however, the cofactor activity 

of protein S for E226Q/E234Q/R237Q and D194Q/R195Q/R199Q was reduced 

approximately 7 and 3-fold in comparison with WT TFPI (unpublished results). 

The TFPI variant K213Q/R215Q/K232Q was enhanced normally by protein S 

(unpublished results).  

Protein S variants constructed during my thesis have failed to clearly identify 

residues in protein S critical for TFPI cofactor activity. However, I did identify a 

potentially interesting variant in the EGF1 domain, protein S NEDM, that needs to 

be further investigated. Considering the pronounced TFPI cofactor activity of 

protein S and the low concentrations of plasma full-length TFPI (~0.25 nM), their 

binding affinity in vivo must be much higher than those derived from surface 

plasmon resonance (SPR) experiments (Kd> 150 nM).238,241 Binding experiments 

by blotting and SPR were performed in the absence of phospholipids. It is 

possible that the presence of phospholipids would increase the affinity of TFPI for 

protein S. Interestingly, co-immunoprecipitation studies have suggested full-

length TFPI and free protein S do exist in plasma as a complex.241 If protein S 

and TFPI interact in vivo, they are likely to do so through multiple sites, potentially 

explaining why substitution of single residues within protein S failed to completely 

disrupt protein S enhancement of TFPI. Alternatively, the interaction site on 

protein S for TFPI might be located in domains that were not evaluated during this 

thesis. 

The mechanism by which protein S enhances TFPI is not yet completely 

understood. It is possible that, as for APC, protein S enhances the affinity of TFPI 

for negatively charged phospholipid surfaces. Protein S could also, by binding 

both TFPI and FXa, co-localise the proteins on the phospholipid surface and 

increase their affinity for each other by forming a trivalent complex. Alternatively, 

protein S could induce a conformational change and thereby facilitate TFPI 

binding and inhibition of FXa. I believe it is unlikely that protein S, by binding to 

the K3 domain of TFPI, induces a conformational change in the K2 domain of 

TFPI as the Kunitz domains of TFPI are connected through quite long (30 amino 

acid) linker regions. It is more plausible that protein S induces a conformational 
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change in FXa, as it has been suggested to do for APC. Interestingly, FXa and 

APC have a very similar domain structure and protein S is reported to bind FXa 

with a high affinity (~15 nM).214 Conceivably, protein S binding to FXa induces a 

conformational change in its active site causing it to be more susceptible to 

inhibition by the K2 domain of TFPI.  

While recent publications suggest a direct interaction of protein S with TFPI and 

possibly the K3 domain, the reported affinities are surprisingly low (Kd >150 nM) 

in comparison to those reported for protein S binding to FXa (Kd ~15 nM).238,241 

The interaction of the K3 domain of TFPI with protein S would represent an 

unusual interaction since Kunitz domains usually bind in active site clefts. It has 

been shown that FXa is able to cleave the K3 domain of TFPI after its P1 residue 

Arg199 in vitro.71 While the physiological importance of this is questionable, it 

suggests that under certain conditions the K3 domain of TFPI is able to bind the 

active site of FXa. While not supported by current binding studies between protein 

S and TFPI, the possibility that protein S induces a conformational change in FXa 

that favours a stronger and quicker inhibition of FXa by the K3 domain of TFPI 

rather than a weaker and slower inhibition by the K2 domain of TFPI, needs to be 

examined further. If this is the case, the deletion or substitutions in the K3 domain 

of TFPI would result in loss of protein S cofactor activity, not because of lack of 

binding to protein S but because of lack of binding to the active site of FXa. This 

hypothesis could easily be tested by evaluating FXa inhibition by synthetic K2 and 

K3 domains in the presence and absence of protein S.  

 

4.4 Protein S direct activity 

It was initially thought that protein S could directly inhibit the prothrombinase 

complex by direct binding to FVa and FXa. This APC-independent anticoagulant 

activity of protein S was termed “protein S direct”. Later, it was shown that this 

activity of protein S in purified systems was due to competition of protein S 

multimers for limiting amounts of phospholipids.191,192,216,217 However, an APC-

independent activity of protein S was observed in plasma also at saturating 

amounts of phospholipids.218 This was identified as protein S cofactor activity 

towards TFPI in 2006.81 However, Heeb and colleagues have observed an APC- 

and TFPI-independent activity of protein S also at saturating amounts of 
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phospholipids.189,190,242 They claim that protein S can directly inhibit FXa and 

TF/FVIIa through direct binding. That protein S direct has not been observed in 

many other laboratories has been potentially explained by Heeb and colleagues 

by showing that purification of protein S often lead to loss of binding to a zinc ion, 

which correlates with loss of protein S direct activity.242 The low IC50 reported 

(~120 nM)190 for protein S inhibition of the prothrombinase complex contrasts with 

the huge cofactor activity observed for APC and TFPI suggesting that while 

protein S direct might in some instances be evident in vitro, it has little in vivo 

relevance. 

 

4.5 In vivo regulation of coagulation by protein S 

Protein S plays a central role in regulating haemostasis and its importance is 

underpinned by the severe outcome of patients with protein S deficiencies, with 

homozygous deficiencies generally being incompatible with life.201-203 

The recent finding that protein S acts as a cofactor not only for APC but also for 

TFPI raises the question whether APC and TFPI compete for binding to protein S 

in vivo. While it is yet too early to give a definitive answer, a first indication is 

given by the results obtained in this thesis. Both protein S Asp95 and protein S 

Gla36 had almost no APC cofactor activity but were still able to enhance the 

anticoagulant activity of TFPI. While this does not rule out a competition between 

APC and TFPI for protein S, it suggests that APC and TFPI interact with distinct 

residues of protein S. It has been shown that addition of APC to plasma increases 

the anticoagulant activity of TFPI/ protein S.241 The reason behind this is probably 

twofold. Firstly, APC reduces the procoagulant response and delays the start of 

massive thrombin generation. This allows time for the slow binding and inhibition 

of FXa by TFPI to occur. Secondly, inactivation of FVIIIa and FVa by APC results 

in a reduced rate of activation of FX and could result in a shift in the equilibrium 

from FXa/FVa towards free FXa. This overcomes the protective effect of 

prothrombin on TFPI inhibition of FXa when FXa is incorporated in the 

prothrombinase complex.77 It would therefore, seem that the APC/protein S and 

the TFPI/protein S anticoagulant activities act in synergy rather than the two 

pathways competing for protein S. Considering also the excess plasma 

concentration of protein S (free protein S ~145 nM, total protein S ~362 nM) over 
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that of protein C (~65 nM) and TFPI (full-length ~0.25 nM, total ~2.5 nM) and the 

different phases of regulation by APC and TFPI (propagation phase and initiation 

phase, respectively), I believe that it is unlikely that these two proteins compete 

for binding to protein S in vivo. 

