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Abstract Understanding water user behavior and its potential outcomes is important for the
development of suitable water resource management options. Computational models are commonly
used to assist water resource management decision making; however, while natural processes are
increasingly well modeled, the inclusion of human behavior has lagged behind. Improved representation
of irrigation water user behavior within models can provide more accurate and relevant information for
irrigation management in the agricultural sector. This paper outlines a model that conceptualizes and
proceduralizes observed farmer irrigation practices, highlighting impacts and interactions between the
environment and behavior. It is developed using a bottom-up approach, informed through field experience
and farmer interaction in the state of Uttar Pradesh, northern India. Observed processes and dynamics
were translated into parsimonious algorithms, which represent field conditions and provide a tool for
policy analysis and water management. The modeling framework is applied to four districts in Uttar
Pradesh and used to evaluate the potential impact of changes in climate and irrigation behavior on water
resources and farmer livelihood. Results suggest changes in water user behavior could have a greater impact
on water resources, crop yields, and farmer income than changes in future climate. In addition, increased
abstraction may be sustainable but its viability varies across the study region. By simulating the feedbacks
and interactions between the behavior of water users, irrigation officials and agricultural practices, this work
highlights the importance of directly including water user behavior in policy making and operational tools
to achieve water and livelihood security.

1. Introduction

Globally, water resources face unprecedented challenges due to population growth and changing lifestyles,
exacerbated by variations in climate, including more frequent extreme weather events (Famiglietti, 2014;
Moors et al., 2011; Schewe et al., 2014). While the impact of these factors on water resources is experienced
by many millions of people worldwide, it is typically the vulnerable in society who are most acutely affected
(Adger et al., 2003; Amarasinghe et al., 2016a; Conway et al., 2015). Improvements in current water manage-
ment strategies depend on an in-depth understanding of the drivers behind the water use; among the most
important of which are the practices of stakeholders. Human behavior is a significant driver of water resource
insecurity (Dalin et al., 2017; Foley et al., 2005; Nazemi & Wheater, 2015). Despite this, inclusion of water end
user behavior in planning and management of water resources has to date largely been neglected in research
and model development (Nazemi & Wheater, 2015). This leads to an incomplete understanding of the prob-
lems and challenges facing communities and may result in poorly conceived water management strategies.
Thus, incorporating users’ behavior in water resource modeling could improve water resource management
and enhanced resilience under changing conditions. This is also the central premise of the Panta Rhei initiative
of the International Association of Hydrological Sciences, which aims to reach an improved understanding
of the water cycle by focusing on the interactions and feedbacks between hydrology and society (Montanari
et al., 2013).

Approaches to water resource management have changed over time, and recognizing the role humans
play in water security has become increasingly apparent (see Blair & Buytaert, 2016; Roobavannan et al.,
2018). Modeling has played an important role in helping researchers and policy makers to better understand
water resource use and resilience. However, while hydrological models are capable of representing complex
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physical processes, less progress has been made toward incorporating human behavior (Bierkens, 2015;
GEWEX, 2012; Nazemi & Wheater, 2015). Including water user practices within the modeling framework
improves our understanding of the complex processes behind water use (Nazemi & Wheater, 2015), helping
to identify more suitable coping mechanisms and management strategies.

Addressing this research gap, however, is inhibited by a lack of suitable and relevant real-world insights and
data to inform, drive, and constrain the models (O’Keeffe et al., 2016). Further complications arise when results
derived from regional-scale model applications are inferred to local-scale practices (Macdonald et al., 2016).
Sociohydrological models allow for the conceptualization of anthropogenic and physical processes within a
hydrological system, providing a framework with which to identify and understand feedbacks and linkages
between variables and drivers (Srinivasan et al., 2016). Such models can be of particular use in examining the
impacts caused by changes in social and environmental conditions.

While sociohydrology specifically refers to the dynamics and coevolution of coupled human and water sys-
tems (Sivapalan et al., 2012), the modeling approaches used to represent sociohydrological systems are varied.
These include agent-based modeling, system dynamics, pattern-orientated modeling, Bayesian networks,
coupled component modeling, scenario-based modeling, and heuristic-based modeling (for an overview see
Blair & Buytaert, 2016). Top-down approaches, which may include system dynamics, aim to determine overall
system functioning and are useful in situations where local-scale understanding is lacking (Blair & Buytaert,
2016). A disadvantage of this approach is that it can miss some underlying processes, producing a result that
may be too simple for certain applications. On the other hand, bottom-up approaches such as agent-based
modeling focus on the behavior and decision making of individuals (Bousquet & Page, 2004). Agents oper-
ate under rules, which determine the interactions and feedbacks between agents and their environment,
and the approach has also been used to investigate water resource management problems (Madani & Dinar,
2012; Ng et al., 2011). The approach can also examine societal impacts on the environment and the reactions
of humans to environmental or policy change. Sociohydrology is an evolving field, and among the recom-
mendations for its advance is public participation (Lane, 2014; Srinivasan et al., 2016). Involving stakeholders
has many advantages, including improved data collection and promoting a buy in to model results (Mostert,
2018). In addition, direct inclusion of stakeholders’ insights and experience in model development increases
model realism and real-world relevance.

