Higher genus hyperelliptic reductions of the Benney equations

Sadie Baldwin and John Gibbons
Imperial College
180 Queen’s Gate
London SW7 2BZ
E-mail: sadie.baldwin@imperial.ac.uk, j.gibbons@imperial.ac.uk

Abstract. It was shown by Gibbons and Tsarev (1996 Phys. Lett. A 211 19, 1999 Phys. Lett. A 258 263) that N-parameter reductions of the Benney equations correspond to N-parameter families of conformal maps. Here, we consider a specific set of these, the hyperelliptic reductions. The mapping function for this is calculated explicitly by inverting a second-kind Abelian integral on the stratum Θ_1 of the Jacobi variety of a genus $g \geq 3$ hyperelliptic curve. This is done using a method based on the result of Jorgenson (1992 Israel Journal of Mathematics 77 273).

PACS numbers: 02.30.Ik, 02.30.Jr, 02.30.Zz

1. Introduction

1.1. Reductions of the Benney Moment Equations

The Benney equations [3] are an example of an infinite system of hydrodynamic type. These can be written as a Vlasov equation [7], [15]

$$\frac{\partial f}{\partial t_2} + p \frac{\partial f}{\partial x} - \frac{\partial A^0}{\partial x} \frac{\partial f}{\partial p} = 0.$$

Here $f = f(x, p, t)$ is a distribution function and the moments are defined by

$$A^n = \int_{-\infty}^{\infty} p^n f dp.$$

Benney showed that this system has infinitely many conserved densities, polynomial in the moments A^n.

Following [14] and [1], we will now consider reductions of the moment equations; that is the case where only a finite number, N, of the A^n are independent. Here, the moment equations can be reduced to a diagonal system of hydrodynamic type with N Riemann invariants, $\hat{\lambda}_i$ say, dependent on N characteristic speeds, \hat{p}_i. We will assume that the characteristic speeds are real and distinct.

It was shown by Tsarev and one of the authors that in such a case the reductions correspond to N–parameter families of conformal mappings of slit domains. For details
Higher genus hyperelliptic reductions of the Benney equations

of the properties of these maps and the general construction of such a domain see [8] and [9]. We will now consider a specific set of these reductions which we will call the hyperelliptic reductions.

1.2. Hyperelliptic reductions

For this set of reductions the conformal mapping \(\lambda(p) : \Gamma_1 \rightarrow \Gamma_2 \) is defined as follows. Let \(\Gamma_1 \) be the upper half \(p \)-plane with \(3n \) real points marked on it, \(p_i (i = 1, \ldots, 2n) \) and the set of characteristic speeds \(\hat{p}_j (j = 1, \ldots, n) \). These satisfy

\[
p_1 < \hat{p}_2 < p_3 < p_4 < \hat{p}_3 < p_5 < \cdots < p_{2n-1} < \hat{p}_n < p_{2n}.
\]

The domain \(\Gamma_2 \) is the upper half \(\lambda \)-plane with \(n \) vertical slits going from the fixed real points \(\lambda_0^i \) to the variable points \(\hat{\lambda}_i (i = 1, \ldots, n) \). Here, \(\hat{\lambda}_i \) is the Riemann invariant associated with the characteristic speed \(\hat{p}_i \) and it satisfies the relation

\[
\text{Re} \left(\hat{\lambda}_i \right) = \lambda_0^i.
\]

We now impose the conditions

\[
\lambda(p) = p + O \left(\frac{1}{p} \right) \quad \text{as} \quad p \rightarrow \infty
\]

and

\[
\lambda(p_{2i-1}) = \lambda(p_{2i}) = \lambda_0^i \quad (i = 1, \ldots, n).
\]

It follows that \(\lambda(p) \) is a function of \(n \) independent parameters which may be taken to be \(\text{Im}(\hat{\lambda}_i) (i = 1, \ldots, n) \), the varying heights of the slits \(\dagger \) and that \(\Gamma_2 \) is a polygonal domain. The map \(p \rightarrow \lambda(p) \) is thus of Schwarz-Christoffel type:

\[
\lambda(p) = p + \int_{\infty}^{p} \left[\varphi(p') - 1 \right] \, dp'
\]

where \(\varphi(p) \) is given by

\[
\varphi(p) = \frac{\prod_{i=1}^{n} (p - \hat{p}_i)}{\sqrt{\prod_{i=1}^{2n} (p - p_i)}}.
\]

\[
\begin{align*}
\hat{p}_1 & \quad p_1 \\
\hat{p}_2 & \quad p_2 \\
\hat{p}_3 & \quad p_3 \\
\hat{p}_4 & \quad p_4 \\
\vdots & \quad \vdots \\
\hat{p}_n & \quad p_{2n-1} \\
p_{2n} & \quad p_{2n}
\end{align*}
\]

Figure 1. (The \(n \) parameter reduction) The \(p \)-plane with \(n \) branch cuts.

\(\dagger \) Note that since \(\text{Im}(\lambda) \geq 0 \, \forall \, \lambda \) and the distribution function \(f = -\pi \text{Im}(\lambda) \), the distribution function is negative.
Higher genus hyperelliptic reductions of the Benney equations

One of the conditions in (1) and (2) may be replaced by the constraint that the residue of \(\varphi(p) \), as \(p \to \infty \) on either sheet, is zero. This provides a relation between the set of points \(p_i \) and the set of characteristic speeds \(\hat{p_j} \). Rewriting

\[
\varphi(p) = \frac{p^n - \alpha_{n-1} p^{n-1} - \alpha_{n-2} p^{n-2} - \cdots - \alpha_1 p - \alpha_0}{\sqrt{\prod_{i=1}^{2n} (p - p_i)}},
\]

we find that the expansion of \(\varphi(p) \) near infinity is

\[
1 + \left(\frac{1}{2} \sum_{i=1}^{2n} p_i - \frac{\alpha_{n-1}}{p}\right) + O\left(\frac{1}{p^2}\right).
\]

The condition on the residue is therefore satisfied when

\[
\alpha_{n-1} = \frac{1}{2} \sum_{i=1}^{2n} p_i,
\]

that is,

\[
\sum_{i=1}^{n} \hat{p_i} = \frac{1}{2} \sum_{i=1}^{2n} p_i. \tag{4}
\]

It follows that \(\varphi(p) \, dp \) is a second kind Abelian differential on the Riemann surface

\[
R_g = \left\{ (p, v) : v^2 = \prod_{i=1}^{2n} (p - p_i) \right\}
\]

where \(g = n - 1 \). That is, the differential 1-form \(\varphi(p) \, dp \) is meromorphic on \(R_g \) with zero residue at each singular point.