While in vitro assays represent valuable and powerful tools to analyse the 

biochemical interactions and processes that occur in vivo they inevitably exclude 

many of the variables present in vivo. In my plasma based assay, performed by 

CAT, phospholipids were used to provide a surface for coagulation factors on 

which to interact. While this simplifies the assay and decreases inter-assay 

variability, it represents a simplified model for platelets, platelet activation and its 

components such as platelet protein S, TFPI and FV. The procoagulant and 

anticoagulant activity of coagulation factors also seem to be differently regulated 

by the membrane composition and distribution.125,269 In addition, anticoagulant 

coagulation factors seem more susceptible to plasma dilution than procoagulant 

factors.264 Cell-free plasma based assays differs from in vivo assays as they lead 

to the formation of coagulation in suspension rather than on a surface. In my 

assays I have used 1 pM TF. However, it is unclear how this relates to the local 

concentrations of TF in vivo. The concentration of TF is also likely to vary during 

the course of the haemostatic response in vivo, following platelet plug formation 

above the subendothelial cells. A limiting factor of the in vitro plasma assays is 

that it inevitably leads to depletion of coagulation factors during its course. This is 

likely to be of particular importance for those factors that are present in small 

amounts such as TFPI. Based upon the vast amount of results derived from in 

vitro assays and those from in vivo assays it is, however, reasonable to speculate 

how coagulation is likely to occur in vivo. 

Following vessel wall injury, the ECM and TF are exposed to the blood.10 VWF 

binds to exposed collagen in the ECM allowing platelet adherance, aggregation 

and activation.1,5 This leads to exposure of phosphatidylserine on the outer leflet 

of the platelet membrane which provides a surface for the binding of coagulation 

factors.9 Simultaneusly, as the primary platelet plug is forming, TF triggers 

coagulation through binding to and activation of FVIIa. TF/FVIIa activates FIX and 

FX. TFPI is the main regulator of the initiation of coagulation as it inhibits FXa 

and, in a FXa dependent manner, inhibits TF/FVIIa on the subendothelial cells.66-

68 The finding that protein S enhances TFPI may be physiologically fundamental. 
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In the presence of protein S, the Ki for TFPI inhibition of FXa falls within the 

physiological plasma concentration of TFPI, allowing the TFPI pathway to play a 

potentially major anticoagulant role. While protein S only enhances free TFPI 

containing its K3 domain,81 truncated forms of TFPI have been shown to be able 

to inhibit FXa and TF/FVIIa.78-80 These free truncated TFPI variants in plasma 

(~5% of plasma TFPI) are unlikely to play a major role in regulating initiation of 

coagulation as they represent half the amount of free full-length plasma TFPI 

(~10% of plasma TFPI) and are not enhanced by protein S. They could, however, 

have a role in regulating the haemostatic balance under condition in which no 

tissue damage occurs. The majority (~80%) of plasma TFPI is, however, bound to 

lipoproteins and their anticoagulant role is still not clear.64,65 Cell suface bound 

TFPI (~80% of total TFPI) has been shown to have some anticoagulant activity.43 

Considering vascular smooth muscle cells express TFPI in addition to TF, this 

pool of TFPI is likely to regulate the local initiation of coagulation on 

subendothelial cells exposed to the blood. TFPI on intact endothelial cells 

surrounding the tissue damage might also play a significant role in regulating 

coagulation by inhibiting FXa that escapes the site of vascular injury, therefore by 

confining the haemostatic plug. It is still not clear if protein S is able to act as a 

cofactor for endothelial bound TFPI. Free full-length TFPI circulates in plasma in 

low concentrations (~0.25 nM). This does exceed the predicted amount of TF (pM 

range) that triggers coagulation. However, it is far lower than the amount of FXa 

predicted to be generated from FX (total plasma concentration of FX ~136 nM) 

potentially explaining why TFPI is only able to inhibit initiation of coagulation. FXa 

that escapes inhibition by TFPI/protein S generates trace amount of thrombin. 

Thrombin produces a feedback mechanism by activating FVIII and FV.12 This 

leads to massive generation of FXa which can no longer be significantly inhibited 

by TFPI. The feedback mechanism of thrombin finally results in a massive 

amplification of itself and is usually refered to as propagation of the coagulation 

cascade. Thrombin that escapes the immediate site of injury binds to TM on the 

endothelial cells surrounding the vessel damage. This leads to activation of 

protein C which acts as a potent anticoagulant together with its cofactor protein 

S.114 Results in my thesis and previous reports show that the APC anticoagulant 

activity is highly dependent upon its cofactor protein S.218 As protein C is 

activated at the edge of the vessel injury it is likely to play a role in spatially 
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confining the haemostatic plug. APC/protein S are also able to bind to the 

activated platelets through their Gla domains and inactivate FVa and FVIIIa on 

the growing haemostatic plug. Following the initial formation of the loose platelet 

plug over the subendothelial cells, it has been suggested that soluble TF or TF in 

microparticles continue to trigger coagulation on the surface of the growing 

platelet plug.16-18 While this requires further investigation, it is seems plausable 

that TFPI secreted by platelets is an important regulator of this source of TF. As 

TFPI in platelets exists in its full-length form it is likely that even the activity of 

platelet TFPI is dependent upon its cofactor protein S.63 

To conclude, protein S is crucial in regulating haemostasis. It does so by 

substancially enhancing the enzymatic activity of both TFPI and APC, thereby 

regulating both initiation and propagation of the coagulation cascade. Further 

work is necessary to unravel the complex molecular mechanism behind protein S 

function including, elaboration of the potential molecular interactions between 

residues found to be crucial in APC and protein S, the interacting residues 

between protein S and TFPI, and the molecular mechanism governing protein S 

enhancement of the anticoagulant activity of TFPI. 
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APPENDIX 

 
Sequencing primers 
 

 Nucleotide sequence 
Area of protein S 

covered 

T7 primer 5’ taatacgactcactataggg 3’ ATG-middle EGF4 

Nt456 primer 5’ tattcactgctgcacgtcag 3’ TSR- beginning SHBG 

Nt769 primer 5’ gatgtggatgaatgctctttg 3’ EGF3- middle SHBG 

BGH reverse  5’ tagaaggcacagtcgagg 3’ SHBG-stop 

 
 
 
Mutagenesis primers 

All mutants were made by using the pcDNA6/protein S vector containing the WT protein 

S cDNA sequence, with the exception of NNEDM which was made by introducing the 

N74A substitution in the vector containing the NEDM substitutions and KTK which was 

made by introducing the T103A/K105A substitution in the vector already containing the 

K94A mutation (made by Dr S.M. Rezende). Please note that sequencing primers 

designed to introduce subsequent mutations in a region already mutated are designed to 

be complementary to the mutated template cDNA (with the exception of the new 

mutation to introduce) and not to the WT protein S template. All sequencing primers are 

from 5’ to 3’. The name of each sequencing primer corresponds to the amino acid 

mutated, its numerical location in the mature protein S, followed by the residue into which 

it was mutated. f; foreward, r; reverse. 

