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Abstract

We present two cubature on Wiener space algorithms for the numerical solution of
McKean-Vlasov SDEs with smooth scalar interaction. First, we consider a method intro-
duced in [19] under a uniformly elliptic assumption and extend the analysis to a uniform
strong Hörmander assumption. Then, we introduce a new method based on Lagrange
polynomial interpolation. The analysis hinges on sharp gradient to time-inhomogeneous
parabolic PDEs bounds. These bounds may be of independent interest. They extend
the classical results of Kusuoka & Stroock [32] and Kusuoka [31] further developed in
[9, 12, 15] and, more recently, in [17]. Both algorithms are tested through two numerical
examples.

Keywords: Cubature on Wiener space, Lagrange polynomial interpolation, McKean-
Vlasov SDEs, Kusuoka-Stroock Functions.

1 Introduction

In this paper, we analyse the error in two different algorithms that use Cubature on
Wiener space to weakly approximate the solution of a McKean-Vlasov SDE with smooth
scalar interaction. By scalar interaction, we mean that the dependence on the measure is
through the integral against a scalar function, so the McKean-Vlasov SDE takes the form

Xx
t = x +

∫ t

0

V0(X
x
s ,E[ϕ0(X

x
s )]) ds +

d∑

i=1

∫ t

0

Vi(X
x
s ,E[ϕi(X

x
s )]) ◦ dBi

s, (1.1)

where ϕi ∈ C∞
b (RN ;R), Vi ∈ C∞

b (RN+1;RN ) and B =
(
B1, . . . , Bd

)
is a Brownian motion.

We wish to approximate E [f(Xx
T )] for f Lipschitz continuous and T > 0 a fixed time.

One common way of approaching this problem is to consider a discretisation of the
equation, such as the Euler-Maruyama scheme, along with a Monte Carlo approximation.
At each time step, an approximation of the law of Xx

t is then given by the empirical
distribution of the entire Monte Carlo population. However, estimating the error due
to approximating the expectation inside the coefficients by the Monte Carlo estimator is
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exactly the problem one wishes to solve in the first place. This leads to a more difficult
analysis than for classical SDEs. Nonetheless, this analysis has been carried out under a
number of different assumptions when the coefficients have the form

Vi(X
x
t ,
∫

hi(Xx
t − y) PXx

t
(dy)),

(different from (1.1)). This type of scheme was studied in papers by Bossy, alone [4] and
along with Talay [5]; Kohatsu-Higa & Ogawa [24], and Antonelli & Kohatsu-Higa [2]. In
all of these papers the total error is composed of a discretisation error of order

√
h or

h, where h is size of the largest time step, and statistical error of order N
−1/2
MC where

NMC is the number of Monte Carlo samples. A Milstein discretisation is also analysed in
Ogawa [40]. In [42] Tachet des Combes proposes a deterministic numerical scheme based
on discretising the PDE satisfied by the density function of the solution to (1.1). More
recently, in [41], a Multi-Level Monte Carlo scheme has been analysed for equations of the
type (1.1).

Systems of the time (1.1) have been studied in [27]. The particle representation of the
solution of equation (1.1) appears explicitly in [29]. A generalization of the model can be
found in [21]. Section 1.8 in [26] presents the origins of this model which can be traced back
to the Vlasov equation for plasma which was then augmented by McKean with a stochas-
tic term. In the same section, the Landau-Fokker-Planck equation is discussed. However,
the nonlinearity is different here as, in the case of Landau-Fokker-Planck, the coefficients
depend on the convolutions (shifted expectations), rather then just the expectations. The
introduction of diffusive noise can be considered as arising from natural scaling of various
finite state space models, see Section 5 in [25] . Equation (1.1) appears in many applica-
tions: for example, see [38] for an applications to Mathematics Biology, [6, 35] and the
more recent [8] for applications to mean field games and [11] for an application to asset
pricing through competing traders valuations.1

Cubature on Wiener space is a high-order alternative to Monte Carlo methods. It is
part of a class of methods called Kusuoka-Lyons-Victoir methods that have been shown
to be highly effective in practice, see e.g. [20], [39]. Applications include the non-linear
filtering problem [10, 18, 34, 36], backward stochastic differential equations [13, 14] and
calculating Greeks [43] in finance. Convergence of the cubature approximation for some
path dependent functionals has also been shown in [3]. The starting point of the Cubature
on Wiener space method is to view Xx

T as a functional of the Brownian path (Bs)s∈[0,T ],
say

Xx
T = αx,T ((Bs)s∈[0,T ]), αx,T : C0([0, T ];Rd) → RN ,

and to view the expectation E[f(Xx
T )] as an integral over the Wiener space

E[f(Xx
T )] =

∫

Ω

(f ◦ αx,T ) (ω)P(dω), (1.2)

where Ω = C0([0, T ];Rd) and P is the Wiener measure. The key idea of the cubature on
Wiener space method is that one can approximate such integrals by replacing the Wiener
measure, P, by a discrete measure supported on finitely many bounded variation paths,
called a cubature measure. If the cubature measure is chosen so that iterated Stratonovich
integrals of Brownian motion up to some order have the same expectation under the
cubature and Wiener measures and the time interval [0, T ] is small, then by considering
the Stratonovich-Taylor expansion of the solution of the SDE, one can show that the target

1The authors would like to thank Vassili Kolokoltsov and Tom Kurtz for pointing out relevant references
to the model considered here.
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expectations under the cubature and Wiener measures agree up to some high order error.
When the time interval is not small, [0, T ] can be partitioned into sub-intervals and the
approximation performed over each sub-interval. In the original paper [37], dealing with
ordinary SDEs, evaluating the functional αx,T at a bounded variation path ω amounts
to solving an ordinary differential equation (ODE) and evaluating integrals such as (1.2)
under a cubature measure amounts to computing weighted sums of solutions of ODEs. The
complication for McKean-Vlasov equations like (1.1) is that the functional αx,T depends
on the paths

{
(Eϕi(X

x
s ))s∈[0,T ] : i = 0, . . . , d

}
which are unknown. Instead, one must

include an approximation of the functional αx,T in the design of the algorithm.
To our knowledge, the first algorithm involving Cubature on Wiener Space in rela-

tion to McKean-Vlasov SDE was introduced by Chaudru de Raynal & Garcia-Trillos [19].
Their idea is to partition [0, T ] into {0 = t0 < t1 < . . . < tn = T} and over the interval
[tj , tj+1] to replace Eϕi(X

x
t ) appearing in the coefficients with the cubature approxima-

tion of the Taylor expansion of the path t 7→ Eϕi(X
x
t ) around tj up to some order, q.

The global error can, as in the original case, be decomposed as a sum of local errors, and
these local errors naturally split into an error due to the approximation of Eϕi(X

x
t ) in the

coefficients, and an error due to replacing the Wiener measure by a cubature measure. In
[19], the authors consider the case of smooth and bounded uniformly elliptic coefficients
and prove that the error is of order n−[(q+1)∧(l−1)/2] where n is the number of time steps
and l is the degree of the cubature formula. In this paper we show how to extend the error
analysis to the case when the coefficients satisfy a uniform strong Hörmander condition.
One of the reasons the authors of [19] choose to impose a uniformly elliptic condition
on the coefficients of equation (1.1) is the lack of available sharp derivative estimates for
time-inhomogeneous parabolic PDEs (which are necessary for the error analysis) under
any more general conditions. For this reason, a secondary goal of this work is to de-
velop derivative estimates for time-inhomogeneous parabolic PDEs under more general
conditions and to analyse the error for the cubature on Wiener space algorithm in this
case. These estimates may be of independent interest. They extend the classical results
of Kusuoka & Stroock [32] and Kusuoka [31], further developed in [9, 12, 15] and, more
recently, in [17].

In the second algorithm, which we call the Lagrange interpolation method, over the
interval [tj , tj+1], one simply replaces Eϕi(X

x
t ) with the Lagrange polynomial which in-

terpolates the cubature approximation of Eϕi(X
x
t ) at the previous r points in the time

partition.
For both algorithms, we deduce upper bounds for their corresponding rates of con-

vergence when approximating E [f(Xx
T )]. The bounds are presented as explicit functions

of the type of partition used, the number of points in the partition, the smoothness of
the the function f , the cubature order, the order of the Taylor expansion (for the first
algorithm) and, respectively, the order of the Lagrange approximation (for the Lagrange
interpolation algorithm). See Theorem 1.4 below for details.

The paper is organized as follows: In the following we present a brief introduction of
cubature on the Wiener space followed by a detailed description of the paper framework,
the assumptions, the algorithms and the main results. In Section 2 we collect a number
of preliminary results required to prove the main result. The proof of the main result,
Theorem 1.4 is done in Section 3. In Section 4, we test both algorithms on two numerical
benchmarks. We complete the paper with an appendix containing derivative bounds for
time-inhomogeneous parabolic PDEs under the so-called UFG condition which may be
of independent interest. These bounds are the cornerstone of the convergence analysis of
the numerical algorithms. Several other generic results used in the earlier proofs are also
incorporated in the appendix.
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1.1 Cubature on Wiener Space

First, we detail what we mean by a cubature method on Wiener space. We need to intro-
duce notation for iterated integrals with respect to components of the (d+1)-dimensional
process (B0, B1, . . . , Bd) consisting of time and the d-dimensional Brownian motion. We
use the following notation for multi-indices on {0, . . . , d}:

A := {∅} ∪ ∪k≥1{0, 1, . . . , d}k and A1 := A \ {∅, (0)}.

We endow A with the concatenation operation

α ∗ β := (α1, . . . , αk, β1, . . . , βl), where α = (α1, . . . , αk), β = (β1, . . . , βl) ∈ A

and we define α′ = (α1) and −α := (α2, . . . , αk), so that α = α′ ∗ −α. We define the
following n-tuples lengths:

|α | :=

{
k, if α = (α1, . . . , αk),

0, if α = ∅,
‖α‖ := |α | + card {i : αi = 0, i = 1, . . . , d},

and define the set A(l) := {α ∈ A : ‖α‖ ≤ l} and define A1(l) similarly. For α ∈ A,
we denote by Iα

t,s(Y ) the iterated Stratonovich integral of the process Y over the interval
[t, s]:

Iα
t,s(Y ) :=

∫ s

t

∫ sn

t

∙ ∙ ∙
∫ s2

t

Ys1 ◦ dBα1
s1

∙ ∙ ∙ ◦ dBαn−1
sn−1

◦ dBαn
sn

.

Similarly, for a bounded variation path ω = (ω1, . . . , ωd) ∈ Cbv([t, s];Rd) we set ω0(s) = s
and denote the iterated integral of a process Y by Iα

t,s[ω](Y ):

Iα
t,s[ω](Y ) :=

∫ s

t

∫ sn

t

∙ ∙ ∙
∫ s2

t

Ys1dωα1
s1

∙ ∙ ∙ dωαn−1
sn−1

dωαn
sn

.

With this notation in hand, we can define a cubature formula.

Definition 1.1 (Cubature formula [37]). A set of NCub bounded variation paths,
ω1, . . . , ωNCub

∈ Cbv([0, 1];Rd), for some NCub ∈ N, together with some weights
λ1, . . . , λNCub

∈ R+ such that
∑NCub

j=1 λj = 1 define a cubature formula on Wiener Space
of degree l if, for any α ∈ A(l),

E[Iα
0,1(1)] =

NCub∑

j=1

λj Iα
0,1[ωj ](1).

We note that for a given l ∈ N, Lyons & Victoir [37] proved that there exists a cubature
formula on Wiener Space of degree l, with concrete examples given, for certain pairs (l, d),
in [37] and [20]. From the scaling properties of the Brownian motion we can deduce, for
0 ≤ t < s,

E[Iα
t,s(1)] =

l∑

j=1

λj Iα
t,s[ωj(t, s)](1),

where ωj(t, s) is the re-scaled path defined by ωj(t, s) (u) =
√

s − t ωj

(
u

s−t

)
, u ∈ [t, s]. In

other words, the expectation of the iterated Stratonovich integrals Iα
t,s(1) with α ∈ A(l)

is the same under the Wiener measure as it is under the cubature measure,

Qt,s :=
NCub∑

j=1

λj δωj(t,s).
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Once we have a cubature measure Q and a partition Πn, we can extend this to a
measure QΠn on [0, T ], supported on (Ncub)

n paths along a tree. We use the notation
Mk to denote multi-indices over {1, . . . , NCub} of length exactly k. We use this set to
index the nodes in the cubature tree after k time-steps or, equivalently, the unique path
leading to that node. To create the tree, one first creates the paths by concatenating the
re-scaled paths: for p = (p1, . . . , pn) ∈ Mn, define the path

ωp(t) = ωp(ti−1) + ωpi
(ti−1, ti)(t) when t ∈ [ti−1, ti).

Then, one can attach a new weight to each path by

Λp :=
∏

pi∈p

λpi .

Finally, we can define a measure on all paths along the tree by

QΠn :=
∑

p∈Mn

Λp δωp .

1.2 Outline & Main Results

In this section, let us make more precise our contribution. We introduce the following
processes

Xs,x
t = x +

d∑

i=0

∫ t

s

Vi(X
s,x
u ,Eϕi(X

s,x
u )) ◦ dBi

u, (1.3)

and

Xs,x,y
t = x +

d∑

i=0

∫ t

s

Vi(X
s,x,y
u ,Eϕi(X

0,y
u )) ◦ dBi

u. (1.4)

The first is just the McKean-Vlasov SDE started from x at time s. The second process
is also started from x at time s but with the path u 7→ E[ϕi(X

0,y
u )] appearing in the

coefficients instead of the McKean-Vlasov term. This process is therefore not a true
McKean-Vlasov process but an SDE with coefficients depending on time and a parameter,
y. We introduce the operators

Ps,tf(x) := E [f(Xs,x
t )] and P y

s,tf(x) := E [f(Xs,x,y
t )] .