This surface may be constructed from two copies of the complex \(p- \)plane joined along the closed intervals

\[
[p_{2i-1}, p_{2i}] \quad (i = 1, 2, \ldots, g + 1).
\]

A homology basis \((a_1, a_2, \ldots, a_g; b_1, b_2, \ldots, b_g)\) for \(R_g \) is given in figure 3.

The first three examples of these maps, \(g = 0, 1, 2 \), have been worked out in detail. For \(g = 0 \) the mapping may be calculated directly. The case of the \(n = 2 \) elliptic reduction was evaluated in [14] by Yu and Gibbons. The \(n = 3 \) genus 2 hyperelliptic reduction was studied in [1] by the authors. We now consider the case for \(g \geq 3 \). All such maps, once known explicitly, correspond to reductions of Benney’s equations to systems

Figure 2. The \(\lambda \)-plane associated with figure 1.
of hydrodynamic type with finitely many Riemann invariants. Tsarev’s generalised
hodograph transformation [13] leads to solutions of these, in terms of the solution of an
over-determined system of linear equations. The construction of \(n \)-parameter families
of such maps is thus an important step towards understanding the solutions of these
equations.

2. Transformation of the integral

Following [1], the integral we need to evaluate is (3):

\[
\lambda(p) = p + \int_{-\infty}^{\infty} \left[\frac{\prod_{i=1}^{g+1} (p' - \hat{p}_i)}{\sqrt{\prod_{i=1}^{2g^2+2} (p' - p_i)}} - 1 \right] \, dp'.
\]

Setting \(p = p_{2g+2} - 1/t \) in the integrand \((\varphi(p) - 1) \, dp \), we find

\[
(\varphi(p) - 1) \, dp = \frac{\left(A_{g+1} t^{g+1} + A_g t^g + \cdots + A_2 t^2 + A_1 t + (-1)^{g+1} \right)}{\sqrt{\prod_{i=1}^{2g^2+2} [(p_{2g+2} - p_i) t - 1]}} \, \frac{dt}{t^2}
\]

for some constants \(A_i \) \((i = 1, 2, \ldots, g + 1)\). We note here that

\[
A_1 = (-1)^g \sum_{i=1}^{g+1} (p_{2g+2} - \hat{p}_i).
\]

This may be expressed in terms of just the \(p_i \) using identity (4):

\[
A_1 = \frac{(-1)^g}{2} \sum_{i=1}^{2g+1} (p_{2g+2} - p_i).
\]

If we now remove the constant imaginary factor

\[
k = \left(\frac{-4}{\prod_{i=1}^{2g+1} (p_{2g+2} - p_i)} \right)^{1/2}
\]
from (5), then we obtain a standardized form for the irrational denominator,
\[
\varphi(p) \, dp = k \left(\frac{A_{g+1} t^{g+1} + A_g t^g + \cdots + A_2 t^2 + A_1 t + (-1)^{g+1}}{s} \right) \frac{dt}{t^2}
\]
\[
= k \left(A_{g+1} t^{g-1} + A_g t^{g-2} \cdots + A_2 + \frac{A_1}{t} + \frac{(-1)^{g+1}}{t^2} \right) \frac{dt}{s}
\]
(7)

where
\[
s^2 = -k^2 + k^2 \sum_{i=1}^{2g+1} (p_{2g+2} - p_i) t + \cdots + \mu_{2g} t^{2g} + 4t^{2g+1}
\]
\[
= \mu_0 + \mu_1 t + \cdots + \mu_{2g} t^{2g} + 4t^{2g+1}.
\]
(8)

The term
\[
\varphi_1(p) \, dp = k \left(A_{g+1} t^{g-1} + A_g t^{g-2} + \cdots + A_2 \right) \frac{dt}{s}
\]

in (7) may be evaluated directly since the set
\[
du_i = t^{i-1} \frac{dt}{s} \quad (i = 1, 2, \ldots, g)
\]
forms a basis of holomorphic Abelian differentials. The last two terms in \(\varphi(p) \, dp\) can be rewritten using (6) and the definitions of \(\mu_0\) and \(\mu_1\) in (8). We have
\[
\varphi_2(p) \, dp = k \left[\frac{(-1)^{g+1}}{t^2} + \frac{A_1}{t} \right] \frac{dt}{s}
\]
\[
= (-1)^{g+1} k \left[\frac{1}{t^2} - \frac{1}{2} \left(\sum_{i=1}^{2g+1} (p_{2g+2} - p_i) \right) \frac{1}{t} \right] \frac{dt}{s}
\]
\[
= (-1)^{g+1} k \left[\frac{1}{t^2} + \frac{1}{2} \frac{\mu_1 \mu_0}{\mu_0} \right] \frac{dt}{s}.
\]
(9)

This is a second kind differential on \(R_g\). As in the genus 2 case, we can evaluate \(\varphi_2(p) \, dp\) using a restriction of the Jacobi inversion theorem to a one complex dimensional subspace of the Jacobi variety, the one-dimensional stratum of the theta divisor, \(\Theta_1\).