 

Gla1 composite mutants 

fD38N cccggaaacgaattatttttatcc 

rD38N ggataaaaataattcgtttccggg 

fV46G ccaaaatacttaggttgtcttcgctc 

rV46G gagcgaagacaacctaagtattttgg 

fK97Q gcaaagatggacaagcttcttttacttgcac 

rK97Q gtgcaagtaaaagaagcttgtccatctttgc 

 
 

TSR composite mutant 

fR49Q ccaaaatacttagtttgtcttcagtcttttcaaactgggttattcac 

rR49Q gtgaataacccagtttgaaaagactgaagacaaactaagtattttgg 

fR60Q tgggttattcactgctgcacagcagtcaactaatgcttatcc 

rR60Q ggataagcattagttgactgctgtgcagcagtgaataaccca 

fD68N R70Q cagtcaactaatgcttatcctaacctacaaagctgtgtcaatgcc 

rD68N R70Q ggcattgacacagctttgtaggttaggataagcattagttgactg 

fD78N gctgtgtcaatgccattccaaaccagtgtagtcct 

rD78N aggactacactggtttggaatggcattgacacagc 



 154 

 
 

NEDM composite mutant 

fN86A E87Q D88N M91A cctctgccatgcgctcaaaatggatatgcgagctgcaaag 

rN86A E87Q D88N M91A ctttgcagctcgcatatccattttgagcgcatggcagagg 

 
 

KTK composite mutant 

fT103A 
K105A 

gcttcttttacttgcgcttgtgcaccaggttggcaaggag 

rT103A 
K105A 

ctccttgccaacctggtgcacaagcgcaagtaaaagaagc 

 
 

Point mutants 

fN74A cctgacctaagaagctgtgtcgctgccattccagaccagtg 

rN74A cactggtctggaatggcagcgacacagcttcttaggtcagg 

fD78A gtcaatgccattccagcccagtgtagtcctctgccatgc 

rD78A gcatggcagaggactacactgggctggaatggcattgac 

fQ79A gtgtcaatgccattccagacgcgtgtagtcctctgccatgc 

rQ79A gcatggcagaggactacacgcgtctggaatggcattgacac 

fD95N ggatatatgagctgcaaaaatggaaaagcttcttttacttg 

rD95N cctatatactcgacgtttttaccttttcgaagaaaatgaac 
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Activated protein C cofactor function of protein S: a critical role for Asp95 in the
EGF1-like domain
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de Minas Gerais, Minas Gerais, Brazil

Protein S has an established role in the
protein C anticoagulant pathway, where it
enhances the factor Va (FVa) and factor
VIIIa (FVIIIa) inactivating property of acti-
vated protein C (APC). Despite its physio-
logical role and clinical importance, the
molecular basis of its action is not fully
understood. To clarify the mechanism of
the protein S interaction with APC, we
have constructed and expressed a library
of composite or point variants of human
protein S, with residue substitutions intro-

duced into the Gla, thrombin-sensitive
region (TSR), epidermal growth factor 1
(EGF1), and EGF2 domains. Cofactor
activity for APC was evaluated by cali-
brated automated thrombography (CAT)
using protein S–deficient plasma. Of
27 variants tested initially, only one, pro-
tein S D95A (within the EGF1 domain),
was largely devoid of functional APC co-
factor activity. Protein S D95A was, how-
ever, �-carboxylated and bound phospho-
lipids with an apparent dissociation

constant (Kdapp) similar to that of wild-
type (WT) protein S. In a purified assay
using FVa R506Q/R679Q, purified protein
S D95A was shown to have greatly re-
duced ability to enhance APC-induced
cleavage of FVa Arg306. It is concluded
that residue Asp95 within EGF1 is critical
for APC cofactor function of protein S and
could define a principal functional interac-
tion site for APC. (Blood. 2010;115(23):
4878-4885)

Introduction

Protein S, a vitamin K–dependent plasma anticoagulant protein,
functions as an enhancing cofactor to activated protein C (APC) in
the inactivation of activated factors V (FVa) and VIII (FVIIIa).1

Protein S also has an APC-independent activity that has recently
been attributed to its ability to enhance tissue factor pathway
inhibitor (TFPI).2,3 Protein S has an important role in vivo, as is
shown clinically by infants with complete deficiency, who suffer
purpura fulminans, and by heterozygous carriers of PROS1 gene
deletions and point mutations, who are at enhanced risk of venous
thromboembolism.4,5 The importance of protein S has also been
demonstrated in murine knockouts, which fail to survive
development.6,7

Protein S binds phospholipids and helps to localize APC to the
membrane surface, in proximity to FVa and FVIIIa. In doing so,
rather than the preferential cleavage at Arg506 of FVa by APC,
Arg306 is then favored, with cleavage enhanced approximately
20-fold.8 Although this effect has generally been accepted to be due
to protein S repositioning of the active site of APC,9 this has
recently been questioned.10 Cleavage at Arg506 and Arg306 fully
inactivates FVa, thereby efficiently down-regulating coagulation.11

APC also inactivates FVIIIa by cleaving first at Arg336 and
thereafter at Arg562. In the presence of protein S, it has been shown
that the efficiency of cleavage after Arg336 by APC is enhanced
approximately 3-fold.12

Protein S is a 635–amino acid glycoprotein, circulating at a
plasma concentration of approximately 350nM. It is composed
of an N-terminal Gla domain (amino acids 1-45), a thrombin-
sensitive region (TSR; amino acids 46-75), 4 epidermal growth
factor (EGF)–like domains (EGF1, amino acids 76-116; EGF2,
amino acids 117-160; EGF3, amino acids 161-202; EGF4,
amino acids 203-242), and a C-terminal sex hormone–binding
globulin (SHBG)–like domain (amino acids 243-635).13,14 Ap-
proximately 60% of protein S circulates as a noncovalent,
high-affinity complex with �-chain containing C4b binding
protein.15 This interaction is mediated through the SHBG
domain of protein S. Although it has been generally understood
that the free form (� 40%) of protein S alone is important in
anticoagulant function, this has recently been questioned.16

Whereas the functions of the domains of protein S have been
extensively studied, the APC cofactor function of protein S
remains poorly understood at the molecular level. Several basic
and clinical studies have confirmed that alteration of protein S
can disrupt phospholipid binding and thereby impair function of
protein S.17,18 Saller et al prepared protein S/prothrombin
chimeras and, on the basis of functional studies supported by
molecular modeling, identified a cluster of protein S Gla do-
main residues (termed Face2), which may provide an APC
interaction site.19
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Brazil, November 11, 2009.