We note that X0,x
T = X0,x,y

T

∣
∣
∣
y=x

, so the quantity we wish to compute is

P0,T f(x) = P y
0,T f(x)

∣
∣
∣
y=x

.

Now, let us denote by Ey
t (ϕi) a generic approximation of E[ϕi(X

0,y
t )]. Later, we will

introduce specific approximations ET,y
t (ϕi) and EL,y

t (ϕi), corresponding to the Taylor
and Lagrange interpolation methods respectively. We then introduce the approximating
process

EXs,x,y
t = x +

d∑

i=0

∫ t

s

Vi(
EXs,x,y

u , Ey
u(ϕi)) ◦ dBi

u,
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and the operators

PE,y
s,t g(x) := E

[
g(EXs,x,y

t )
]

and QE,y
s,t g(x) := EQs,t

[
g(EXs,x,y

t )
]
.

In a similar way, we will denote the local approximation operator by QE,x
s,t and, once a

partition Πn of [0, T ] is fixed, we define

QE,x,Πn

0,t := QE,x
0,t1

∙ ∙ ∙QE,x
tj ,t for t ∈ [tj , tj+1).

Then, QE,x,Πn

0,T f(x) will be the final approximation of P0,T f(x), with the global error

E(T, x, l, Πn) :=
(
P0,T − QE,x,Πn

0,T

)
f(x). (1.5)

We note that

sup
x∈RN

|E(T, x, l, Πn)| ≤ sup
x,y∈RN

∣
∣
∣
(
P y

0,T − QE,y,Πn

0,T

)
f(x)

∣
∣
∣ .

Now, for fixed y, {P y
s,t : 0 ≤ s ≤ t ≤ T} forms a two-parameter semigroup of operators.

This allows us to decompose the global error of the scheme as follows

[
P y

0,T − QE,y
0,t1

QE,y
t1,t2 ∙ ∙ ∙Q

E,y
tn−1,tn

]
f(x) =

N−1∑

j=0

QE,y
0,tj

[
P y

tj ,tj+1
− QE,y

tj ,tj+1

]
P y

tj+1,T f(x).

Then, since
∥
∥
∥QE,y

0,tj
φ
∥
∥
∥
∞

≤ ‖φ‖∞, we are left to estimate the local error

[
P y

tj ,tj+1
− QE,y

tj ,tj+1

]
uy(tj+1, x)

uniformly in x and y, where
uy(t, x) := P y

t,T f(x) (1.6)

solves a parabolic PDE with coefficients depending on the parameter y ∈ RN . The
resulting error analysis relies on regularity estimates for the solution of this PDE.

Now, let us specify what the approximation Ex
t (ϕi) is for each scheme. First, the

Taylor method: we wish to perform a Taylor expansion of the path t 7→ Eϕi(X
0,x
t ), but

since the coefficients in the SDE satisfied by X0,x are of the form Vi

(
X0,x

t ,Eϕi(X
0,x
t )

)
,

we instead consider the Taylor expansion of this more general form. For a pair of functions
g ∈ C∞

b (RN × R;R) and ϕ ∈ C∞
b (RN ;R), Itô’s formula yields

E
[
g
(
X0,x

t ,Eϕ(X0,x
t )

)]
= g (x, ϕ(x))

+
∫ t

0

E
[
(Lx

ug)
(
X0,x

u ,Eϕ(X0,x
u )

)]
+ E

[
(∂yg)

(
X0,x

u ,Eϕ(X0,x
u )

)]
E
[
(Lx

uϕ) (X0,x
u )

]
du,

(1.7)

where ∂y is the derivative in the second argument of g and Lx
s is the differential operator

Lx
s := V0(∙,Eϕ0(X

0,x
s )) +

1
2

d∑

i=1

Vi(∙,Eϕi(X
0,x
s ))2.
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Note that each term under the integral in the right hand side of (1.7) is again a product
of terms of the form E

[
g
(
X0,x

u ,Eϕ(X0,x
u )

)]
for different functions g and ϕ. Let us denote

by S the set of all paths (St)t∈[0,T ] of the form

St = E
[
g
(
X0,x

t ,Eϕ(X0,x
t )

)]

for some g ∈ C∞
b (RN × R;R), and ϕ ∈ C∞

b (RN ;R) and denote by S̄ the set of all paths
(S̄t)t∈[0,T ] of the form

S̄t =
n1∑

i=1

n2∏

j=1

Si,j
t ,

where n1 and n2 are positive integers and Si,j ∈ S for i = 1, . . . , n1 and j = 1, . . . , n2.
For t ∈ [0, T ], we introduce the notation T : S → S̄ for the map

E g
(
X0,x,Eϕ(X0,x)

)

7→ E
[
(Lxg)

(
X0,x,Eϕ(X0,x)

)]
+ E

[
(∂yg)

(
X0,x,Eϕ(X0,x)

)]
E
[
(Lxϕ) (X0,x)

]
,

so that the expansion of G = (Gt)t≥0 defined as Gt := E
[
g
(
X0,x

t ,Eϕ(X0,x
t )

)]
in (1.7)

can alternatively be written as

Gt = G0 +
∫ t

0

Ts(G) ds. (1.8)

For the Taylor expansion, we would like to apply T to the term T (G). To do so, we
extend T to an operator from S̄ to itself by linearity

T

(
n1∑

i=1

Si

)

=
n1∑

i=1

T
(
Si
)
,

and a product rule

T




n2∏

j=1

Sj



 =
n2∑

k=1

n2∏

j=1,j 6=k

Sj T
(
Sk
)
.

Since now we have T defined as an operator on S̄, we can iterate the expansion in (1.8)
to get the Taylor expansion of order q ≥ 1

Gt =
q∑

k=0

tk

k!
(T0)

k(G) +
1

(q + 1)!

∫ t

0

(Ts)
q+1(G) ds. (1.9)

Now, for all s ∈ [0, T ], k ≥ 1 and G ∈ S̄ we define
(
T Q

s

)k
(G) to be the same expression

as (Ts)
k (G) with all expectations under P replaced by expectations under QΠn . Then,

the approximation of Eϕi(X
0,y
s ) for the Taylor method, which we henceforth denote by

ET,y
s (ϕi), is

ET,y
s (ϕi) :=

q∑

k=0

1
k!

(T Q
tj

)k(Eϕi(X
0,y)) (s − tj)

k for s ∈ [tj , tj+1).

To define the approximation for the Lagrange interpolation method, we denote by

L
[
{(ti, xi)}

k
i=1

]
the Lagrange interpolating polynomial of degree at most k − 1 with

7



L
[
{(ti, xi)}

k
i=1

]
(tj) = xj for all j = 1, . . . , k (see page 18 for further details). We define

the approximation of order r by

Ey
t (ϕi) := L

[{(
tj−k,EQ

Πn
ϕi

(
X0,y

tj−k

))}j∧(r−1)

k=0

]

(t) t ∈ [tj , tj+1]

In other words, Ey
t (ϕi) for t ∈ [tj , tj+1] is the unique polynomial of degree minimal degree

which passes through the points
(
tj+1−((j+1)∧r),E

QΠn
ϕi(X

0,y
tj+1−((j+1)∧r)

)
)

, . . . ,
(
tj ,E

QΠn
ϕi(X

0,y
tj

)
)

.

That is, if the time index j is greater than r−1, we interpolate through the last r cubature
approximations of Eϕi(X

0,y
t ) along the partition. If j < r − 1, we interpolate through all

of the available previous points. We now detail both algorithms:

Algorithm 1 Taylor method

1: Set (X∅, Λ0) = (x, 1)
2: for 0 ≤ j ≤ n − 1 do
3: Let T Q be as in the main text.
4: for p ∈ Mj do
5: for 0 ≤ i ≤ d do

6: Set ET
i (t) =

q∑

k=0

1
k!

(t − tj)
k(T Q

tj
)k(Eϕi(X

0,x))

7: end for
8: for 1 ≤ l ≤ Ncub do
9: Define Xp∗l

tj+1
as the solution of the ODE:

dXp∗l
t =

d∑

i=0

Vi

(
Xp∗l

t , ET
i (t)

)
dωi

l(tj , tj+1)(t),

Xp∗l
tj

= Xp
tj

.

10: Set the associated weight: Λp∗l = Λpλl

11: end for
12: for 0 ≤ i ≤ d do
13: Store

∑

p∈Mj+1

Λpϕi(X
p
tj+1

).

14: end for
15: end for
16: end for
17: Final approximation of E [f(Xx

T )] is

∑

p∈Mn

Λpf(Xp
tn)
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Algorithm 2 Lagrange interpolation method

1: Set (X∅, Λ0) = (x, 1)
2: for 0 ≤ j ≤ n − 1 do
3: for p ∈ Mj do
4: for 0 ≤ i ≤ d do

5: Set EL
i (t) := L













tj−k,
∑

p∈Mj−k

Λpϕi(X
p
tj−k

)










j∧(r−1)

k=0




 (t)

6: end for
7: for 1 ≤ l ≤ Ncub do
8: Define Xp∗l

tj+1
as the solution of the ODE:

dXp∗l
t =

d∑

i=0

Vi

(
Xp∗l

t , EL
i (t)

)
dωi

l(tj , tj+1)(t),

Xp∗l
tj

= Xp
tj

.

9: Set the associated weight: Λp∗l = Λpλl

10: end for
11: for 0 ≤ i ≤ d do
12: for 0 ≤ k ≤ ((j + 1) ∧ r) do
13: Store

∑

p∈Mj+1−k

Λpϕi(X
p
tj+1−k

).

14: end for
15: end for
16: end for
17: end for
18: Final approximation of E [f(Xx

T )] is

∑

p∈Mn

Λpf(Xp
tn)

Remark 1.2. The Taylor method requires finding an expression for (Tt)
k(Eϕi(X

0,y)) for
k = 1, . . . , q and i = 0, . . . , d either by hand or using some symbolic computation. The
Lagrange interpolation method does not require this; the interpolating polynomial is defined
at each time step as part of the algorithm.

We state next the main assumptions of the paper. To do this, we introduce the
notation V[α] for iterated Lie brackets of the vector fields. In this setting each V0, . . . , Vd :
RN × R→ RN and we think of these as vector fields Vi(∙, x

′) on RN parametrised by the
second variable, x′ ∈ R, with the Lie Bracket between any two given by

[Vi, Vj ](x, x′) = ∂xVj(x, x′)Vi(x, x′) − ∂xVi(x, x′)Vj(x, x′),

where ∂Vi(x, x′) := (∂xl
V k

i (x, x′))1≤k,l≤N is the Jacobian matrix of Vi and similarly for
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∂xVj . Then, for α ∈
⋃

k≥1

{1, . . . , N}k and i ∈ {1, . . . , N}, we define inductively

V[i] := Vi, V[α∗i] := [Vi, V[α]] .

Assumption 1.3.

(A1): Uniform strong Hörmander condition: There exist δ > 0 and m ∈ N such that for
all ξ ∈ RN ,

inf
(x,x′)∈RN×R

∑

α∈∪m
k=1{1,...,N}k

〈V[α](x, x′), ξ〉2 ≥ δ |ξ|2

(A2): Smoothness of coefficients:

ϕi ∈ C∞
b (RN ;R), Vi ∈ C∞

b (RN × R;RN ) i = 0, . . . , d

(A3): We assume the paths in any cubature formula we use are absolutely continuous.

As is common with cubature on Wiener space methods, when the terminal function
f is not smooth, we will use an uneven partition of the time interval [0 , T ]. Here, we
introduce the Kusuoka partition and a modified version. We denote by Πγ

n the Kusuoka
[30] partition of the interval [0, T ] with (n + 1) points and parameter γ ≥ 1, defined by

tj = T

(

1 −

(

1 −
j

n

)γ)

for j = 0, . . . , n − 1,

tn = T.

We denote by Πγ,r
n the modified Kusuoka partition, with r smaller steps at the start

whose size is determined by the overall order of the method we require. It is defined as
follows: for a fixed integer r and real parameter γ, we fix the first (r +1) points as t0 = 0,
tk+1− tk = Tn−r/(k+1) for k = 0, . . . , r−1. Thereafter and we split the rest of the interval
[tr, T ] using the Kusuoka partition, i.e.

tj = (T − tr)
(
1 −

(
1 − j−r

n−r

)γ)
+ tr j ∈ {r + 1, . . . , n − 1}

tn = T

Recall that E(T, x, l, Πn), as defined in (1.5), is the global error of the respective algorithm
approximation. Then we have the following result, which is the main result of this work.