3. The \(\Theta\) divisor

Following Enolski \[4, 5\], let \(R_g(s, t)\) be the hyperelliptic curve where \(s\) and \(t\) satisfy
\[
s^2 = 4 \prod_{i=1}^{2g+1} (t - t_i) = \sum_{i=0}^{2g} \mu_i t^i + 4t^{2g+1}.
\]

We define a set of holomorphic and their associated set of second kind differentials on \(R_g\) to be, respectively,
\[
du_i = t^{i-1} \frac{dt}{s} \quad (i = 1, 2, \ldots, g)
\]
(10)

and
\[
dr_i = \sum_{k=i}^{2g+1-i} (1 + k - i) \mu_{1+i+k} \frac{t^k dt}{4s} \quad (i = 1, 2, \ldots, g).
\]
(11)
From the period integrals of these differentials we form the matrices $\omega, \omega', \eta, \eta'$:

$$
2\omega = \left(\oint_{a_i} du_j \right) \quad 2\omega' = \left(\oint_{b_i} du_j \right)
$$

$$
2\eta = \left(-\oint_{a_i} dr_j \right) \quad 2\eta' = \left(-\oint_{b_i} dr_j \right) \quad (i, j = 1, 2, \ldots, g).
$$

These matrices satisfy the generalized Legendre relation

$$
\left(\begin{array}{cc}
\omega & \omega' \\
\eta & \eta'
\end{array} \right) \left(\begin{array}{cc}
0 & -I_g \\
I_g & 0
\end{array} \right) \left(\begin{array}{cc}
\omega & \omega' \\
\eta & \eta'
\end{array} \right)^T = -\frac{i\pi}{2} \left(\begin{array}{cc}
0 & -I_g \\
I_g & 0
\end{array} \right),
$$

where I_g is the $g \times g$ identity matrix.

Letting $\Lambda = 2\omega \oplus 2\omega'$ be the lattice generated by the periods of the holomorphic differentials, the Jacobi variety, $\text{Jac}(R_g)$, is the g-dimensional complex torus \mathbb{C}^g/Λ. The Jacobi variety can be subdivided into k-dimensional strata, Θ_k, defined by

$$
\Theta_k = \sum_{i=1}^{k} \int_{(t_i,s_i)}^{(t_0,s_0)} du + 2\omega K_{(t_0,s_0)} \quad (k = 1, 2, \ldots, g)
$$

where $K_{(t_0,s_0)}$ is the vector of Riemann constants with base point (t_0,s_0). These have the structure $\text{Jac}(R_g) = \Theta_g \supset \Theta_{g-1} \supset \cdots \Theta_2 \supset \Theta_1$. Such stratifications have been studied by Ōnishi [12] and others.

The Abel map, $\mathfrak{A} : R_g \to \text{Jac}(R_g)$, is given by $u(z)$:

$$
\mathfrak{A}(D) = \sum_{i=1}^{M} n_i \int_{z_0}^{z} du_i, \quad (i = 1, 2, \ldots, g)
$$

where the $u_i(z)$ are taken modulo Λ and the base point $z_0 = (t_0,s_0)$ is any fixed point in R_g. These create a one-dimensional image of the hyperelliptic curve in the Jacobi variety. For the inversion theorem we require an extension of this map to a set of points.

Definition 3.1 A divisor \mathcal{D} on the Riemann surface R_g is defined by the finite formal sum

$$
\mathcal{D} = \sum_{i=1}^{M} n_i z_i
$$

where $n_i \in \mathbb{Z}$ and $z_i = (s_i, t_i) \in R_g$.

We define the Abel mapping of \mathcal{D} into $\text{Jac}(R_g)$ by

$$
\mathfrak{A}(\mathcal{D}) = \sum_{i=1}^{M} n_i \int_{z_0}^{z_i} du \mod \Lambda.
$$

The lower limit of integration, here the point z_0, is called the base point of the Abel map. From now we shall set this to be (∞, ∞).
3.1. Hyperelliptic functions

Definition 3.2 The theta function is defined by the Fourier series
\[
\theta((2\omega)^{-1}u) = \sum_{m \in \mathbb{Z}} \exp \left\{ i\pi \left[m^T \tau m + m^T (\omega^{-1} u) \right] \right\},
\]
where \(\tau = \omega^{-1} \omega' \) is a symmetric matrix with positive definite imaginary part.

One important property of this function is that it is zero when \(u = 2\omega K' \), the vector of Riemann constants associated with the point \((\infty, \infty)\). For further properties see [4].

From the \(\theta \)-function we define the Kleinian \(\sigma \)-function of the curve \(R_g \) to be
\[
\sigma(u) = C \exp (u^T \chi u) \theta((2\omega)^{-1}u - K)
\]
where
\[
C = \sqrt{\frac{\pi^3}{\det 2\omega} \left(\prod_{1 \leq i < j \leq 2g+1} (t_i - t_j) \right)}^{\frac{1}{4}}
\]
and \(\chi = \eta (2\omega)^{-1} \) is a symmetric matrix.

In analogy to the Weierstrass \(\wp \)-function, the Kleinian \(\wp \)-function is defined as [4]
\[
\varphi_{ij} = -\frac{\partial^2}{\partial u_i \partial u_j} \ln [\sigma(u)] = \left(\sigma_i \sigma_j - \sigma_{ij} \sigma \right) (u)
\]
where

\[
\sigma_i = \frac{\partial}{\partial u_i} \sigma(u), \quad \sigma_{ij} = -\frac{\partial^2}{\partial u_j \partial u_i} \sigma(u).
\]

Higher logarithmic derivatives of \(\sigma \) are expressed similarly. For example
\[
\varphi_{ijkl} = -\frac{\partial^4}{\partial u_i \partial u_j \partial u_k \partial u_l} \ln [\sigma(u)].
\]

3.2. Jacobi Inversion formula

Theorem 1 (Jacobi inversion theorem) [4] The Abel preimage of the point \(u \in \text{Jac}(R_g) \) is given by the set \(S = \{(t_1, s_1), (t_2, s_2), \ldots, (t_g, s_g)\} \in (R_g)^g \), where \(t_k \) are the zeros of the polynomial
\[
P(t; u) = t^g - t^{g-1} \varphi_{g,g}(u) - t^{g-2} \varphi_{g,g-1}(u) - \ldots - \varphi_{g,1}(u)
\]
and the \(s_k \) are given by
\[
s_k = -\frac{\partial P(t; u)}{\partial u_g} \bigg|_{t = t_k}.
\]