In order to fully represent water use, it is necessary to directly include human behavior. This is an important
step in developing tools to better manage water resources and the feedbacks to water users. Attempting to
do so through modeling physical processes alone is less likely to produce realistic results or lead to the right
results for the wrong reasons. A variety of models have been developed to represent the interactions between
human behavior and the environment. These include farm level decision making based on economic and
resource availability (Foster et al., 2014; Inam et al., 2017), water resource competition between humans and
ecosystems (van Emmerik et al., 2014), the system dynamics of small holder farmers (Pande & Savenije, 2016),
and the feedbacks between climate change and societal adaptation (Kuil et al., 2016). Complete behavioral
representation is difficult to achieve through a top-down approach as data and regulations rarely reflect what
takes place on the ground, particularly in developing countries where data are scarce and governance is often
inadequate or poorly enforced.

This is the case in India where water resource resilience has become one of the country’s most important chal-
lenges (Amarasinghe et al., 2009; Briscoe & Malik, 2006; Shah, 2016). India’s vulnerability to environmental
and socioeconomic changes highlights the necessity of good resource management practices. The introduc-
tion of improved irrigation technology, high yielding drought-resistant seed varieties, and artificial fertilizers
allowed Indian agriculture to expand rapidly and go from what was a famine prone country, to one that is
now food self-sufficient (Jewitt & Baker, 2007; Singh, 2000). Despite the manifest benefits, however, the green
revolution has led to increased strain on the regions water resources (Amarasinghe et al., 2009; Briscoe &
Malik, 2006; Macdonald et al., 2016; Shah, 2016). Consequently, an understanding of the drivers and outcomes
of change in water use is vital to develop sustainable and realistic management options to help safeguard
water resources.

This paper outlines the development of a water resource and farmer livelihood modeling framework devel-
oped from the bottom up, which incorporates the behavior of water users. The framework provides a unique
tool for identifying and testing potential water management options by incorporating real-world insights
from observed farmer behavior informed by field collected information (O’Keeffe et al., 2016), improving
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Table 1
Mean Observed Annual Precipitation and Temperature Values Between 1971 and 2005, and the Range of Mean Predicted
Values Across GCM’s Used Under RCP 4.5 and RCP 8.5 Between 2006 and 2040 Calculated Using the Delta Change Method

District Observed RCP 4.5 RCP 8.5

Sitapur 885 mm | 25.3 ∘C 840–947 mm | 25.4–26.2 ∘C 846–896 mm | 25.9–26.2 ∘C

Sultanpur 1,082 mm | 25.6 ∘C 967–1,097 mm | 26.0–26.7 ∘C 956–1,099 mm | 26.2–26.7 ∘C

Jalaun 720 mm | 25.7 ∘C 678–789 mm | 26.0–26.9 ∘C 678–789 mm | 26.4–26.6 ∘C

Hamirpur 884 mm | 25.7 ∘C 835–957 mm | 26.0–26.8 ∘C 835–957 mm | 26.4–26.5 ∘C

Note. GCM = general circulation model; RCP = Representative Concentration Pathway.

the representation of feedbacks, and tipping points between water use and the environment. The model is
applied to a number of districts in northern India; however, when local knowledge is collected, it is envisaged
that the framework can be applied to a wide variety of locations, realistically representing the actions of water
users under changes in anthropogenic and environmental conditions. The following sections outline the data
(section 2, model conceptualization and development (section 3), followed by model application (section 4),
a description of the results (section 5), and a discussion of the outcomes, including limitations of the model
(sections 6 to 7).

2. Data and Fieldwork
2.1. Fieldwork and Socioeconomic Data
More than 200 semistructured farmer interviews were carried out by the first author in Uttar Pradesh, a large
and diverse state within the Gangetic plains of North India. The interviews were conducted across four districts
(Sitapur, Sultanpur, Jalaun, and Hamirpur), which are representative of agricultural and water use practices
in the region (ICRISAT-ICAR-IRRI Collaborative Research Project, 2012). The interviews sought to obtain infor-
mation on water use and constraints as well as socioeconomic and environmental factors, which influence
rural livelihoods. A complete description of the methodology and results of the field campaign is provided in
O’Keeffe et al. (2016). Collected data include water application rates, irrigation scheduling, and water source
along with information describing cropping practices, particularly during the dry Rabi season, approximately
November to March, and the monsoonal Kharif season from June to October. Additional socioeconomic infor-
mation such as crop yields and fertilizer costs were obtained from secondary data sources, including the
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT-ICAR-IRRI Collaborative Research
Project, 2012) and the Indian Government of India, Department of Fertilizers, Ministry of chemicals and
fertilizers (2015). Fertilizer application rates were taken from Yadav (2003).

2.2. Climate Data
Observed rainfall and temperature data were obtained from the Indian Meteorological Department and
Tropical Rainfall Measuring Mission multiprecipitation analysis products, 3B42 version 7 from the National
Aeronautics and Space Administration archive (Huffman et al., 2007). To examine periods beyond 2005, projec-
tions from three different general circulation models; NOAA GDFL: GDFL-CM3, NOAA GDFL: GDFL-ESM2G and
MIROC: MIROC5 were obtained from the CMIP5 (Coupled Model Intercomparison Project: Phase 5) website
(World Climate Research Program, 2013).