Theorem 1.4. Let f ∈ C∞
b (RN ;R). Then, assuming (A2), the error for the Taylor

method satisfies the following

sup
x∈RN

|E(T, x, l, Πn)| ≤ C
n−1∑

j=0

(tj+1 − tj)
A(q,l),

where A(q, l) := (q+2)∧(l+1)/2. Under the same assumptions, the error in the Lagrange
interpolation method is

sup
x∈RN

|E(T, x, l, Πn)| ≤ C
n−1∑

j=0

{
(tj+1 − tj)

((j + 1) ∧ r)!

j∧(r−1)∏

k=0

(tj+1 − tj−k) + (tj+1 − tj)
(l+1)/2

}

.
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Now, suppose f is only Lipschitz continuous. Assuming (A1)-(A3) and that we use the
Kusuoka partition Πγ

n with γ > l−1, we can bound the error in the Taylor method according
to the size of m

m = 1 : sup
x∈RN

|E(T, x, l, Πγ
n)| ≤ C n−B(q,l)−1/2, (1.10)

m ≥ 2 : sup
x∈RN

|E(T, x, l, Πγ
n)| ≤ C n−B(q,l), (1.11)

where B(q, l) = (q + 1
2 )∧ l−2

2 . Assuming (A1)-(A3) and that we use the modified Kusuoka
partition Πγ,r

n with γ ∈ (l − 1, l), we can bound the error in the Lagrange interpolation
method according to the size of m

m = 1 : sup
x∈RN

|E(T, x, l, Πγ,r
n )| ≤ C n−D(r,l)−1/2 (1 − r/n)−l/2, (1.12)

m ≥ 2 : sup
x∈RN

|E(T, x, l, Πγ,r
n )| ≤ C n−D(r,l) (1 − r/n)−l/2, (1.13)

where D(r, l) = (r − 3
2 ) ∧ l−2

2 .

Remark 1.5. 1. Let us comment on the term (1 − r/n)−l/2 appearing in the error
for the Lagrange interpolation method. This term comes from the need to take small
steps at the start (for an accurate polynomial approximation) and end of the partition
(due to blow up of the derivatives of uy(t, ∙)). We need to take r small steps at the
start, leaving n−r steps split in the style of the Kusuoka partition. This term reflects
the need to balance the size of r and n. Since it goes to zero as n → ∞, it can be
bounded by a constant for sufficiently large n. For example, in the case m = 1 for
a second order method, one must use a cubature formula of degree l = 5 and choose
r = 4. Then, for n ≥ 10, we have that (1 − r/n)−l/2 < 3.6.

2. The uniformly elliptic case covered by [19] is the case m = 1. Choosing the parameter
r appropriately, we also recover the same rate for the Lagrange interpolation method
up to the multiplication of the term (1 − r/n)−l/2.

3. In the case where m ≥ 2, we lose 1/2 an order of convergence. This is due to the
difference in the way we split the error, which we explain in Section 3.

Remark 1.6. The cubature method will still converge even if the test function is not
chosen to be Lipschitz, but only bounded and measurable. However, in this case, a control
on the rate of convergence of the cubature method will not be possible, regardless of the
choice of partition (Kusuoka, uniform) or the choice of the method (Taylor, Lagrange).
A similar result was obtain by the first author for the cubature method applied to classical
SDEs (not McKean-Vlasov), see Theorem 3.7 in [10]).

2 Preliminary results

First, we have a lemma on the existence, uniqueness and moment bounds for the solution
of equation (1.4).

Lemma 2.1. Under assumption (A2), there exist unique strong solutions to equations
(1.3) and (1.4). Moreover, for all s ∈ [t, T ], the mapping x 7→ Xt,x,y

s is P-a.s. smooth,
and for all multi-indices η on {1, . . . , N},

sup
x,y∈RN

∥
∥∂η

xXt,x,y
s

∥
∥

p
< ∞ ∀p ≥ 1. (2.1)
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Proof. Under assumption (A2), existence and uniqueness of strong solutions to equations
(1.3) and (1.4) is easy to prove and can be found in, for example, [22]. Now, we note that
we can view

(
Xt,x,y

s

)
s∈[t,T ]

as the solution of an SDE with coefficients

W y
i (s, z) := Vi(z,Eϕi(X

0,y
s )),

depending on time and a parameter. Due to Assumption 1.3 (A2), the map s 7→ h(s) :=
Eϕi(X

0;x
s ) is continuous in view of the path continuity of the process X0;x

s and Lebesgue’s
dominated convergence theorem. Therefore, Itô’s formula applied to ϕi(X

0;x
s ) shows that

the map h(s) is continuously differentiable with a bounded first derivative. This allows
one to apply Itô’s formula to Ly

sϕi(X
0;x
s ) and get that the map s 7→ ELy

sϕi(X
0;x
s ) enjoys

the same properties as h(s). Iterating the procedure, one obtains that the map (s, z) 7→
W y

i (s, z) is smooth, with bounded derivatives of all orders, with all bounds uniform in
y. The differentiability in z is assumed, and the differentiability in s comes from the
smoothness of each ϕi, which allows us to apply Itô’s formula to ϕi(X

0,y
s ), giving

∂s

[
Eϕi(X

0,y
s )

]
= E

[
(Ly

sϕi)(X
0,y
s )

]
.

Then, Kunita [28, Theorem 4.6.5] guarantees that the moment bound (2.1) holds.

In the next lemma, we collect some results on the regularity of uy(t, x) (defined in
(1.6)) and the pure cubature part of the error. We use the notation, for ψ ∈ C2

b (RN ;R),

‖ψ‖2,∞ := sup
x∈RN

{
|ψ(x)| + |∇ψ(x)| + |∇2ψ(x)|

}
.

Lemma 2.2. Let j ∈ {0, . . . , n − 2} and t ∈ [0, T ).

1. If f ∈ C∞
b (RN ;R), then for both schemes corresponding to E = ET and E = EL

sup
x,y∈RN

∣
∣
∣
[
PE,y

tj ,tj+1
− QE,y

tj ,tj+1

]
uy(tj+1, x)

∣
∣
∣ ≤ C (tj+1 − tj)

(l+1)/2. (2.2)

Moreover, the first two derivatives of uy are bounded:

sup
(t,y)∈[0,T ]×RN

‖uy(t, ∙)‖2,∞ ≤ C. (2.3)

2. If f is Lipschitz, then

sup
x,y∈RN

∣
∣
∣
[
P y

tj ,tj+1
− Qy

tj ,tj+1

]
uy(tj+1, x)

∣
∣
∣ ≤ C

l+1∑

k=l

(T − tj+1)
−k/2 (tj+1 − tj)

(k+1)/2.

(2.4)

In addition, the first derivative of uy is bounded

sup
(t,x,y)∈[0,T ]×RN×RN

|∇uy(t, x)| ≤ C (2.5)

and we have the estimate on the first two derivatives:

sup
y∈RN

‖uy(t, ∙)‖2,∞ ≤ C (T − t)−m/2. (2.6)

Finally, for both schemes corresponding to E = EL and E = ET ,

sup
x,y∈RN

∣
∣
∣
[
P y

s,t − QE,y
s,t

]
f(x)

∣
∣
∣ ≤ C ‖f‖Lip|t − s|1/2. (2.7)
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Proof. We think of
(
Xt,x,y

s

)
s∈[t,T ]

and
(
EXt,x,y

s

)
s∈[t,T ]

as the solutions of the SDEs with
coefficients

W y
i (s, z) := Vi(z,Eϕi(X

0,y
s )),

EW y
i (s, z) := Vi(z,Ey

s (ϕi)) i = 0, . . . , d,

respectively. We think of
{
W y

i (t, ∙), EW y
i (t, ∙) : i = 0, . . . , d

}
as vector fields on RN de-

pending on time t ∈ [0, T ] and the parameter y ∈ RN . In the proof of Lemma 2.1, we
explained that W y

0 , . . . ,W y
d ∈ C∞

b ([0, T ]×RN ;RN ) with all bounds uniform in y. The same
is true of the functions EW y

0 . . . ,E W y
d . To see this, we note that for the both schemes, the

map s 7→ Ey
s (ϕi) is a polynomial, therefore smooth with bounded derivatives on [0, T ].

We use the notation W y
[α] and EW y

[α] for iterated Lie brackets of the vector fields

introduced just before Assumption 1.3. Then, we note that for all (s, z, y) ∈ [0, T ]×RN ×
RN and α ∈ ∪k≥1{1, . . . , N}k,

〈W y
[α](s, z), ξ〉2 ≥ inf

x′∈R
〈V[α](z, x′), ξ〉2,

so that

inf
(s,z,y)∈[0,T ]×RN×RN

〈W y
[α](s, z), ξ〉2 ≥ inf

(z,x′)∈RN×R
〈V[α](z, x′), ξ〉2.

Hence, under the uniform strong Hörmander condition (A1),

inf
(s,z,y)∈[0,T ]×RN×RN

∑

α∈∪m
k=1{1,...,N}k

〈W y
[α](s, z, y), ξ〉2 ≥ δ |ξ|2,

so the vector fields {W y
i : i = 1, . . . d} satisfy a uniform strong Hörmander condition.

Exactly the same holds true for the vector fields {EW y
i : i = 1, . . . d}. This uniform strong

Hörmander condition is stronger than the ŨFG condition, hence, we have the results
of Section A.3 available to us, subject to slight modification since the coefficients in the
current setting also depend on a parameter.

Now, for f ∈ C∞
b (RN ;R), by differentiating under the expectation and using the

moment bounds on ∂η
xXt,x,y

s contained in (2.1) we see that for all multi-indices η on
{1, . . . , N} with length at least one,

sup
x,y∈RN

|∂η
xuy(t, x)| < ∞,

so (2.3) holds (recall that uy(t, x) was defined in (1.6)). The one step cubature error
contained in (2.2) follows from a stochastic Taylor expansion, noting that for all β ∈ A1,

sup
x,y∈RN

∣
∣
∣W̃ y

β uy(t, x)
∣
∣
∣ < ∞.

This again follows from the boundedness of derivatives of uy(t, ∙) and W y
i (t, ∙) uniformly

in y.
For f Lipschitz, the bound in (2.4) is the same as (A.18), adapted to the case where co-

efficients also depend on a parameter. Both estimates (2.5) and (2.6) come from Corollary
A.10 adapted to the case where coefficients also depend on a parameter.
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Finally, when f is Lipschitz,
∣
∣
∣
[
P y

s,t − QE,y
s,t

]
f(x)

∣
∣
∣ =

∣
∣E [f(Xs,x,y

t )] − EQ
[
f(EXs,x,y

t )
]∣∣

≤ |E [f(Xs,x,y
t )] − f(x)| +

∣
∣EQ

[
f(EXs,x,y

t )
]
− f(x)

∣
∣

≤ ‖f‖Lip

(
E |Xs,x,y

t − x| + EQ
∣
∣EXs,x,y

t − x
∣
∣)

That E |Xs,x,y
t − x| ≤ C |t− s|1/2 is a standard result for SDEs with bounded coefficients.

For the other term,

EQ
∣
∣EXs,x,y

t − x
∣
∣ =

NCub∑

i=1

λi

∣
∣
∣EXs,x,y,i

t − x
∣
∣
∣ .

where EXs,x,y,i
t is the solution of the ODE along the i-th cubature path. Then, we have

EQ
∣
∣EXs,x,y

t − x
∣
∣ ≤ C|t − s|,

due to a standard estimate on the solution of an ODE with bounded coefficients.

Before we discuss how accurate the polynomial approximations are, we need a lemma
concerning the time partitions we use and a type of sum involving its increments which
will appear in the error analysis.

Lemma 2.3. 1. Let a > b ≥ 0, let γ > a−1
a−b and let tj be times in points in the Kusuoka

partition, then there is a constant C = C(γ) > 0 such that

n−2∑

j=0

(tj+1 − tj)
a(T − tj+1)

−b ≤ C n−(a−1). (2.8)

2. For the partition Πγ,r
n ,

1
((j + 1) ∧ r)!

j∧(r−1)∏

k=0

(tj+1 − tj−k) ≤ C n−r (2.9)

and for a > b ≥ 0 and γ > a−1
a−b

n−2∑

j=0

(tj+1 − tj)
a(T − tj+1)

−b ≤ C n−(a−1) (1 − r/n)−(a+b−1)
. (2.10)

Proof. 1. This is proved in a slightly different format in Crisan & Ghazali [10]. First,
note that

tj+1 − tj = T

[(

1 −
j

n

)γ

−

(

1 −
j + 1

n

)γ]

= Tγ

∫ (1− j
n )

(1− j+1
n )

uγ−1 du

≤ Tγ
1
n

(

1 −
j

n

)γ−1

.
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Then, we use that

(

1 −
j

n

)

≤ 2

(

1 −
j + 1

n

)

for j ∈ {0, . . . , n − 2} to get

tj+1 − tj ≤ C
1
n

(

1 −
j + 1

n

)γ−1

, (2.11)

By definition,

T − tj+1 = T

(

1 −
j + 1

n

)γ

,

so that

n−2∑

j=0

(tj+1 − tj)
a(T − tj+1)

−b ≤ C

n−2∑

j=0

n−a

(

1 −
j + 1

n

)a(γ−1)(

1 −
j + 1

n

)−bγ

.

Re-ordering the terms, we get

n−2∑

j=0

(tj+1 − tj)
a(T − tj+1)

−b ≤ n−(a−1)
n−1∑

j=1

n−1

(
j

n

)a(γ−1)−bγ

. (2.12)

We note that
n−1∑

j=1

n−1

(
j

n

)a(γ−1)−bγ

≤
∫ 1

0

xa(γ−1)−bγ dx

and the condition γ >
a − 1
a − b

guarantees that the exponent a(γ − 1) − bγ > −1, so

that the integral is finite.