For the integral of the differential (9), we need the preimage of \(u \) when the points \(t_i \to \infty \) \((i = 2, \ldots, g) \). That is, for the case when \(S = \{(t_1, s_1)\} \) and so \(u \in \Theta_1 \):
\[
\mathcal{A}(S) = \int_{t_1}^{\infty} du.
\]
This relation has been calculated from the results of Jorgenson [11] by Enolski (see Appendix A). We obtain
\[t_1 = -\frac{\sigma_1(u)}{\sigma_2(u)} \bigg|_{u \in \Theta_1} \tag{12} \]
where the one-dimensional stratum \(\Theta_1 \) may be defined as
\[\Theta_1 = \{ u : \sigma_1(u) = 0, \sigma_k(u) = 0 \ (k = 3, \ldots, g) \} \].
This useful result (12) was first given by Grant in [10].

4. Evaluation of the integral
We now further transform the integrand \((\varphi_1(p) + \varphi_2(p)) \, dp\) using the substitution
\[t = (-\sigma_1/\sigma_2)(u) \] (12) and the definitions of the holomorphic differentials, \(du_i (i = 1, 2, \ldots, g)\) (10).

| Table 1. A list of branch points \((p_i)\) and poles \((\infty_\pm)\) of \(\lambda(p)\) with the corresponding points in the \(t\) and \(u\) variables. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| \((p)\) | \(p_1\) | \(p_2\) | \(p_{2g+1}\) | \(p_{2g+2}\) | \(\infty_\pm\) |
| \((t)\) | \(t_1\) | \(t_2\) | \(t_{2g+1}\) | \(\infty\) | \(0_\pm\) |
| \((u)\) | \(u_1\) | \(u_2\) | \(u_{2g+1}\) | \(0\) | \(\pm u_0\) |

Lemma 1 Let \(t = (-\sigma_1/\sigma_2)(u) \) where \(u \in \Theta_1 \) and define \(du_i = t^{-1}dt/s\), a set of holomorphic differentials on \(R_g\). Then
\[\varphi(p) \, dp = k \left(A^T \cdot du \right) + (-1)^{g+1} k \left(\frac{\sigma_2^2}{\sigma_1^2}(u) - \frac{1}{2} \frac{\mu_1}{\mu_0} \frac{\sigma_2}{\sigma_1}(u) \right) \frac{dt}{s} \]
where \(A^T = (A_2, A_3, \ldots, A_{g+1})\).

The term
\[\varphi_2(u) \, du_1 = \left(\frac{\sigma_2^2}{\sigma_1^2}(u) - \frac{1}{2} \frac{\mu_1}{\mu_0} \frac{\sigma_2}{\sigma_1}(u) \right) du_1 \]
is a second kind differential with a pole of order 2 at \(u = \pm u_0 \) (see Table 1). This can be verified as follows.

Since \(u_0 \) is a regular point on the hyperelliptic curve \(R_g\), we can evaluate the expansion of \(\varphi_2\) near \(u_0\) in terms of the local parameter \(t\). Setting \(v_k = e_k^T \cdot (u - u_0)\) where \((e_k)_j = \delta_{kj}\), we have
\[v_k = \int_{-\infty}^{t} du_k - \int_{-\infty}^{0} du_k \]
\[= \int_{0}^{t} \int_{0}^{t} \frac{t^k - 1}{\sqrt{4t^{2g+1} + \mu_{2g}t^{2g} + \ldots + \mu_1 t + \mu_0}} \, dt.\]
These expansions may be simplified by using the substitutions for σ (using (13)). The higher genus hyperelliptic reductions of the Benney equations

This gives

$$v_k = \left(\frac{1}{k} \right)^2 \left(\frac{1}{\sqrt{\mu_0}} \right)^2 t^k - \left(\frac{1}{2(k + 1)} \right) \frac{\mu_1}{\mu_0^2} t^{k+1} + O(t^{k+2}) \quad (k = 1, 2, \ldots, g)$$

and so for $k > 1$

$$v_k = \left(\frac{1}{k} \mu_0^{(k-1)/2} \right) v_1^k + O(v_1^{k+1}). \quad (13)$$

The Taylor series of φ_2 near u_0 can thus be expressed in terms of the single parameter $v_1 = e_1^T \cdot (u - u_0)$. We have

$$\frac{\sigma_2}{\sigma_1^2} (u_0 - (u_0 - u)) = \frac{(\sigma_2) + (\sigma_{12}) v_1 + \cdots}{(\sigma_{11}) v_1 + \cdots} = \left(\frac{\sigma_2}{\sigma_{11}} \right) v_1^{-1} + O(1)$$

and

$$\frac{\sigma_2^2}{\sigma_1^2} (u_0 - (u_0 - u)) = \frac{\sigma_2^2 + (2 \sigma_{12} v_1 + \cdots)}{\sigma_{11}^2 v_1^2 + (\sigma_{11} \sigma_{111}) v_1^3 + (2 \sigma_{11} \sigma_{12}) v_1 v_2 + \cdots}$$

$$= \left(\frac{\sigma_2^2}{\sigma_{11}^2} \right) v_1^{-2} + \left(\frac{2 \sigma_{12} \sigma_{111}}{\sigma_{11}^3} - \frac{2 \sigma_2^2 \sigma_{11}}{\sigma_{11}^3} - \sqrt{\mu_0} \frac{\sigma_2^2 \sigma_{12}}{\sigma_{11}^3} \right) v_1^{-1} + O(1)$$

(using (13)).