The publication costs of this article were defrayed in part by page charge
payment. Therefore, and solely to indicate this fact, this article is hereby
marked ‘‘advertisement’’ in accordance with 18 USC section 1734.

© 2010 by The American Society of Hematology

4878 BLOOD, 10 JUNE 2010 � VOLUME 115, NUMBER 23



Additional studies have focused on the possible role of TSR and
EGF domains. Several studies have reported that cleavage in the
TSR of protein S affects its APC cofactor activity.20-22 Dahlbäck et
al23 and Giri et al24 used domain-specific monoclonal antibodies
directed against protein S and their Fab fragments and suggested
that the TSR and EGF1 domains may be involved in APC cofactor
activity. The TSR and EGF1 domains of protein S have also been
reported to be responsible for species specificity.25 Using EGF-like,
modules Stenberg et al concluded the EGF1 module to be crucial
for interaction with APC.26 Hackeng et al demonstrated that the
isolated EGF1 domain of protein S could inhibit full-length protein
S anticoagulant enhancing function against APC: direct binding of
the domain to APC was also demonstrated.27 Mille-Baker et al
prepared EGF2 domain deletion and substitution mutants of protein
S and demonstrated reduced anticoagulant activity, in the presence
of normal phospholipid binding.28 Collectively, these investigators
have suggested Gla, TSR, EGF1, and EGF2 domains may each
contain recognition elements on protein S needed for APC cofactor
function.

Because these diverse approaches have not yet fully defined the
functional interaction site(s) on protein S for APC, we have
investigated the role of individual and groups of residue substitu-
tions in Gla, TSR, EGF1, and EGF2 domains of protein S. Using a
library of 27 protein S variants, we performed thrombin generation
assays in protein S–deficient plasma to which APC and these
protein S variants were added. We report here that EGF1 has a
critical role in anticoagulant function of protein S, provided
specifically by Asp95, the mutation of which almost completely
abolishes APC cofactor activity.

Methods

Generation and expression of protein S and its variants

A previous reported pcDNA6/protein S vector containing the cDNA for
wild-type (WT) protein S29 was used to generate recombinant full-length
WT protein S and as a template to produce protein S mutants by polymerase
chain reaction site-directed mutagenesis (QuikChange XL Site-Directed
Mutagenesis Kit; Stratagene) using mutagenic oligonucleotide primers
(Thermo Scientific). Single and composite residue variants produced are
shown in Table 1.

Residues to mutate were selected based on nonconserved residues in
domains of other human coagulation factors (Gla mutants) and charge (TSR
mutant). Residues in the B and C regions (between the third/fourth and
fifth/sixth Cys residues, respectively) of both EGFs were mutated, as these
regions on the EGF-like domains are likely to be involved in protein
interaction as suggested by (1) the highly divergent sequence of the
B region,30 (2) the association of dysfunctional proteins with natural PROS1
mutations in these regions,4 and (3) the location in these regions of many
mutations associated with dysfunctional proteins in the other coagulation
genes coding for EGF domains, such as FVII, FIX, and protein C.

WT and mutant protein S expression vectors were either transiently or
stably transfected into HEK293T or HEK293 cells (ATCC), respectively.

Stably transfected cells were selected with 5 �g/mL Blasticidin-HCl
(Invitrogen) for 4 weeks. Protein S was expressed in OptiMem I (Invitro-
gen) with 10 �g/mL vitamin K (Roche Products Ltd) for 3 days. Media
containing protein S was harvested, centrifuged, filtered, dialyzed in
20 mM Tris (tris(hydroxymethyl)aminomethane)–HCl (pH 7.5), 140 mM
NaCl (TBS), and concentrated, as required. All variants were successfully
expressed into the media and could be readily detected by sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) followed by West-
ern blotting and by enzyme-linked immunosorbent assay (ELISA). We have
previously reported that the protein S expressed in this way is functionally
active in APC cofactor assays and can be fully �-carboxylated.17,31

Purification of protein S

WT protein S and selected variants were either partially purified by
barium citrate precipitation as previously described32 for use in phospho-
lipid binding analysis or extensively purified by chromatography for use
in APC-dependent functional assays. Chromatography was performed
using an ÄKTA purifier UPC-10 and the Unicorn 5.11 (Build 407)
software, strategy Version 1.00 (both from GE Healthcare). Concen-
trated and dialyzed conditioned media containing protein S supple-
mented with 4 mM EDTA (ethylenediaminetetraacetic acid) was applied
to an anionic Q Sepharose Fast Flow (5 mL of HiTrap QFF) column (GE
Healthcare) equilibrated with 20mM Tris-HCl (pH 7.4), 100mM NaCl,
4mM EDTA, and 5mM benzamidine-HCl (Sigma-Aldrich). The column
was washed with 20mM Tris-HCl (pH 7.4), 100mM NaCl, and 5mM
benzamidine-HCl. Protein S was eluted from the column with 20mM
Tris-HCl (pH 7.4), 0.5M NaCl, and 5mM benzamidine-HCl.

Two volumes of 7.5mM CaCl2 were added to the elution fraction from
the anionic QFF column to lower the ionic strength, before injecting the
fraction onto an affinity column prepared by coupling 2.5 mg of monoclo-
nal antibody against protein S, MK21, to a 1-mL HiTrap NHS HP column
(GE Healthcare), according to the manufacturer’s instructions. All monoclo-
nal antibodies against protein S used in this study are described in the paper
of Dahlbäck et al.23 The protein S–containing fraction was applied to the
equilibrated column (equilibration buffer: 50mM Tris-HCl [pH 7.5],
150mM NaCl, 2mM CaCl2). After washing with 1M NaCl, the ionic
strength was lowered by passing additional 3 column volumes of equilibra-
tion buffer over the column prior to elution of protein S with 50mM
Tris-HCl (pH 7.5), 150mM NaCl, and 10mM EDTA. An excess of CaCl2

was present in the tubes collecting the eluted protein S to neutralize the
EDTA. The column was regenerated by stripping with 0.1M glycine-HCl
(pH 2.7). Purified protein S was dialyzed in TBS and concentrated, as
required.

Determination of protein S concentration by ELISA

Protein S concentrations in media were determined by an in-house ELISA.
Polyclonal rabbit anti–protein S antibody (1 �g/mL; DAKO) was immobi-
lized in a 96-well Nunc Maxisorp microplate in 50mM sodium carbonate
buffer (pH 9.6) at 4°C overnight. Washing steps were performed in
triplicate with 250 �L of phosphate-buffered saline, 0.1% Tween between
each step. Wells were blocked with phosphate-buffered saline containing
3% bovine serum albumin (BSA; Sigma-Aldrich) for 2 hours. Bound
protein S was detected by a mouse monoclonal antibody directed against
the EGF3-4 domain of protein S, MK55, followed by a horseradish
peroxidase (HRP)–conjugated goat anti–mouse antibody (DAKO). The
plate was developed with 100 �L/well chromogenic substrate O-phenylene
diamide dihydrochloride; OPD (Sigma-Aldrich), the enzymatic reaction
was stopped with 50 �L/well 2M H2SO4, and the absorbance was read at
492 nm.