2. First, note tj+1 − tj−k = (tj+1 − tj) + (tj − tj−1) + . . . + (tj−k+1 − tj−k). There
are (k + 1) terms in this sum, and, in the case j < r − 1, from the definition
of the first r steps of the partition, the biggest of these is Tn−r/(j+1). Hence,
tj+1 − tj−k ≤ (k + 1)Tn−r/(j+1). So, in this case,

1
((j + 1) ∧ r)!

j∧(r−1)∏

k=0

(tj+1 − tj−k) =
1

(j + 1)!

j∏

k=0

(tj+1 − tj−k)

≤
1

(j + 1)!

j∏

k=0

(k + 1)T n−r/(j+1)

= T j n−r.

In the case j ≥ r−1, there is a constant K such that for each interval tj+1−tj ≤ K/n,
so that tj+1 − tj−k ≤ K(k + 1)/n and

1
(r ∧ j)!

(r∧j)−1∏

k=0

(tj+1 − tj−k) =
1
r!

r−1∏

k=0

(tj+1 − tj−k)

≤
1
r!

r−1∏

k=0

K (k + 1)/n

= Kr n−r.
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Now considering the sum
∑n−2

j=0 (tj+1 − tj)a(T − tj+1)−b, we split it into two parts:

when 0 ≤ j ≤ r − 1, tj+1 − tj = Tn−r/(j+1) ≤ C n−1 and T − tj+1 ≥ T
(
1 − rn−1

)
,

using that r ≤ n/2. So,

r−1∑

j=0

(tj+1 − tj)
a(T − tj+1)

−b ≤ C r n−a
(
1 − rn−1

)−b
≤ C n−a

(
1 − rn−1

)−b
(2.13)

For r ≤ j ≤ n − 2, the same analysis as in Lemma 2.3 gives

tj+1 − tj ≤ C
1
n

(

1 −
j + 1 − r

n − r

)γ−1

,

By definition,

T − tj+1 = (T − tr)

(

1 −
j + 1 − r

n − r

)γ

≥ T (1 − r/n)

(

1 −
j + 1 − r

n − r

)γ

,

The proof then follows as in the first part of this lemma to give for γ > a−1
a−b

n−2∑

j=r

(tj+1 − tj)
a(T − tj+1)

−b ≤ C (1 − r/n)−b (n − r)−(a−1).

We then note that
1

n − r
=

1
n

.
1

1 − r/n
. Combining this with (2.13) gives the result.

Lemma 2.4 (Polynomial approximations).

For the Taylor approximation, there exists a finite collection of functions H ⊂ C∞
b (RN ;R)

such that

sup
s∈[tj ,tj+1]

∣
∣Eϕi(X

0,y
s ) − ET,y

s (ϕi)
∣
∣ ≤ C

{

(tj+1 − tj)
q+1

+
∑

ψ∈H

∣
∣
∣
(
QET ,y,Πn

tj
− P y

0,tj

)
ψ(y)

∣
∣
∣

}

.

(2.14)

For the Lagrange interpolation method:

sup
s∈[tj ,tj+1]

∣
∣Eϕi(X

0,y
s ) − Ey

s (ϕi)
∣
∣ ≤ C

{
1

((j + 1) ∧ r)!

j∧(r−1)∏

k=0

(tj+1 − tj−k)

+
j∧(r−1)∑

k=0

∣
∣
∣
(
QE,y,Πn

tj−k
− P y

0,tj−k

)
ϕi

∣
∣
∣

}

.

(2.15)

Proof. Taylor method: Now we recall, for the Taylor method with s ∈ [tj , tj+1],

ET,y
s (ϕi) :=

q∑

k=0

1
k!

(T Q
tj

)k(Eϕi(X
0,y)) (s − tj)

k.
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We will estimate the error
∣
∣Eϕi(X

0,y
s ) − ET,y

s (ϕi)
∣
∣ by splitting it into

∣
∣Eϕi(X

0,y
s ) − ET,y

s (ϕi)
∣
∣ ≤

∣
∣
∣Eϕi(X

0,y
s ) − Êy

s (ϕi)
∣
∣
∣+
∣
∣
∣Êy

s (ϕi) − ET,y
s (ϕi)

∣
∣
∣ , (2.16)

where

Êy
s (ϕi) :=

q∑

k=0

1
k!

(Ttj )
k(Eϕi(X

0,y)) (s − tj)
k, s ∈ [tj , tj+1)

is the truncated Taylor expansion of s 7→ Eϕi(X
0,y
s ) of order q around tj . It is straight-

forward that
∣
∣
∣Eϕi(X

0,y
s ) − Êy

s (ϕi)
∣
∣
∣ ≤ C (s − tj)

q+1,

and
∣
∣
∣Êy

s (ϕi) − ET,y
s (ϕi)

∣
∣
∣ ≤

q∑

k=0

1
k!

(s − tj)
k
∣
∣
∣
[
(Ttj )

k − (T Q
tj

)k
]
(Eϕi(X

0,y))
∣
∣
∣ . (2.17)

Now, recall that T k
tj

(Eϕi(X
0,x)) ∈ S̄, so it can be written as a sum of products of terms

of the form
E g
(
X0,x

tj
,Eϕ(X0,x

tj
)
)

,

for some g ∈ C∞
b (RN × R;R), and ϕ ∈ C∞

b (RN ;R). For this type of term, the error in
replacing expectations under P with expectations under QΠn can be bounded by

∣
∣
∣E g

(
X0,x

tj
,Eϕ(X0,x

tj
)
)
− EQΠn g

(
X0,x

tj
,EQΠn ϕ(X0,x

tj
)
)∣∣
∣

≤
∣
∣
∣Eϕ(X0,x

tj
) − EQΠn ϕ(X0,x

tj
)
∣
∣
∣

+
∣
∣
∣E g

(
X0,x

tj
,EQΠn ϕ(X0,x

tj
)
)
− EQΠn g

(
X0,x

tj
,EQΠn ϕ(X0,x

tj
)
)∣∣
∣ .

Due to the form of T k(Eϕi(X
0,x)) ∈ S̄, the error

[
(Ttj )

k − (T Q
tj

)k
]
(Eϕi(X

0,y)) can be

decomposed as a sum of products of such errors for different functions g and ϕ. We define
Hi,k to be the collection of these functions appearing in the expression for T k(Eϕi(X

0,y)).
Then, the error ∣

∣
∣
[
(Ttj )

k − (T Q
tj

)k
]
(Eϕi(X

0,y))
∣
∣
∣

can be bounded by a constant multiple of
∑

ψ∈Hi,k

∣
∣
∣
(
EQΠn − E

)
ψ(X0,y

tj
)
∣
∣
∣ =

∑

ψ∈Hi,k

∣
∣
∣
(
QET ,y,Πn

tj
− P y

0,tj

)
ψ(y)

∣
∣
∣ .

So,

sup
s∈[tj ,tj+1]

∣
∣
∣Êy

s (ϕi) − ET,y
s (ϕi)

∣
∣
∣ ≤ C

q∑

k=0

1
k!

(tj+1 − tj)
k

d∑

i=0

∑

ψ∈Hi,k

∣
∣
∣
(
QET ,y,Πn

tj
− P y

0,tj

)
ψ(y)

∣
∣
∣ ,

and the largest term in the outer sum on the right hand side occurs when k = 0, so using
this and defining H := ∪d

i=1Hi,0, the estimate (2.16) becomes

sup
s∈[tj ,tj+1]

∣
∣Eϕi(X

0,y
s ) − ET,y

s (ϕi)
∣
∣ ≤ C

{

(tj+1 − tj)
q+1

+ q
∑

ψ∈H

∣
∣
∣
(
QET ,y,Πn

tj
− P y

0,tj

)
ψ(y)

∣
∣
∣

}

.
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Lagrange method
Let z ∈ Ck+1([0, T ];R). Recall that we denote by L[(t1, x1), . . . , (tk, xk)] the Lagrange

Interpolating Polynomial passing through the points (t1, x1) , . . . , (tk, xk). It is a standard
result (see, e.g., Chapter 25 in Abramovitz and Stegun [1]) that the error in approximating
z(t) with the polynomial L[(t1, z(t1)), . . . , (tk, z(tk))] for any t ∈ [0, T ] is

z(t) − L[(t1, z(t1)), . . . , (tk, z(tk))](t) =
1
k!

z(k)(ξ)
k∏

j=1

(t − tj), (2.18)

where ξ is some point in [0, T ]. Note also that we can write L[(t1, x1), . . . , (tk, xk)] terms
of the Lagrange basis polynomials Lj : [0, T ] → R as

L[(t1, x1), . . . , (tk, xk)](t) =
k∑

j=1

xj Lj(t),

where

Lj(t) =
k∏

i=1,i 6=j

t − ti
tj − ti

So, the difference between polynomials interpolating different points on the same time
grid is given by

L[(t1, x1), . . . , (tk, xk)](t) − L[(t1, y1), . . . , (tk, yk)](t) =
k∑

j=0

(xj − yj) Lj(t).

and, in particular,

sup
t∈[0,T ]

∣
∣Lk[x1, . . . , xk](t) − Lk[y1, . . . , yk](t)

∣
∣ ≤ C(T )

k∑

j=1

|xj − yj | . (2.19)

Now, recall the definition of the Lagrange interpolation approximation is

EL,y
t (ϕi) := L

[{(
tj−k,EQ

Πn
ϕi

(
X0,y

tj−k

))}j∧(r−1)

k=0

]

(t), t ∈ [tj , tj+1],

and consider the same object but with all expecations under the Wiener measure, P:

ELy,P
t (ϕi) := L

[{(
tj−k,Eϕi

(
X0,y

tj−k

))}j∧(r−1)

k=0

]

(t), t ∈ [tj , tj+1].

Then, we can split the error error Eϕi(X
0,y
t ) − Ey

t (ϕi) into
[
Eϕi(X

0,y
t ) − EL,y,P

t (ϕi)
]

+
[
ELy,P

t (ϕi) − EL,y
t (ϕi)

]
.

We are able to control using the first term suing (2.18) and the second term using (2.19).
The result follows immediately.
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3 Proof of Theorem 1.4

For the Taylor method, our proof is essentially the same as that in [19], when f ∈
C∞

b (RN ;R). When f is Lipschitz, however, we split the local errors differently. In [19],
the error is split into2

[
P y

tj ,tj+1
− QE,y

tj ,tj+1

]
uy =

[
P y

tj ,tj+1
− PE,y

tj ,tj+1

]
uy +

[
PE,y

tj ,tj+1
− QE,y

tj ,tj+1

]
uy. (3.1)

The term
[
P y

tj ,tj+1
− PE,y

tj ,tj+1

]
uy is then estimated in terms of the difference of the gener-

ators of the processes X and EX applied to uy, which in turn depends on an estimate on
∇2uy. In the uniformly elliptic case with f Lipschitz, in [19], |∇2uy(t, x)| ≤ C(T − t)−1/2.
However, in the Hörmander case, |∇2uy(t, x)| ≤ C(T − t)−m/2, where m is the order of
the Hörmander condition, which could be very large. Instead, here, we split the error into

[
P y

tj ,tj+1
− QE,y

tj ,tj+1

]
uy =

[
Qy

tj ,tj+1
− QE,y

tj ,tj+1

]
uy +

[
P y

tj ,tj+1
− Qy

tj ,tj+1

]
uy. (3.2)

We control the term
[
Qy

tj ,tj+1
− QE,y

tj ,tj+1

]
uy using only the Lipschitz constant of uy which

is uniformly bounded in time.

3.1 Smooth bounded terminal condition

We introduce the generator associated to the process X0,y

Ly
s := V0(∙,Eϕ0(X

0,y
s )) +

1
2

d∑

i=1

Vi(∙,Eϕi(X
0,y
s ))2,

and note that, as defined in (1.6), uy(t, x) = P y
t,T f(x) solves the PDE

(∂t + Ly
t ) uy(t, x) = 0,

uy(T, x) = f(x).
(3.3)

In the analysis of each scheme, we split the local error into
[
P y

tj ,tj+1
− QE,y

tj ,tj+1

]
uy(tj+1, x) =

[
P y

tj ,tj+1
− PE,y

tj ,tj+1

]
uy(tj+1, x) (3.4)

+
[
PE,y

tj ,tj+1
− QE,y

tj ,tj+1

]
uy(tj+1, x). (3.5)

Equation (3.4) is the error due to approximating the Eϕi(X
0,y
t ) by Ey

t (ϕi), and (3.5) is a
one-step cubature error. Now,

[
P y

tj ,tj+1
− PE,y

tj ,tj+1

]
uy(tj+1, x) = E

[
uy(tj+1, X

tj ,x,y
tj+1

) − uy(tj+1,
E X

tj ,x,y
tj+1

)
]

= E
∫ tj+1

tj

(
Ly

s − LE,y
s

)
uy(s,E Xtj ,x,y

s ) ds.

Using the Lipschitz property of the coefficients, we get

∣
∣(Ly

s − LE,y
s

)
uy(s,E Xtj ,x,y

s )
∣
∣ ≤ C ‖uy(s, ∙)‖2,∞

d∑

i=0

∣
∣Eϕi(X

0,y
s ) − Ey

s (ϕi)
∣
∣ .

2Recall that uy was defined in (1.6).
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Now, we recall from Lemma 2.2 that ‖uy(s, ∙)‖2,∞ ≤ C when f ∈ C∞
b (RN ;R), so

[
P y

tj ,tj+1
− PE,y

tj ,tj+1

]
uy(tj+1, x) ≤ C

∫ tj+1

tj

d∑

i=0

∣
∣Eϕi(X

0,y
s ) − Ey

s (ϕi)
∣
∣ ds (3.6)

Now, to control the right hand side above, we use Lemma 2.4 and we split the proof
depending on the individual scheme.