These expansions may be simplified by using the substitutions for $\sigma_{11}(u_0)$ and $\sigma_{111}(u_0)$ calculated in Appendix B. This gives

$$\left(\frac{\sigma_2^2}{\sigma_{11}^2} - \frac{1}{2} \frac{\mu_1}{\mu_0} \frac{\sigma_2}{\sigma_{11}} \right) (u_0 - (u_0 - u)) = \left(\frac{1}{\mu_0} \right) v_1^{-2} + O(1) \quad (\forall g \geq 3). \quad (14)$$

In analogy to the genus 2 case, we now consider the function

$$\Psi(u) = -\frac{1}{\mu_0} \frac{\sigma_{11}}{\sigma_1^2} (u)$$

for $u \in \Theta_1$. Since $d u_i = (-\sigma_i / \sigma_2) (i-1) du_1$, the derivative of Ψ with respect to u_1 along $\Theta_1 = \{ u : \sigma = 0, \sigma_k = 0 \ (k = 3, \ldots, g) \}$ is

$$\psi = \frac{d}{du_1} \left[-\frac{1}{\mu_0} \frac{\sigma_{11}}{\sigma_1} \right]$$

$$= -\frac{1}{\mu_0} \sum_{i=1}^g (-1)^{i-1} \left(\frac{\sigma_1}{\sigma_2} \right)^{i-1} \left(\frac{\sigma_{11} \sigma_{111} \sigma_{12}}{\sigma_1^3} - \frac{\sigma_{11} \sigma_{111}}{\sigma_1^2} \right). \quad (15)$$

This function is only singular when $\sigma_1(u) = 0$, that is when $u = \pm u_0$.

We calculate the Taylor series of ψ near the singular point u_0 as follows. Since just the first three terms in the sum contain negative powers of σ_1 we will rewrite $\psi(u)$ as

$$\psi = -\frac{1}{\mu_0} \left[(-\sigma_1^2) \frac{1}{\sigma_1^2} + \left(\frac{\sigma_{11} \sigma_{111} \sigma_{12}}{\sigma_1^3} \right) \frac{1}{\sigma_1} + O(1) \right] \quad (\forall g \geq 3)$$

for u near u_0. If we now take the limit $u \rightarrow u_0 \Leftrightarrow p \rightarrow \infty$, we obtain

$$\lim_{u \rightarrow u_0} \left[\frac{1}{\mu_0} \frac{\sigma_{11}^2}{\sigma_1^2} \right] = \lim_{v_1 \rightarrow 0} \left[\frac{1}{\mu_0} \frac{\sigma_{11}^2 (v_1^2 + (2 \sigma_{11} \sigma_{111}) v_1 + \cdots)}{\sigma_{11}^2 v_1^2 + (\sigma_{11} \sigma_{111}) v_1^3 + (2 \sigma_{11} \sigma_{11} \sigma_{12}) v_1 v_2 + \cdots} \right]$$

$$= \lim_{v_1 \rightarrow 0} \left[\left(\frac{1}{\mu_0} \right) v_1^{-2} + \left(\frac{1}{\mu_0} \frac{\sigma_{11} \sigma_{111} \sigma_{12}}{\sigma_{11}^3} - \frac{1}{\sqrt{\mu_0} \sigma_1} \right) v_1^{-1} + O(1) \right]$$
and
\[
\lim_{u \to u_0} \left[-\frac{1}{\mu_0} \left(\frac{\sigma_{111}}{\sigma_1} + \frac{\sigma_{11} \sigma_{12}}{\sigma_2 \sigma_1} \right) \right] = \lim_{v_1 \to 0} \left[\frac{-\left(\sigma_{111} \sigma_2 + \sigma_{11} \sigma_{12}\right)}{\mu_0 \sigma_2 \sigma_{11}} v_1 + \cdots \right]
\]
\[
= \lim_{v_1 \to 0} \left[\left(-\frac{1}{\mu_0} \frac{\sigma_{111}}{\sigma_{11}} - \frac{1}{\mu_0} \frac{\sigma_{12}}{\sigma_2} \right) v_1^{-1} + O(1) \right].
\]
Combining these gives
\[
\lim_{u \to u_0} \psi(u) = \lim_{v_1 \to 0} \left[\left(\frac{1}{\mu_0} \right) v_1^{-2} + \left(\frac{1}{\sqrt{\mu_0}} \frac{\sigma_{12}}{\sigma_{11}} (u_0) - \frac{1}{\mu_0} \frac{\sigma_{12}}{\sigma_2} (u_0) \right) v_1^{-1} + O(1) \right]
\]
\[
= \left(\frac{1}{\mu_0} \right) v_1^{-2} + O(1) \quad (\forall g \geq 3) \quad (16)
\]
(using substitution (B.1)).

From the expansion of \(\varphi_2 (14)\) and \(\psi (16)\) near their singular points, it follows that \((\varphi_2 (u) - \psi (u))\) is a holomorphic function on \(R_g\). We thus have that
\[
(-1)^{g+1} \varphi_2 (u) du_1 + A^T \cdot du = (-1)^{g+1} \psi (u) du_1 + B^T \cdot du
\]
for some \(g\)-vector of constants \(B = (B_2, B_3, \ldots, B_{g+1})^T\).

5. Evaluation of the vector \(B\).

Following [2], let \(f\) be a function on the Riemann surface \(R_g\). The divisor of \(f\), \((f)\), is defined as
\[
(f) = \sum n_i Z_i - \sum m_i P_i \quad n_i, m_i \in \mathbb{Z}^+
\]
where \(Z_i\) is a zero of \(f\) of degree \(n_i\) and \(P_i\) is a pole of \(f\) of order \(m_i\). The degree of the divisor of \(f\) is
\[
\deg (f) = \sum n_i - \sum m_i.
\]
For any function \(f\) and Abelian differential \(dv\) the following hold:
\[
\begin{align*}
\deg (f) &= 0; \quad (18) \\
\deg (dv) &= 2g - 2.
\end{align*}
\]
We will now consider the Abelian differential
\[
(-1)^{g+1} \left[\varphi_2 (u) - \psi (u) \right] du_1.
\]
By construction, \(du_1\) is a first kind Abelian differential. It therefore has no poles on \(R_g\) and zeros of total degree \((2g - 2)\). From section 4, we know that the hyperelliptic function \((\varphi_2 - \psi)\) has no poles and so, by (18), it cannot have any zeros. Hence, for some constant \(C_0\), we have
\[
C_0 \ du_1 = (-1)^{g+1} \left[\varphi_2 (u) - \psi (u) \right] du_1.
\]
Rewriting this using identity (17) gives
\[
C_0 \ du_1 = (B - A)^T \cdot du
\]
\[
\Rightarrow C_0 \ \frac{dt}{s} = \left[(B_2 - A_2) + (B_3 - A_3) t + \cdots + (B_{g+1} - A_{g+1}) t^{g-1} \right] \ \frac{dt}{s}.
\]
Matching coefficients of t, we see