SDS-PAGE and Western blotting

SDS-PAGE and Western blotting were performed using standard tech-
niques. Briefly, 4% to 12% or 10% precast NuPAGE Novex Bis-Tris gels
(Invitrogen) were used. For silver staining and Western blotting, standard
techniques were used. The SeeBlue-prestained marker from Invitrogen was

Table 1. Protein S variants generated by site-directed mutagenesis

GLA1 D38N/V46G/K97Q

GLA2/Face2 L21T/N23S/K24Y/R28F/D34S/Y41W/L45T

TSR1 R49Q/R60Q/D68N/R70Q/D78N

EGF1 single-residue variants K94A, D95A, K97A, S99A, T101A, T103A,

K105A, P106A, W108A, Q109A, E111A, K112A

EGF2 single-residue variants D135A, N136A, T137A, Y141A, H142A, S144A,

K146A, S153A, N154A, K155A, K156A, D157A
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used. Protein S was detected either by a polyclonal rabbit anti–protein S
antibody followed by an HRP-conjugated goat anti–rabbit antibody or by a
monoclonal mouse antibody recognizing only �-carboxylated Glu residues
(American Diagnostica Inc), followed by a goat anti–mouse HRP-
conjugated antibody (DAKO).

Phospholipid vesicle preparation

Phospholipids mixtures (Avanti Polar Lipids Inc) in chloroform were
prepared and the chloroform was evaporated under a nitrogen stream. The
phospholipids were resuspended in TBS or 25mM N-2-hydroxyethylpipera-
zine-N�-2-ethanesulfonic acid (pH 7.7), 150mM NaCl (HN) for the plasma
and purified assays, respectively. Unilamellar phospholipids vesicles were
obtained by sonicating the phospholipids in an ice container at amplitude
22% for 7 minutes. Extruded phospholipids were prepared as previously
described33 and used in the FVa inactivation assay. Synthetic phospholipids
1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-Dioleoyl-sn-
glycero-3-phosphoserine (DOPS), and 1,2-Dioleoyl-sn-glycero-3-phospho-
ethanolamine (DOPE) were used in the plasma assay and the plate-binding
assay. Natural phospholipids L-�-phosphatidylserine (PS; brain extract),
L-�-phosphatidylethanolamine (PE; egg extract), and L-�-phosphatidylcholine
(PC; egg extract) were used in the FVa inactivation and prothrombinase assays.

Binding of protein S to phospholipids

Phospholipids vesicles (DOPS/DOPC/DOPE, 20:60:20), 25 �g/mL, were
coated as described for the ELISA. Washing steps were performed in
triplicate with 250 �L/well TBS, 5mM CaCl2, 0.3% BSA between each step
and incubations were carried out in a plate shaker at 37°C. Wells were
blocked with TBS, 5mM CaCl2, 3% BSA for 2 hours. Protein S partially
purified by barium citrate precipitation, 0 to 120nM, was incubated in the
wells in duplicate for 2 hours and was detected with an HRP-conjugated
anti–protein S antibody for 45 minutes (Affinity Biologicals). Data were
analyzed with GraphPad Prism 4.03 and curves were fitted to a one-site
binding hyperbola.

Binding of protein S to domain-specific monoclonal antibodies

Domain-specific monoclonal antibodies MK21 (Gla domain), MK54
(EGF1 domain), and MK61 (SHBG domain), 1 �g/mL, were coated as
described for the ELISA. Washing steps were performed in triplicate with
250 �L of TBS, 3mM CaCl2, 0.1% Tween between each step. Incubations
were carried out in a plate shaker at 37°C for 1 hour unless stated otherwise.
Wells were blocked with 200 �L of TBS, 3mM CaCl2, 3% BSA for
2 hours. Protein S, 0 to 160nM was incubated in the plate for 1 hour and was
detected by a rabbit polyclonal antibody against protein S followed by a
goat anti–rabbit HRP-conjugated antibody.

Thrombin generation assay by calibrated automated
thrombography

Thrombin generation was assessed using a Fluoroscan Ascent FL Plate
Reader (Thermo Lab System) in combination with Thrombinoscope
software (SYNAPSE BV). Protein S–deficient plasma (Affinity Biologi-
cals), 80 �L, was incubated with 65 �g of corn trypsin inhibitor (Haemato-
logic Technologies Inc) per milliliter of plasma to inhibit contact activation,
50�M phospholipid vesicles (DOPS/DOPC/DOPE, 20:60:20), 1pM tissue
factor (Dade Innovin; Dade Behring), 4 to 16nM APC (Enzyme Research
Laboratories Ltd) with 0 to 120nM protein S, in a final volume of 100 �L
(all concentrations are final). A polyclonal antibody against TFPI (Haemato-
logic Technologies Inc), 100nM, was used to inhibit any protein S cofactor
activity toward TFPI. Although protein S cofactor activity toward TFPI was
not observed at low concentrations of APC, it was observed to a small
extent when lower amounts of thrombin were generated (eg, at higher
concentrations of APC in the presence of protein S). Polyclonal antibodies
against protein S and protein C were used to show the specificity of the
system and were from, respectively, DAKO and Sigma-Aldrich. Thrombin
generation was initiated by automatic dispensation of 20 �L of 2.5mM
Z-GlyArg-AMC-HCl (Bachem), 2.5% Me2SO, 20mM Tris-HCl (pH 7.5),

60 mg/mL BSA, 100mM CaCl2 into each well. The reaction was performed
at 37°C and measurements were performed with an excitation and emission
wavelength of 390 nm and 460 nm, respectively.

Protein S–dependent APC-mediated factor FVa inactivation
assay

A previously prepared and reported34 double mutant of FV, FV R506Q/
R679Q, was activated with 0.5 U/mL human thrombin at 37°C for
10 minutes. The reaction was stopped by the addition of hirudin (5 U/mL,
final concentration). The activated FVa variant was used as a substrate for
APC to determine the ability of protein S to enhance cleavage of Arg306 of
FVa by APC. The highly purified protein S preparations, 0 to 100nM, were
incubated with 0.5nM APC, 25�M phospholipids vesicles (PS/PC/PE,
10:70:20), and 0.8nM FVa R506Q/R679Q in HN, 5mM CaCl2, 5 mg/mL
BSA (HNBSACa2�) in a total volume of 50 �L (all concentrations are
final). The solution was incubated at 37°C for 10 minutes, and the reaction
was stopped by performing a 1:25-fold dilution in ice-cold HNBSACa2�.
The remaining FVa activity was measured in a prothrombinase assay.