3.1.1 Taylor Method

Using Lemma 2.4, for the Taylor method, (3.6) becomes

[
P y

tj ,tj+1
− PET ,y

tj ,tj+1

]
uy(tj+1, x) ≤ C(tj+1 − tj)

{

(tj+1 − tj)
q+1

+
∑

ψ∈H

∣
∣
∣
(
QET ,y,Πn

tj
− P y

0,tj

)
ψ(y)

∣
∣
∣

}

.

(3.7)

Summing up the local errors, the global error is then given by

[
P y

0,tn
− QET ,y,Πn

tn

]
f(x) ≤ C

n−1∑

j=0

{

(tj+1 − tj)
q+2

+ q(tj+1 − tj)
∑

ψ∈H

∣
∣
∣
(
QET ,y,Πn

tj
− P y

0,tj

)
ψ(y)

∣
∣
∣+ (tj+1 − tj)

(l+1)/2

}

.

(3.8)

The above holds for any f ∈ C∞
b (RN ;R). In particular, we can take f = ψ for any ψ ∈ H.

Doing this and repeatedly applying the discrete version of the Gronwall inequality,

[
P y

0,tn
− QE,y

0,tn

]
f(x) ≤ C exp



q

n−1∑

j=0

(tj+1 − tj)





×
n−1∑

j=0

{

(tj+1 − tj)
q+2 + (tj+1 − tj)

(l+1)/2

}

.

(3.9)

3.1.2 Lagrange interpolation method

Using Lemma 2.4, for the Lagrange interpolation method, (3.6) becomes

[
P y

tj ,tj+1
− PEL,y

tj ,tj+1

]
uy(tj+1, x) ≤ C(tj+1 − tj)

{
1

((j + 1) ∧ r)!

j∧(r−1)∏

k=0

(tj+1 − tj−k)

+
j∧(r−1)∑

k=0

∣
∣
∣
(
QET ,y,Πn

tj−k
− P y

0,tj−k

)
ϕi

∣
∣
∣

}

.

(3.10)
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The global error is then given by

[
P y

0,tn
− QEL,y

0,tn

]
f(x) ≤ C

n−1∑

j=0

[

(tj+1 − tj)

{
1

((j + 1) ∧ r)!

j∧(r−1)∏

k=0

(tj+1 − tj−k)

+
j∧(r−1)∑

k=0

∣
∣
∣
(
QET ,y,Πn

tj−k
− P y

0,tj−k

)
ϕi

∣
∣
∣

}

+ (tj+1 − tj)
(l+1)/2

]

.

(3.11)

Taking f = ϕi for any i = 0, . . . , d and using discrete Gronwall inequality, we obtain

[
P y

0,tn
− QEL,y

0,tn

]
f(x) ≤ C exp



r

n−1∑

j=0

(tj+1 − tj)





×
n−1∑

j=0

{
(tj+1 − tj)

((j + 1) ∧ r)!

j∧(r−1)∏

k=0

(tj+1 − tj−k) + (tj+1 − tj)
(l+1)/2

}

.

(3.12)

3.2 Lipschitz terminal condition, m = 1

In this case, the estimate we have on the first two derivatives of uy is ‖uy(t, ∙)‖2,∞ ≤
C(T − t)−1/2. Using this estimate we get, similarly to (3.6),

[
P y

tj ,tj+1
− PE,y

tj ,tj+1

]
uy(tj+1, x) ≤ C (T − tj+1)

−1/2

∫ tj+1

tj

d∑

i=0

∣
∣Eϕi(X

0,y
s ) − Ey

s (ϕi)
∣
∣ ds

(3.13)

3.2.1 Taylor method

The same arguments as the previous section give the global error is

[
P y

0,tn
− QET ,y,Πn

tn

]
f(x) ≤ C

n−2∑

j=0

(T − tj+1)
−1/2

{

(tj+1 − tj)
q+2

+ (tj+1 − tj)
∑

ψ∈H

∣
∣
∣
(
QET ,y,Πn

tj
− P y

0,tj

)
ψ(y)

∣
∣
∣+ (tj+1 − tj)

(l+1)/2

}

+
[
P y

tn−1,tn
− QET ,y

tn−1,tn

]
f(x).

(3.14)

Since ψ ∈ C∞
b (RN ;R), in particular it is Lipschitz. The above estimate holds for all

Lipschitz f , so taking f = ψ ∈ H and using the discrete Gronwall inequality, we get

[
P y

0,tn
− QET ,y,Πn

tn

]
f(x) ≤ C exp




n−2∑

j=0

(T − tj+1)
−1/2(tj+1 − tj)





×
n−2∑

j=0

(T − tj+1)
−1/2

[
(tj+1 − tj)

q+2 + (tj+1 − tj)
(l+3)/2

]

+
[
P y

tn−1,tn
− QET ,y

tn−1,tn

]
f(x).

(3.15)
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Now, we recall that in this setting we use the Kusuoka partition Πγ
n with γ > l− 1. Using

Lemma 2.3, we can see that
∑n−1

j=0 (T − tj+1)−1/2(tj+1 − tj) is bounded independently of
n. For the other two sums, we also use Lemma 2.3 and for the final term we use (2.7) to
get

[
P y

0,tn
− QET ,y,Πn

tn

]
f(x) ≤ C

(
n−(l−1)/2 + n−(q+1) + n−γ/2

)
.

Noting γ > l − 1 gives the result (1.10).

3.2.2 Lagrange interpolation method

The same arguments as the previous section give the global error is

[
P y

0,tn
− QEL,y

0,tn

]
f(x) ≤ C

n−2∑

j=0

(T − tj+1)
−1/2

[

(tj+1 − tj)

{
1

((j + 1) ∧ r)!

j∧(r−1)∏

k=0

(tj+1 − tj−k)

+
(r∧j)−1∑

k=0

∣
∣
∣
(
QEL,y,Πn

tj−k
− P y

0,tj−k

)
ϕi

∣
∣
∣

}

+ (tj+1 − tj)
(l+1)/2

]

+
[
P y

tn−1,tn
− QEL,y

tn−1,tn

]
f(x).

(3.16)

Since ϕi ∈ C∞
b (RN ;R), in particular it is Lipschitz. The above estimate holds for all

Lipschitz f , so taking f = ϕi, i = 0, . . . , d and using the discrete Gronwall inequality, we
get

[
P y

0,tn
− QEL,y,Πn

tn

]
f(x) ≤ C exp



r

n−2∑

j=0

(T − tj+1)
−1/2(tj+1 − tj)





×
n−2∑

j=0

(T − tj+1)
−1/2



 1
((j + 1) ∧ r)!

j∧(r−1)∏

k=0

(tj+1 − tj−k) + (tj+1 − tj)
(l+1)/2





+
[
P y

tn−1,tn
− QEL,y

tn−1,tn

]
f(x).

(3.17)

By part 1 Lemma 2.3,

n−2∑

j=0

(T − tj+1)
−1/2 (tj+1 − tj)

(l+1)/2 ≤ C n−(l−1)/2 (1 − r/n)−l/2.

Now, we recall that in this setting we use the modified Kusuoka partition Πγ,r
n with

γ > l − 1. We note

n−2∑

j=0

(T − tj+1)
−1/2 1

((j + 1) ∧ r)!

j∧(r−1)∏

k=0

(tj+1 − tj−k)

=
n−2∑

j=0

(T − tj+1)
−1/2(tj+1 − tj) ×



 1
((j + 1) ∧ r)!

j∧(r−1)∏

k=1

(tj+1 − tj−k)
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with the left hand term in the product above being bounded uniformly in n by part 1
Lemma 2.3 and the second term being less than n−(r−1) by part 2 of the same lemma.
For the final term in (3.17), we use (2.7) to get

[
P y

tn−1,tn
− QEL,y

tn−1,tn

]
f(x) ≤ C (n − r)−γ/2,

then noting that (n − r)−γ/2 = n−γ/2 (1 − r/n)−γ/2 ≤ n−(l−1)/2 (1 − r/n)−l/2 when
γ ∈ (l − 1, l), we finally obtain

[
P y

0,tn
− Q

EL,y,Πγ,r
n

tn

]
f(x) ≤ C

(
n−(l−1)/2(1 − r/n)−l/2 + n−(r−1)

)
.

This proves the result (1.12).

3.3 Lipschitz terminal condition, m ≥ 2

When f is Lipschitz and m ≥ 2, we split the local error into
[
P y

tj ,tj+1
− QE,y,Πn

tj ,tj+1

]
u(tj+1, x) =

[
Qy,Πn

tj ,tj+1
− QE,y,Πn

tj ,tj+1

]
u(tj+1, x) (3.18)

+
[
P y

tj ,tj+1
− Qy,Πn

tj ,tj+1

]
u(tj+1, x). (3.19)

Equation (3.18) is the error due to approximating the Eϕi(X
0,y
t ) by Ey

t (ϕi), and (3.19) is
a one-step cubature error. For the term in (3.18), we note that
∣
∣
∣
[
Qy,Πn

tj ,tj+1
− QE,y,Πn

tj ,tj+1

]
uy(tj+1, x)

∣
∣
∣ =EQΠn

∣
∣
∣uy
(
tj+1, X

tj ,x,y
tj+1

)
− uy

(
tj+1,

E X
tj ,x,y
tj+1

)∣∣
∣

≤‖∇uy(tj+1, ∙)‖∞ EQΠn

∣
∣
∣X

tj ,x,y
tj+1

−E X
tj ,x,y
tj+1

∣
∣
∣ .

(3.20)

Now, using the Lipschitz property of the coefficients, we note that

EQΠn

∣
∣
∣X

tj ,x,y
tj+1

−E X
tj ,x,y
tj+1

∣
∣
∣

≤
NCub∑

k=1

λk

d∑

i=0

∫ tj+1

tj

∣
∣Vi(X

tj ,x,y
s (ωk),Eϕi(X

0,y
s ) − Vi(

EXtj ,x,y
s (ωk), Es(ϕi))

∣
∣ dωi

k(tj , tj+1)(s).

We recall the re-scaled path ωi
k(tj , tj+1)(s) =

√
tj+1 − tj ωi

k

(
s−tj

tj+1−tj

)
, so that, under the

assumption that ωk is absolutely continuous,

sup
s∈[tj ,tj+1]

∣
∣
∣
∣

d

ds
ωk(tj , tj+1)(s)

∣
∣
∣
∣ ≤

1
√

tj+1 − tj
sup

s∈[0,1]

∣
∣
∣
∣

d

ds
ωk(s)

∣
∣
∣
∣ .

So, there exists a constant C which depends on maxk=1,...,NCub
sups∈[0,1] |

d
dsωk(s)| such

that

EQΠn

∣
∣
∣X

tj ,x,y
tj+1

−E X
tj ,x,y
tj+1

∣
∣
∣

≤C
1

√
tj+1 − tj

d∑

i=0

∫ tj+1

tj

EQΠn

∣
∣Xtj ,x,y

s −E Xtj ,x,y
s

∣
∣+
∣
∣Eϕi(X

0,y
s ) − Es(ϕi)

∣
∣ ds.
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Then, using Gronwall’s inequality, we have

EQΠn

∣
∣
∣X

tj ,x,y
tj+1

−E X
tj ,x,y
tj+1

∣
∣
∣ ≤ C

√
tj+1 − tj sup

s∈[tj ,tj+1]

∣
∣Eϕi(X

0,y
s ) − Es(ϕi)

∣
∣

Now, going back to (3.20), we have
∣
∣
∣
[
Qy,Πn

tj ,tj+1
− QE,y,Πn

tj ,tj+1

]
uy(tj+1, x)

∣
∣
∣ ≤ C

√
tj+1 − tj sup

s∈[tj ,tj+1]

∣
∣Eϕi(X

0,y
s ) − Es(ϕi)

∣
∣ .

(3.21)

From this point on the arguments depend on the individual scheme.

3.3.1 Taylor method

Using Lemma 2.4, (3.21) becomes

∣
∣
∣
[
Qy,Πn

tj ,tj+1
− QET ,y,Πn

tj ,tj+1

]
uy(tj+1, x)

∣
∣
∣ ≤ C(tj+1 − tj)

1/2

{

(tj+1 − tj)
q+1

+
∑

ψ∈H

∣
∣
∣
(
QET ,y,Πn

tj
− P y

0,tj

)
ψ(y)

∣
∣
∣

}

.

(3.22)

Since ψ ∈ C∞
b (RN ;R), we can use the global error from the last section for smooth terminal

conditions contained in (3.9) to obtain

∣
∣
∣
[
Qy,Πn

tj ,tj+1
− QET ,y,Πn

tj ,tj+1

]
uy(tj+1, x)

∣
∣
∣ ≤ C(tj+1 − tj)

1/2

{

(tj+1 − tj)
q+1

+
j∑

i=0

[
(ti+1 − ti)

q+2 + (ti+1 − ti)
(l+1)/2

]}

.

(3.23)

Now, we simply use that tj+1 − tj ≤ C/n to get:
∣
∣
∣
[
Qy,Πn

tj ,tj+1
− QET ,y,Πn

tj ,tj+1

]
uy(tj+1, x)

∣
∣
∣ ≤ Cn−1/2

{
n−(q+1) + n

{
n−(q+2) + n−(l+1)/2

}}

≤ C
(
n−(q+3/2) + n−l/2

)

(3.24)

Combining with the local cubature errors and summing up, we get the global error:
[
P y

0,tn
− QET ,y,Πn

tn

]
f(x) ≤ C

(
n−(q+1/2) + n−(l−2)/2

)
.

