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Abstract

We analyze the resolvent operator in three flows around a nominal NACA-0012 airfoil at ReC =

50, 000 and 5o angle of attack. In particular, we study two naturally developing flows (around

the airfoil with straight and blunt trailing edges) and one tripped flow. The naturally developing

flows exhibit laminar separation, transition and turbulent reattachment, while the tripped flow

remains attached in the suction side. For all cases, the time-averaged flow fields are computed from

separate DNS simulations. The resolvent analysis can identify the areas of maximum receptivity

of the flow field as well as the most amplified modes (optimal response). The former was located

close to the leading edge, and in the case of naturally developing flows, also in the free-stream.

The spatial distribution of optimal forcing was dominated by structures tilted against the mean

flow, in agreement with other studies of boundary layer flows. The optimal response of the two

naturally developing flows were different. For the NACA-0012 airfoil with straight trailing edge,

the response was maximized at the natural frequency of the separating shear layer, and the shape

matched closely with the corresponding DMD mode obtained from processing the DNS results.

For the blunt airfoil, the receptivity of the separating shear layer was suppressed in the region of

natural frequency, while it was maximized at the frequency of vortex shedding from the trailing

edge. This is attributed to the lock-in mechanism between the shedding and the separating shear

layer observed in the DNS simulations; the lock-in makes the separating shear layer less sensitive

to forcing. In the tripped flow, the amplification of the perturbations is significantly diminished,

and only by restricting the resolvent analysis to a region close to the suction side can we get a

dominant frequency that matches with DNS at that region. The dominant resolvent modes were

used to get estimations of the velocity spectra based only on the mean flow and the signal of one

velocity component at discrete calibration points. Very good approximation is observed with only

one or two points (depending on the flow examined), provided that they are located in energetic

regions of the flow that contain sufficient spectral content at the relevant frequencies.
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I. Introduction

The approximation of the solution of the Navier-Stokes equations with a finite number of

modes has been a topic of intense research for many decades. Linear stability analysis was

one of the earliest attempts to reduce complexity and describe flows with a finite number

of modes (see Gaster [1, 2], Schmid and Henningson [3]). Linear stability is an operator-

driven technique, i.e. extracts the modes by formulating and solving an eigenvalue problem

based directly on the (linearized) Navier Stokes operator. On the other hand, data-driven

techniques operate directly on the field data produced from simulations or experiments.

Proper orthogonal decomposition (Lumley [4], Sirovich [5]) and the more recent, dynamic

mode decomposition (DMD), proposed by Schmid [6] belong to the latter family.

At approximately the same time as DMD, a similar but operator-driven method, based

on the resolvent operator was proposed by McKeon and Sharma [7] for the analysis of

turbulent flows. The resolvent operator has long been studied in the context of spectral

theory of linear operators (refer for example to the book of Kato [8]). This operator maps

the input (forcing) applied to a linear system to the output in the frequency domain. In

the context of turbulent flows, the resolvent relies on the assumption that the time-average

(mean) velocity field is known. The Reynolds decomposition is applied to the Navier-Stokes

equations and the transport equations of the perturbation velocities around the mean flow

are derived. The non-linear terms are retained (i.e. they are not ignored as in linear stability

analysis) and constitute the input (forcing) term. The resolvent operator, based on the time-

average velocity, maps this input to the output (perturbation velocities and pressure). More

details on the mathematical formulation will be given in section III below. The recent work

of Sharma et al. [9] provides the mathematical link between the DMD and resolvent modes.

The singular value decomposition (SVD) of the resolvent operator provides the set of

turbulent forcings that will yield the largest optimal response on the flow field at a particular

frequency. This approach, proposed by McKeon and Sharma [7], has been applied in different

contexts and flow configurations. In the original paper [7] it was applied in a turbulent

pipe flow and used to study the most energetic modes at a given temporal frequency and

wavenumber pair (azimuthal and streamwise). Based on the spatial structure of the modes,

the authors identified regions along the radial direction where different scaling laws apply.

Similar analysis for a turbulent channel flow was presented in Moarref et al. [10].
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Beneddine et al. [11] employed the resolvent approach to study the conditions for validity

of mean flow stability analysis. They concluded that in cases where a strong convective

instability is present, and the first singular value of the resolvent operator is several orders

of magnitude larger than the rest, then the corresponding resolvent mode will approximate

well the spectral mode (i.e. the result of a stability analysis). Thus, in such cases, the

spectral analysis of the linearised flow field (around the mean) will indeed yield a good

approximation of the actual modes.

The resolvent operator can be also applied for laminar flows. In this context, the optimal

response to an externally applied forcing is computed. Sipp et al. [12] applied the resolvent

operator to capture the Tollmien-Schlichting (TS) waves in a laminar (Blasius) boundary

layer. Åkervik et al. [13] also studied a flat plate boundary layer flow, and computed optimal

forcings and responses using a reduced order model based on global eigenmodes. The same

approach was used by Alizard et al. [14] for a separated boundary layer in a flat plate. Such

an approach suffers from convergence problems and this motivated Sipp and Marquet [15] to

compute the singular values directly. Monokroussos et al. [16] computed 3D optimal distur-

bances in a boundary layer flow using a time-stepping algorithm for the forward and adjoint

equations. Sartor et al. [17] used the resolvent operator to study the shock wave-boundary

layer interaction on a OAT15A supercritical airfoil. While the global stability analysis cap-

tured the major source of instability (shock buffeting), the modes of the resolvent operator

captured secondary pseudo-resonance phenomena, attributed to convective instabilities in

the flow field.

When the first singular value is much larger than the rest, the resolvent operator can

also be used to derive low order models of the flow. Moarref et al. [10] used this feature to

successfully approximate the energy density in a turbulent channel flow. The same property

can be employed to reconstruct the unsteady dynamics of a flow field using just the mean

flow and a signal from one (or more) discrete points. For example Gómez et al. [18] used

the mean flow and data from a single probe to estimate the three dimensional flow inside a

cavity with 5% error. The probe location, and in particular the energy content at the selected

location, was found to have an important effect on the quality of estimation. Gómez et al.

[19] estimated the lift and drag coefficients on a square cylinder using data from a single

point in the wake; the results were in very good agreement with DNS data. Beneddine et al.

[11], used resolvent analysis to estimate the energy spectra of the flow field in a backward
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facing step using again a single probe point.

In previous works, the resolvent operator was applied to either laminar (attached or

separated) or fully turbulent flows (pipe, channel, jet, backward facing step etc). Most flows

were also homogenous in two directions (or weakly inhomogeneous in one direction). In the

current work, we apply the resolvent analysis to three highly inhomogenous flows around a

nominal NACA-0012 airfoil. All flows contain two dynamically important and interacting

regions; the suction side and the wake of the airfoil. Two of the flows were studied recently

by the authors using DNS [20]; both are separating and reattaching flows in the transitional

regime. The ability of the resolvent operator to reproduce the spectra is also explored in such

highly complex flow conditions. New simulations were also performed for a third, tripped,

flow. In the latter case, the flow quickly transitions to turbulence and remains attached in

the suction side.