Time course experiments were also performed to derive the rate
constant of FVa cleavage. APC, 0.5 and 3nM, and 50nM protein S were then
used and aliquots were quenched at intervals between 0 and
20 minutes. The remaining FVa activity was again measured in a
prothrombinase assay. To calculate the pseudo–first-order rate constant for
APC-mediated cleavage at Arg306, the previously reported equation33 was
used: Vat � Va0 	 e
k306 	 t � C 	 Va0 	 (1 
 e
k306 	 t).

Vat represents the cofactor activity determined at time t, Va0 is the
cofactor activity determined at time point 0, C is the remaining procoagu-
lant cofactor activity of FVa after cleavage at position 306, and k306 is the
rate constant of cleavage at position 306.

Prothrombinase assay

An aliquot, 25 �L, of the FVa inactivation reaction was incubated with
phospholipid vesicles (PS/PC 10:90) and FXa in the presence of CaCl2. The
reaction was initiated by the addition of prothrombin, in a final volume of
125 �L. The buffer contained HN and 0.5 mg/mL ovalbumin. Final
concentrations were 50�M PS/PC, 5nM FXa, and 0.5�M prothrombin. The
solution was incubated at 37°C for 2 minutes and the reaction was
terminated by an 8-fold dilution in 50mM Tris-HCl (pH 7.9), 100mM NaCl,
20mM EDTA, 1% PEG 6000. The amount of thrombin generated was
measured by cleavage of its chromogenic substrate S-2238 (Chromogenix)
at 405 nm for 15 minutes at 30-second intervals.

Results

Screening of protein S mutants for APC cofactor activity in
plasma

Concentrated and dialyzed conditioned media samples containing
WT protein S and the 27 protein S variants were normalized with
respect to protein S concentration, using the protein S–specific
ELISA. Western blotting revealed single-band protein S in all
samples (nonreducing conditions).

To assess the APC cofactor activity of protein S, thrombin
generation was assessed by calibrated automated thrombography
(CAT) using protein S–deficient plasma supplemented with recom-
binant WT protein S and its variants in conditioned media. Under
the conditions of the assay, APC (0-10nM) did not affect peak,
endogenous thrombin potential (ETP), lag time, or time to peak,
when coagulation was initiated in protein S–deficient plasma
(Figure 1A). Concentrated conditioned media from cells not
expressing protein S had no influence on thrombin generation (data
not shown). When 120nM WT protein S was progressively
introduced into the assay, dose-dependent effects were observed,
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primarily on reduction of the peak and of ETP values (Figure 1B).
The extent of inhibition of peak and ETP was dependent both on
the concentration of APC and protein S. The higher the APC
concentration, the less protein S was necessary to completely
inhibit thrombin generation. In these experimental conditions,
10nM APC and 120nM protein S reduced both the peak and ETP by
approximately 84%. To verify that those effects were a direct
consequence of APC cofactor activity of protein S, polyclonal
antibodies against either protein S (Figure 1C) or protein C (Figure
1D) were used. These inhibited the anticoagulant APC–protein
S effect.

The screening of the protein S variants for their APC cofactor
activity was performed at high concentration of APC (16nM) to
achieve almost complete inhibition of thrombin generation with

100nM WT protein S (Figure 2). These screening experiments
identified a single point mutant in EGF1 of protein S, D95A, which
had a severely impaired APC cofactor activity. Under all conditions
used, the reduction in cofactor activity was greater than that
observed for the previously reported variant with 7 amino acids
exchanged (prothrombin residue swap), GLA2/Face2.

Evaluation of the importance of Asp95 for APC cofactor activity
of protein S in plasma

To further evaluate the APC cofactor activity of protein S D95A, a
titration (0-120nM) of the mutant (Figure 3B) was performed
alongside WT protein S (Figure 3A), using 9nM APC. The protein
S D95A had a severely impaired APC cofactor activity, a finding
replicated when different concentrations of APC were used (results
not shown). In these experimental conditions, whereas 120nM WT
protein S reduced peak and ETP by approximately 80%, 120nM
protein S D95A reduced peak and ETP by only approximately 10%.
To confirm the importance of Asp95 in protein S APC cofactor
function, Asp95 was also substituted with Asn, rather than Ala. Asn
is structurally more similar to Asp than Ala and it can also be
�-hydroxylated. When the protein S D95N mutant was titrated, it
was observed that it also had severely reduced APC cofactor
activity (Figure 3C) with 120nM D95N inhibiting peak and ETP by
approximately 20%. All results in Figure 3A through C were
conducted with protein S and its variants contained in concentrated
conditioned media. To confirm that they were not influenced by the
media, WT protein S and the protein S D95A variant were purified
to homogeneity using anion exchange and affinity chromatography
(see Figure 3D inset for SDS-PAGE gel visualized with silver
staining). Addition of 90nM purified WT protein S to protein
S–deficient plasma in the presence of 9nM APC appreciably
attenuated thrombin generation (Figure 3D), replicating the find-
ings with WT protein S in conditioned media. Moreover, addition

Figure 1. Effect of APC and protein S on thrombin generation.
Thrombin generation was performed in protein S–deficient plasma
with 100nM inhibitory antibodies against TFPI. Up to 10nM APC had
no effect on thrombin generation in the absence of protein S. All
concentrations generate lines that are superimposable (A). After
addition of 120nM protein S (at 0-10nM APC), an APC dose-
dependent effect was observed (B). The top single line represents
0 to 10nM APC in the absence of protein S. Protein S in the
presence of no or 2.5nM APC generated lines that were superimpos-
able. Conditions used are noted adjacent to the peaks to which they
refer. The anticoagulant effect of 10nM APC and 120nM protein S
was inhibited by polyclonal antibodies against protein S (C) or
against protein C (D). PS indicates protein S; PC, protein C.
Representative experiments are shown (n � 3).

Figure 2. Screening of protein S variants for APC cofactor activity. The APC
cofactor activity of protein S was evaluated at 16nM APC and 100nM protein S by
CAT. The peak height in the absence of protein S was set to 100%. A high
concentration of APC, leading to almost complete inhibition of thrombin generation
with 100nM WT protein S, was chosen specifically for screening purposes as this
allows widening of the assay window at which mutants with reduced APC cofactor
activity are visualized. Results were confirmed by evaluating protein S (at 60 and
90nM) cofactor activity toward 4 or 9nM APC.
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of 90nM purified protein S D95A to APC produced only a minimal
effect on thrombin generation (Figure 3D).