3.3.2 Lagrange interpolation method

Now, we only consider the modified Kusuoka partition Πγ,r
n . Using Lemma 2.3 part 2 and

Lemma 2.4, (3.21) becomes

∣
∣
∣
[
Qy

tj ,tj+1
− QEL,y

tj ,tj+1

]
uy(tj+1, x)

∣
∣
∣ ≤ C(tj+1 − tj)

1/2





n−r +

j∧(r−1)∑

k=0

∣
∣
∣
(
QEL,y,Πn

tj−k
− P y

0,tj−k

)
ϕi

∣
∣
∣





.

(3.25)
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Using the local error for functions ϕi ∈ C∞
b (RN ;R) contained in (3.12), we get

∣
∣
∣
[
Qy

tj ,tj+1
− QEL,y

tj ,tj+1

]
uy(tj+1, x)

∣
∣
∣ ≤ C(tj+1 − tj)

1/2

{

n−r + r

j∑

i=0

{
n−r + (ti+1 − ti)

(l+1)/2
}
}

.

(3.26)

Now, we simply use that tj+1 − tj ≤ C/n to get:
∣
∣
∣
[
Qy

tj ,tj+1
− QEL,y

tj ,tj+1

]
uy(tj+1, x)

∣
∣
∣ ≤ Cn−1/2

{
n−r + rn

{
n−r + n−(l+1)/2(1 − r/n)−l/2

}}

≤ C
(
n1/2−r + n−l/2(1 − r/n)−l/2

)

(3.27)

Combining with the local cubature errors and summing up, we get the global error:
[
P y

0,tn
− Q

EL,y,Πγ,r
n

tn

]
f(x) ≤ C

(
n3/2−r + n−(l−2)/2(1 − r/n)−l/2

)
.

4 Numerical Examples

4.1 Example 1

In this section, we implement and compare both algorithms. We consider the following
example with dimensions N = d = 1:

X0,x
t = x +

∫ t

0

E
[
X0,x

s

]
ds + Bt,

which has the explicit solution
Xx

t = xet + Bt.

In this case, EX0,x
t = xet so the Taylor approximation of order q is easy to compute:

T q
t

(
EX0,x

t

)
=

q∑

k=0

x

k!
tk.

We choose the Lipschitz terminal function f(x) = x+ := max{x, 0} and, by integrating
the Gaussian density, we can compute

E(X0,x
t )+ =

√
tφ

(
xet

√
t

)

+ xet

(

1 − Φ

(

−
xet

√
t

))

,

where φ and Φ are the density and cumulative distribution function, respectively, of a
standard Gaussian random variable. We use the cubature formula of degree 5 contained
in Lyons & Victoir [37]. We use a fourth order adaptive Runge-Kutta scheme to solve
the ODEs. We choose our parameters in order to achieve the optimal rate of convergence
as given by Theorem 1.4. Since the coefficients are uniformly elliptic, expect to be able
to achieve order 2 convergence with a cubature formula of degree 5. So, we only need to
choose q ≥ 1 and γ ∈ (4, 5) to achieve quadratic convergence in the Taylor method, and
r ≥ 3 in the Lagrange interpolation method. We choose the parameters (x, T, γ, q, r) =
(0.5, 10, 4.5, 2, 3) and the results are presented in Figure 1. We fit a line to the last four
points on the log-log error plot and calculate its gradient as an estimate of the rate of
convergence. We see that both methods achieve the expected quadratic convergence rate.
In this simple example, the convergence is quite smooth and the Taylor method performs
better than the Lagrange interpolation method.
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Figure 1: log-log error plot comparison between the Lagrange interpolation
and Taylor methods for Example 1. The gradient of each solid line is given
by a linear regression on the last 5 points.

4.2 Example 2

We implement an example where the coefficients are not uniformly elliptic and N = d = 2.
We write X0,x

t =
(
X1

t , X2
t

)
to lighten notation slightly. The example we consider is

(
X1

t

X2
t

)

=

(
x1

x2

)

+
∫ t

0

([
2 + sin

(
EX2

s

)]

X1
t

)

◦ dB1
s +

∫ t

0

(
X2

t

X1
t

)

◦ dB2
s ,

where the coefficients are

V0 ≡ 0, V1(x1, x2, x
′) =

(
2 + sin(x′)

x1

)

, V2(x1, x2, x
′) =

(
x2

x1

)

, ϕ1(x1, x2) = x2,

for all (x1, x2, x
′) ∈ R3. We note that at x1 = 0 the coefficients degenerate. Second, we

note that

V[(1,2)](x1, x2, x
′) =

(
x1

2 + sin(x′) − x1

)

.

Since x1 and 2 + sin(x′) − x1 cannot both be zero at the same time, we see that V1, V2

and V[(1,2)] span R2. The coefficients therefore satisfy Assumption 1.3 (A1), the uniform
strong Hörmander condition, for m = 2. For m = 2, with a cubature formula of degree
5, we expect to achieve a convergence rate of 3/2 according to Theorem 1.4. To do so,
we have to choose γ ∈ (4, 5) and r > 7/2. We choose the parameters (x1, x2, T, γ, r) =
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(1, 0.5, 1, 4.5, 4), with the terminal function f(x) = x+. We implement the cubature
formula of degree 5 in dimension d = 2 from Lyons & Victoir [37]. In this case, the
cubature measure is supported on NCub = 13 paths. We could not find an explicit solution,
so we compare the cubature approximation to a Monte Carlo approximation with Euler-
Maruyama discretisation. The results are presented in Figure 2. In this example, the
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Figure 2: log-log error plot comparison between the Lagrange interpolation
and Taylor methods for Example 2. The gradient of each solid line is given
by a linear regression on the last 5 points.

convergence is not as smooth as Example 1, but the log-log error plot looks approximately
linear after 7 steps. After this, the performance of each algorithm is remarkably similar.
Empirically we observe second order convergence, whereas Theorem 1.4 predicts a rate of
3/2.

A Derivative estimates for time-inhomogeneous parabolic
PDEs

In this section, we obtain estimates on the derivatives of the solution of the linear parabolic
partial differential equation (PDE)

(∂t + Lt) u(t, x) = 0, (t, x) ∈ [0, T ) × RN

u(T, x) = f(x), x ∈ RN
, (A.1)
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where f is either Lipschitz or continuous and bounded, and Lt is the time-inhomogeneous
differential operator, written in Hörmander form,

Lt = W0(t) +
1
2

d∑

i=1

Wi(t)
2.

The connection between parabolic PDEs and stochastic differential equations has been
well-studied. Under various types of conditions on the vector fields W0, . . . ,Wd and ter-
minal condition f , the solution to (A.1) is given by u(t, x) = E[f(Xt,x

T )], where (Xt,x
s )s∈[t,T ]

solves the following Stratonovich SDE driven by a Brownian motion B = (B1, . . . , Bd),
with the convention B0

t = t,

Xt,x
s = x +

d∑

i=0

∫ s

t

Wi(u,Xt,x
u ) ◦ dBi

u. (A.2)

In the homogeneous case, Kusuoka & Stroock [32] under a uniform Hörmander condition
and subsequently Kusuoka [31] under the weaker UFG condition, establish sharp estimates
on the derivatives of the solution of (A.1). Crisan & Delarue [9] extend this analysis to
semi-linear equations. To our knowledge, these results have not been obtained without
using Malliavin Calculus.

When the vector fields defining the time-inhomogeneous SDE are smooth in time and

space, we can consider the space-time process
(
t,X0,x

t

)

t∈[0,T ]
on RN+1 and adapt existing

results in the literature. There are three main works we draw on: we first show how to
adapt the results of Kusuoka [31] to derive gradient bounds in the directions of the vector
fields except W0; we then adapt an argument from Crisan & Delarue [9] to prove that the
time-inhomogeneous semigroup is a generalised classical solution to a parabolic PDE, and
finally using this PDE as a tool, we adapt a result from Crisan, Manolarakis & Nee [15]
to derive gradient bounds in the direction of all the vector fields, including W0.

We introduce the first assumption which we make throughout this section.

Assumption A.1. W0, . . . ,Wd ∈ C∞
b ([0, T ] × RN ;RN ).

Under this assumption, (A.2) has a unique strong solution. Now, let us define the

space-time process
(
X̃(t,x)

s

)

s∈[t,T ]
:=
(
s,Xt,x

s

)
s∈[t,T ]

, taking values in RN+1, which solves

the equation

X̃(t,x)
s =

(
t
x

)

+
∫ s

t

(
1

W0

(
X̃(t,x)

u

)
)

du +
d∑

i=1

∫ s

t

(
0

Wi

(
X̃(t,x)

u

)
)

◦ dBi
u. (A.3)

Defining x̃ := (t, x) ∈ RN+1 and W̃0, . . . , W̃d : RN+1 → RN+1 as follows:

∀x̃ ∈ RN+1 : W̃0(x̃) :=

(
1

W0(x̃)

)

, W̃i(x̃) :=

(
0

Wi(x̃)

)

for i = 1, . . . , d,

we can re-write (A.3) more compactly as

X̃ x̃
s = x̃ +

d∑

i=0

∫ s

t

W̃i

(
X̃ x̃

u

)
◦ dBi

u. (A.4)

As we shall see, by working under the relaxed ŨFG condition (see Assumption A.2), the
solution of the PDE (A.1) is not necessarily differentiable in each co-ordinate direction in
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RN . The solution of (A.1) remains differentiable in certain directions, determined by the
vector fields W̃0, . . . , W̃d. We now explain what we mean by such a directional derivative.

We can identify vector fields, U : Rm → Rm with differential operators acting on
sufficiently smooth functions ϕ : Rm → R by

∀y ∈ Rm : Uϕ(y) := ∇ϕ(y) ∙ U(y) ≡
m∑

i=1

U i(y) ∂yiϕ(y). (A.5)

We can define a directional derivative of ϕ in the direction U , even when ∂yj
ϕ does not

exist classically for all j = 1, . . . ,m. Let ws(y) be the solution to the ODE

dws(y)
ds

= U(ws(y)), s ≥ 0

w0(y) = y.
(A.6)

We say that ϕ is differentiable in the direction U if the function s 7→ ϕ(ws(y)) is differen-
tiable at 0. Then, we denote

Uϕ(y) =
d

ds
ϕ(ws(y))

∣
∣
∣
∣
s=0

,

which coincides with (A.5) when ϕ ∈ C1(Rm;R). In fact, we will see that the semigroup
associated to equation (A.2) is differentiable in directions determined by commutators of
the vector fields. The Lie bracket, or commutator, between two vector fields U and W is
then defined the differential operator

[U,W ]ϕ := U(Wϕ) − W (Uϕ),

which can be identified with the vector field

[U,W ](y) = ∂W (y)U(y) − ∂U(y)W (y),

where ∂W (y) := (∂yj W
i(y))1≤i,j≤m is the Jacobian matrix of W and similarly for ∂U .

Since we have assumed the vector fields W̃0, . . . , W̃d to be smooth, we can repeatedly
take commutators of them. Recall the notation A for multi-indices on {0, . . . , d} from
Section 1.1. We define W̃[α], for α ∈ A inductively by forming Lie brackets on RN+1:

W̃[i] := W̃i, W̃[α∗i] := [W̃[α],Wi] for i = 0 . . . , d, α ∈ A.

We note that for all α ∈ A1(m) (i.e. for α 6= (0)) the first component of the vector
field W̃[α] is zero. So for α ∈ A1(m), a derivative in the direction W̃[α] of a function

RN+1 3 (t, x) 7→ φ(t, x) ∈ R only acts in the x variable. We can therefore write {W̃[α](t) :
α ∈ A1(m)} and think of these as differential operators parametrised by t and acting in
the x variable. Only the vector field W̃0 acts in the t-direction.

With these concepts in mind, we can now introduce the second assumption we make
on the vector fields.

Assumption A.2. ŨFG(m) condition: there exists a positive integer m such that, for
all α ∈ A with ‖α‖ > m, there exist ϕα,β ∈ C∞

b ([0, T ] × RN ;R) with

W̃[α](t, x) =
∑

β∈A1(m)

ϕα,β(t, x) W̃[β](t, x).
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Remark A.3. Assumption A.2 is not sufficient to obtain the regularity of the law of the
associated non-homogeneous (time dependent) diffusion process X. Indeed, as observed in
[7], the process X may not have a (smooth) density with respect to the Lebesgue measure
even when the vector fields W0, . . . ,Wd satisfy the Hörmander condition. However, as
we show below, Assumption A.2 suffices to allows us to derive gradient bounds of the
corresponding (time-inhomogeneous) semigroup. These results hinge on the integration by
parts formulae included in Theorem A.7 below which give representations of directional
derivatives

W̃[α1](t) ∙ ∙ ∙ W̃[αn](t) (Pt,sf) (x)

of the semigroup Pt,sf. In order to duplicate the results in [7], we would need to deduce
integration by parts formulae (and subsequent bounds) for quantities of the form

Pt,s(W̃[α1](t) ∙ ∙ ∙ W̃[αn](t)f)(x).

For classical SDEs, such results were obtained in the paper [16]. As the differentiability
of the transition kernel of the solution time-inhomogeous stochastic differential equation
(A.2) is not required for the analysis of the cubature method (or for it to work), we did
not need to develop the corresponding integration by parts formulae here.