While the general circulation models were selected according to their ability to accurately model monsoon
conditions in the region, the large spatial heterogeneity in convective rainfall patterns make projections
highly uncertain. To date, there has been little research on the possible effects of changes in climate on
groundwater resources (Holman et al., 2012). In order to represent future climate uncertainty, emission sce-
narios Representative Concentration Pathway (RCP) 4.5 and RCP 8.5, derived from CMIP5 projections were
chosen (Wayne, 2013). Time series representative for future climate conditions were obtained by perturb-
ing the observed data using the delta change method (see Prudhomme et al., 2010). Relative change (for
precipitation) and absolute change (for temperature) were calculated between the periods 1971–2005 and
2006–2040. The latter period was chosen as being most relevant for policy. Historical and perturbed values
can be seen in Table 1. While considerable uncertainty surrounds Indian rainfall projections, research points
toward more frequent extreme events (see Barik et al., 2017; Jena et al., 2015; Johnson et al., 2016; Menon et al.,
2013; Moors et al., 2011; Roxy et al., 2015; Sinha et al., 2006).
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2.3. Groundwater Data
Data describing groundwater levels between 2002 and 2013 in the districts were obtained from the Cen-
tral Groundwater Board of India (Central Ground Water Board, 2014). No groundwater level information was
available prior to 2002 for the study region. While each district has numerous monitoring wells, many were
excluded due to poor consistency in data recording. As a result, 14 monitoring wells were used in Sitapur, 44
in Sultanpur, 21 in Hamirpur, and 26 in Jalaun. Despite the poor spatial distribution (1 monitoring well/410
km2 in Sitapur, 1 monitoring well/100 km2 in Sultanpur, 1 monitoring well/150 km2 in Jalaun, and 1 monitor-
ing well/200 km2 in Hamirpur), this information represents the best available observation data for the study
area. The regional geology, alluvial aquifers comprising silts, sands, clays, and gravels, suggests less ground-
water level spatial variability than would be found in hard rock aquifers, increasing confidence in applying
these groundwater levels to the study region.

3. Model Development
3.1. Conceptual and Perceptual Model Development
3.1.1. Perceptual Model
The field observations were analyzed in detail in a previous study (O’Keeffe et al., 2016). Here we synthesize
them in a set of dominant observed processes, which together constitute our perceptual model (Beven, 2012):

1. Irrigation scheduling depends on water availability, seed developer guidelines, and local knowledge. Farmers
typically follow a set irrigation schedule. However, since access to or availability of water can be an issue,
farmers may not always irrigate at the optimum time.

2. Conjunctive use of water sources is widespread. Irrigation canals provide an irregular but important source of
water to some farmers and because their low cost are used in preference to groundwater when possible.
Proximity to a canal is not always an indication of access.

3. Farmers will continue to irrigate despite increasing prices. While the price of irrigation was found to be a major
concern for farmers, it did not have a significant influence on irrigation practices. Farmers’ first priority was
to provide food for their own families, and they were willing to spend more to achieve this.

4. Canal recharge benefits all. Farmers with land located close to a working canal may benefit from the contri-
bution of canal leakage to aquifer recharge, leading to more stable groundwater levels and lower pumping
costs.

5. Water application is not measured. Farmers do not record the volume of water they apply to crops; instead,
observing the approximate depth water reaches within their bunded fields.

6. Irrigation return flow is an important hydrological process. The majority of farmers use flood irrigation, much
of which is lost through evaporation or returned to the underlying aquifer.

7. Irrigation time increases with decreasing water tables. Farmers described increasing irrigation costs with
decreasing groundwater levels, particularly during the dry, premonsoon season, as lower water levels mean
that pumps are required to run for longer in order to abstract the same quantity of water.

8. Farmers’ solution to lack of water: drill deeper wells. The most common solution to declining water tables
reported by farmers was to drill deeper wells.

This information was used to develop a conceptual model, which is described in detail in the remainder of
section 3 and in Figure 2. The most important feedbacks between the physical and behavioral elements of
the framework can be seen in Figure 1.

3.1.2. Conceptual Model
In a next step, we conceptualized our perceptual model as three coupled submodels representing hydrology,
crop yield, and farmer livelihood, which are described in detail in the following sections. Throughout, we use
indices t and T to index days and years respectively. Thus, Δt = 1day and ΔT = 1year.

3.2. Hydrology
A single cell model is employed to simulate the response of water resources to changing socioeconomic and
environmental conditions. This class of hydrological model is commonly used in the field of water resources
economics and there is an extensive body of literature describing their application (see de Frutos Cachorro
et al., 2014; Gisser & Mercado, 1973; Koundouri, 2004). The soil column is represented in terms of the total
available water, TAW (M∕L2), which describes the maximum amount of water that is available to plants
at field capacity:

TAW =
(
𝜃FC − 𝜃WP

)
Zr, (1)

O’KEEFFE ET AL. 4
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Figure 1. A causal loop diagram showing the feedbacks between the anthropogenic and environmental variables and
fluxes which are represented within the model.

where 𝜃FC and 𝜃WP (M/L3) are, respectively, field capacity and wilting point and Zr (L) is the maximum root
depth in meters. The proportion of TAW that can easily be extracted from the root zone before the soil moisture
deficit impedes plant growth is termed the readily available water,