When analyzing a model35 of Gla-TSR-EGF1 domains of
protein S, 2 residues with a solvent-exposed R residue in close
proximity to that of Asp95 were identified, Asp78 and Gln79.
These were also mutated to alanine and expressed. When protein S
D78A and Q79A were analyzed in the thrombin generation assay
alongside WT protein S, a severely reduced APC cofactor activity
was also observed (Figure 3E). This further confirms the impor-
tance of this region of EGF1 in APC cofactor activity of protein S.
Dose-response experiments of WT protein S, protein S D95A, and
protein S D95N, shown in Figure 3F, confirm reduced APC
cofactor function of these variants.

Phospholipid binding of WT protein S and protein S D95A

As phospholipid binding is a prerequisite for protein S function, the
binding of WT protein S and of protein S D95A to phospholipids
was evaluated. Partially purified (using barium citrate precipita-
tion) protein S, 0 to 120nM, was incubated for 2 hours on a plate
coated with 25 �g/mL phospholipids and was detected by an
HRP-conjugated antibody against protein S. As shown in Figure 4,
both WT protein S and protein S D95A were able to bind
phospholipids, with apparent dissociation constant (Kdapp) of 5.69
plus or minus 1.24 and 9.54 plus or minus 2.26nM, respectively

(Table 2). Kdapp values were analyzed by the Mann-Whitney test
and were found not to be statistically different (P � .05). Binding
was observed in the presence of Ca2�, but not in the presence of
EDTA or in the absence of phospholipids, as expected. These

Figure 3. Effect of WT protein S, D95A, D95N, D78A, and Q79A variants on thrombin generation. Thrombin generation was measured in protein S–deficient plasma
supplemented with 9nM APC, 100nM antibodies against TFPI, and 0 to 120nM WT protein S (A), protein S D95A (B), protein S D95N (C), or 90nM purified WT (dashed line) or
purified protein S D95A (dotted line; D). Protein S concentrations are positioned adjacent to the peaks to which they refer. The cofactor activity of 60nM WT protein S and protein
S variants D95A, D78A, and Q79A was compared at 9nM APC (E). Typical experiments are shown (n � 3). Whereas the cofactor activity of WT protein S is highly dependent on
the APC concentration used (Figure 1B), that of protein S D95A is not, explaining the difference in fold activity between WT protein S and protein S D95A in Figures 2 and 3.
Dose-response data from titrations with WT protein S, protein S D95A, and protein S D95N in the presence of 9nM APC are shown in panel F (data are expressed as mean
� SD of 2 independent experiments performed in duplicate). Inset in panel B shows recognition of WT protein S and protein S D95A in media by polyclonal antibodies and a
monoclonal antibody recognizing only �-carboxylated Gla domains. Inset in panel D shows the SeeBlue-prestained marker, plasma-purified protein S from Enzyme Research
Laboratories Ltd (lane 1), purified recombinant WT protein S (lane 2), and purified protein S D95A (lane 3) visualized with silver staining.

Figure 4. Binding of protein S to phospholipid surfaces. Protein S (0-120nM) was
incubated in a plate coated with 25 �g/mL phospholipids. Bound protein S was
detected with an HRP-conjugated polyclonal antibody against protein S. A represen-
tative experiment is shown. The apparent Kd values, 5.69 � 1.24 and 9.54 � 2.26nM
for WT protein S and protein S D95A, respectively, were obtained by calculating the
mean � SD of 3 independent experiments performed in duplicate. PL indicates
phospholipids.
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findings are broadly consistent with previously reported Kd values
for protein S binding to phospholipid surfaces.17-19,36,37 Our results
suggest the loss of APC cofactor activity observed for protein S
D95A is not due to loss of binding to phospholipid surfaces.

Binding to domain-specific monoclonal antibodies

Binding of protein S to conformational domain-specific antibodies
was evaluated to assess the integrity of the domain structure and
folding. Protein S in concentrated conditioned media was incubated
in a plate coated with monoclonal antibodies recognizing either the
Gla domain (MK21), the EGF1 domain (MK54), or the C-terminal
SHBG domain (MK61). Bound protein S was detected with
polyclonal antibodies. Binding curves were fitted with a one-site
binding equation, and the Kdapp values were obtained. Kdapp values
were analyzed by the Mann-Whitney test and were found not to be
statistically different (P � .05). Table 2 represents the mean plus or
minus SD Kdapp values of 3 independent experiments performed in
duplicate. The results suggest that mutation of Asp95 does not
result in a significant change in the domain structure of protein S.

Protein S enhancement of APC-mediated cleavage of FVa at
Arg306

The FVa variant, R506Q/R679Q, was used to evaluate protein
S–enhanced APC-mediated cleavage at Arg306 in FVa. FVa
inactivation was performed in the presence or absence of 0.5nM
APC and a titration of purified protein S (0-100nM) was per-
formed. After 10 minutes, the remaining FVa activity was mea-
sured in the prothrombinase assay. WT protein S efficiently
enhanced APC-mediated cleavage at Arg306 of FVa, in contrast to
the D95A mutant (Figure 5A).

To quantify the rate of cleavage at FVa Arg306 in the presence
and absence of protein S, time course experiments were performed
(Figure 5B). In the absence of protein S, or in the presence of
protein S D95A, 3nM APC was used and aliquots were quenched at
different time points (0-20 minutes). In the presence of WT protein
S, the APC concentration was lowered to 0.5nM, as APC is
efficiently enhanced by protein S. The remaining FVa activity at all
time points was measured in the prothrombinase assay. Using the
FVa inactivation curves obtained, the apparent pseudo–first-order
rate constants were calculated and corrected for the APC concentra-
tions used. Under these experimental conditions, protein S had no
effect on FVa activity in the absence of APC (data not shown).
APC-mediated cleavage at FVa Arg306 was enhanced by WT
protein S by 13.9-fold plus or minus 3.6-fold, whereas protein S
D95A was only able to enhance APC by 1.8-fold plus or minus
0.4-fold.

Discussion

We initially constructed and expressed 27 protein S variants with
mutations in the Gla, TSR, EGF1, and EGF2 domains and

evaluated their ability to enhance APC-mediated anticoagulant
activity in plasma. The anticoagulant function of these 27 variants,
and the subsequently expressed variants D78A, D79A, and D95N,
were assessed by a thrombin generation assay, the specificity of
which was demonstrated using polyclonal antibodies against either
protein S or protein C that completely inhibited the anticoagulant
response observed when adding protein S in the presence of APC.
The advantage of the thrombin generation assay conducted in plasma is
that it shows very clearly how APC is heavily dependent on protein S.38

In the absence of protein S, 10nM APC has no effect on thrombin
generation. In contrast, in the presence of protein S, maximal anticoagu-
lant effects with near ablation of thrombin generation are obtainable
with APC concentrations less than 10nM.