A.1 Kusuoka-Stroock processes

This class of process was introduced by Kusuoka & Stroock [33]. They will appear as
Malliavin weights in our integration by parts formulas. The definition and properties
we give here record the regularity and growth of these processes with respect to different
parameters. The results allow one to develop integration by parts formulas in a systematic
and transparent way, which automatically leads to nice derivative estimates.

Definition A.4 (Kusuoka-Stroock processes). Let E be a separable Hilbert space and let
r ∈ R, M ∈ N. We denote by Kr(t, E,M ) the set of functions: Φt : (t, T ] × RN →
DM,∞(E) satisfying the following:

1. For all s ∈ (t, T ], the map RN 3 x 7→ Φt(s, x) ∈ Lp(Ω) is M -times continuously
differentiable for all p ≥ 1.

2. For any p ≥ 1, any multi-index α on {1, . . . , N} and m ∈ N with |α| + m ≤ M , we
have

sup
x∈RN

sup
s∈(t,T ]

(s − t)−r/2 ‖∂α
x Φt(s, x)‖Dm,p(E) < ∞. (A.7)

Remark A.5. 1. The number M denotes how many times the Kusuoka-Stroock func-
tion can be differentiated and r measures the growth in (s − t).

2. This definition is slightly different to that in [33]: here our processes are defined on
(t, T ] instead of (0, T ] and we require continuity in Lp(Ω) rather than almost surely.

We record here some properties which help when building Malliavin weights later.

Lemma A.6. a. If Φt ∈ Kq
r(t,R,M) is F-adapted, and we define

Ψi
t(s, x) :=

∫ s

t
Φt(u, x) dBi

u for i ∈ {1, . . . , d} and Γ(s, x) :=
∫ s

t
Φt(u, x) du, then

Ψi
t ∈ Kq

r+1(t,R,M) and Γt ∈ Kq
r+2(t,R,M).

b. If Φt,i ∈ Kqi
ri

(t,R,Mi), i = 1, . . . , n then
∑n

i=1 Φt,i ∈ Kmaxi qi

mini ri
(t,R, mini Mi) and

∏n
i=1 Φt,i ∈ Kq1+...+qn

r1+...+rN
(t,R, mini Mi).

Proof. The proof is essentially the same as the proof of Lemma 75 in [15].
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A.2 Integration by parts & derivative bounds

We are now in a position to prove the main integration by parts result.

Theorem A.7. Assume that ŨFG(m) holds and fix s ∈ (t, T ]. Then, for any α1, . . . , αn ∈
A1(m), there exist Φ1

t,α1,...,αn
∈ K0(t,R) and Φ2

t,α1,...,αn
∈ K0(t,R

N ) such that for f ∈
C∞

b (RN ;R),

W̃[α1](t) ∙ ∙ ∙ W̃[αn](t) (Pt,sf) (x) = (s−t)−
‖α1‖+...,+‖αn‖

2 E
[
f(Xt,x

s )Φ1
t,α1,...,αn

(s, x)
]
, (A.8)

and

W̃[α1](t) ∙ ∙ ∙ W̃[αn](t) (Pt,sf) (x) = (s − t)−
‖α1‖+...,+‖αn−1‖

2 E
[
∇f(Xt,x

s )Φ2
t,α1,...,αn

(s, x)
]
.

(A.9)
Moreover, for f continuous and bounded or Lipschitz, Pt,sf(x) is differentiable in the
directions {W̃[α](t) : α ∈ A1(m)} with

sup
x∈RN

∣
∣
∣W̃[α1](t) ∙ ∙ ∙ W̃[αn](t) (Pt,sf) (x)

∣
∣
∣ ≤ C ‖f‖∞ (s − t)

−(|α1|+...,+|αn|)
2 , (A.10)

and

sup
x∈RN

∣
∣
∣W̃[α1](t) ∙ ∙ ∙ W̃[αn](t) (Pt,sf) (x)

∣
∣
∣ ≤ C ‖f‖Lip (s − t)

1−(|α1|+...,+|αn|)
2 , (A.11)

in each case, respectively.

Remark A.8. We emphasise here that each W̃[α1](t) is a differential operator acting in x,
parametrised by t, applied to the function x 7→ Pt,sf(x). These results are not valid for e.g.
W̃[α1](u)Pt,sf(x) when u 6= t. We develop estimates on the derivative of (t, x) 7→ Pt,sf(x)
as a function on [0, T ] × RN in Proposition A.15.

Proof of Theorem A.7. Since the ŨFG condition is precisely the UFG condition intro-
duced in Kusuoka [31] on RN+1, we can use the results there. We use the notation

P̃sg(x̃) := E
[
g
(
X̃ x̃

s

)]
for a suitably integrable function g : RN+1 → R. By Kusuoka [31]

Lemma 8 (see also [15] Corollary 32), we know for any α1, . . . , αn ∈ A1(m), there exist
Φ1

α1,...,αn
∈ K0(R) and Φ2

α1,...,αn
∈ K0(R

N+1) such that for g ∈ C∞
b (RN+1;R),

W̃[α1](t) ∙ ∙ ∙ W̃[αn](t)
(
P̃sg

)
(x̃) = (s − t)−

‖α1‖+...,+‖αn‖
2 E

[
g(X̃ x̃

s )Φ1
α1,...,αn

(s, x̃)
]
,

and

W̃[α1](t) ∙ ∙ ∙ W̃[αn](t)
(
P̃sg

)
(x̃) = (s − t)−

‖α1‖+...,+‖αn−1‖

2 E
[
∇g(X̃ x̃

s )Φ2
α1,...,αn

(s, x̃)
]
.

Now for any function f ∈ C∞
b (RN ;R), we can extend it to g ∈ C∞

b (RN+1;R) by g(t, x) :=
f(x). We then immediately have the integration by parts formulas (A.8) and (A.9). We
get the bound stated in (A.10) with the constant

C = sup
s∈[t,T ]

sup
x∈RN

E
∣
∣Φ1

t,α1,...,αn
(s, x)

∣
∣ ,

and a standard approximation argument gives the same estimate for bounded and con-
tinuous f . Similarly, we obtain the bound in (A.11) with constant

C = sup
s∈[t,T ]

sup
x∈RN

E
∣
∣Φ2

t,α1,...,αn
(s, x)

∣
∣ ,

and a standard approximation argument allows one to obtain the same bound for f Lip-
schitz with ‖∇f‖∞ replaced by ‖f‖Lip.
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A.3 Uniform Hörmander setting

In this section, let us consider a stronger assumption than the ŨFG(m) condition. Sup-
pose that a uniform strong Hörmander condition of order m holds - that is

Assumption A.9. USH(m) : There exists δ > 0 and m ∈ N such that for all ξ ∈ RN ,

inf
(t,z)∈[0,T ]×RN

∑

α∈A≥1(m)

〈W[α](t, z), ξ〉2 ≥ δ |ξ|2.

In this case, we recover differentiability of x 7→ Pt,T f(x) in all directions.

Corollary A.10. Assume USH(m) holds. Let η be a multi-index on {1, . . . , N} and let
f be Lipschitz. Then,

sup
x∈RN

|∂η (Pt,T f) (x)| ≤ C ‖f‖Lip (T − t)−(|η|−1)m/2.

Proof. First let f ∈ C∞
b (RN ;R). For the first order derivatives,

∂i
xE
[
f(Xt,x

T )
]

=
N∑

k=1

E
[
∂kf(Xt,x

T ) ∂i
x(Xt,x

T )k
]
.

For the higher order derivatives, we note that there exist F i
α ∈ C∞

b ([0, T ] × RN ;R) such
that

ej =
∑

α∈A≥1(m)

F j
α(t, x) W[α](t, x),

where ej is the j-th standard basis vector in RN . To see this, define W(t, x) to be the
N × card(A≥1(m)) matrix whose columns are the vector fields (W[α])α∈A≥1(m) evaluated

at (t, x). USH(m) guarantees that WW>(t, x) is invertible. Then,

F j
α(t, x) :=

(
W>[WW>]−1(t, x) ej

)
α

satisfies the above relation. Then, for the second order derivatives,

∂(j,i)
x E

[
f(Xt,x

T )
]

=
N∑

k=1

∂j
xE
[
∂kf(Xt,x

T ) ∂i
x(Xt,x

T )k
]

=
N∑

k=1

∑

α∈A≥1(m)

F j
α(t, x) W[α](t)

(
E
[
∂kf(Xt,x

T ) ∂i
x(Xt,x

T )k
])

.

We note that ∂i
x(Xt,x

T )k ∈ K0(t,R), so we can apply the IBPF in Kusuoka [31] Lemma 8
to obtain the existence of Ht,α ∈ K0(t,R) such that

∂(j,i)
x E

[
f(Xt,x

T )
]

=
N∑

k=1

∑

α∈A≥1(m)

F j
α(t, x) (T − t)−|α|/2 E

[
∂kf(Xt,x

T ) Ht,α (T, x)
]

= (T − t)−m/2
N∑

k=1

E
[
∂kf(Xt,x

T ) H̄t,i,j,k(T, x)
]
,
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where

H̄t,i,j,k(T, x) :=
∑

α∈A≥1(m)

(T − t)(m−|α|)/2F j
α(t, x)Ht,α (T, x) ∈ K0(t,R),

and we have used that for all α ∈ A≥1(m), ‖α‖ = |α| ≤ m. We get the bound:

sup
x∈RN

∣
∣
∣∂(j,i)

x E
[
f(Xt,x

T )
]∣∣
∣ ≤ (T − t)−m/2‖∇f‖∞

N∑

k=1

sup
x∈RN

E
∣
∣H̄t,i,j,k(T, x)

∣
∣ .

We can iterate this argument to arbitrary order. Then we can get the bound for a Lipschitz
f using the same approximation as before.

A.4 Connection with PDE

In this section, we make use of the integration by parts formulae of Theorem A.7 to
extend the notion of classical solution to the PDE (A.1) to the case when the solution is
not classically differentiable in all directions. The notation and arguments in this section
closely follows Crisan & Delarue [9], who provide a similar notion of solution to semilinear
PDEs with coefficients which do not depend on time. The idea is very simple: it is
a standard result that for a terminal condition f ∈ C∞

p (RN ;R) the PDE (A.1) has a
classical solution. For f ∈ Cp(R

N ;R), we consider a sequence of smooth approximations
(fl)l≥1 to which we can associate solutions (vl)l≥1 to (A.1). For each vl we can use the
integration by parts formula of Theorem A.7 to write the derivatives W 2

i (t)vl(t, x) in a
form which does not depend on any derivatives of fl. We then show that the PDE still
holds in the limit l → ∞.

We introduce some function spaces we will need to define what we mean by a classical
solution. We denote by B(0, R) the open ball in RN of radius R > 0 centred at zero. Let
φ ∈ C∞

b ([0, T − 1/r] × B(0, R);R) and define

‖φ‖W̃0,1
[0,T−1/R]×B(0,R);∞ := ‖φ‖[0,T−1/R]×B(0,R);∞ + ‖W̃0(t)φ‖[0,T−1/R]×B(0,R);∞.

Define D1,∞

W̃0
([0, T − 1/R] × B(0, R)) as the closure of C∞

b ([0, T − 1/R] × B(0, R);R) in

Cb([0, T − 1/R] × B̄(0, R);R) with respect to the norm ‖ ∙ ‖W̃0,1
[0,T−1/R]×B(0,R);∞. And define

D1,∞

W̃0
([0, T ) × RN ) :=

⋂

R≥1

D1,∞

W̃0
([0, T − 1/R] × B(0, R)).

Now, take ψ ∈ C∞
b (RN ;R) and, for any ball B, define

‖ψ‖W (t),1
B,∞ := ‖ψ‖B,∞ +

d∑

i=1

‖Wi(t)ψ‖B,∞,

and

‖ψ‖W (t),2
B,∞ := ‖ψ‖W (t),1

B,∞ +
d∑

i=1

‖W 2
i (t)ψ‖B,∞.

We define D2,∞
W (t)(B) to be the closure of C∞

b (B;R) in Cb(B̄;R) with respect to ‖ ∙ ‖W (t),2
B,∞

and
D2,∞

W (t)(R
N ) :=

⋂

R≥1

D2,∞
W (t)(B(0, R)).
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Definition A.11 (Classical solution). We define a function v : [0, T ] × RN → R to be a
classical solution to (A.1) if the following three conditions are satisfied:

1. v ∈ D1,∞

W̃0
([0, T ) × RN ) and for each t ∈ [0, T ), v(t, ∙) ∈ D2,∞

W (t)(R
N ), such that for

i = 1, . . . , d,
[0, T ) × RN 3 (t, x) 7→

(
Wi(t)v(t, x),W 2

i (t)v(t, x)
)

is a continuous function.

2. For all (t, x) ∈ [0, T ) × RN ,

W̃0v(t, x) +
1
2

d∑

i=1

W 2
i v(t, x) = 0

3. lim
(t,y)→(T,x)

v(t, y) = f(x) for all x ∈ RN .

Remark A.12. 1. Note that since, in general, the space D2,∞
W (t)(R

N ) is different for
each t ∈ [0, T ), our definition requires that v(t, ∙) belongs to a different space at each
time t ∈ [0, T ).