RAW = (1 − p)TAW, (2)

where p is the crop-specific depletion factor and the dimensions of RAW are the same as those for TAW. The
daily water balance equation expressed in terms of root zone depletion, Dr (M/L2), is written

dDr

dt
(t, T) = ETc(t, T) + R(t, T) − (P(t, T) − RO(t, T)) − I(t, T), (3)

where ETc is actual crop evapotranspiration, R is recharge, P is precipitation, RO is surface runoff, and I is
irrigation (M ⋅ L−2 ⋅ T−1). Crop evapotranspiration is determined as

ETc(t, T) = Ks(t, T)Kc(t, T)ET0(t, T), (4)

where Kc is a crop coefficient, which varies according to the crop growth, Ks is a water stress coefficient,
and ET0 is reference evapotranspiration. We use the Hargreaves-Samani equation to estimate ET0, but other
approaches can be used (see Itenfisu et al., 2003; McKenney & Rosenberg, 1993). Crop coefficients are obtained
from Allen et al. (1998) and from field work conducted in North India by Choudhury et al. (2013). The water
stress coefficient is calculated as follows:

Ks(t, T) =
TAW − Dr(t, T)
(1 − p) TAW

. (5)

Spatial and temporal rainfall variability is taken into account by adding a noise component drawn from a
normal distribution. A runoff coefficient is used to partition rainfall into runoff and infiltration. Farmers in
the surveyed districts typically use flood irrigation and apply water to their crops at set intervals during the
growing season. Thus, farmers are assigned an irrigation volume drawn from a normal distribution with mean
and standard deviation derived from field data. To account for spatial and temporal heterogeneity in irrigation,
timing the model is programmed to randomly select the day irrigation takes place from a normal distribution
where the parameters are again based on observations. Recharge from the root zone to the underlying aquifer
is assumed to occur when the water content of the root zone exceeds field capacity:

R(t, T) =
{

−Dr(t, T)∕Δt, if Dr(t, T) < 0
0, otherwise.

(6)
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Figure 2. Schematic overview of the conceptual model, highlighting behavioral and physically based elements and how
farmer behavior links to the models hydrological, crop, and livelihood components. Perceptual model observations
(PM1–PM8) are also highlighted within the diagram. Arrows show model dependencies and feedbacks.

Canals in India are typically operated by the Irrigation Department, and while water supply is often unre-
liable, it is typically free or very cheap (O’Keeffe et al., 2016). Within the model, farmers’ access to canals is
predetermined and does not change during the simulation. On the other hand, groundwater abstraction
through private tube wells, which considerably outnumber all other types of well, is more expensive to the
farmer because of the upfront cost of installing the well in addition to the cost of buying and operating the
pump. Outside northwest India, where many farmers have access to heavily subsidized electricity, we found

O’KEEFFE ET AL. 6
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that farmers typically rely on diesel pumps with comparatively expensive running costs. Thus, we assume that
farmers with access to a canal preferentially use this water source when it is available, otherwise relying on
groundwater if they have access to a borehole of sufficient depth. We assume that farmers outside the canal
command area only irrigate if they have access to an operational borehole. Lastly, we assume a leaky canal
system, which contributes recharge to the aquifer (Macdonald et al., 2016). Consistent with the single cell
paradigm, the aquifer is represented as a bathtub with spatially homogeneous hydrogeological characteris-
tics such as groundwater level, aquifer thickness, and specific yield. Drawing together these assumptions, we
can express the change in aquifer storage, H (M/L2), as

dH
dt

(t, T) =
⎧⎪⎨⎪⎩

R(t, T) + (l × V(t, T)), if canal irrigation
R(t, T) − I(t, T), if groundwater irrigation
R(t, T), otherwise,

(7)

where V (M) is the amount of water held in the canal and l (L−2∕T) is a leakage coefficient.

3.3. Crop Yield
Within the model, crop yield is the principal link between farmer livelihood and agricultural water use. It is
calculated using the relationship between crop production and evapotranspiration developed by Doorenbos
and Kassam (1979), which can be expressed as

(
1 −

Ya(T)
Yx(T)

)
= Ky

⎛⎜⎜⎜⎜⎜⎝
1 −

dh∑
t=ds

ETc(t)

dh∑
t=ds

ETx(t)

⎞⎟⎟⎟⎟⎟⎠
, (8)

where Yx is maximum yield, Ya is actual yield (both with dimensions M∕L2), Ky is the yield response factor, ETx

is maximum evapotranspiration, ETc is actual crop evapotranspiration, ds is sowing day, and dh is harvesting
day. Yx is taken from annual field reported information, which implicitly incorporates the biophysical impacts
of fertilizer, improvements in seed variety, or crop disease. While other factors limit crop production, such as
labor and nutrient availability, farmers in the surveyed districts stated that water availability, in terms of timely
access and volume, was the largest constraint on production.

3.4. Livelihood
The conceptualization of the feedbacks between farmer livelihood and irrigation behavior is fundamental to
the model. Farmer livelihood, L, is considered in terms of the difference between farm income, m, and farm
expenditure, z, as follows:

L(T) = m(T) − z(T). (9)

Farm income is limited to the amount of money that farmers’ receive at the market for their crop, expressed
as follows:

m(T) =
nc∑

c=1

Ya(T)q(T)A(T), (10)

where nc is the number of crops grown in an agricultural year and q and A (L−2) are the price and area of crop
c, respectively.