The paper is organised as follows. In section II the flows are briefly described and the

computational details are provided for the third flow case. The mathematical formulation

of the resolvent operator is provided in section III. Results from the resolvent analysis are

presented in section IV, while section V explores the estimation of velocity spectra using

information from discrete points. Finally, section VI summarises the main findings of this

work.

II. Description of the flows examined and computational details

Three flows are considered in the paper; two naturally developing flows (around a NACA-

0012 airfoil with straight and blunt trailing edges) and one tripped flow around the standard

airfoil. The blunt trailing edge was formed by truncating the rear part at a distance h =

0.133c from the trailing edge, thus exposing a uniform bluntness of thickness ǫ = 0.037c. In

all cases, the Reynolds number based on the nominal chord was Rec = 50, 000, while the

airfoils were placed at 5o angle of attack. In the following, frequencies are normalised with

the nominal chord, c, and the velocity at infinity, U∞.

The two naturally developing flows are the same as the ones considered by Thomareis

and Papadakis [20]; mesh resolution and code validation studies are presented in the same

paper. For both flows examined, there is laminar separation, transition to turbulence and

turbulent reattachment of the shear layer in the suction side of the airfoil. For the straight
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(a) Naturally developing flow - Straight TE. (b) Tripped flow - Straight TE.

FIG. 1: Mean streamwise velocity field for the naturally developing and tripped flows
around the straight trailing edge airfoil.

trailing edge airfoil, the flow separates at x/c = 0.145, starts to transition at around 0.45

and reattaches at 0.56. Figure 1a presents the mean streamwise velocity. The dynamics of

the suction side is dominated by the fundamental and subharmonic of the Kelvin-Helmholtz

instability that develops naturally in the separating shear layer (with frequencies 7.4 and

3.8 respectively).

The blunt trailing edge results in periodic vortex shedding with frequency 4.5, which

is close to the subharmonic of the natural shear layer frequency. The shedding forces the

separating shear layer, and due to this forcing, the shear layer frequency locks onto the

shedding frequency while the natural frequency and its subharmonic are suppressed. The

time average flow is shown in figure 2. The flow in the suction side is qualitatively similar

compared to the straight trailing edge airfoil shown in 1a. There are some differences in the

separation and reattachment points (refer to [20] for details). The most important difference

is the presence of a small recirculation zone in the near wake due to the presence of bluntness.

FIG. 2: Mean streamwise velocity field for the naturally developing flow around the blunt
trailing edge airfoil.

New DNS simulations were performed to collect data for the tripped flow. The same in-

house code, PantaRhei, was used. It is based on the finite volume method and uses a second

6



order central scheme for the spatial discretisation of the convection and diffusion terms, as

well as a second order backwards scheme for time advancement. It is parallelised with the

aid of the PETSc library [21]. An algebraic multigrid preconditioner from the Hypre library

[22] is used to accelerate the solution of the pressure correction equation.

For the tripped flow simulations, the same mesh was used as for the naturally developing

flow. To implement tripping, a slightly modified version of the forcing method of Schlatter

and Örlü [23] was employed. More specifically, the original method applies a weak random

volume forcing in the wall normal direction, which enters as a source term in the Navier-

Stokes equations. In the present version, we compute a random velocity which serves as a

wall boundary condition in the spanwise direction. This is applied in a thin strip located

shortly downstream of the leading edge, at x/c = 0.04− 0.06. This is an area of maximum

sensitivity (as shown in section IVA), thus, any perturbation introduced there is expected

to have a large impact on the flow. The spanwise wall velocity is computed from

w(z, t) = AU∞

(

[1− b(t)]h(z)i + b(t)h(z)i+1
)

(1)

where A is the user-defined amplitude of the forcing and h(z) is a randomly generated

harmonic function. The value of A was chosen to be 0.05 (i.e. the tripping velocity has a

maximum value of 5% of the free stream velocity). Function h(z)i is a random harmonic

mode with unit amplitude for wavenumbers smaller than 2π/zs (zs is 4 times the grid size

in the spanwise direction). The following auxiliary functions are used, b(t) = 3p(t)2−2p(t)3,

where p(t) = t
ts
−i and i = int

(

t
ts

)

where ts defines the time scale of forcing and int denotes

the integer part of the division. In the present work, ts was chosen to be 5δt, where δt is

the simulation time step.

FIG. 3: Ratio of the local characteristic cell size to the Kolmogorov length scale.
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Unlike the naturally developing flow around a NACA-0012 at the examined Reynolds

number and angle of attack, for the tripped flow there are no reference experimental or nu-

merical data to serve as validation. To check the grid resolution, we compare a characteristic

length scale of the mesh (cubic root of the cell volume) with the Kolmogorov length scale

η =
(

ν3

ǫ

)1/4

, where ν is the kinematic viscosity and ǫ = ν
〈

∂ui

∂xj

∂ui

∂xj

〉

is the local dissipation

rate. Contours of the ratio between the grid and dissipation length scales are plotted in

Figure 3. It can be seen that the ratio does not exceed 2.5, which is sufficient for DNS

quality resolution (Pope [24]). Maximum values of around 3 are reported in the recent DNS

study of Hosseini et al. [25] around a NACA-4412 at Rec = 400, 000.

Figure 1b presents the mean streamwise velocity for the tripped flow. It can be seen

that the aforementioned tripping method triggers early transition and indeed suppresses

flow separation in the suction side.

III. Mathematical formulation of the resolvent operator

The Reynolds decomposition expresses the instantaneous velocity field as the sum of

mean (time-average) and fluctuating fields u = u+u′. Substituting this decomposition into

the Navier-Stokes equations and time-averaging we get the well-known Reynolds Averaged

Navier-Stokes equations:

u · ∇u+ u′ · ∇u′ +
1

ρ
∇p− ν∇2u = 0, (2)

∇ · u = 0. (3)

Subtracting equations (2) and (3) from the instantaneous Navier-Stokes equations, we get

the following equations for the fluctuating velocity and pressure:

∂u′

∂t
+ u · ∇u′ + u′ · ∇u+

1

ρ
∇p′ − ν∇2u′ = −u′ · ∇u′ + u′ · ∇u′, (4)

∇ · u′ = 0. (5)

Equation (4) is non-linear and contains all the information of the original Navier-Stokes

equations. The right hand side, denoted as f ′ = −u′ · ∇u′ + u′ · ∇u′, can be considered as

a forcing term that has a non-linear dependence on the output u′. It contains the Reynolds
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stresses, which in turn affect the time-average flow field, u. The input (forcing f ′) and the

output (u′, p′) are therefore non-linearly coupled. This differs from the usual approach of

characterising noise amplifier flows in which an imposed forcing is applied to the linearised

Navier-Stokes equations (Schmid and Brandt [26], Sipp et al. [12], Sipp and Marquet [15], Lu

and Papadakis [27]). In such a case, the forcing is external (i.e. independent of the output)

and the linearised equations act as a transfer function that maps f ′ to (u′, p′).