$$C_0 = B_2 - A_2$$

and so

$$B_i = A_i \quad (i = 3, \ldots, g + 1).$$

The value of B_2 may be found by evaluating $(\varphi_2(u) - \psi(u))$ at a specific point. If, for example, we take $u = u_0$, then we obtain

$$C_0 = \lim_{u \to u_0} [\varphi_2(u) - \psi(u)] = \left(\frac{1}{\sqrt{\mu_0} \sigma_2^3(u_0)} + \frac{2}{\mu_0} \frac{\sigma_{112}}{\sigma_2} (u_0) - \frac{2}{\mu_0} \frac{\sigma_{12}^2}{\sigma_2^2} (u_0) \right) + O(v_1)$$

(using substitutions $(B.1), (B.2)$ and $(B.3)$ from Appendix B). From this we have

$$B_2 = A_2 - (-1)^{g+1} \left(\frac{1}{\sqrt{\mu_0} \sigma_2^3(u_0)} + \frac{2}{\mu_0} \frac{\sigma_{112}}{\sigma_2} (u_0) - \frac{2}{\mu_0} \frac{\sigma_{12}^2}{\sigma_2^2} (u_0) \right).$$

It would be possible to rewrite $\sigma_{112}(u_0)$ in terms of lower order $\sigma-$derivatives using the following procedure. For each $g \geq 1$ there exists a set of PDE of the form

$$\varphi_{ijkl} - f(\mu_0, \ldots, \mu_{2g+1}; \varphi_{mn}) = 0,$$

where $1 \leq i \leq j \leq k \leq l \leq g$ and $1 \leq m \leq n \leq g$ (see [4]). If we expand (19) for u near u_0, then we get Taylor series equal to zero. The relations between the $\sigma-$derivatives at the point $u_0 \in \Theta_1$ are then found by setting $\sigma(u_0) = \sigma_1(u_0) = \sigma_k(u_0) = 0 \quad (k = 3, \ldots, g)$ and equating each coefficient with zero. This process, however, cannot easily be generalized for all $g \geq 3$.

6. Result

Setting

$$k = \pm \sqrt{\mu_0} = \pm \left(\frac{4}{\prod_{i=1}^{2g+1} (p_{2g+2} - \mu_i)} \right)^{\frac{1}{2}},$$

$$\tilde{B}_2 = (-1)^{g+1} \left(\frac{1}{\sqrt{\mu_0} \sigma_2^3(u_0)} + \frac{2}{\mu_0} \frac{\sigma_{112}}{\sigma_2} (u_0) - \frac{2}{\mu_0} \frac{\sigma_{12}^2}{\sigma_2^2} (u_0) \right)$$

and substituting

$$p = p_{2g+2} - \frac{1}{t} = p_{2g+2} + \frac{\sigma_2}{\sigma_1}(u)$$

into (3) we have

$$\lambda(p) = p + \int_{-\infty}^{p} [\varphi(p') - 1] \, dp'$$

$$= \left(p_{2g+2} + \frac{\sigma_2}{\sigma_1}(u) \right) + \int_{0}^{1} \left[k \, A^T \cdot d\mathbf{u} + k \, \tilde{B}_2 \, d\mathbf{u}_1 + (-1)^{g+1} k \left(\frac{d}{du_1} \Psi(u) \right) d\mathbf{u}_1 - \frac{dt}{t^2} \right]$$

$$= \left(p_{2g+2} + \frac{\sigma_2}{\sigma_1}(u) \right) + \left[k \, (A + \tilde{B}_2 \, e_1)^T \cdot \mathbf{u} + (-1)^g k \, \frac{\sigma_{11}}{\mu_0} \frac{\sigma_1}{\sigma_1}(u) \right] + \tilde{C}. $$
The value of the constant \tilde{C} can be found by considering the limit of $(\lambda(p) - p)$ as $p \to \infty \iff u \to +u_0$. Since

$$\lim_{p \to \infty} [\lambda(p) - p] = 0,$$

we have that

$$\tilde{C} = -k \left(A + \tilde{B}_2 e_1 \right)^T u_0 + \lim_{u \to u_0} \left[(-1)^{g+1} \frac{k}{\mu_0} \frac{\sigma_{11}}{\sigma_1} (u) + \frac{\sigma_2}{\sigma_1} (u) \right].$$

Expanding the terms in this limit we obtain

$$\lim_{u \to u_0} \left[(-1)^{g+1} \frac{k}{\mu_0} \frac{\sigma_{11}}{\sigma_1} \right] = (-1)^{g+1} \left(\frac{k}{\mu_0} \right) \lim_{v_1 \to 0} \left[\frac{(\sigma_{11}) + (\sigma_{111}) v_1 + \cdots}{(\sigma_{11}) v_1 + \left(\frac{1}{2} \sigma_{111} \right) v_1^2 + (\sigma_{12}) v_2 + \cdots} \right]$$

$$= (-1)^{g+1} \left(\frac{k}{\mu_0} \right) \lim_{v_1 \to 0} \left[v_1^{-1} + \left(\frac{1}{2} \sigma_{111} - \frac{\sqrt{\mu_0} \sigma_{12}}{2} \right) v_2 + \sigma_{12} \right] + O(v_1)$$