The model explicitly includes expenditure on irrigation and fertilizer. Other items, such as living expenses,
education, and loan repayments, are represented by a single a parameter, 𝛾 , which represents the fraction of
income that is saved on an annual basis. We assume that canal irrigation is free, while the cost of groundwater
irrigation is a function of the cost of diesel, pump efficiency, and depth to groundwater. The consumption of
diesel, Vd (L3∕T), required to abstract groundwater from depth h (L) is estimated from empirical data collected
by the University of Nebraska (Martin, 2003) as follows:

Vd(t, T) = I(t, T)
(
(0.1133 × h(t, T)) + 0.7949

102.87

)
𝜂 (11)
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where 𝜂 is the pump efficiency. The total cost of groundwater abstraction, ma, can then be calculated as
follows:

ma(T) =
365∑
t=1

Vd(t, T) × qd(T) (12)

where qd is the unit cost of diesel.

At the end of each year, if net farm income (i.e., livelihood) is positive, the farmer saves a proportion, 𝛾s, of the
difference between income and expenditure, as follows:

S(T) =
{

S(T − 1) + L(T) × 𝛾s, if L(T)> 0
0, otherwise.

(13)

During periods of low income farmers use their savings as a buffer to sustain production. During this time
irrigation may still take place until a lower groundwater limit is reached. In reality, the shortfall in revenue may
be compensated by off-farm activities, loans, and/or scaling back other outgoings, which the model does not
explicitly consider. Once the lower limit is reached, irrigation no longer takes place and rainfall becomes the
only source of water sustaining crop growth.

The water use options available to each farmer vary in time and space. As highlighted in the perceptual model,
farmers who rely on groundwater for some or all of their water supply will often drill deeper wells in order to
safeguard their water supply. We conceptualize this behavior by dividing farmers into categories according to
the depth of their well. This approach follows Srinivasan et al. (2010), who categorized households in Chennai,
India, according to their level of access to municipal water supply. The number of categories and actors within
each category is set by the modeler. At model initialization all farmers are randomly assigned a category, Cw

and at the end of the year farmers with sufficient savings change categories by paying for a deeper well,
as follows:

Cw(T) =
{

Cw(T − 1), if S(T) < mw(T) or Cw(T − 1) = Cmax
w

Cw(T − 1) + 1, otherwise,
(14)

where mw is the cost of installing a new well, assumed to be the same regardless of the depth of the new well
and Cmax

w is the category corresponding with the maximum well depth. The cost of installing a new well is
subtracted from the farmer’s savings.

3.5. Behavior
Human behavior forms the backbone of the modeling framework, acting as the control structure, which
coordinates the operation of the hydrological, crop production, and livelihood components. This is shown
graphically in Figure 2 where the behavioral elements driving the modeling framework are identified.
Observed farmer behavior is represented in the hydrology model in equation (7) and in the livelihood model
in equations (9), (11), (13), and (14).

4. Model Application
4.1. Behavioral and Climate Change Scenarios
While many plausible future socioeconomic scenarios may exist, including changes in dominant crop types,
or changes in the cost of energy sources, the scenarios outlined in Table 2 were chosen as plausible present
and future versions of the water use environment in North India. These were informed through relevant lit-
erature, as well as field work in the study region (Amarasinghe et al., 2016b; Barik et al., 2017; O’Keeffe et al.,
2016). An initial baseline, business as usual run was completed and compared with the limited observed data
available for the study region. Given the strain India’s growing population is likely to place on food demand,
an increase in irrigation intensity encouraged by government is likely. This is modeled in scenario 2 as an addi-
tional irrigation event, which takes place during the dry season. For scenarios 2 and 3, this same change in
farmer behavior is modeled under predicted changes in climate. No changes were made to farming practices
except inclusion of an additional irrigation event.

4.2. Calibration
4.2.1. Model Initialization and Calibration
Model calibration and output verification requires observations, which is a major challenge in data scarce
environments. Relevant socioeconomic data for comparison with model outputs are particularly difficult to
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Table 2
List of Climate and Agricultural Practice Scenarios Investigated in This Study

Scenario ID Scenario rationale

Establishment of baseline conditions Investigation of business as usual agricultural practices and historical environmental conditions

Increased groundwater abstraction Investigate the impacts of increased groundwater abstraction for irrigation

Increased abstraction under RCP 4.5 Investigate the impacts of increased groundwater abstraction under predicted future climate

Increased abstraction under RCP 8.5 Investigate the impacts of increased groundwater abstraction under predicted future climate

Note. RCP = Representative Concentration Pathway.

obtain as details of incomes, savings, and expenditure are limited. Model applications in each of the four study
districts were manually calibrated using groundwater levels and crop yields which represented the best avail-
able observed data. The conceptual model, which was developed using observations of local conditions, was
considered throughout the procedure to ensure that all parameters were realistic. Calibration was performed
manually by visually comparing simulated groundwater levels and crop yield against available ground water
level observations. Two parameters were adjusted: the runoff coefficient and the evaporation coefficient. Cal-
ibration took place during initial model runs, establishing a base case (Harou et al., 2009). Subsequent model
outputs are compared to observed groundwater levels and reported crop yields to evaluate the outcomes
of changes in scenarios with the baseline conditions. Initialization values and parameters used during model
operation are shown in Table 3.

5. Results

The following sections describe the model results from each of the scenarios. Output variables include
changes to groundwater, crop yield and farmer income.