If we assume however that the flow has reached a statistically steady state and that u

is known (and therefore not affected by the forcing f ′), then equations (4) and (5) indeed

form a linear system. The central assumption is that u is known. This approach has been

proposed by McKeon and Sharma [7]. In such a case, equations (4) and (5) can be written

in matrix form as:

B
∂

∂t





u′

p′



 = L





u′

p′



+ Pf ′, (6)

where the following operators and matrices have been defined:

L =





−u · ∇()− () · ∇u+ ν∇2() −1
ρ
∇()

∇ · () 0



 (7)

P =





1

0



 , B =





1 0

0 0



 . (8)

We consider a Fourier decomposition of the forcing f ′ and the output (u′, p′) in time and

in the homogenous spanwise direction, z, i.e.

f ′(x, y, z, t) = f̂(x, y)ei(ωt+kzz) + c.c. (9)

u′(x, y, z, t) = û(x, y)ei(ωt+kzz) + c.c. (10)

p′(x, y, z, t) = p̂(x, y)ei(ωt+kzz) + c.c. (11)

where c.c. denotes complex conjugate.

In the present simulations, we consider only 2D disturbances, i.e. we take kz = 0. This is

justified by the fact that the dynamics of the naturally separating shear layer is dominated

by the 2D amplification of the Kelvin-Helmholtz instabilities. The generation of the subhar-

monic is also a 2D phenomenon, originating from the non-linear interaction of the primary
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instabilities, as explained in [28]. The vortex shedding in the wake also has a dominant 2D

component. Equation (6) then becomes:

iωB





û

p̂



 = L





û

p̂



+ P f̂ , (12)

If the forcing amplitude f̂ is assumed to be zero, we recover the generalized eigenvalue

problem which is used to determine the stability characteristics of the time-averaged flow

field (the eigenvalue would be iω). For non-zero forcing term, equation (12) can be written

as:




û

p̂



 = (iωB −L)−1
P f̂ . (13)

Pre-multiplying the left and right hand sides by P T we can extract the velocity fluctuations

û:

û = P T (iωB −L)−1
P f̂ , (14)

The matrix R(ω) = P T (iωB −L)−1
P is the resolvent operator of the mean-flow and it is

the focus of the analysis of the present work.

The discrete form of the operators and matrices appearing in (14) is obtained using the

finite element package FreeFem++ [29]. The span- and time-averaged flow (obtained from

DNS simulations) is interpolated to the nodes of a two-dimensional triangular finite element

mesh that has very similar resolution as the finite volume DNS mesh. Standard Taylor-Hood

P2-P1 elements are used for the velocity and pressure fields, with quadratic and linear shape

functions, respectively. In the following we use R(ω) to denote also the discrete form of the

operator. For more details on how to derive the discrete form of R(ω) using finite elements,

refer to [15].

A. Calculation of the optimal forcings and responses

In the aforementioned context, the resolvent is the transfer function between the turbulent

forcing f̂ and the velocity response û. It can be used to evaluate the spatial distribution

of the forcing that will maximise the gain G of the system, defined as the ratio of two L2

norms:
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G =
‖û‖2Qu

‖f̂‖2Qf

(15)

where the subscripts Qu and Qf indicate that different weighting matrices can be used to

define the forcing and response norms. For a general vector variable y in the domain Ω, the

L2 norm is defined as the energy of the variable, ‖y‖2 =
∫

Ω
y†ydΩ, where † denotes complex

conjugate transpose. The discrete form is ‖y‖2 = y†Qy, where Q is a symmetric positive

definite (or semi-definite) matrix, arising from the discretisation of the integral operator in

the domain, and y is now the vector of discrete values of the variable (we use the same

notation for the continuous variable and the vector of discrete values, but we hope that the

distinction becomes clear from the context).

The discrete form of equation (15) can then be written as:

G =
û†Quû

f̂ †Qf f̂
(16)

There is flexibility in the selection of the matrices Qf and Qu. If the matrices define the

energy in the whole domain, then Qf = Qu = Q. However, this is not necessary. For

example, Qu can be selected to represent the energy only on a specific part of the domain,

in which case Qf 6= Qu. Such a numerical experiment, with different Qf and Qu matrices,

was performed in this work. For all cases examined, Qf was defined in the whole domain,

and therefore was invertible. Using the resolvent relation in (14), equation (16) becomes:

G =
f̂ †R†QuRf̂

f̂ †Qf f̂
(17)

The maximum value of G can be found directly by straightforward differentiation with

respect to f̂ :

∂G

∂f̂
=

2R†QuRf̂f̂ †Qf f̂ − 2f̂ †R†QuRf̂Qf f̂

(f̂ †Qf f̂)2
=

=
2

f̂ †Qf f̂

(

R†QuRf̂ −GQf f̂
)

= 0

(18)

Thus the forcing f̂ which maximises the gain G is the solution of the following generalized
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eigenvalue problem:

R†QuRf̂ = GQf f̂ (19)

This can be easily cast to a standard eigenvalue problem, because Qf is invertible. The

solution to this eigenproblem provides the squared singular values σ2
i = Gi of the resolvent

matrix R(ω) and the corresponding weighted1 right singular vectors, f̂i. The left singular

vectors ûi are then given by:

ûi = σ−1
i R(ω)f̂i (20)

The previous analysis indicates the physical significance of the right and left singular

vectors. At a given frequency ω, the former correspond to the forcing which will maximise

the response of the system under the defined norm, while the latter correspond to the

response itself. The gain of the system, i.e. the ratio of the norms, will then be G. The right

and left singular vectors that result in the highest singular value -i.e. those which produce

the largest gain - will be referred from now on as the optimal forcing and optimal response

respectively.

It is straightforward to show that the forcings f̂i and responses ûi form bases of their

corresponding spaces and thus any arbitrary forcing and response can be written as a linear

combination of these base members. Thus any forcing f can be expressed as a weighted

sum of the base forcings f̂i as;

f̂ =
N
∑

i=1

〈f̂ , f̂i〉f̂i (21)

where N is the number of singular modes and 〈f̂ , f̂i〉 = f̂ †Qf f̂i denotes the projection of

the arbitrary forcing f to the ith forcing mode. Then, using equations (14) and (20), the

corresponding response û to the arbitrary forcing f̂ can be expressed as:

û =
N
∑

i=1

σi〈f̂ , f̂i〉ûi (22)

In many shear flows, and depending on the examined frequency, the first singular value,

σ1, can be orders of magnitude larger than the rest (McKeon and Sharma [7], Beneddine

et al. [11]). This means that the first term in the right hand side of equation (22) is expected

1 In the standard SVD, the left and right singular vectors satisfy u†
iuj = δij and v†i vj = δij , where δij is the

Kronecker symbol. However, in the weighted SVD they satisfy u†
iQuuj = δij and v†iQvvj = δij , where

Qu and Qv are weighting matrices [30].
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to dominate over the rest. The implicit assumption is that the arbitrary forcing f̂ will be

such that |σ1〈f̂ , f̂1〉| ≫ |σi〈f̂ , f̂i〉| (i = 2...), i.e. the relative magnitude of the first term

compared to the second, third etc is dictated by the order of singular values σi and the

projection of f̂ to second, third etc base members f̂i will not be so strong as to reverse this

order. In section V, we will use the dominance of the first term to model the velocity spectra

based on the estimation of the coefficient 〈f , f̂1〉 for each frequency.