$$= (-1)^{g+1} \left(\frac{k}{\mu_0} \right) \lim_{v_1 \to 0} \left[v_1^{-1} + \left(\frac{1}{2} \sigma_{111} - \frac{\sqrt{\mu_0} \sigma_{12}}{2} \right) v_2 + \sigma_{12} \right] + O(v_1)$$

and

$$\lim_{u \to u_0} \left[\frac{\sigma_2}{\sigma_1} \right] = \lim_{v_1 \to 0} \left[\frac{(\sigma_2) + (\sigma_{12}) v_1 + \cdots}{(\sigma_{11}) v_1 + \left(\frac{1}{2} \sigma_{111} \right) v_1^2 + (\sigma_{12}) v_2 + \cdots} \right]$$

$$= \lim_{v_1 \to 0} \left[v_1^{-1} + \left(\frac{1}{2} \sigma_{111} - \frac{\sqrt{\mu_0} \sigma_{12}}{2} \right) v_2 + \sigma_{12} \right] + O(v_1)$$

$$= \lim_{v_1 \to 0} \left[v_1^{-1} + \left(\frac{1}{2} \sigma_{111} - \frac{\sqrt{\mu_0} \sigma_{12}}{2} \right) v_2 + \sigma_{12} \right] + O(v_1).$$

Since \tilde{C} is constant we set $k = (-1)^{g+1} \sqrt{\mu_0}$ and hence

$$\tilde{C} = (-1)^{g} \sqrt{\mu_0} \left(A + \tilde{B}_2 e_1 \right)^T u_0 + \frac{2}{\sqrt{\mu_0}} \frac{\sigma_{12}}{\sigma_2} (u_0) + \frac{1}{2} \frac{\mu_1}{\mu_0}.$$

This gives the following result.

Theorem 2 Let

$$\lambda(p) = p + \int_{p}^{\infty} \frac{\prod_{i=1}^{g+1} (p' - \hat{p}_i)}{\sqrt{\prod_{i=1}^{2g+2} (p' - p_i)}} \, dp',$$

$$k = (-1)^{g+1} \left(\frac{4}{\prod_{i=1}^{2g+2} (p_{2g+2} - p_i)} \right)^{\frac{1}{2}},$$

$$\tilde{B}_2 = (-1)^{g+1} \left(\frac{1}{\sqrt{\mu_0}} \frac{\sigma_{22}}{\sigma_2} (u_0) + \frac{2}{\mu_0} \frac{\sigma_{112}}{\sigma_2} (u_0) - \frac{2}{\mu_0} \frac{\sigma_{12}^2}{\sigma_2^2} (u_0) \right),$$

and $A^T = (A_2, A_3, \ldots, A_{g+1})$ where the A_i are defined as

$$\sum_{i=0}^{g+1} A_i t^i = \prod_{i=1}^{g+1} [(p_{2g+2} - \hat{p}_i) t - 1].$$

Then, if we set

$$p = p_{2g+2} + \frac{\sigma_2}{\sigma_1} (u),$$

we can find $\lambda(p)$ using the above results.
Higher genus hyperelliptic reductions of the Benney equations

with \(\mathbf{u}, \mathbf{u}_0 \in \Theta_1 \) and \(\sigma_1(\mathbf{u}_0) = 0 \), we have

\[
\lambda(p) = (-1)^{g+1} \sqrt{\mu_0} \left(\mathbf{A} + \mathbf{B} \mathbf{e}_1 \right)^T (\mathbf{u} - \mathbf{u}_0) - \frac{1}{\sqrt{\mu_0}} \sigma_1(\mathbf{u})
+ \frac{p_{2g+2}}{\sqrt{\mu_0}} \sigma_2(\mathbf{u}_0) + \frac{1}{2\mu_0} \mu_1
\]

on sheet \(R_g^+ \) of the Riemann surface

\[
R_g = \left\{ (v, p) \in \mathbb{C}^g : v^2 = \prod_{i=1}^{2g+2} (p - p_i) \right\}
\]

associated with the relation \(p \to \infty_+ \iff \mathbf{u} \to +\mathbf{u}_0 \).

We note that in the \(g = 2 \) case the analogous solution to (20) could be rewritten using the relation

\[
\frac{\sigma_{11}}{\sigma_1}(\mathbf{u}) = \frac{\sigma_1}{\sigma}(\mathbf{u} + \mathbf{u}_0) + \frac{\sigma_1}{\sigma}(\mathbf{u} - \mathbf{u}_0) = \zeta_1(\mathbf{u} + \mathbf{u}_0) + \zeta_1(\mathbf{u} - \mathbf{u}_0)
\]

for \(\mathbf{u} \in \Theta_1 \). In the case of higher genus reductions this is not possible since \((\mathbf{u} \pm \mathbf{u}_0) \in \Theta_2 \) and \(\zeta_1 \) is singular everywhere on \(\Theta_2 \).

The formula (20) seems a little more complicated than the analogous results in genus 1 and 2; the reason for this is the difficulty of expanding the terms involving \(\mathbf{u}_0 \) in the general case. However, we consider it remarkable that essentially the same formula is valid for any genus.

Acknowledgments

We would like to thank V Z Enolski for bringing [11] to our attention and for the result given in Appendix A.

Appendix A. Reduction of the Inversion theorem to \(\Theta_1 \).

Following Enolski and Previato [6], we begin by rewriting the main result of [11] in terms of first derivatives of the \(\sigma \)-function.