5.1. Groundwater
To evaluate model operation, modeled groundwater outputs (1971 to 2013) are compared to the best avail-
able observed groundwater data (Figure 3). Observed data lie within the range of modeled outputs in all four
study districts and largely mirrors the trends of reported groundwater levels. The median modeled outputs
are used as a baseline for comparison across all other modeled scenarios. Modeled changes in groundwa-
ter levels due to predicted climate change are shown in Figure 4. In the northern districts of Sitapur and
Sultanpur, groundwater levels are predicted to remain largely unchanged. In the southern district of Jalaun,
modeled groundwater levels increase by approximately 5 m over baseline conditions by 2005. Water levels
in Hamirpur under RCP 8.5 are expected to fall approximately 5 m while remaining to baseline conditions
under RCP 4.5.

As expected, under additional irrigation practices, ground water levels deplete at an increased rate when
compared to the baseline scenario. This is more pronounced in the southern districts of Jalaun and Hamir-
pur (Figure 5). In Sitapur, median water levels vary between 2 and 9 mBGL throughout the model run
reaching approximately 5 mBGL by 2005. Median water levels under increased abstraction are 5 to 6 m
lower than under current business as usual conditions by 2005. Overall, however, water levels appear sus-
tainable, showing an increasing trend post 2002. There is little variation between increased groundwater
abstraction under baseline conditions and the same behavior when predicted future climate is taken into
account (Figure 5).

Sultanpur maintains an extensive canal system and groundwater levels in the district are predicted to remain
largely stable under an increased irrigation scenario. Between 1971 and 2005 the aquifer depletes at approx-
imately 0.14 m/year ranging from 5 to 10 mBGL. Under increased irrigation and predicted future climate,
median modeled groundwater levels are by 2005 expected to fall by approximately 10 m when compared to
groundwater levels under current irrigation practices.

Water is also supplied through canals in Jalaun. Despite this, the model suggests declining water levels, falling
to approximately 30 mBGL by 2005. Overall groundwater levels are expected to reduce by up to 25 m by end of
the model run, suggesting that additional premonsoon irrigation from groundwater sources is unsustainable
in the district. When predicted future climate is accounted for, groundwater levels are expected to be broadly
similar under increased abstraction (see Figure 5)
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Table 3
Overview of Initialization Values and Parameters Used in Model Operation (at t=0)

Model Parameters Sitapur Sultanpur Jalaun Hamirpur

Initial GW head (mASL)a 132 98 134 124

Specific yield 30% 30% 15% 12%

Evaporation Loss 0.85 0.59 0.45 0.64

N application (kg/ha) 120 120 120 120

P application (kg/ha) 26 26 26 26

K application (kg/ha) 48 48 48 48

Wheat irrigation depth (m) 0.05–0.1 0.1–0.2 0.07–0.3 0.1–0.24

Rice irrigation depth (m) 0.1–0.35 0.1–0.3 NA NA

Pump efficiency multiplier 2 2 2 2

Cat 1 well depth (mBGL) 30 20 20 20

Cat 2 well depth (mBGL) 60 40 60 40

Cat 3 well depth (mBGL) 90 80 90 60

Range of initial savingsa 50–500 50–500 50–500 50–500

Return flow 0.5 0.5 0.3 0.45

Irrigation efficiency 0.3 0.4 0.4 0.5

Canal leakage NA 0.4 0.4 NA

Field capacity 0.1 0.3 0.2 0.3

Wilting point 0.05 0.12 0.12 0.12

Rooting depth wheat 1.5 1.25 1.25 1.1

Rooting depth rice 0.6 0.65 NA NA

Rainfall runoff 0.95 0.95 0.95 0.9

Water stress coefficient: Min 0 0 0 0

Water stress coeff: Max 1 1 1 1

Yield response factor: wheat 0.6 0.8 0.65 0.9

Yield response factor: rice 1.2 1.3 NA NA

Crop coefficient: wheat 0.80, 1.20, 1.30, 0.60 0.80, 1.12, 1.25, 0.46 1.00, 1.12, 1.25, 0.46 1.00, 1.12, 1.25, 0.46

Crop coefficient: rice 0.61, 0.80, 1.23, 0.74 0.61, 0.80, 1.23, 0.74 NA NA

Note. mASL = meters above sea level; mBGL = meters below ground level.
aInitialization values.

Of the four districts studied, water levels in Hamirpur show the steepest decline under increased irriga-
tion. Here water levels fall at approximately 1.3 m/year between 1971 and 2005; a reduction of 45 m when
compared to model outputs driven by current practices, suggesting that water resources in Hamirpur are
not capable of sustaining increased groundwater abstraction. Modeled outputs suggest that variations in
predicted future climate will have little impact on water levels when increased abstraction is encouraged.

5.2. Farmer Income
Net farmer income is derived from the revenue generated from growing crops, less the expense of irrigation
and fertilizer. The annual prices for fuel used for irrigation and fertilizer, along with the market prices for each
crop were obtained from socioeconomic data sets (Government of India, Department of Fertilizers, Ministry
of chemicals and fertilizers, 2015; ICRISAT-ICAR-IRRI Collaborative Research Project, 2012). The income val-
ues discussed are adjusted for inflation; an important factor to consider when assessing how farmer income
has changed over the model run period. Inflation was accounted for using the consumer price index values
(Triami, 2016), adjusting income to 1971 levels, providing a time series in constant rupees.