The eigenproblem (19) was solved using an in-house code, which employed the ARPACK

library for the computation of a few large eigenvalues (Lehoucq et al. [31]), coupled with the

MUMPS package for the efficient LU decomposition and solution of large sparse matrices

(Amestoy et al. [32]).

IV. Resolvent analysis

A. Naturally developing flow around an airfoil with straight trailing edge

The spectrum of the resolvent operator for the 5 largest growth ratios is shown in Figure

4. The largest G, corresponding to the dominant singular value σ1, is 7 orders of magni-

tude larger than the second for a wide range of frequencies. This strong amplification is a

characteristic feature of the convectively unstable nature of the separated shear layer which

forms on the suction side of the airfoil. A similar behaviour has been observed in other flows

which exhibit a strong convective instability (Beneddine et al. [11],Sipp et al. [12],Garnaud

et al. [33],Alizard et al. [14]).

As it can be seen in Figure 4, the optimal growth reaches its highest value at the angular

frequency ωP , which is very close to the natural frequency of the separated shear layer,

denoted as ω2 = 2πfp, where f2 = 7.4 as found in Thomareis and Papadakis [20]. Indeed

ω2 is approximately 7.8% larger than ωP . This is a good estimation of the shear layer

natural frequency, bearing in mind that only the time-averaged velocity has been used in the

simulations, and the flow undergoes laminar separation, transition, turbulent reattachment

and contains a turbulent wake.

The overall shape of the resolvent spectrum resembles that of a band-pass filter, centred

approximately at the shear layer frequency ω2. Indeed past studies, such as those by Jones

et al. [34], Desquesnes et al. [35] and Rodriguez and Theofilis [36], identified a frequency
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FIG. 4: Spectrum of the resolvent operator for the naturally developing flow around a
NACA-0012 with straight trailing edge. The first 5 gain values of the operator are plotted

against the angular frequency ω.

Separation

point

FIG. 5: Streamwise component of the optimal forcing f̂x at frequency ωP at the leading
edge with the displacement thickness of the boundary layer superimposed. The contours

range is [−72, 72].

selection mechanism in laminar separation bubbles, according to which the separation bubble

will selectively amplify frequencies around the dominant frequency of the shear layer, thus

acting as a band-pass filter.

Both components of the optimal forcing are found to be localized in the leading edge of

the airfoil, with their magnitude decaying rapidly downstream. The real part of the stream-

wise component at frequency ωP is plotted together with the displacement thickness of the

boundary layer in figure 5. The plot is zoomed-in close to the leading edge. Forcing is dom-
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inant in the area of maximum acceleration. The separation point is located at x/c = 0.145

and the forcing attains its maximum value slightly upstream of this location. The structure

of the forcing, and more specifically the inclination opposite to that of the mean shear,

suggests that the Orr mechanism is responsible for amplifying the disturbances upstream of

separation. According to this mechanism, perturbations that are initially tilted opposite to

the shear, extract energy from the mean flow by transporting momentum through the action

of the perturbation shear stress. As the structures are advected to a more upright position,

the perturbation gains energy. Butler and Farrell [37] studied the optimal perturbations in

three model flows (Couette flow, Poiseuille flow and a Blasius boundary layer) and found

that the 2D initial condition that would give the maximum amplification had a very similar

structure. The optimal forcing in attached flat plate boundary layer flows has also the same

shape ([13] and [15]).

Apart from the wall, it is very interesting to notice the presence of forcing in the free steam

as well. This indicates that natural disturbances (in a physical setting) or discretisation

errors (in a computational setting) upstream of the airfoil provide the seeds that trigger the

Kelvin-Helmholtz instability in the separating shear layer. In the Blasius boundary layer

resolvent simulations of [15] that include the flow upstream and around the leading edge of

the flat plate, only the forcing in the near wall region appears (figure 2 in the paper). This

is probably due to the fact that in a separating boundary layer, the growth of disturbances

is much higher; indeed the local stability analysis of Dovgal et al. [38] reports more than an

order of magnitude higher growth rate when back flow in present. In such conditions, even

small free stream disturbances are significantly amplified, and this can explain the spatial

presence of forcing in the free-stream.

The real part of the cross-stream component of the optimal response close to the airfoil

is shown in Figure 6. The displacement thickness of the suction side boundary layer (solid

black line) and the zero streamwise mean velocity contour (solid brown line) are also shown.

The imaginary part (not shown here) is very similar, but displaced in the streamwise di-

rection (the two parts when substituted in equation (10) result in the propagation of the

perturbation in the streamwise direction). The results are indicative of the convectively un-

stable nature of the flow field. There is a clear cause-and-effect relation between the forcing,

localised upstream, and the corresponding response further downstream. The forcing leads

to a response which is gradually amplified in the separated shear layer and reaches a local
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FIG. 6: Cross-stream component of the optimal response at frequency ωP at the suction
side of the airfoil. The solid black line shows the displacement thickness of the boundary

layer while the solid brown line is the zero-streamwise mean velocity contour. The
contours range is [−4.17, 4.17].
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FIG. 7: Absolute value of the maximum reverse flow (blue line-left axis) and velocities
ratio R (red line-right axis), over the airfoil’s suction side.

maximum value at reattachment (x/c = 0.56). Further downstream, the attached boundary

layer causes a significant attenuation of the response.

This plot demonstrates that the response grows rapidly at the downstream end of the

recirculation zone. Indeed, the growth of the disturbance is very closely correlated with the

maximum reverse flow observed in the separation bubble. In Figure 7 the maximum reverse

flow and the velocity ratio R are plotted in the suction side. In a mixing layer, the velocity

ratio is defined as R = U1−U2

U1+U2

, where U1 and U2 are the velocities of the two streams. In

the current setting, these are the free stream velocity and the maximum reverse velocity

respectively at each x/c location. The rapid growth of the response in Figure 6, which
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takes place at approximately x/c = 0.4, closely matches the location of the rapid increase

of the reverse flow seen in Figure 7. The effect of the strength of the reverse flow on the

amplification rate of the disturbances has been found in the past ([38]). Strykowski and

Niccum [39] found a significant increase in the amplitude of velocity oscillations, in a mixing

layer when the velocity ratio R is larger than 1 (counter-current mixing layer) compared to

the case where R < 1 (co-flowing mixing layer), with an even larger increase as this ratio

exceeds the critical value of approximately R = 1.3. In Figure 7 the velocities ratio appears

to be close to this critical value and even exceed it at a small area. Despite the fact that

the flow studied by Strykowski and Niccum [39] (a parallel mixing layer) is different from

the one examined in the present work, the results appear to agree and to justify, at least in

a qualitative sense, the location where the disturbances are rapidly amplified.