2. If φ ∈ C1,2([0, T )×RN ;R), then φ ∈ D1,∞

W̃0
([0, T )×RN ) and φ(t, ∙) ∈ D2,∞

W (t)(R
N ) for

all t ∈ [0, T ). Moreover,

‖φ‖W̃0,1
[0,T−1/R]×B(0,r);∞ ≤ CR

{
‖φ‖[0,T−1/r]×B(0,r);∞ + ‖∂tφ‖[0,T−1/R]×B(0,R);∞

+ ‖∇φ‖[0,T−1/R]×B(0,R);∞

}

‖φ‖W (t),2
B(0,R),∞ ≤ CR

{
‖φ(t, ∙)‖B(0,R);∞ + ‖∇φ(t, ∙)‖B(0,R);∞ + ‖∇2φ(t, ∙)‖B(0,R);∞

}
,

where

CR = 1 + ‖W0‖[0,T−1/R]×B(0,R);∞ +
d∑

i=1

‖Wi(t, ∙)‖B(0,R);∞ + ‖∂Wi(t, ∙)‖B(0,R);∞.

It is then clear that our definition truly is an extension of the usual definition of
classical solution.

With this definition in hand, we have the following theorem.

Theorem A.13. Assume that ŨFG(m) holds and let f : RN → R be continuous with
polynomial growth. Then, v(t, x) := Pt,T f(x) is a classical solution to (A.1). It is also
the unique solution amongst those which satisfy the following polynomial growth condition:
there exists q > 0 such that

|v(t, x)| ≤ C(1 + |x|)q ∀t ∈ [0, T ], x ∈ RN

The proof of uniqueness relies on an Itô formula valid for functions differentiable in
the directions of the vector fields. We will also need a stochastic Taylor expansion based
on this formula in Section A.6 for the analysis of the error in the cubature on Wiener
space algorithm.
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Lemma A.14. Let v : [0, T ) × RN → R satisfy part (1) of Definition A.11 and be of at
most polynomial growth. Then, for all u ∈ [t, T ),

v(u,Xt,x
u ) = v(t, x) +

∫ u

t

[

W̃0(s)v(s,Xt,x
s ) +

1
2

d∑

i=1

W 2
i (s)v(s,Xt,x

s )

]

ds

+
d∑

i=1

∫ u

t

Wi(s)v(s,Xt,x
s )dBi

s.

(A.12)

Proof. This can be proved by a mollification argument as in Proposition 7.1 in [9].

We can now prove Theorem A.13.

Proof of Theorem A.13. Existence : Denote by (fl)l≥1 a sequence of mollifications of f .
Since f is continuous, fl converges to f uniformly on compact subsets of RN . Since
vl(t, x) − v(t, x) = E

[
fl(X

t,x
T ) − f(Xt,x

T )
]
, it is clear that vl converges to v uniformly on

compact subsets of [0, T ] × RN . Therefore, v is continuous up to the boundary at t = T .
Now, consider the integration by parts formula for Wivl and W 2

i vl provided by (A.8) as
part of Theorem A.7. We get

Wivl(t, x) = (T − t)−1/2 E
[
fl(X

t,x
T )Φ1

t,(i)(T, x)
]
,

W 2
i vl(t, x) = (T − t)−1 E

[
fl(X

t,x
T )Φ1

t,(i,i)(T, x)
]
,

where, crucially, Φ1
t,(i), Φ

1
t,(i,i) are independent of fl. Then, considering the differences

Wivl(t, x)−Wivm(t, x) and W 2
i vl(t, x)−W 2

i vm(t, x) over compact subsets of [0, T )×RN ,
we see that (Wivl,W

2
i vl)l≥1 converges uniformly on compact subsets of [0, T )×RN . This

proves that Wiv,W 2
i v exist and are continuous. Now, each fl ∈ C∞

p (RN ;R), so associated

to each, there is a classical solution vl of the PDE (A.1). Since W̃0vl = − 1
2

∑d
i=1 W 2

i vl, and
W 2

i vl → W 2
i v uniformly on compacts in [0, T ) × RN , we get that v ∈ D1,∞

W̃0
([0, T ) × RN ).

Moreover, taking the limit in the PDE satisfied by vl shows that it is also satisfied by v.
Uniqueness: Using the Itô formula in Lemma A.14, we have for u < T

v(u,Xt,x
u ) = v(t, x) +

∫ u

t

[

W̃0(s)v(s,Xt,x
s ) +

1
2

d∑

i=1

W 2
i (s)v(s,Xt,x

s )

]

ds

+
d∑

i=1

∫ u

t

Wi(s)v(s,Xt,x
s )dBi

s.

Using part (2) of the definition, the drift term is zero and

v(u,Xt,x
u ) = v(t, x) +

d∑

i=1

∫ u

t

Wi(s)v(s,Xt,x
s )dBi

s. (A.13)

Now, using that v has polynomial growth and Xt,x
u has moments of all orders, we can

easily show that the left hand side of (A.13) is square integrable, and so the right hand
side is too. Hence the right hand side is a true martingale and we can take expectation
in (A.13) to get

Ev(u,Xt,x
u ) = v(t, x)
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and using part (3) of the definition (continuity of v at the boundary t = T ) we can take
u ↗ T to get

Ef(Xt,x
T ) = v(t, x),

which proves uniqueness.

A.5 Derivatives in the direction W̃0

In Theorem A.7, we established integration by parts formulae for derivatives of x 7→
Pt,T f(x) in the directions {W̃[α](t), α ∈ A1(m)}. However 0 /∈ A1(m), so we have no

control over derivatives in the direction W̃0. Using that Pt,T f(x) solves PDE (A.1) we are
now able to estimate derivatives in the W̃0 direction.

Proposition A.15. Assume ŨFG(m) holds. Let α = (α1, . . . , αn) ∈ A and use the no-
tation W̃α(t) = W̃α1(t) ∙ ∙ ∙ W̃αn(t). Then, the function v(t, x) := Pt,T f(x) is differentiable
in the directions W̃0(t),W1(t), . . . ,Wd(t) and the following bounds hold for all t ∈ [0, T ):
for f continuous and bounded,

sup
x∈RN

∣
∣
∣W̃α(t)v(t, x)

∣
∣
∣ ≤ C ‖f‖∞ (T − t)

−(‖α1‖+...,+‖αn‖)
2 . (A.14)

For f Lipschitz,

sup
x∈RN

∣
∣
∣W̃α(t)v(t, x)

∣
∣
∣ ≤ C ‖f‖Lip (T − t)

1−(‖α1‖+...,+‖αn‖)
2 . (A.15)

Proof. Thinking of the W̃0,W1, . . . ,Wd as differential operators acting on functions in
C∞([0, T ] × RN ;R), Corollary 78 in [15] shows that W̃α, α ∈ A satisfies the following
convenient identity

W̃αv =
‖α‖∑

i=1

∑

β1,...,βi∈A1,
‖β1‖+...+‖βi‖=‖α‖

cα,β1,...,βiW̃[β1]...W̃[βi]v, (A.16)

where cα,β1,...,βi ∈ R. The importance of this identity is that the left hand side contains
derivatives possibly in the direction W̃0 whereas on the right hand side, there are only
derivatives in directions W̃[α], α ∈ A1 which does not include W̃0.

Hence, ∣
∣
∣W̃αv

∣
∣
∣ ≤ C sup

β1,...,βi∈A1,
‖β1‖+...+‖βi‖=‖α‖

∣
∣
∣W̃[β1]...W̃[βi]v

∣
∣
∣ ,

this being exactly the type of term we can control by Theorem A.7.

Now, define, for ϕ ∈ C∞
b ([0, T − 1/R] × B(0, R);R), the norm

‖ϕ‖W,n
[0,T−1/R]×B(0,R);∞ :=

∑

α∈A(n)

‖W̃αϕ‖[0,T−1/R]×B(0,R);∞,

and define D̂n([0, T − 1/R] × B(0, R)) as the closure of C∞
b ([0, T − 1/R] × B(0, R);R) in

Cb([0, T − 1/R] × B̄(0, R);R) with respect to this norm. Then, set

D̂∞([0, T ) × RN ) :=
⋂

R≥1,n≥1

D̂n([0, T − 1/R] × B(0, R)).
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Lemma A.16. The function v(t, x) := Pt,T f(x) is a member of D̂∞([0, T ) ×RN ) for all
f ∈ Cp(R

N ;R).

Proof. We take a sequence (fl)l≥1 of smooth approximations of f and associate a vl

to each. For any n ∈ N and any α ∈ A(n), we can use the identity (A.16) to write
W̃α(t)vl(t, x) as a linear combination of terms of the form W̃[β](t)vl(t, x) where β ∈ A1(n).
This allows us to apply the integration by parts formulae in Theorem A.7 to write

W̃α(t)vl(t, x) = t−‖α‖/2 E
[
fl(X

t,x
T )Φt,α(T, x)

]

for some Φt,α ∈ K0(t,R). This converges over compact subsets of [0, T ) × RN .

The above lemma is used in the next section where we need to perform a stochastic
Taylor expansion of v(t, x) := Pt,T f(x) for Lipschitz f .

A.6 Stochastic Taylor expansion

Proposition A.17. Let f be Lipschitz continuous and assume that ŨFG(m) holds for
some m ∈ N. Then, u, the solution of equation (A.1) admits a stochastic Taylor expansion
for s < T

u(s,Xt,x
s ) =

∑

α∈A(l)

W̃αu(t, x) Iα
t,s(1) + R(l, t, s, x),

with the following estimate on the remainder

sup
x∈RN

‖R(l, s, t, x)‖2 ≤ C

l+2∑

k=l+1

(T − s)−(k−1)/2(s − t)−k/2. (A.17)

This leads to a one-step cubature error estimate of

sup
x∈RN

∣
∣E
[
u(s,Xt,x

s )
]
− EQt,s

[
u(s,Xt,x

s )
]∣∣ ≤ C

l+2∑

k=l+1

(T − s)−(k−1)/2(s − t)−k/2. (A.18)

Proof. For any g ∈ C∞
b ([t, s] × RN ;R), the following Stratonovich-Taylor expansion is

contained in, for example, Kloeden & Platen [23, Theorem 5.6.1]

g(s,Xt,x
s ) =

∑

α∈A(l)

W̃αg(t, x) Iα
t,s(1) + R(l, t, s, x)

where
R(l, t, s, x, g) =

∑

−β∈A(l),β /∈A(l)

Iβ
t,s

(
W̃βg(∙, Xt,x

∙ )
)

.

It is not immediate that this expansion is valid for g = u, the solution of equation (A.1)
since it is not differentiable in all directions. However, the Stratonovich-Taylor expansion
follows from repeated application of the Itô formula contained in Lemma A.14. We recall
Lemma A.16, which says that (t, x) 7→ Pt,T f(x) ∈ D̂∞([0, T ) × RN ). This guarantees
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we can apply Itô’s formula as many times as we wish and so the Stratonovich-Taylor
expansion is still valid. We then have the following estimate for g = u

sup
x∈RN

‖R(l, s, t, x)‖2 ≤
∑

−β∈A(l),β /∈A(l)

∥
∥
∥Iβ

t,s

(
W̃βu(∙, Xt,x

∙ )
)∥∥
∥

2

≤
l+2∑

j=l+1

sup
β∈A(j)

sup
(p,x)∈[t,s]×RN

∣
∣
∣W̃βu(p, x)

∣
∣
∣
∥
∥
∥Iβ

t,s(1)
∥
∥
∥

2

≤ C

l+2∑

j=l+1

sup
β∈A(j)

sup
(p,x)∈[t,s]×RN

∣
∣
∣W̃βu(p, x)

∣
∣
∣ (s − t)j/2, (A.19)

where we have used the standard moment estimate on iterated Stratonovich integrals∥
∥
∥Iβ

t,s(1)
∥
∥
∥

2
≤ C(s− t)‖β‖/2. A similar estimate holds under the one step cubature measure,

Qt,s :

sup
x∈RN

∣
∣EQt,sR(l, t, s, x)

∣
∣ ≤ C

l+2∑

j=l+1

sup
β∈A(j)

sup
(p,x)∈[t,s]×RN

∣
∣
∣W̃βu(p, x)

∣
∣
∣ (s − t)j/2. (A.20)

This is a standard estimate on iterated integrals of bounded variation paths. The constant
C depends on d, l and the length of the cubature paths. Inequalities (A.19) and (A.20)
give us control over the error in approximating Pt,sg(t, ∙) by Qt,sg(t, ∙),

sup
x∈RN

∣
∣E
[
u(s,Xt,x

s )
]
− EQt,s

[
u(s,Xt,x

s )
]∣∣ = sup

x∈RN

∣
∣(E− EQt,s

)R(l, t, s, x)
∣
∣

≤ C
l+2∑

j=l+1

sup
β∈A(j)

sup
(p,x)∈[t,s]×RN

∣
∣
∣W̃βu(p, x)

∣
∣
∣ (s − t)j/2.

(A.21)

To bound
sup

(p,x)∈[tj ,tj+1]×RN

∣
∣
∣W̃βu(p, x)

∣
∣
∣ ,

we use the estimate provided in (A.15) and taking the supremum over p ∈ [tj , tj+1], we
get

sup
(p,x)∈[tj ,tj+1]×RN

sup
β∈A(j)

∣
∣
∣W̃βu(p, x)

∣
∣
∣ ≤ C (T − tj+1)

(1−j)/2.
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[20] L. G. Gyurkó and T. J. Lyons. Efficient and practical implementations of cubature
on Wiener space. In Stochastic Analysis 2010. Springer.

39
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