A comparison of farmer income under increased irrigation and increased irrigation when future climate
scenarios is taken into account reveals little variation in any of the four districts (Figure 6). All outcomes
are higher than under business as usual baseline conditions. Farmers who grow rice in addition to wheat
(Sultanpur and Sitapur) receive higher income from the combined revenue generated by the two crops
(Figure 6).
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Figure 3. The range and median modeled groundwater level across the study areas between 1971 to 2013.
The shaded area represents the range of values obtained from 50 model iterations within the scenario with variations
depending on stochasticity of rainfall and irrigation application volumes. The red line represents the median
groundwater level. Observed groundwater levels from 2002 to 2013 are shown in black. Water levels are in meters
below ground level (mBGL).

In Sitapur, increased irrigation does not result in additional farmer income as the revenue gain is matched

by production costs. By 2005 with increased abstraction, income levels are simulated to remain similar to

business as usual practices. Under RCP 4.5 and RCP 8.5, minimum and maximum income are simulated to

reach 1,800 Indian rupees (INR)/year respectively, increasing at a rate of approximately 30 INR/year.

This is a similar level of increase to model predictions in Sultanpur. Under RCP 4.5 and RCP 8.5 income is

expected to rise at approximately 40 INR/year; minimum and maximum income are predicted to reach 2,100

INR, and 2,500 INR/year, respectively, by 2005.

Farmers in Jalaun experience a slight benefit to increasing irrigation, with median income levels rising approx-

imately 30 to 40 INR/ha/year. Modeled income levels in Jalaun show little variation between RCP 4.5 and RCP

8.5 where minimum and maximum income is predicted to be 1,400 INR and 1,600 INR, respectively, by 2005,

increasing at a rate of approximately 50 INR/year. This is up to 100 INR greater than the median values expected

under baseline conditions.

Modeled farmer income in Hamirpur under RCP 4.5 and 8.5 are approximately 100 INR/ha higher than under

baseline conditions. From 2000 to 2005, overall income increases at a rate of 10 INR/year, peaking at close to

1,100 INR/ha in 2005. Simulated income levels in Hamirpur are the lowest of the four districts, ranging from

850 INR to 1,100 INR/year by 2005.
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Figure 4. The median and range of modeled groundwater levels across the study areas between 1971 and 2005 under
business as usual conditions, displayed in green, and under the same conditions driven by predicted future climate
between 2005 and 2040. The shaded area represents the range of values obtained from 50 model iterations within the
scenario with variations depending on stochasticity of rainfall and irrigation application volumes. The solid lines
represent the median groundwater level. Water levels are in meters below ground level (mBGL). RCP = Representative
Concentration Pathway.

5.3. Crop Yield
As expected, the introduction of an additional irrigation event for wheat results in an increase in yield, ranging
from 0.2 to 0.6 tonnes/ha across the four districts (Figure 7 where the black line represents recorded annual
crop yields [ICRISAT-ICAR-IRRI Collaborative Research Project, 2012]).

Under increased irrigation the model results show that farmers in Sitapur will receive median wheat yields
approximately 0.2 tonnes/ha larger than those under baseline conditions, while yield values in Sultanpur are
expected to increase by up to 0.5 tonnes/ha.

Simulated wheat yield for farmers in Jalaun and Hamirpur also increases, up to 3.2 tonnes/ha in Jalaun, or
0.2 tonnes/ha more than under baseline conditions, and a median yield increase of up to 0.5 tonnes/ha in
Hamirpur resulting in approximately 2.4 tonnes/ha by the end of the model run. As irrigation practices are
not changed for rice cultivation there is little difference in yield, with overall values matching those produced
during the baseline run (Figure 7).

The increase in crop yield as a result of an additional irrigation event is maintained under future climate sce-
narios RCP 4.5 and RCP 8.5 (Figure 7). There is only a marginal change in rice yields, which remain similar to
baseline model outputs throughout (Figure 7).

6. Discussion

This paper explores the integration of water user behavior in a sociohydrological modeling framework in
order to simulate the feedbacks between anthropogenic and environmental variables. Model development
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Figure 5. The median and range of modeled groundwater levels across the study areas between 1971 and
2005 under increased groundwater abstraction and under the same behavior driven by predicted future climate
between 2005 and 2040. Modeled income levels under historic business as usual conditions are also displayed
in green. The shaded area represents the range of values obtained from 50 model iterations within the scenario
with variations depending on stochasticity of rainfall and irrigation application volumes. The solid lines represent the
median groundwater level. Water levels are in meters below ground level (mBGL). RCP = Representative
Concentration Pathway.

has been informed by interviews conducted with over 200 farmers in Uttar Pradesh, northern India, pro-
viding field level insight on the operation and challenges behind water use. The model is applied to four
districts representative of conditions across the Indo-Gangetic plain and is used to investigate the impacts
increased groundwater abstraction and changes in future climate may have on water resources and farmer
livelihood. Our results show that the impacts of predicted future climate alone may not substantially impact
water resources. Nevertheless, climate change may indirectly affect variables outside the modeled envi-
ronment such as energy price and availability or the cost of fertilizer, leading to uncertainty and market
volatility. It is possible, however, that future socioeconomic factors will lead to additional water abstraction.
Results suggest that increasing irrigation prior to the onset of the monsoon, such as those suggested by
Amarasinghe et al. (2016b) and Revelle and Lakshminarayana (1975), is potentially viable in Sitapur and
Sultanpur. This is not the case in Jalaun or Hamirpur, however, where an unsustainable depletion in ground-
water levels is likely under the same behavior. The variability of results between the study districts highlights
the importance of collecting data that are relevant to the inferences made and the potential decisions
that may be taken, as actions which are applicable in one location may not work in another despite their
relative proximity.