The aforementioned characteristics are entirely consistent with the DNS results. Indeed

the DMD mode obtained directly from the processing of instantaneous snapshots of the flow

(figure 9(b) in [20]) shows a striking similarity to figure 6. Note that the normalisation

used in the DMD and the resolvent modes are different, so it is appropriate to compare

the shape only. The location of inception of the mode, the number and distance between

the counter rotating vortices, and the attenuation close to the trailing edge, are features

that match almost perfectly. For example, upstream of the reattachment point where the

response has the largest amplitude, the wavelength of the counter rotating vortices is 0.08C,

exactly as in the DMD mode. There are slight differences close to the trailing edge; the

DMD mode appears more rugged, while in figure 6 it is very smooth. This is because of

the finite number of snapshots used to construct the DMD mode, and the fact that the

snapshots were obtained in one spanwise plane, i.e. were not spanwise averaged. In the

resolvent analysis, the 2D modes are computed directly from the Navier-Stokes equations,

leading to smoother results. The theoretical link between the resolvent and DMD modes has

been explored recently for general flow configurations as well as configurations with spatial

invariance in [9].

Attention is now turned to the optimal mode at the subharmonic frequency f1 = 3.8 (the

corresponding angular frequency ω1 is denoted in figure 4). The DNS simulations indicate

that f1 is dominant in the aft part of the airfoil and the wake ([20]). The origin of this

frequency is explained, among other papers, in [28]. It arises when the primary frequency

has reached saturation. If one performs linear stability analysis around the periodic base

17



flow (consisting of the time-average plus the periodic primary velocity field), then the sub-

harmonic is the only mode that can reproduce itself through non-linear interaction with the

base flow. Again this is a 2D mode. One can potentially perform resolvent analysis in a

periodic base flow (instead of a time-average) and explore if this mode also becomes dom-

inant, as the DNS simulations demonstrate. The periodic component can be obtained by

phase- and spanwise-averaging of the instantaneous DNS snapshots. We have not pursued

this direction in the present paper, instead we have used the mean-flow only, as is customary

in resolvent analysis. However, this explains why the growth predicted at this frequency is

about one order of magnitude smaller than that of the fundamental shear layer frequency

(refer to figure 4). The optimal response is shown in Figure 8. The response is visible in the

aft part of the airfoil, but has a much stronger presence in the wake (this again agrees with

the DNS findings). The wavenumber of the structures is half compared to that of figure 6,

a result which is expected due to the lower temporal frequency.

FIG. 8: Streamwise component of the optimal response ûx at the wake shedding frequency
ω1. The contours range is [−4.1, 4.1].

B. Naturally developing flow around an airfoil with blunt trailing edge

In Figure 9 the resolvent spectra for both blunt and straight trailing edge airfoils are

plotted together. Again for this flow, the second highest singular value (not shown in the

figure) is 4 orders of magnitude smaller than the first. The two spectra show a similar overall

behaviour, with one important and interesting difference. For the straight trailing airfoil,

the shear layer has the highest receptivity in the range of frequencies ω = 20 − 60. In the

this range however, the gain is almost an order of magnitude smaller for the blunt trailing

edge airfoil. The presence of bluntness therefore renders the separated shear layer much

less receptive to forcing compared to the straight trailing edge case. There are also some

differences in the spectra for very low frequencies, but the gain at these frequencies is many
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FIG. 9: Resolvent spectra of the straight and blunt trailing edge cases.

orders of magnitude smaller.

A pronounced peak at ωSH = 29.3 is observed, which almost perfectly matches the

vortex shedding frequency ω = 28.26 found in [20]. After this peak, a few local extrema

are observed, and then the gain decays rapidly for frequencies larger than approximately

ω = 60.

The optimal forcing for this case is very similar to that of the straight trailing edge airfoil.

The structures are tilted opposite to the mean shear, indicating that the Orr-mechanism is

responsible for the growth of perturbations. The cross-stream component of the correspond-

ing optimal response, shown in Figure 10, is concentrated in the wake of the airfoil. This

is a direct result of the Kárman shedding originating from the truncated trailing edge. The

mode is present at the suction side of the airfoil, albeit highly attenuated. The shape of

this mode is again qualitatively similar to the dominant DMD mode found for the same

flow configuration (figure 12(b) in [20]), with highly energetic structures originating from

the truncated part of the trailing edge and propagating downstream.

In the DNS simulations it was found that in the presence of vortex shedding from the

blunt edge the natural frequency of the separating shear layer was suppressed, and instead

the new shear layer frequency was locked to the shedding frequency. This lock-in mechanism
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FIG. 10: Cross-stream component of the optimal response ûy at the vortex shedding
frequency ωSH . The contours range is [−3.59, 3.59].

can explain the observed suppression of the sensitivity of the separated shear layer to forcing.

It is very interesting that the resolvent analysis can capture this feature.

The change in the dominant frequency in the separating shear layer is reflected in the

structure of the response. In figure 11 we zoom into the response in the suction side of the

airfoil for angular frequency ωSH (this is equivalent to figure 6 for the straight trailing edge).

Comparing the two plots, it can be seen that the Kelvin-Helmholtz structures are more

widely apart, as expected. We have also investigated the shape of the maximum reverse

flow (not shown), and it was found to be very similar to that of the straight trailing edge

case, but the values are slightly smaller (15% of U∞ as opposed to approximately 17.6% of

U∞).

FIG. 11: Cross-stream component of the optimal response at the suction side of the airfoil
at frequency ωSH . The solid black line shows the displacement thickness of the boundary

layer. The contours range is [−0.8, 0.8].
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C. Tripped airfoil with straight trailing edge

1. Analysis of the tripped flow

In the flow around the blunt trailing edge airfoil, the sensitivity of the separating shear

layer to external forcing was reduced because it was locked to vortex shedding. This provides

the motivation for additional simulations in which the flow in the suction side is attached.

To suppress separation, the flow is artificially tripped. Details about the tripping mech-

anism and the numerical implementation were provided in section II. Figure 1 in that

section demonstrated that a result of the artificial tripping, the separating bubble is indeed

suppressed and the boundary layer remains attached (in a time-average sense).

In order to provide more insight into the instantaneous flow field close to the wall, we

computed the probability density function (PDF) of the skin friction Cf and pressure coef-

ficients CP over the suction surface. The samples were collected in the spanwise direction

and over time. The PDF’s were computed at 200 points in the suction side and 29 bins were

used at each point. Due to the large variation of both CP and Cf from the leading to the

trailing edge, using the same bins at each location does not give satisfactory results. For this

reason, at each point x/c, the size of the bins was scaled so that they cover a spread between

−3σ(x) and +3σ(x) around the mean value µ(x), where σ(x) is the standard deviation at x

[40]. The number of samples in each bin is then normalised with the bin area δxδCf,P and

the total number of samples across all bins at the segment [x, x+δx]. While the segments in

the streamwise direction have uniform length δx = c/199, the size of the bins δCf,P depends

on σ(x) and is given by δCf,P = 6
29
σ(x).