Our initial screening results identified 2 protein S variants with
appreciable reduction in APC cofactor function. These were the
already reported GLA2/Face2 variant (a 7-residue composite
mutant in the Gla domain) and the novel D95A point variant in the
EGF1 domain. The former variant, reported by Saller et al, retains
binding to phospholipids and yet has appreciably reduced APC
cofactor activity.19 It is suggested that the 7 residues substituted in
this variant collectively present a face of the Gla domain to APC
and form a potential contact region. It was selected for investiga-
tion here because it is a well-characterized protein S variant with

Table 2. Binding of protein S to phospholipids and domain-specific monoclonal antibodies

Phospholipid vesicles MK21 (Gla) MK54 (EGF1) MK61 (SHBG)

WT protein S 5.69 � 1.24 2.18 � 0.97 0.81 � 0.11 5.31 � 1.11

Asp95 protein S mutant 9.54 � 2.26 2.53 � 1.06 0.83 � 0.03 5.39 � 0.54

Kdapp values (nM) of WT protein S and the Asp95 protein S mutant for phospholipid vesicles and conformational domain-specific monoclonal antibodies are expressed as
mean plus or minus SD of 3 independent experiments performed in duplicate. Binding of WT protein S and the Asp95 mutant to phospholipids and domain-specific monoclonal
antibodies was analyzed by Mann-Whitney test; results were not statistically significant (P � .05).

Figure 5. Protein S enhancement of APC-mediated cleavage of FVa in Arg306.
Protein S (0-120nM) in the presence of 0.5nM APC was incubated with 0.8nM FVa
R506Q/R679Q in the presence of phospholipids for 10 minutes. The remaining FVa
actvity was measured with a prothrombinase assay. Results are plotted as
mean � SD from 3 independent experiments performed in duplicate (A). A time
course experiment was performed to calculate the apparent pseudo–first-order rate
constants of WT protein S and protein S D95A. It is observed that approximately
6-fold more APC is needed in the presence of protein S D95A to obtain a similar
amount of APC-mediated FVa R506Q/R679Q inactivation as with WT protein S (B).
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substantially reduced APC cofactor activity and could therefore act
as a representative control for a dysfunctional protein S. Saller et
al,19 however, did not assess GLA2/Face2 APC cofactor activity in
the CAT assay. We can confirm a reduction in APC cofactor activity
in plasma, assessed by CAT. The important novel results here, however,
concerned the protein S D95Avariant, which was almost devoid ofAPC
cofactor activity in plasma. The natural protein S variants T103N39 and
K155E40,41 have been reported to have reduced APC cofactor activity.
We could not observe any significant reduction in APC cofactor activity
of protein S T103A in the CAT assay. It is, however, important to point
out that defective APC cofactor activity of protein S T103N was not
observed in the APC-mediated inactivation of WT-FVa.39 In addition, at
higher concentrations of APC (8nM), no difference was observed
between WT protein S and protein S T103N in the FVIIIa degradation
assay.39 We did, however, observe a decrease in K155Acofactor activity
toward APC, although this was quite moderate under conditions used in
the screening assay.

Analysis of protein S function is complicated by its propensity
to multimerize upon purification.42,43 Accordingly, we have per-
formed APC cofactor assays with unpurified protein S in concen-
trated conditioned media as well as with fully purified preparations.
In the event, our results were all consistent. Both forms of the
protein S D95A variant, purified or in concentrated conditioned
media, had an appreciable reduction in APC cofactor activity
compared with the respective WT protein S preparation. Although
it has not been formally assessed, in all comparison experiments
carried out, the protein S D95A variant had less APC cofactor than
the GLA2/Face2 variant. This suggests that Asp95 in protein S may
occupy a pivotal position with respect to its interaction with APC.
The importance of Asp95 in APC cofactor activity was further
confirmed by the severely reduced activity observed when mutat-
ing to alanine the 2 residues in close proximity to Asp95, Asp78,
and Gln79. Asp78, Gln79, and Asp95 are conserved across species
with the exception of Asp78, which is replaced by the structurally
similar Asn78 in birds. Using a working model of the Gla-TSR-
EGF1 domains of protein S, we demonstrate the likely proximal
spatial location of these 3 residues (Figure 6) and their relationship
to GLA2/Face2 residues.

We have investigated the mechanism of reduction of activity of
protein S Asp95 variants. Whereas EGF1 of protein S has not been
shown to contain a calcium-binding site (in contrast to EGF2, EGF3,
and EGF4),44 Asp95 could be part of a partially conserved calcium-
binding motif. We therefore mutated Asp95 to Asn rather than Ala. Asn
is structurally similar to Asp, can be �-hydroxylated, and is able to
coordinate a calcium ion (as has been observed in EGF2, EGF3, and

EGF4). As the protein S D95N variant also had reduced activity,
however, it is unlikely that a calcium-binding site is disrupted. Further-
more, whereas Asp95 is known to be �-hydroxylated, it has previously
been shown that �-hydroxylation itself is not a requirement for
anticoagulant activity of protein S.45 Our evidence favors a direct effect
of Asp95 in APC cofactor activity. Alternatively, the dramatic effect on
protein S activity of the Asp95 residue substitution could be through a
conformational repositioning of other functional domains. To assess
this, we performed binding to phospholipids, as this property underpins
all protein S function. Plate binding assays, however, indicated no major
functional defect on phospholipid binding. Furthermore, domain-
specific monoclonal antibody binding to WT and mutant protein S
(against Gla domain, EGF1 domain, and the C-terminal SHBG domain)
was also normal, suggesting that substitution of Asp95 does not reduce
APC cofactor function by disrupting adjacent domain structure.

A current view of protein S–enhanced APC cofactor activity
suggests a functional repositioning of the APC cleavage site away
from FVa Arg506 toward FVa Arg306.9 We therefore performed a
FVa inactivation assay using a FVa variant, FVa R506Q/R679Q,
that cannot be cleaved at position 506 and 679. This allowed us to
analyze directly cleavage at Arg306 by APC, which is at the site
enhanced mainly by protein S. Using both concentration-dependent
and time course assays, we were able to confirm reduced cleavage
of this variant by APC in the presence of protein S D95A.

The available results therefore suggest that Asp95 of protein S
may play an important and a direct role in APC recognition,
resulting in enhanced APC function. Our results are compatible
with the study performed by Hackeng et al,27 who used the isolated
EGF1 domain of protein S to functionally disrupt the protein S and
APC interaction. They suggested EGF1 as a potentially important
APC contact site on protein S. Our results suggest that Asp95
constitutes a critical residue within EGF1, mediating the APC
cofactor function. Together with Asp78 and Gln79, Asp95 could
form the principal functional interaction site for APC.
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Figure 6. Location of Asp78, Gln79, and Asp95 within the protein S Gla-TSR-EGF1
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variant,Asp78, Gln79, andAsp95, are in light gray on the left side surface model. Residues
Asp78, Gln79, andAsp95 are highlighted by the box to show their proximal spatial location.
The model is taken from Villoutreix et al.35
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