The scenarios and results described highlight the ability of the model to show how changes in anthropogenic
or environmental conditions can impact farmer livelihood and water resources. Due to limited data, however,
this model is necessarily a simplified representation of reality, which leads to a number of limitations. Ground-
water is represented within the model as a single cell where inflows are supplied by rainfall and canal flow.
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Figure 6. The median and range of modeled farmer income levels adjusted for inflation across the study areas
between 1971 and 2005 under increased groundwater abstraction and under the same behavior taking predicted future
climate between 2005 and 2040 into account. Modeled income levels under historic business as usual conditions are
also displayed in green. The shaded area represents the range of values obtained from 50 model iterations within the
scenario with variations depending on stochasticity of rainfall and irrigation application volumes. The solid lines
represent the median income level. Income levels are in Indian rupees (INR). RCP = Representative Concentration
Pathway.

Outflows occur through abstraction, evaporation, and transpiration. Lateral subsurface groundwater flow into
or out of the cell is not taken into account. A single water level is applied to all farmers across the cell, and the
model does not account for well interaction. While this approach is less of an issue in unconsolidated alluvial
aquifers, such as those found in the Ganges Basin, model uncertainty will increase when applied to hard rock
aquifers. Crop production is determined through the relationship between evapotranspiration and yield (see
Doorenbos & Kassam, 1979; Smith & Steduto, 2012). While the model accounts for the impact of water avail-
ability on crop production, it does not explicitly account for the biophysical impacts derived from fertilizer
application or improvements in seed variety, except through the reported increase in observed yield, which
is used in equation (8). Representation of socioeconomic conditions was a major challenge during this study.
In reality, the way in which farmers save and spend their income is highly variable and depends on a range
of factors which are outside the scope of this work. The model assumes that individual farmers will retain
savings for investment in their water security and does not take into account the many other options, for
example, their children’s education or investment in aspects of their farm besides irrigation. It is also assumed
that all farmers sell their crops for the same price and that indeed there is a market for their produce. It does
not take into account that a proportion of crops grown are for personal consumption, a common practice
among interview participants. Loans, repayments, supplementary farmer income, or water markets were not
directly considered, elements that can lead to changes in farmer behavior including, but not limited to, drilling
additional tube wells.
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Figure 7. The median and range of modeled wheat and rice yields from 1971 to 2005 under increased groundwater
abstraction and under the same practices driven by predicted future climate from 2005 to 2040 (1971 to 2005 used on x
axis throughout). Rice is typically not grown in Jalaun or Hamirpur. Units are in tonnes per hectare (t/ha). RCP =
Representative Concentration Pathway.

Despite some limitations, the framework captures the most important aspects of the farmers’ environment
and represents an advancement in hydrological modeling by directly including human behavior. The model-
ing framework is capable of identifying trends and tipping points, providing a useful tool for policy analysis,
planning, and resource management. The model is adaptable and can be used as the basis for studies across
a wide variety of locations and environments to represent a range of scenarios as well as socioeconomic and
biophysical conditions.
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7. Conclusions

This paper describes the development of a modeling framework, which directly includes water user behavior
through a set of built in rules. Field collected insights are used to produce a tool, which is rooted in reality,
capable of examining the impacts of changes in environmental and anthropogenic conditions on farmer irri-
gation behavior. The framework is adaptable and capable of incorporating a wide variety of farmer behavior
across a range of socioeconomic and biophysical conditions.

The model is applied to four districts in Uttar Pradesh, North India, to investigate the effect of changes in
policy and climate on farmers and water resources. Model results highlight that changes in human behavior
may have a larger impact on water security and stakeholder livelihood than changes in climate. In addition,
increased irrigation under predicted future climate may be possible in Sitapur and Sultanpur. However, in
the southern districts of Jalaun and Hamirpur, similar practices are unlikely to be sustainable as all scenarios
involving increased abstraction predict groundwater levels falling to unsustainable levels. Predicted climate
change alone is unlikely to adversely impact water resources, crop yields, or farmer income, although any
potential increase in the costs of energy or fertilizer as a result of climate change are not accounted for. Under
scenarios in which irrigation is increased, the water levels in all districts show a decline from the baseline, along
with an increase in wheat yield. This results in increased income for farmers in Jalaun and Hamirpur but not
for Sitapur or Sultanpur, where the production costs outweigh the advantages of more irrigation. The results
show the importance of conjunctive use of groundwater and surface water and that under certain conditions
an increase in groundwater abstraction may be feasible.

The modeling framework developed is necessarily a simplified version of reality. As limited data exist in the
study region, parametrization and calibration is difficult. Consequently, the model is not intended to be fully
predictive but rather a tool than can be used to highlight trends and tipping points and understanding the
outcomes of stakeholder practices.
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