Figures 12a and 12b show the PDF of skin friction coefficient for the flows with and

without tripping. The extent along the vertical axis is a measure of the variance, thus the

locations where the PDF appears to be a single line are regions of very low variance and

thus almost steady flow. On the other hand, regions where the values of the PDF are more

spread out imply higher temporal and spanwise variation of Cf . In the naturally developing

boundary layer, as figure 12a suggests, the values are to a large extent almost steady until

approximately x/c = 0.4; downstream of this point the shear layer shedding intensity starts

to grow rapidly. In the tripped case, shown in Figure 12b, the perturbations introduced

close to the leading edge lead to an initially larger spread of Cf values. However closer to
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what would be the separation point, the difference between the two figures is striking, the

spread of Cf is much smaller and the range of values much more clustered around the mean.

The pressure coefficient plots, shown in figures 12c and 12d, show the same behaviour.

While the time-average pressure remains constant inside the recirculation zone (pressure

plateau between approximately x/c = 0.2 and 0.55), the spread around the mean is quite

large. In the tripped case, CP follows a gradual recovery towards the free stream pressure,

leading to an adverse mean pressure gradient in the whole suction side. The spread around

this time-average distribution is significantly reduced compared to the naturally developing

flow. An interesting feature in figure 12b is the presence of a region, approximately between

x/c = 0.15 − 0.3, where the average Cf value is almost zero (it can be seen that the

PDF is symmetrically placed around zero). The negative values of Cf imply the presence

of instantaneous flow reversal appearing locally, which indicates the presence of incipient

separation of the boundary layer.

Figure 13a shows the tangential velocity profiles in x/c=0.01-0.32. Shortly downstream

of the tripping strip (located at x/c = 0.04 − 0.06), the profiles become very distorted and

inflectional close to the wall. At this region, the transition induced by the tripping competes

with the adverse pressure gradient. The latter reduces the slope of the profile close to the

wall, but the flow never separates (in a time average sense) because of the transition induced

by the tripping. In the region x/c = 0.16 − 0.32, the profiles approach the wall almost

vertically (indicating mean Cf ≈ 0). Further downstream the flow re-accelerates and the

distortion is to a large extent eliminated (Figure 13b).

Point spectra at two locations, x/c = 0.47 and x/c = 0.68, are shown in Figure 14 and

demonstrate the presence of a shedding mode, which develops from an initial high frequency

of approximately f2,T rip = 9.0 at the mid-point of the suction side, to its half-subharmonic

fP,Trip from about x/c = 0.6 and further downstream into the wake.

The presence of the inflectional profiles seen in Figure 13a provides the inviscid mechanism

by which the flow can become unstable to perturbations and can explain the presence of the

high frequency noted in the spectra. A snapshot of the instantaneous streamwise velocity

field can be seen in Figure 15. A set of vortices can be easily identified (delineated with red

half-circles).
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FIG. 12: Probability density function of Cf and CP for the naturally developing (left
column) and tripped (right column) flows. The solid line in each plot denotes the mean
value, while the dashed lines bracket the ±1σ and ±2σ ranges around the mean. The
vertical dashed lines in figures 12b and 12d indicate the thin strip where tripping was

applied.

2. Resolvent analysis of the tripped flow

The absence of reverse flow greatly impedes the amplification characteristics of the Kelvin-

Helmholtz mechanism which is in place both in the untripped and in the tripped cases. It it

thus expected that this will affect the response characteristics of the flow-field. The spectrum

of the resolvent operator is shown in Figure 16. Three important differences with respect to

the naturally developing flows can be observed.

Firstly, the peak is suppressed by almost two orders of magnitude with respect to the

blunt trailing edge airfoil, and more than one order of magnitude with respect to the straight
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FIG. 13: Tangential velocity profiles at the airfoil’s surface (shown up to Y/C = 0.01).
The dashed blue arrows indicate increasing x/c.
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FIG. 14: Cross-stream velocity spectra at two locations on the suction’ side boundary
layer.

trailing edge. This indicates that the growth of perturbations is significantly reduced with

respect to both naturally developing flows that exhibit recirculation. The reduction is larger

with respect to the blunt airfoil, because in this case the whole flow is locked to the shedding

frequency. Secondly, the location of the peak has shifted. While in the previous two flows,

the peak was located at the natural frequency of the separated shear layer, in the tripped

flow it is located close to the sub-harmonic frequency (at ωP,Trip = 30 or fP,Trip = 4.77, 6%

difference with the sub-harmonic found earlier from processing the DNS time series). This

frequency however develops downstream of the airfoil and into the wake. Thirdly, there is
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FIG. 15: Instantaneous streamwise velocity field. The red curves delineate large scale
structures.
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FIG. 16: Resolvent spectrum for the tripped straight trailing edge airfoil.

no clear separation between the first and second singular values; the latter (denoted by a

red dashed line) is now much closer to the former, implying a higher contribution in the

full response. It also peaks at the frequency of the shedding originating the suction side, at

approximately ω2,T rip = 56 or f2,T rip = 9.0, found earlier.

The optimal forcing in the cross-stream direction at frequency ωP,Trip is shown in figure

17. The forcing appears not only in the area of high acceleration in the suction side (as in

the previous two cases) but also in the aft part of the pressure side (with reduced ampli-

tude). The flow in this side is still laminar; we have checked the Reynolds stresses and they
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FIG. 17: Optimal forcing in the cross stream direction at frequency ωP,Trip. The contours
range is [−69.2, 69.2]

are negligible. The spatial structure of the optimal forcing is opposed to the mean shear,

indicating the Orr mechanism is acting on both sides.

The spatial structure (cross-stream components) of the two modes corresponding to the

aforementioned peaks is shown in Figure 18. The lowest frequency at ωP,Trip = 30 is indeed

amplified in the wake whereas the highest frequency ω2,T rip is present in the boundary layer

in the suction side and then gradually decays in the wake.

(a) Response at ωP,Trip (highest singular value).

(b) Response at ω2,Trip (second singular value).

FIG. 18: Cross-stream components of responses at frequencies ωP,Trip and ω2,T rip. The
contours in figure 18a range between [−3.6, 3.6] while in figure 18b [−9.8, 9.8].

The close proximity of the two singular values motivates the examination of the effect of

the optimization domain. It was shown in section IIIA that the outcome of the resolvent

analysis depends on the area at which the response is maximised; this is determined by the

matrix Qu. We repeated the resolvent analysis, this time maximising the response in the

domain shown in Figure 19 (the elements of matrix Qu were set to 0 outside this area).
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FIG. 19: Optimization domain defined on the suction side of the airfoil.
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FIG. 20: Resolvent spectra with different optimization domains. The grey lines correspond
to optimisation over the whole domain, while the coloured lines correspond to a domain on

the suction side of the airfoil.