Theorem 3 Let \(\mathbf{K}_P \) be the vector of Riemann constants associated with the point \(P, \{P_1,P_2,\ldots,P_{g-1}\} \) be a set of points on \(R_g \) and let \(\mathbf{a} = (a_1,a_2,\ldots,a_g)^T \), \(\mathbf{b} = (b_1,b_2,\ldots,b_g)^T \in \mathbb{C}^g \) be any nonzero vectors. Then the following identity holds

\[
\frac{\sum_{j=1}^g \sigma_j(\mathbf{u}) a_j}{\sum_{j=1}^g \sigma_j(\mathbf{u}) b_j} = \frac{\det [\mathbf{a} | \mathbf{d}(P_1)| \cdots | \mathbf{d}(P_{g-1})]}{\det [\mathbf{b} | \mathbf{d}(P_1)| \cdots | \mathbf{d}(P_{g-1})]}
\]

where the point \(\mathbf{u} \) is given by

\[
\mathbf{u} = \sum_{k=1}^{g-1} \int_{P_k}^{P} \mathbf{d}u + 2 \omega \mathbf{K}_P.
\]
Higher genus hyperelliptic reductions of the Benney equations

Here, we take the du_i to be the holomorphic differentials defined above:

$$du_i = \frac{t^{i-1}}{s} \, dt \quad (i = 1, \ldots, g).$$

Corollary 3.1 Let the points P_1, P_2, \ldots, P_g coalesce to a point P. Then we obtain by L'Hôpital's rule

$$\sum_{j=1}^g \sigma_j (2\omega K_P) a_j \sigma_j (2\omega K_P) b_j = \frac{\det \left[a | du(P) | du(P)^{(1)} | \cdots | du(P)^{(g-2)} \right]}{\det [b] \, du(P) | du(P)^{(1)} | \cdots | du(P)^{(g-2)}]} \quad (A.1)$$

where $du(P)^{(k)}$ denotes the column of k^{th} derivatives of the holomorphic differentials $du(P)$.

Expanding the RHS of (A.1) we find that the numerator is the determinant of the matrix

$$C = \begin{bmatrix}
 a_1 & 1 & 0 & 0 & \cdots & 0 & 0 \\
 a_2 & t & 0 & 0 & \cdots & 0 & 0 \\
 a_3 & t^2 & 0 & 0 & \cdots & 0 & 1 \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_{g-1} & t^{g-2} & 0 & 1 & \cdots & 0 & 0 \\
 a_g & t^{g-1} & 1 & 0 & \cdots & 0 & 0 \\
\end{bmatrix}$$

for some constant C. The matrix in the denominator of the RHS is of the same form, but with b_i instead of $a_i (i = 1, \ldots, g)$. It follows that (A.1) can be written as

$$\sum_{j=1}^g \sigma_j (2\omega K_P) a_j \sigma_j (2\omega K_P) b_j = \frac{a_1 t - a_2}{b_1 t - b_2} \quad (A.2)$$

To evaluate t in terms of the σ_j we can therefore set $a = (1,0,\ldots,0)^T$ and $b = (0,1,0,\ldots,0)^T$. This gives

$$\frac{\sigma_1}{\sigma_2} (u) = -t$$

for $u \in \Theta_1$. Further, since only a_1, a_2 and b_1, b_2 appear in the RHS of (A.2), we obtain the following definition for Θ_1:

$$\Theta_1 = \{ u : \sigma(u) = 0, \sigma_k(u) = 0 \quad (k = 3, \ldots, g) \}.$$

Appendix B. Differential relations holding at $u = u_0$.

For any u in Θ_1 we have $\sigma(u) = 0$. Expanding this identity near u_0 we obtain a Taylor series in $v_k = e_k^T \cdot (u - u_0)$ equal to zero:

$$0 = \sigma(u_0 - (u_0 - u)) = \left[\frac{1}{2} \sigma_{11}(u_0) \right] v_1^2 + [\sigma_2(u_0)] v_2 + [\sigma_{12}(u_0)] v_1 v_2 + \left[\frac{1}{6} \sigma_{111}(u_0) \right] v_1^3 + \cdots$$

(since $\sigma(u_0) = \sigma_1(u_0) = \sigma_3(u_0) = 0$). If we now substitute relations (13)

$$v_k = \left(\frac{1}{k} \mu_0^{(k-1)/2} \right) v_1^k + O (v_1^{k+1}) \quad (k = 2, 3, \ldots, g)$$

then we obtain

$$0 = \left[\frac{1}{2} \sigma_{11}(u_0) \right] v_1^2 + \left[\frac{1}{6} \sigma_{111}(u_0) \right] v_1^3 + \cdots$$

and compare coefficients.
Higher genus hyperelliptic reductions of the Benney equations

into this expansion, then for \(g \geq 3 \) we have
\[
0 = \left[\frac{1}{2} \sigma_{11}(u_0) + \frac{1}{2} \sqrt{-\mu_0} \sigma_2(u_0) \right] v_1^2 + \left[\frac{1}{6} \sigma_{111}(u_0) + \frac{1}{12} \mu_1 \sigma_2(u_0) + \frac{1}{2} \sqrt{-\mu_0} \sigma_{12}(u_0) \right] v_1^3 + O(v_1^4).
\]
Setting each coefficient to zero, we find
\[
\sigma_{11}(u_0) = -\sqrt{-\mu_0} \sigma_2(u_0) \tag{B.1}
\]
and
\[
\sigma_{111}(u_0) = -\frac{1}{2} \mu_1 \sigma_2(u_0) - 3 \sqrt{-\mu_0} \sigma_{12}(u_0) \tag{B.2}
\]
for \(u_0 \in \Theta_1 \) with \(\sigma_1(u_0) = 0 \) and for \(\forall g \geq 3 \).

If we repeat the above procedure for the identity \(\sigma_3(u) = 0 \ (\forall u \in \Theta_1) \), then we obtain the following expansion
\[
0 = \sigma_3(u_0 - (u_0 - u))
\]
\[
= [\sigma_{13}(u_0)] v_1 + [\sigma_{23}(u_0)] v_2 + \left[\frac{1}{2} \sigma_{113}(u_0) \right] v_1^2 + \cdots
\]
\[
= [\sigma_{13}(u_0)] v_1 + O(v_1^2).
\]
This gives the identity
\[
\sigma_{13}(u_0) = 0 \quad \text{for} \ g \geq 3. \tag{B.3}
\]

[14] L Yu and J Gibbons 2000 The initial value problem for reductions of Lax equations Inverse Problems 16 605