The resulting spectrum of the resolvent operator is shown in Figure 20, superimposed on

the spectrum computed in the whole domain. The singular values are now much smaller,

as expected. The dashed line indicates the frequency ω2,T rip. A noticeable difference in

Figure 20, when compared with Figure 16, is that the location of the peaks is reversed. The

dominant singular value now peaks at ω2,T rip, whereas the second one peaks closer to ωP,Trip.

Figure 21 shows the spatial distribution of the optimal mode at ω2,T rip, and of course this

is indeed localized at the boundary layer on the suction side, as expected.
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The previous analysis demonstrates that in the tripped case, the outcome of the resol-

vent analysis depends on the optimization domain. When the whole domain is used, the

disturbance with the highest energy gain beats at frequency ωP,Trip and is located in the

wake. When the domain is restricted on the suction side the optimal response pulses at

frequency ω2,T rip. It is worth mentioning that in the two untripped cases, the first singular

value peaked at the shear layer frequency, even when the whole domain was used. This

was due to the very strong amplifying characteristics of the separating shear layer. When

the flow is tripped, the flow remains attached, and the growth of perturbations becomes

significantly suppressed. In this case, the effect of wake predominates and shifts the location

of the peak of the first singular value.

FIG. 21: Cross-stream component of the optimal response at the frequency ω2,T rip when
the domain shown in Figure 19 is used in the optimization process. The contours range is

[−7.7, 7.7].

V. Estimation of velocity spectra based on point measurements

As shown in section IIIA, the response û of the flow field to any forcing f̂ , can be written

as (equation (22) repeated below):

û =
N
∑

i=1

σi〈f̂ , f̂i〉ûi (23)

If the first singular value is orders of magnitude larger than the others, the first term in

the sum of equation (23) will dominate (provided of course that the forcing has appreciable

projection to the optimal forcing f̂1). In this case, the response can be approximated by:

û = σ1〈f̂ , f̂1〉û1 (24)
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The only unknown in equation (24) is the term 〈f̂ , f̂1〉 which is the projection of the turbulent

forcing f onto the optimal forcing vector f̂1. The forcing f̂ contains the non linear part

of the Navier-Stokes equation (4), which is unknown, thus the projection 〈f̂ , f̂1〉 cannot be

calculated. If we define the scalar Ψ = σ1〈f̂ , f̂1〉 then Ψ is only a function of the frequency

ω, Ψ = Ψ(ω). Making the dependence of each variable in equation (24) explicit, we get:

û(x, ω) = Ψ(ω)û1(x, ω) (25)

Ψ(ω) is unknown, but the spatial distribution of û1 is known for every frequency. Thus if we

probe the i-th velocity component at a point x0, û
(i)(x0, t), and take the Fourier transform

of the signal, we can calculate Ψ(ω) by solving (25) to get:

Ψ(ω) =
û(i)(x0, ω)

û
(i)
1 (x0, ω)

(26)

Having estimated Ψ(ω) for each ω, an estimation of the spectrum of the velocity at an

arbitrary point x can be obtained from equation (25).

This approach has been used recently with very promising results. Beneddine et al. [11]

used this method to estimate the velocity spectra at several points on a backward facing step

flow, and to reconstruct the dynamics of a round jet from PIV data [41]. Gómez et al. [19]

used a variation of this method to estimate the forces acting on an inclined square cylinder.

The coefficients in the latter application were computed in the time domain.

In the present study, we apply this method to estimate the spectra in the two regions

of interest of the flow field, the suction side of the airfoil and the wake. In Figure 22 the

DNS spectra of the cross-stream velocity are plotted along with the spectra estimated using

equation (25), for the straight trailing edge airfoil. The function Ψ(ω) was estimated from

equation (26), using the spectrum of the cross-stream velocity signal at the calibration point

(x/c, y/c) = (0.62, 0.022), a location which is slightly downstream of the reattachment point

of the boundary layer. Figures 22a, 22b and 22c show the spectra at 3 locations at the

suction side of the airfoil, at x/c = 0.47, 0.53 and 0.68 respectively. A very good agreement

with the DNS spectra can be observed. On the other hand a significant discrepancy can be

observed at the estimation of the spectrum in the wake, at x/c = 2.0, shown in Figure 22d.

This discrepancy reveals a pitfall of this model, which is related to the location of the
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FIG. 22: Comparison between DNS and model spectra (calibration point
x/c = 0.62, y/c = 0.022).

calibration point used to estimate Ψ(ω). If the point is located at a position in which the

energy content of a specific frequency or range of frequencies is low, it is expected that

the values of Ψ(ω) will not be calculated correctly at these frequencies. In a flow which is

characterized by a single frequency (for example a bluff body wake as in the case studied

by Gómez et al. [19]) this problem does not manifest itself, since the calibration point can

be selected in an energetic area of the flow field, such as the wake. As it has been shown

both in the current work and by [20], the flow field created by the straight trailing edge

airfoil shows two dominant frequencies: the shear layer frequency, present on the suction

side of the airfoil, and its sub-harmonic which develops further downstream in the wake. It

is thus clear that if the calibration point used for calculating the weights Ψ(ω) is located

on the suction side of the airfoil, at a point where the sub-harmonic frequency hasn’t still

fully developed, the values of Ψ(ω) at the corresponding frequencies will not be accurate.
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This is exactly the case in the estimates shown in Figure 22, where the calibration point

is located at X/C = 0.62, a point at which the dominant frequency is that of the shear

layer. Consequently the values of Ψ(ω) at the nearby points X/C = 0.47, 0.53 and 0.68 are

calculated correctly leading to the very good agreement seen in Figures 22a, 22b and 22c.

The values, however, of Ψ(ω) at the smaller frequencies were erroneous, since the energy

content of the spectrum at X/C = 0.62 at these frequencies is very small, leading to the

very small values of the estimation shown in Figure 22d.

A solution to this problem, proposed by Beneddine et al. [11], is to use several points

in the flow field (instead of a single point) and solve the, now over-determined, system of

equations (26) (one equation for each point) in a least squares sense. If we select M points

the minimization problem becomes:

minimize
Ψ(ω)

M
∑

i=1

‖û(xi, ω)−Ψ(ω)û1(xi, ω)‖
2 (27)

In Figure 23 the estimated spectrum is plotted again at the same streamwise location

x/c = 2.00 in the wake. The difference is that the spectrum at an additional point located at

(x/c, y/c) = (1.40,−0.12) was also used to calculate the values of Ψ(ω) (the previous point

at X/C = 0.62 was still used). As this figure reveals, using one more extra point in the

wake has indeed corrected the discrepancy seen earlier in Figure 22d. The velocity signal at

the second calibration point x/c = 1.40 has now enough energy in the frequency range of

the wake to properly scale the values of the optimal response. The spectra estimates at the

three other points were virtually unchanged and they are not plotted here.

The same method was applied for the blunt trailing edge airfoil; the results are shown

in Figure 24 at the same locations as before. A single calibration point, located again

at (x/c, y/c) = (0.62, 0.022), was used to calculate Ψ(ω). A very good agreement can be

observed at all points. The estimated spectra are very close to the actual ones, and the

shedding frequency of fbl,1 = 4.5 is accurately predicted at all locations. The reason for the

good agreement is the dominance of the shedding mode throughout the flow field in this case.

Indeed, the flow is dominated by the Kárman shedding from the truncated trailing edge.

The same frequency is also identified in the separating shear layer which is synchronised

(locked) with Kárman shedding frequency. Thus the probing point at X/C = 0.62 contains

enough energy at this frequency to correctly predict Ψ(ω) and, consequently, give accurate
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FIG. 23: Model spectrum at the wake point (X/C = 2.0, Y/C = −0.17) using two
calibration points to estimate Ψ(ω).

estimations for the entire spectrum.

We did not apply the spectra estimation to the tripped airfoil case for two reasons. Firstly,

there is no clear separation of the two dominant singular modes, and secondly we have

considered only two-dimensional perturbations (kz = 0). While it is easy to account for the

two neighbouring singular modes, the resolvent analysis for three-dimensional perturbations

is more involved. In the naturally developing cases, the flow is dominated by the 2D Kelvin-

Helmholtz instability and its subharmonic, so point measurements to compute the spectrum

are justified. For the case of tripped airfoil though, the two dimensional component is weak

due to the absence of recirculation. Therefore the instantaneous perturbation velocity must

be first averaged in the spanwise direction to extract the kz = 0 component and then Fourier

transformed to obtain û(i)(x0, ω); from this Ψ(ω) can be derived from (26). We did not store

time-resolved velocity data at all points in the spanwise direction to be able to perform this

operation. Furthermore, considering kz = 0 components only, we cannot recover the spectra

of the spanwise velocity in the z direction. For this, the system of equations (12) should

be augmented to include the spanwise wavenumbers kz 6= 0 (the relevant equations are well

known, and can be found for example in [42]). The extraction of the singular values is

now more time-consuming because a larger system must be solved at each frequency. The

resolvent analysis must be applied for range of wavenumbers in the spanwise direction. We

have not pursued this direction in the present paper, and we leave this as future work.

32



10
-1

10
0

10
1

f

0

1

2

3

4

E
v
v
×

1
0

3

Model spectrum

PSD spectrum

(a) X/C = 0.47, Y/C = 0.035.

10
-1

10
0

10
1

f

0

0.01

0.02

0.03

0.04

0.05

E
v

v

Model spectrum

PSD spectrum

(b) X/C = 0.53, Y/C = 0.032.
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FIG. 24: PSD spectrum as calculated from the model (calibration at
X/C = 0.62, Y/C = 0.022).

VI. Conclusions

In the present work, we studied the frequency response of separated and attached flows

around a NACA-0012 airfoil. The resolvent operator was used that allows the study of

the flow behavior from a systems point of view. It was assumed that the time-average

flow is known, and the non-linear terms that appear in the transport equations for the

flow perturbations around the mean were treated as a turbulent forcing term. For a given

angular frequency ω, the resolvent operator provides a linear map between this forcing and

the perturbations. A singular value decomposition of the resolvent provides the optimal

forcings that will result in the maximum system response.

For the naturally developing flow around the standard NACA-0012 airfoil, the spectrum

of the dominant singular value indicates very high amplification at the frequencies close

to the natural frequency of the separated shear layer. The optimal forcing and response

was also studied. It was revealed that the area most susceptible to forcing is the leading

edge of the airfoil, up to approximately x/c = 0.2. The spatial structure of the forcing
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was skewed against the mean flow, indicating that the Orr mechanism is responsible for the

growth of perturbations upstream of separation. The spatial structure of the response was

that of Kelvin-Helmholtz instabilities, which is known to develop in separating flows. The

shape matched closely with the corresponding DMD mode obtained from processing the

DNS results.

The resolvent operator was also applied to the naturally developing flow around a NACA-

0012 airfoil with blunt trailing edge. For this case, the dominant singular value was reduced

by almost an order of magnitude at the range of frequencies around the natural frequency

of the separating shear layer found earlier. The resolvent spectrum was found to peak at

the frequency of the Karman vortex shedding from the blunt trailing edge. Previous DNS

simulations have demonstrated the lock-in of the separating shear layer to the shedding

frequency, and the present resolvent analysis demonstrates the reduced receptivity of the

separation bubble to forcing under lock-in conditions.

The third case examined was that of the tripped flow around the airfoil. Tripping sup-

pressed the recirculation zone in a time-average sense, but resulted in distorted profiles

that exhibited inflection points. The attached flow resulted in much smaller growth rates

compared to the previous two cases (by almost two orders of magnitude) and the optimal

response predicted by the resolvent analysis was present mainly in the wake. We repeated

the resolvent analysis, computing the optimal response on a specific part of the domain

around the suction side, and then we recovered the expected response at a frequency that

matched the DNS results.

Finally, it was demonstrated how the resolvent analysis can be used to make accurate

predictions of the spectra at any point in the flow field. For the straight trailing edge airfoil,

two calibration points were needed. These must be located at regions where the fundamental

and sub-harmonic Kelvin-Helmholtz modes have strong presence. For the blunt trailing edge

airfoil, a single point was sufficient, because the flows in the suction side and the wake are

locked to the vortex shedding, which is characterized by a single frequency. It has not been

possible to predict the spectra for the tripped airfoil case, mainly because we have considered

only two-dimensional perturbations (kz = 0).

34



Acknowledgments

This work was funded by the MULTISOLVE project (Grant Agreement Number 317269)

under the ITN Marie Curie framework of the European Commission. The simulations were

performed in the Imperial College CX2 facility and in the UK HPC facility Archer (with

access provided by the UK Turbulence Consortium, under grant EP/L000261/1).

[1] M Gaster, On the stability of parallel flows and the behaviour of separation bubbles, Ph.D.

thesis, Queen Mary, University of London (1963).

[2] M Gaster, “Growth of disturbances in both space and time,” The Physics of Fluids 11, 723–727

(1968).

[3] PJ Schmid and DS Henningson, Stability and transition in shear flows, Vol. 142 (Springer

Science & Business Media, 2012).

[4] JL Lumley, Stochastic tools in turbulence, 1st ed. (Elsevier, 1970).

[5] Lawrence Sirovich, “Turbulence and the dynamics of coherent structures. i. coherent struc-

tures,” Quarterly of applied mathematics 45, 561–571 (1987).

[6] PJ Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal of

Fluid Mechanics 656, 5–28 (2010).

[7] BJ McKeon and AS Sharma, “A critical-layer framework for turbulent pipe flow,” Journal of

Fluid Mechanics 658, 336–382 (2010).

[8] Tosio Kato, Perturbation theory for linear operators, Vol. 132 (Springer Science & Business

Media, 2013).
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